FUJITSU MICROELECTRONICS

CONTROLLER MANUAL CM71-00327-5E

FR FAMILY

SorFrtuNe™ LINKAGE KIT
MANUAL

for V6

[o®)
FUJITSU

FR FAMILY

SorFTuNe™ LINKAGE KIT
MANUAL

for V6

FUJITSU MICROELECTRONICS LIMITED

PREFACE

B Objectives and Intended Readership
This manual describes the functions and operations of the Fujitsu SOFTUNE Linkage Kit .

This manual is intended for engineers who are developing application programs using FR family
microprocessor.

The linkage kit consists of three kinds of program: linker, librarian and object format converter.

Note: FR is the abbreviation of FUJITSU RISC Controller and a product of FUJITSU
MICROELECTRONICS Limited.

B Trademarks
SOFTUNE is a trademark of FUJITSU MICROELECTRONICS Limited.

Microsoft, Windows is registered trademarks of Microsoft Corporation in the U.S. and other
countries.

The company names and brand names herein are the trademarks or registered trademarks of
their respective owners.

B Organization of this manual
This manual consists of four parts and an appendix.
PART | LINKAGE KIT

Provides an outline of the tools included in linkage kit and the common items that apply to all
tools.

PART Il LINKER

Part Il describes the specifications, options, and output lists of a linker.
PART Il LIBRARIAN

Part 11l describes the specifications, options, and output lists of a librarian.
PART IV OBJECT FORMAT CONVERTERS

Part IV describes the types of object format converters, list of options, functions, and
conversions of object formats.

APPENDIX

These appendixes describe the error messages of the linkage kit, HEX format, and S format.

» The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.

» Theinformation, such as descriptions of function and application circuit examples, in this document are presented
solely for the purpose of reference to show examples of operations and uses of FUJTSU MICROELECTRONICS
device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use
based on such information. When you develop equipment incorporating the device based on such information, you
must assume any responsibility arising out of such use of the information. FUJTSU MICROELECTRONICS
assumes no liability for any damages whatsoever arising out of the use of the information.

e Any information in this document, including descriptions of function and schematic diagrams, shall not be
construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or
any other right of FUJTSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS
warrant non-infringement of any third-party's intellectual property right or other right by using such information.
FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or
other rights of third parties which would result from the use of information contained herein.

» The products described in this document are designed, developed and manufactured as contemplated for general
use, including without limitation, ordinary industrial use, genera office use, persona use, and household use, but
are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers
that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to
death, personal injury, severe physica damage or other loss (i.e., nuclear reaction control in nuclear facility,
aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control
in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial
satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any
claims or damages arising in connection with above-mentioned uses of the products.

» Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss
from such failures by incorporating safety design measures into your facility and equipment such as redundancy,
fire protection, and prevention of over-current levels and other abnormal operating conditions.

» Exportation/release of any products described in this document may require necessary procedures in accordance
with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control
laws.

e The company names and brand names herein are the trademarks or registered trademarks of their respective
owners.

Copyright© 2002-2008 FUJITSU MICROELECTRONICS LIMITED All rights reserved.

CONTENTS

PART | I 1N 1] = I PR 1
CHAPTER 1 SPECIFICATIONS OF LINKAGE KIT .corniiiieieeeeee et 3
1.1 OULHINE OF LINKAGE Kteeeeieiitiiee ettt ettt e et e e s e bbbt e e e e e anbbe e e e e aanres 4
1.2 S t= L LU o {0 o7 =To [= 5
1.3 FOrced TEIMUNALION ...ttt e e oo oottt e et e e e e e e s s e aa et bt be e et e e e e e e e e e e e annnbbabbeeeaaaaaaeans 6
1.4 [T I o o = PP PUPERRR 7
1.5 STAMUP MBSSAGE .vutiiiiiiiiiiiii ettt ettt e et et e e e et e e bt e e e e e et b s e e e e e e tbbn s e e e e eeba e e e e eeaabanaeaaaes 8
1.6 ENO IMESSATE .eeeeeiiiiiiiii ittt ettt ettt e e e e o4 4o oo bbbt bttt e e et e e e e e e ea ek a bbb ba et et e e e e e e e e aa e nnnbbbnbeeeaaaaaeeaeas 9
1.7 HEID MESSAGE ...ttt e ettt e e e ettt e e e ek b et e e e e a b b e e e e et b e e e e e et b e e e e e nbn s 10
1.8 o =] 1] 11T £ T PP T PP PP PPUPTPR N 11
1.9 Fle NAME RUIES ...ttt e e e e e e e e e s bbbt ettt e et e e e e e e s saannbbebeeeeaaaaeaaaean 12
1.10 ENVIroNmMENt VArADIES ..ottt e e et e e e e e e s s e st e e e e e e e e e e s e aannr e e aeees 13
0 A I8 1 = VA o5 QT = Tox (] Y 14
1.10.2 FELANG (MESSAQE LANGUATE) ...eveeetiiiaaaiiaiiiititieiieetaaae e e e e e aatetbeeeeeeeaaaaaasaaannsbsbseeeeaaaaasaeaaaannrenes 15
1.10.3 FETOOL (INStallation DIFECLOMY)eeeiieieeeeieiiiiieiieieeeeeeeeeessssstenteeeeeseaeesesssssssssnseneereeaeeessssnnanssenes 16
1.10.4 LIB911 (Library File Search DIr€CLOIY)coueuiuuuumiiiuiiiiiiiiiisie e e e e eeeeeeeeeeee e e eeeaaerernnnr e e eeeas 17
1.10.5 OPT911 (Default Option File Storage DIr€CIOIY)cooiiiiiiiiiiiiiiieiee e 18
1.10.6 OPT (Default Option File Storage DIir€CIOIY)uieiiieeeeiiiiiiiiiieiieeeee e e e e s s sssrreeeereeeeee e e e enssanrene 19
CHAPTER 2 OPTIONS .ottt e et e et e et e e e e e e e eeaneees 21
2.1 L 0] 1o 22
2.2 Numeric Expression of Option PArametersooooiiiiiiiiiiiieia e e e e e e e e 23
2.3 Notes and Evaluation When Option is SPeCIfiedccuviiiiiiiiieic e 24
2.4 Specifying Options that Have Inclusive or Contradictory Relation Each Otherccccccoeeeeiieenin. 25
25 Example of Specifying Command LINESccuiiiiiiiiiiieiieie et a e e e e e 26
CHAPTER 3 COMMON OPTIONS ...ttt e e e e 27
3.1 List Of COMMON OPLIONS ...uviiiiiiiiiieeie e iiict e e e e e e s e s s r e et e e ee e e s s s s st aeeereaeeeeesssnnnnstnnrrreneeaeeeanen 28
3.2 Details of COMMON OPLIONS ..uuuuiieiiiiieie i e e e e e e e e e e aaetaeeeeeeeeaeesrereeenrnnnnnnnns 29
3.2.1 Specifying Suppression to Read Default Option File (-Xdof)ooiiiiiiiiiieeee e, 30
3.2.2 Specifying Option File Name (-f) ..ooooiiii e e 31
3.2.3 Specifying Display of Help Message (-help) ..o 33
3.24 Specifying Version Number and Startup Message of Program (-V) ..., 34
3.25 Suppression to Output Version Number and Startup Message of Program (-XV)ccccccceeeeeen. 35
3.2.6 Specifying Display of ENd MeSSage (-CIMSQ)cceeiiiiiiiiieieiiieiiiiiieiiesess e s e s e e e e eeeaeaeeeeserareseessennnnnn 36
3.2.7 Suppression to Output ENd MeSSage (-XCIMSQ) .cceviiiiiuuriiiiiiiiaaaeae ettt ee e e e e e e s e e sianraeeeeeeeeaeas 37
3.2.8 Specifying to Set the End Code to 1 When Warning is Issued (-CWNO0)cceveeeeivviiiciiinneeeneenenn. 38
3.29 Specifying to Set the End Code to 0 When Warning is Issued (-XCWNO0)cccceeeeevevieiivienennnnns 39
CHAPTER 4 OPTION FILES ..ot e e 41
4.1 OULliNe Of OPLION FlE ...ttt e e e e e e ettt e e e e e e e e e e e e e sanbbebeeeeaeas 42

4.2 Specification to Continue in the OPtIoN File ... 43
4.3 Specifying Comment in the OPtion File ... 44
4.4 Example of Describing OPtion File ... e e e e e e e e 45
4.5 Default OPLION FlE ...ttt e e e e ettt e e e e e e e e e e e e nnbabb e e e eeaaaeeeaaean 46
PART Il LINKER oo e e e et et e et e e e et e e e en e ens 49
CHAPTER 5 SPECIFICATIONS OF A LINKER ...coii e 51
51 OULINE OF @ LINKEI ...cieiiieee ettt oottt e e e e e e s s e e bbbt b e et e e e e e e e e e e aasanbbnbeeeeeeas 52
5.2 FUNCHONS OFf @ LINKET ...ttt e e e e e e e e e e s e bbb et eeeeaaaeaeaaean 53
521 Control on Input-Output Files and MESSAGESceiiiuriiiieiiiiiiie ettt 55
5.2.2 Control on Combining and Locating SECLIONScoiviiiiiiiiiiiiiiiie s e e e e e e e e e e e e e e e ee e e eeeeaeenranns 56
5.2.3 Control 0N Searching LIDIari@Soooi it e e eeaeas 57
5.2.4 Setting Entry Addresses and SYmbOl VAIUESocuiiiiiiiiiiiiiiii e 58
5.3 B3/ 810 0= e 1o 59
5.4 (070] 101 o] 1o 1 g To IS =Tt o] 4 1S PR TU R PTOPPPP 61
5.5 (o To= 11 a[o TR T=Tot i o] o S PP P PP PPPPP PP 62
5.5.1 Example of Location when the Order of Combining Sections is not Specified 63
5.5.2 Example of Location when the Order of Combining Sections is Specifiedccccccccieiiinnnnies 64
5.5.3 Example of Location when the Section Group is Specifiedccccciiiiiiee e 65
5.6 Automatically LOCAtiING SECHIONSvuiiiiiiiiiiiiiiie e e i e e e e e e e e e e e e e e et e e et s s s e s e e e aeeaaeaeaaaeeeenenes 66
5.6.1 Automatically Locating Sections when -AL 1 is Specifiedcccccooiiiiiiiiiiiiii 67
5.6.2 Automatically Locating Sections when -AL 2 is Specifiedccccccvveeiiiiiiiciie e 69
5.7 Y= T= Ted a1l I o = = 71
5.7.1 Example of a Search when there is one Library File (1)ccoooiiiiiiiiii e 72
5.7.2 Example of a Search when there is one Library File (2)c.ccoooviiiiiieiiee e 73
5.7.3 Example of a Search when there is one Library File (3)coovrriiririeeeecci e 74
5.7.4 Example of a Search when there are Multiple Library FileS (1)ccuuveeiieiiaiiiiiiiiiiiiiieeieee e 75
5.7.5 Example of a Search when there are Multiple Library FileS (2)ccccvvevieiieeiiiiiiiiiiieeeeeee e 76
5.7.6 Processing when Library Files are Individually Specifiedcccoovririiiicccie e, 77
5.8 ROM @NU RAM AFEBSueiiieieeiitite e e e ettt e e e e e e e ettt e e et et ea e e e e e aaaas s a b bbbt e eeaaaaeeeaeaannnbbaeseaeaaaaaaaaaaan 78
5.9 Sections to be Transferred from ROM t0 RAMcooiiiiiiiiiiiiie et 79
5.10 CPU INfOrMAtioN FlEooiiiiiieeeeee ettt e e e e e et e e e e e e e e e e e e e nbbnbeeeeeeas 82
5.11 Input of the Objects generated with SOFTUNE V3/V5 TOO!Iuuuiiiiiiiiiiiiiiiiieeeee e 83
5.12 Mixing a FR Object and @ FR80 ODJECEcccuiuiiiiiiiiieee et e e e e e e s e e e 84
CHAPTER 6 LINKER OPTIONS ..ottt e e e e 87
6.1 IS Ao T] G @ o] 1o LN 88
6.2 Details Of LINKEE OPLIONSeiiiiiiiiiiaie ittt ettt e e e e e e e st bbbt e e e e e e e e e e s aannnbbebeeeeaaaaaaaaaan 91
6.2.1 Output Load Module File Name SpecifiCation (-0)cccvvririiriieeeee e iiisiiiiee e e e e e e e e e s s sinenreeeeeeee s 92
6.2.2 Output Debug Information SPecification (-0)covvviiiiiiiiiiire e 93
6.2.3 Debug Information Delete Specification (-Xg)cccuueeiiiiiiiae e 94
6.2.4 Specification of Outputting Absolute Format Load Module (-2)cccccvvviiiiiieeee e 95
6.2.5 Specification of Outputting Relative Format Load Module (=)cceieiiiniiiiiiieeeeeieeeeeeeeeeiiiias 96
6.2.6 Specifying Padding DAt (=) «.eeeeeeeeeaiiaiiiiiei ettt ettt e e e e e e e e e e e aeeeeaeas 97
6.2.7 Specification to fill ROM area (-fill)cccuviiiiiiiie e 98
6.2.8 Specification for External Symbol Information Output (-symtab)cccccoeeeiii, 100

iv

6.2.9

6.2.10
6.2.11
6.2.12
6.2.13
6.2.14
6.2.15
6.2.16
6.2.17
6.2.18
6.2.19
6.2.20
6.2.21
6.2.22
6.2.23
6.2.24
6.2.25
6.2.26
6.2.27
6.2.28
6.2.29
6.2.30
6.2.31
6.2.32
6.2.33
6.2.34
6.2.35
6.2.36
6.2.37
6.2.38

6.2.39
6.2.40
6.2.41
6.2.42
6.2.43
6.2.44
6.2.45
6.2.46
6.2.47
6.2.48
6.2.49
6.2.50
6.2.51
6.2.52
6.2.53
6.2.54

Specification for Inhibiting the External Symbol Information Output (-Xsymtab) 101

Map List File Name SpecifiCation (-M)oouuiiiiiiiii e 102
Specification for Inhibiting Map List OUtPUL (=XIM)eeviiiiiiiiiiiiiire i e e e e e ee e 103
Cancellation of Omitting Names Displayed in the List (-dt)oooiiiiiiiiiieeeeeeeen 104
Output Specification of the Memory Used Information List (-mmi)ccccocvvieeriiiiiiiiiiieeeeen. 105
Disable Output of Demangled Symbol Name (-Xdemangle)cccccciveeiiiiiiiiiiiiiieeeeeeeeeeeeeeeeees 106
Enable Output of Demangled Symbol Name (-demangle)ccccueeeeeiiiiiiiiiiiiiiee e, 107
Specification of the Number of Digits in the LiSt LiNe (-PW)ccooiiiiiiiiiiiiieiieee e 108
Specification of the Number of Lines on One List Page (-pl) ...ccooeeeeieiiiieiieeee, 109
Checksum specification Of ROM @ra (-CS)uuurrrrriieiiiiaaiieiiiaiiiiiie it et e e e e e e e e eeeeeeaaaa e s 110
Warning Message Output Level Specification (-W)c.eeiiiiiiiiiiiiiiee e 115
ROM Area SPECIfICAtION (-10) .iiiiiieieeieiiiiiiiii s is e e e e e e e e e e e e e e et a s e s e e e e e e eaaeeeeeeees 116
RAM Area SPECIfICALION (FFA) .iiiieetitiiiieeiee e ettt e e e e e e et e e e e e e e e e s annbrseeeeeaaaaaeaaaaanns 117
ST=Tot i o] Y[[oTor= Vo] o XTI PT PP PPPPTOPPP 118
Section Group SPECIfiCAtiON (=gI) ..uuuriiiiieiei i e e e e e e e e e e et e —————— 120
Pack Link SPecCification (-PK)oooeeieieiiieiiee e a e e e e 121
Automatic Allocation SPeCifiCatioN (=AL)eoieiiiiiiie i 122
Retrieval Library File Specification (<)uueiiiiiii e 124
Library Retrieval Path SpecifiCation (-L)oiiiiiiiiiiiiieeee e 125
Library Specification for Each Symbol (-€1) ..o 126
Library Retrieval Inhibit Specification (-Nl) ... 127
Specification for Inhibiting Default Library Retrieval (-Nd) ..o 128
Entry Address SPeCIfiCatioN (-8)uvvieiiiiieeeiiiiiiiiiiie e e e s s s e e r e e e e 129
Dummy Setting of External Symbol Values (-df) ..., 130
Target CPU SPecCifiCation (mCPU) .ooiioiiiii ittt e e e e e e e e e s eneaeeees 131
Specifying CPU Information File (=Cif) ...uuuiiiiiiiei e 132
Object Mix Check Level Specification (F-OMCI)coooiiiiiiiiieccr e, 133
Inhibiting Check for Presence of Debug Data (-NCIO302LIB)ceeiiiiiiiiiiiiiiiiiiiiieeiee e 134
Function that Sets Automatically Internal ROM/RAM Areas (-Set_rora)ccccevveveereeeersiinnnnns 135
Specifies to Prevent the Internal ROM/RAM Areas from being Set Automatically

(O 1= (0] - T PP P TP P PPPPPPPUPPPPPPPRN 136
User-specified-area Check Specification (-Check_rora)cccuvueeiieiiiiiiiiiiiiiiieeeeeee e 137
User-specified-area Check Suppression Specification (-Xcheck_rora)cccccovevveeeiiniiiennennns 139
Section-placed-area Check Specification (-check_locate)ccooiiiiiiiiiiiiiee, 140
Section-placed-area Check Suppression Specification (-Xcheck_locate)ccccuvviiiiennnnn. 143
Specification of Section Arrangement Check for Size 0 (-check_size0_SecC)ccccvvvevrnurnnnn. 144
Suppression Specification of Section Arrangement Check for Size 0 (-Xcheck_size0_sec) 145
Disable Pre-linking (-XPLNK)ttt ee e e e e e e et e e e e e e e e e e e e e e aaaas 146
Specification for Relative Format Assemble List Input Directory (-alin)cccccvvvviiieeeiiinnenn. 147
Specification for Absolute Format Assemble List Output Directory Format (-alout) 148
Specification for Absolute Format Assemble List Qutput (-alS)cccuvveeeiiiieeiiiiiiiiiiiieeeeeeeeenn, 149
Specification for Absolute Format Assemble List Output Module (-alsf)ccccccevviiieiiiiienn. 150
Specification for Inhibiting Absolute Format Assemble List Output (-XalS)ccccovviiiieeneneenn. 151
Specification for ROM/RAM and ARRAY List OUtPUL (-alr)cooeviiiiiiiiiiiiiieiee e 152
Specification for ROM/RAM and ARRAY List Output Module (-alrf)ccccovviiiiiiiiiiiiie e, 153
Specification for Inhibiting ROM/RAM and ARRAY List Output (-Xalr)cccccceniiiiiiiiiiiiiennnnenn. 154
Specification for ROM/RAM and ARRAY List Symbol and Address Display Position

(G T =T o) PP TP UPPTPPUPPRPTRP 155

6.2.55 Specification for External Symbol Cross-reference Information List Output (-XI)ccooeeee. 156
6.2.56 Specification for External Symbol Cross-reference Information List File Name (-xIf) 157
6.2.57 Specification for Inhibiting the External Symbol Cross-reference Information List Output
) TP OPPPRPRRIPRR 158
6.2.58 Specification for Local Symbol List OUtPUL (=SI)eveeiieiiiiiiiii e 159
6.2.59 Specification for Local Symbol List File Name (-SIf)occveieiiiiii e 160
6.2.60 Specification for Inhibiting the Local Symbol List Qutput (-XSI)cevvvvriiiiiiiiiiiiiiiiiriei e, 161
6.2.61 Specification for Section Detail Map List Output (-ml)oooiiiiiiiiiiii e 162
6.2.62 Specification for Section Detail Map List File Name (-miIf)cccccoiiiiiiiieees 163
6.2.63 Specification for Inhibiting Section Detail Map List OQutput (-Xml)coovvriiiiiiiiiiiiiiieeeeeee, 164
CHAPTER 7 OUTPUT LIST FILE OF THE LINKER ..o, 165
7.1 Types of List Files Output by the LinKer ... 166
7.2 T T3 A PSPPI 167
7.2.1 (7] a1 1 (0] I N 1= ST T TP PPPPPPPP 168
7.2.2 Y= o I R UPPPRPOPPRR 170
7.2.3 Memory Used INFOrMation LIStcoiiiiiiiiiiiie ettt e e 172
724 IS0 o1 N T PSSP 175
7.3 Absolute Format ASSEMDIE LISt FIleeiiiiiiiii e 177
7.3.1 Header and INfOrmMation LISteeiiiiiiiiiioiiiiiie ettt e sbeee e e e sebeeeeean 179
7.3.2 ROM/RAM and ARRAY LISESuuiiiiiiiiiiiieiiiiiiitee sttt e s sttt eeessteaee e e s ssteaeeesssssseeessaseeeeaesansseeeenns 180
7.3.3 ASSEMDIE SOUICE LIS ..eeiiiiiiiiiie ittt ettt et e e e e e e s e s e bbb b e s e e e eeaaaaeeeeeaanns 182
734 Section INFOrMALION LIStuuiiiiiiiieiie ettt e e s e e e s snnneeeas 184
7.35 CrOSS-TEIEIEINCE LIS ...ttt e e e e e et e et e e e e e e e e e aanb bbb e e e e eeeens 185
7.4 External Symbol Cross-reference Information LiSt File ... 186
7.5 Local Symbol INformation LISt FilEcc.euiiiiiiiiiieee e e e e e e e s eee e e e e s 188
7.6 Section Allocation Detailed Information LiSt File ..o 190
CHAPTER 8 LINKER RESTRICTIONS AND Q&A ...oonieee et 193
8.1 LINKEI RESIFICHIONS ...ttt ettt et e e e e e e e s e e a bbb bttt e e e e e e e e e e e e annnbbbnbeeeaaaaens 194
8.2 (@ AN (o) gL L1 o 1 C= N 1T 2= O 195
PART T LIBRARIAN Lot e e et e e e et r e e e e e e e e e aaaa s 197
CHAPTER 9 SPECIFICATIONS OF A LIBRARIAN ..o 199
9.1 FUNCioNS Of @ LIDFAIANeeeiii e e e e 200
9.2 Function Types Of @ LIDFarianccooiiiiiiiiiir e e e e e e e e s e s rneneeeee s 201
9.3 Creating and Editing a Library File ... s 202
9.4 Extracting a Module from a Library Fileooo e 204
9.5 Deleting Debugging Information of @ LIDIrarycooooiiiiiiiiiiiic e e e 205
9.6 Checking and Displaying the Contents of a Library File ..., 206
9.7 Objects Generated Using the SOFTUNE V3/V5 Language Too!cccviiiiiiiiiieiiiiiiiiieeee e 207
9.8 Library Made by the SOFTUNE V3/V5 Language TOO!ccveeiiiiiiiiciiiiiiiieecee e e e e 208
9.9 Mixing a FR Object and @ FRB0 ODJECLcccooii i e e e e e e e e e e e e e ee e 209
CHAPTER 10 OPTIONS OF A LIBRARIAN oot 211
10.1 List of Options Of @ LIBFArianoooi oo e e 212

10.2 Details of the Options Of @ LIDrarian ... 213

10.2.1 Adding (Registering) a8 MOUIE (F8) ...ueiieiiiiiiieiiiiee ettt 214
10.2.2 Replacing (Registering) @ MOAUIE (-1) .vvviviiieieeieeerer s e e e e e e e s 215
10.2.3 Deleting @ MOAUIE (-0) ...cooiiieiiiee ettt e et e e e e e s e e e e e e e e e e e e e e e annanreees 216
10.2.4 EXIracting @ MOAUIE (-X) ..veeeeeiiiiiiee ittt ettt ettt e e et e e e s st et e e e s abb e e e e e s anbbneeeenaaes 217
10.2.5 Specifying to Output @ LISt File (M) ...cooeiiiiieeeeeeeee e s 218
10.2.6 Specifying not to Output @ LiSt File (-XIM)uuiiiiiiiieiiii e 219
10.2.7 Specifying to Output Detailed Information of a List File (=dt)ccccceeiiiiiiiiiiie e, 220
10.2.8 Specifying the Number of Lines Per Page of a LiSt (-PI) ...coeeeiiiiiiiii e, 221
10.2.9 Specifying the Number of Columns Per Line of @ LiSt (-PW) ...eeeeeiiiiiiiiiiiiiiiiieeeeee e 222
10.2.10 Creating @ Backup File (-D)oueiiiei i 223
10.2.11 Inhibiting the Creation of a Backup File (-XD)uuuiimiiiiiiii e 224
10.2.12 Checking the Contents of @ Library File (=€)eeeiiiiiiiiiiiiiii e 225
10.2.13 Optimizing the Contents Of & File (-O)ooiuiiiiiiiie e 226
10.2.14 Specifying to Output Debugging INformation (=g)cceeeeeieiiiiiiie e 227
10.2.15 Specifying not to Output Debugging Information (-Xg)cccvuveeieiiiiiaa e 228
10.2.16 Specifying CPU Information File (-Cif)cueiiiiiiiiiee e 229
10.2.17 Specifying a Target CPU (-CPU)cooeiieiiieii et s s s s e s e e e e e e e e e e e e et et e eeeeeaaeaeeenrnann e eeas 230
10.2.18 Object Mix Check Level Specification (-OMCI) ... 231
CHAPTER 11 LIST FORMATS OF A LIBRARIAN ..o 233
11.1 Contents of INformation iN @ LISt Fileccuueiiiiiiiiiiie e 234
11.2 LiSt OF MOAUIE NAMES ...ttt e e e e e e e e bbbt e et e e e e e e e s e e nbbnbbeeeaeaeens 235
11.3 Detailed Information of @ MOAUIEoooiiiniiie et e e 236
11.4 External Defined and Reference Symbol Information in a Librarycccccocvveeveeeiiniiiiiiieieeeeeenn, 237

CHAPTER 12 RESTRICTIONS AND QUESTIONS AND ANSWERS ON A LIBRARIAN

... 239

12,1 ReStrCtioNS 0N @ LIDFAraneeiiiiiiiii ettt 240
12.2 Questions and Answers on Using a Librarian ... 241
PART IV OBJECT FORMAT CONVERTERS ... 243
CHAPTER 13 SPECIFICATIONS OF AN OBJECT FORMAT CONVERTER 245
13.1 Outline of Object FOrmMat CONVEITETccuuiiieiieiie e e e cc e e e e e e e e s s s e e e e e e e e s s s nanrrrrreeeeeeaeas 246
13.2 Types of Object FOrmMat CONVEIEISccooiiiiii i e s e e e e e e e e e e e ae e e e e eeaeeaeeernnnne 248
13.3 Executing an Object FOrMat CONVEITEEeiiiiiiiiaiiiiiiie it e e e e e e e e e s enbbereeeeaaaaeas 249
CHAPTER 14 COMMON OPTIONS OF AN OBJECT FORMAT CONVERTER 251
14.1 List of Common Options of an Object FOrmat CONVEIETcciveeeiiiiiiiiiiiieireeeeeee e eeeee e 252
14.2 Changing an Output File NAME (20)ceieiiiiii i s e s e s e e e e e e e aaaeeeeeeeeeaeeaesernnnne 253
14.3 Specifying Padding DAta (=) «.«eeeeeeeeeeaaiiiiiitiiieieeeee e e e e ettt e e e e e e e s s bbb beeaeeeeaaa e e e e e e annnbberbeeeaaaaeas 255
CHAPTER 15 LOAD MODULE CONVERTER (f2ms,f2hs,f2iS,f2€S)ccccccceiiiiieeeeeeenn. 257
15.1 Outline of Load MOAUIE CONVEITETeiiiiiiiiiie ittt et e e s s e e e s nnneeeeas 258
15.2 List of Options of the Load Module CONVEIEToevvviiiiiiiiiiiiiiiiiis e s e e e e e e ee e e e e e e e e eeeeeeaeaennnana 259

Vi

15.3 Details of Load Module Converter OPLIONScoueiieaaiiiiiiiiiiie e a et ee e e e e e e e e e aeeenbeeeeeeeaeas 260

15.3.1 Specifying to Output S FOrmat (-S1/-S2/-S3)uuuiiieiiiiiiie e 261
15.3.2 Specifying to Output HEX Format (-116/-120/-132)uuuuuuiiiiiiii e e 262
15.3.3 Specifying to Output Start Address Record (-eNtry)oooiiiiiiiiiiiiiia e 263
15.3.4 Specifying not to Output Start Address Record (-XeNtry)eeeeeevieeeiiiiiiiiiiiieee e e e e 264
15.3.5 Specifying t0 AdJUSE (FAJUSL)coeieee 265
15.4 f2ms (Converting an Absolute Format Load Module into the S Format)cccccccviiiiiiiiiiienennenn. 266
15.5 f2hs (Converting an Absolute Format Load Module into the HEX Format)ccccoovoiiiiviiiiennnnnnn. 267
15.6 f2is (Converting an Absolute Format Load Module into the HEX8 Format),
f2es (Converting an Absolute Format Load Module into the HEX16 Format)ccccccoeviiiiiinnnnen. 268
CHAPTER 16 FORMAT ADJUSTER (M2mMs, h2hS) .ciiiiiiiiiieeeiee e 271
16.1 Outline of the FOrMAat AQJUSLELcooii ittt e e e e e e e e e e e anb b e b e eeaaaaeas 272
16.2 List of Options of the FOrmMat AQJUSTETc.eeiiiiiiiiei e e 275
16.3 Details of Options of the FOrmat AQJUSLETccooiiiiiiiiieeee e e e e e e e e e e e e e aeeaeea e 276
16.3.1 Specifying the Output Data Length (-18N)eueiiiiii e 277
16.3.2 Specifying the OUIPUL RANGE (-FAN) ...eeiiieiiiiiiiee ittt et e e e e e e nees 278
16.3.3 Specifying the S Format OULPUL (-S1/-S2/-S3) ..eourriiiiiiiiiiie et 279
16.3.4 Specifying the HEX Format Output (-116/-120/-132) ..ccoiiiiiiiiiiieeee e 281
16.3.5 Specifying to Change the Starting AAdress (-ST) ...cccovviiiiiiiiiiiiir e 282
CHAPTER 17 BINARY CONVERTER (M2bs, h2DS) ..coiiiiiiiiiieeeeeeeee e 283
0 R @ 1¥ 1 [T =T F= T VKO0 Y= o = 284
17.2 List of Options Of BINAry CONVEITELcoiiiiiiiiiiieiie ettt e e e e e e e e e s raaab b e s eeeeaaaaeas 286
17.3 Details on Options of the BiNary CONVEIMETccuieeeiiiiiiiiiiiieee e ee e s es s e e e e e e e e e s e snnanaaeeeeeeaeas 287
17.3.1 Specifying the OQUtpUt RANGE (-F&N)cieiiiieeeeieeeeirer e e e e e e e e e e e e e e e e e e as 288
17.3.2 Specifying the SPIit MOUE (=SP) ..rreeettiieaaiii ittt e et e et e e e e e s e e e eeaaaae e s e aaanereeeees 289
17.3.3 Specifying the Inhibition of the Split MOde (-XSP) ..ieeeeiiiiiiiiiiiie e 290
17.3.4 Specifying to Create a Map LiSt File (-N)oeveiiiiiiiiiiiieis e e 291
17.3.5 Specifying not to Create a Map List File (-XM)ooiiiiiiiiiiii e 292
CHAPTER 18 OTHER CONVERTERS ..o 293
18.1 ma2is (Converting a S Format File into the HEX8 FOrmat)cccccccoiiiiiiiiiiiiiieee e ceveeeeeee e 294
18.2 m2es (Converting a S Format File into the HEX16 FOrmat)cccccceeiiiiiiiiiiieiieiececcceeeeeeeeveiiiieenn 295
18.3 i2ms (Converting a HEX8 Format File into the S FOrmMat)ccccooiiiiiiiiiiiiie e 296
18.4 e2ms (Converting a HEX16 Format File into the S FOrmat)cccccceeeviviiiiiiiieeceee e, 297

CHAPTER 19 RESTRICTIONS AND QUESTIONS AND ANSWERS ON AN OBJECT

FORMAT CONVERTER ...t 299

19.1 Restrictions on an Object FOrmat CONVEIETcuiiiieiiiiiicciiiie e e e e e e e rareeeeeeas 300
19.2 Questions and Answers on Using an Object Format Convertercccccceeeeeeeeiiiev v 301

N e = N1 P 303
APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT ...iiiiiiiiiiiiiie e snenee e 304
APPENDIX B HEX FORMAT oottt ittt ettt ettt e e sttt e e e skttt e e e s s nbb e e e e e bbee e e e e e bt eeeeeannbbeeeeennnes 337
B.1 COMMON FOMMAL ...ttt e r s e e e e e e e e e e e eeeeeeeeeeeeesensresnrnnnn e e s 338

B.2 Data Record (HEX8/HEXL6/HEX32) TYPE: 00 ...eeeiiiiiiaiiiiiiiiiiiiiiiee ettt e e e 340

viii

B.3 End Record (HEXS8/HEXLE/HEXB2) TYPE: OL ...ovoeeeieeeeeieeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeseeeeeeeeeeene 341

B.4 Extended Segment Address Record (HEX16/HEX32) TYPe: 02 ...coovcviiiiiiiiiieeiiiiiieee et 342
B.5 Start Segment Address Record (HEX16/HEX32) Type: 03uvuiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeee e 343
B.6 Extended Linear Address Record (HEX32) Type: 04 ...t 344
B.7 Start Linear Address Record (HEX32) TYPE: 05 ...ueiiiiiiiiiiiee ittt 345
APPENDIX C S RECORD FORMAT ..ottt ittt sttt ettt ettt sibe e st e snb e e snbe e e s nseesnreeeannee s 346
C.1 SO TYPE (HEAUEN RECOIT) ...eeiiiiiiiiiiiitette ittt e e e e e e e e e e bbbttt e e e e e e e e e e e annbbbbeeeeaaaaeaeaaaanns 347
C.2 S1 Type (Data Record: 2-Byte AGArESS)ceiiiiiiiiiieiiiiiie sttt ee s 348
C.3 S22 Type (Data Record: 3-Byte AAArESS)cuuuuriiuieiiiiiiiiiiii it 349
C.4 S3 Type (Data Record: 4-Byte AQArESS)cceiiiiiiiiiiiiiiieiie ettt e e e e e e 350
C.5 S5 Type (Record to Manage the Number of RECOIUS)ovivviiiiiiiiiiiiiiiie e 351
(O I ¥ A Y/ o o (=T 1] = o] gl =T o o] o) 352
C.7 S8 Type (Terminator RECOIMA)cooiiiiiiiiiie it e e e e e e e e e e e e e e e e aan 353
C.8 S9 Type (TermiNator RECOI)ciiiiiiiiiiiiiiie ittt et e s e e e s aanneeeeas 354
APPENDIX D LIST OF LINKER OPTIONS ..ottt sttt nnnee s 355
APPENDIX E LIST OF LIBRARIAN OPTIONS ..ottt ettt sn e s 358
APPENDIX F LIST OF COMMANDS AND OPTIONS OF THE OBJECT FORMAT CONVERTER 359
APPENDIX G SPECIFICATION DIFFERENCES DEPENDING ON THE OScocviiiiiieiiee e 361
10 1= PP 363

PART | LINKAGE KIT

Provides an outline of the tools included in linkage kit and the common items that apply
to all tools.

CHAPTER 1 SPECIFICATIONS OF LINKAGE KIT
CHAPTER 2 OPTIONS

CHAPTER 3 COMMON OPTIONS

CHAPTER 4 OPTION FILES

PART | LINKAGEKIT 1

2 PART I LINKAGE KIT

CHAPTER 1

SPECIFICATIONS OF
LINKAGE KIT

This chapter outlines the tools included in the linkage
Kit, how to start up and terminate, and identifiers.

1.1 Outline of Linkage Kit
1.2 Startup Procedure
1.3 Forced Termination
1.4 End Code

1.5 Startup Message

1.6 End Message

1.7 Help Message

1.8 Identifiers

1.9 File name Rules

1.10 Environment Variables

PART | LINKAGEKIT 3

CHAPTER 1 SPECIFICATIONS OF LINKAGE KIT

1.1 Outline of Linkage Kit

The linkage kit consists of a linker that is used to connect object modules, a librarian
that is used to control object modules and a converter that converts to object type in
order to write information on a ROM.

B Support Range of Linkage Kit
Figure 1.1-1 shows the support range of linkage kit.

Figure 1.1-1 Support Range of Linkage Kit

Text Editor »{ C/C++ source program
.cl.cpp/.cc
A 4 A
Assembler source < C/C++ compiler
program
.asm
A 4
Assembler
0 y \':
i Object module » Librarian i
i .0bj i
| ' ‘ |
i Link map list < Linker < Library file i
i .mp1 Jib i
| ; |
I
| e osiselst Lyl cometsr |
i .als .abs i
| w |
i Linker output list Object type for ROM i
I
i .mpx .mhx i
! .mpm ehx |
i .mps .ihx i
S N A hex
A 4 A
Debugger ROM writer

4 PART | LINKAGE KIT

1.2 Startup Procedure

1.2 Startup Procedure

Command line format and procedure for specification to execute the linkage kit (linker,
librarian and object format converter) are described.

B Command Line Format
To specify the command line (startup command syntax) of the SOFTUNE linkage kit,

« Specify the file name and options as many times as required following the command name.
Below, option is specified after the command name, but the position where option is described can be either
before or after the file name. Refer to "CHAPTER 2 OPTIONS".

@® Linker

flnk91lls [Option] ... < File name >

Specify the object module file name to be input to <File name>.
Insert a space to specify two or more file names.

A wild card such as *.obj can aso be used. Expanding the wild card of file name depends on the OS.
Refer to "APPENDIX G SPECIFICATION DIFFERENCES DEPENDING ON THE OS".

In linker, the target CPU must be specified using the -cpu option. Be sure to specify the -cpu option when
executing the link processing.

@ Librarian

flibs [Option] ... < File name >

Thelibrarian is common in the SOFTUNE V6.
Specify the library file that is the target of editing to <File name>.

In librarian, the target CPU must be specified using the -cpu option. Be sure to specify the -cpu option
when executing the library processing.

@ Object format converter

Command name [Option] ... < File name >

Determine the object type file name to <File name> based on the functions of each tool. Files of the
following three types are the target format.

¢ Absolute type load module of linker output

e Sformat

* HEX format

PART | LINKAGEKIT 5

CHAPTER 1 SPECIFICATIONS OF LINKAGE KIT

1.3 Forced Termination

When you want to suspend executing a program in the middle, press the CTRL key and
the C key at the same time. (Hereafter referred to as "Press CTRL-C".) Pressing CTRL-C
will suspend a program.

B Forced Termination
When a program processing is suspended by CTRL-C, the output result file cannot be created correctly.
The work file that linkage kit uses during execution is cleared.

6 PART I LINKAGE KIT

1.4 End Code

1.4 End Code

Each tool of linkage kit returns the end status of its processing to OS as the end code.

B End Code Value and End Status
Each linkage kit tool returns the end status of the processing (whether the processing has ended normally or
an error has occurred) to the OS as the end code. Table 1.4-1 shows the relation between the end codes and
end status of processing.

Table 1.4-1 End Codes and End Status of Processing

End code End status of processing
0 When ended normally or when an error of warning level occurs.
1 When an error of warning level occurs with the -cwno option specified
2 When an error occurs making it impossible to achieve the correct output result
3 When afatal error occurs making it impossible to continue processing

PART | LINKAGEKIT 7

CHAPTER 1 SPECIFICATIONS OF LINKAGE KIT

1.5 Startup Message

Linkage kit shows the startup message with the -V option. In the default processing,
the startup message is not displayed.

B Startup Message and the -V Option
Linkage kit shows a message when errors are detected during processing but does not display a message
when starting up in the default processing. If you want a message to be displayed during startup, use the -V
option.
When you want to disable the -V option, specify the -XV option after the -V option. Refer to Sections
"3.2.4 Specifying Version Number and Startup Message of Program (-V)" and "3.2.5 Suppression to
Output Version Number and Startup Message of Program (-XV)" for more details.

B Startup Message
The startup message consists of program name, version number and copyright message.

The startup message is shown below.

FR/FR80 Family SOFTUNE Linker V60Lxx
ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU MICROELECTRONICSLIMITED 1992-2008
LICENSED MATERIAL - PROGRAM PROPERTY OF FUJ TSU MICROELECTRONICS LIMITED

8 PART I LINKAGE KIT

1.6 End Message

1.6 End Message

Linkage kit shows end message using the -cmsg option. The end message is not
shown in the default processing.

B End Message and -cmsg Option
Linkage kit shows a message when errors are detected during processing, but no message appears to
indicate the end in the default processing. If you want a message to appear at the end of processing, use the
-cmsg option.
When you want to disable the -cmsg option, specify the -Xcmsg option after the -cmsg option. Refer to
Sections "3.2.6 Specifying Display of End Message (-cmsg)" and "3.2.7 Suppression to Output End
Message (-Xcmsg)".

B End Message
The end message shows tool names and errors.

Examples of the end message are shown below.

When errors do not occur

Program name COMPLITED FOUND NO ERROR

When errors occur

Program name COMPLITED FOUND ERROR

PART | LINKAGEKIT 9

CHAPTER 1 SPECIFICATIONS OF LINKAGE KIT

1.7 Help Message

The following two kinds of messages are shown as help messages.
« Command line description format
» List of options at startup

B Help Message
When nothing is specified other than the command name at startup, or when the -help option is specified at
startup, program ends while showing the description format of command line and the list of startup options.
Refer to Section "3.2.3 Specifying Display of Help Message (-help)" for more details.

@ Example of help message

The below figure shows an example of help message in the case of linker (English).

Figure 1.7-1 Example of Help Message

usage : flnk911s [-option ...] object[object ...] *1

------- target CPU option ------- —
-Cpu cpu-name : Specify target CPU (need)

------- linker mode options -------
-a : absolute linking mode (absolute)
-r : relocatable linking mode *D

------- library options -------
-I filename],...] : specify library file name

[Description of exampl€]

*1: Command line syntax (startup procedure) is displayed.
*2: List of options and simple description.

This message can be shown in Japanese depending on the setting of the Environment variable FELANG
(Refer to Section "1.10.2 FELANG (Message Language)".)

10 PART | LINKAGE KIT

1.8

1.8 ldentifiers

Identifiers

Linkage kit can handle the following seven kinds of identifiers such as creating program.

File name

Module name

Option name

Section name

Group name

ROM/RAM area name
Symbol name (Mangle name)

B Types of Characters Consisting of Identifiers

The following characters can be used as identifiers.
« Alphabetica letters

¢ Numbers

e Underscore ()

Numbers cannot be used at the top of letters.

At the same, types of characters that can be used for the file name depends on the OS being used. The
module name that is created from the file name a so depends on the OS being used.

B Indicating Identifiers

English uppercase and lowercase are indicated.

B Limiting the Number of Letters for Identifiers

The number of lettersfor an identifier islimitless.

B Mangle Name

Asfor the identifier of the function name etc. which the C++ compiler generates, information to show type
information etc. on the function is added. This thing is called mangle and the identifier is called mangle
name.

Theidentifier such aslabels treated in the linker is specified by using this mangle name.

B Displaying Identifier Name when Outputting List

When the list is output, the mangle name does and displays the decipherment like being comprehensible.
All identifier names are not always displayed in the various list files that linkage kit creates.

Some of the longer identifier names only have the top 33 characters or so output and the remaining
characters are not displayed.

Number of characters that can be displayed in one line increases or decreases depending on the setting of
page width of alist. Theformat of easy viewing can be selected.

An option is aso available to display the identifier name using multiple lines.

PART I LINKAGEKIT 11

CHAPTER 1 SPECIFICATIONS OF LINKAGE KIT

1.9 File name Rules

File name of the input/output files complies with the limited use of characters that are
set for the OS.

There are cases in which the number of characters and code system must be taken into
account because the file name is also set in the object modules.

B Number of Characters for the File Name
The file name of the input/output files complies with the limited use of characters that are set for the OS.

B Character Code of the File Name

The source file names of the C/C++ language and assembler are not only set as the source file name
information in object module, but also set as module names.

The module name can be in English letters, numbers and the underscore symbol () only as described in
Section "1.8 Identifiers'. Therefore, the file names that use Japanese characters or spaces must be modified
specifying module name at the time of assembling.

@ Characters that can be used for the file name (Windows Version)
Alphabetical letters, numbers and symbols except for the following:
\/:;,*?2"<>|
When specifying afile name that includes spaces, enclose the file name with double quotations ().

When specifying a directory's name including spaces as the environment variable, do not enclose the file
name with double quotations ().

12 PART | LINKAGE KIT

1.10 Environment Variables

1.10 Environment Variables

Linkage kit support the following six kinds of environment variable.
e TMP

« FELANG

« FETOOL

e LIB911

« OPT911

« OPT

B TMP (Work Directory)
TMP specifieswork directory. Refer to Section "1.10.1 TMP (Work Directory)" for more details.

B FELANG (Message Language)
FELANG selects and specifies the message language. Refer to Section "1.10.2 FELANG (Message
Language)" for more details.

B FETOOL (Installation Directory)
FETOOL specifies the directory in which the development tool is installed. Refer to Section "1.10.3
FETOOL (Installation Directory)" for more details.

W LIB911 (Library File Search Directory)
LIB911 specify the directory in which library is stored. Refer to Section "1.10.4 LIB911 (Library File
Search Directory)" for more details.

B OPT911 (Default Option File Storage Directory)
OPT911 specify directory in which default option files of linker is stored. Refer to Section "1.10.5
OPT911 (Default Option File Storage Directory)" for more details.

B OPT (Default Option File Storage Directory)

OPT specifies a directory in which the default option file of librarian and the object tool are stored. Refer
to Section "1.10.6 OPT (Default Option File Storage Directory)" for more details.

PART I LINKAGE KIT 13

CHAPTER 1 SPECIFICATIONS OF LINKAGE KIT

1.10.1 TMP (Work Directory)

TMP (work directory) specifies the work directory that the linkage kit uses during
execution.

The section below gives the description format, an explanation and an example of
specification.

B TMP (Work Directory)

[Description format]

SET TMP = < Path name >

[Description]
It specifies the work directory that the linkage kit uses during execution.

This environmental variable TMP can also be used in other development tools. (Such as C/C++
compiler and assembler)

When the environmental variable TMP is not specified, the current directory is used.
[Exampl€]
SET TMP=G:\WORK

14 PART | LINKAGE KIT

1.10 Environment Variables

1.10.2 FELANG (Message Language)

FELANG selects and specifies the message language of help message and error
message.

The following section gives the description format, an explanation and an example of
FELANG.

B FELANG (Message Language)

[Description format]

SET FELANG={ ASCII | EUC | SJIS }

ASCII: English ASCII code (default)
EUC: Japanese EUC code
SJIS: Japanese SJIS code
[Description]
Selects and specifies either English or Japanese (message language) of the help message and error
message.
If it is not specified, the English message (specified by ASCII) is selected. When your system does not

have Japanese language environment and uses the code other than EUC or SJIS codes, do not specify
the FELANG environment variable or specify ASCII.

This environment variable FELANG can aso be used in other development tools. (Such as C/C++
compiler and assembler)

[Exampl€]
SET FELANG=ASCII

PART I LINKAGE KIT 15

CHAPTER 1 SPECIFICATIONS OF LINKAGE KIT

1.10.3 FETOOL (Installation Directory)

FETOOL specifies the root directory in which linkage kit is installed.
The following section gives the description format, an explanation and an example of
FETOOL.

B FETOOL (Installation Directory)
[Description format]

SET FETOOL = < Path name >

Specify the <path name> including drive name.
[Description]
Specify the directory in which linkage kit is installed.

The linkage kit can determine the directory in which message file and library file are installed using the
specified directory asthe start point. It accesses the files that are necessary for execution.

When it is not specified, the directory in which the executed load module is located becomes the root
directory.

This environment variable FETOOL can aso be used in other development tools. (Such as C/C++
compiler and assembler)

[Example]
SET FETOOL=C:\Softuneé
[Recommended directory structure]

Figure 1.10-1 Recommended Directory Structure

\Softune6
': \BIN Stores load module of linkage kit
\LIB Stores message files that does not depend on target CPU
L \911 Stores library file for FR/FR80 family and message file

[Supplement]

Linkage kit is created on the premises that the respective files are stored in the directory structure as
shown above.

The environment variable FETOOL allows linkage kit to notify the directory path of "SOFTUNE".

16 PART | LINKAGE KIT

1.10 Environment Variables

1.10.4 LIB911 (Library File Search Directory)

Specify the directory that stores the library file or CPU information file for which to the
linker searched the LIB911 (library file search directory).

The section below gives the description format, an explanation and an example of
LIB911.

B LIB911 (Library File Search Directory)

[Description format]

SET LIB911 = < Path name > [; < Path name > ..]

Specify the <path name> including the drive name.
[Description]

It specifies the directory in which the library files or CPU information file that linker searches are
located.

Specify the directory in which the C/C++ library is stored normally.
When specifying two or more searching paths, separate the <path name> using the following symbol.
« Semicolon (;)

The order in which two or more paths are searched is the same order in which they are specified.

[Exampl€]
SET LIB911=C:\Softune6\LIB\911

[Supplement]

When the environment variable FETOOL is specified, the library storage directory of the directory

structure, as described in the previous item, is also searched. So the C/C++ library is searched even

though the environment variable LIB911 is not set.

The library searching path can be specified by the Option -L while executing linker.

When the composite is being specified, the order of the library searching path's priority is:

1. Thedirectory that is specified by linker with option -L.

2. Thedirectory that is specified by the environment variable LIB911.

3. Thedirectory (YFETOOL%\LIB\911) that is directed by the environment variable FETOOL .

If the user creates the library, specify the paths while taking note of the order of searching with the C/
C++ library.

PART I LINKAGE KIT 17

CHAPTER 1 SPECIFICATIONS OF LINKAGE KIT

1.10.5 OPT911 (Default Option File Storage Directory)

OPT911 (default option file storage directory) specifies the directory in which the
default option files of linker is stored.
The description format, an explanation and an example of OPT911 are given below.

Bl OPT911 (Default Option File Storage Directory)
[Description format]

SET OPT911 = < Path name >

Specify the <path name> including the drive name.
[Description]
It specifies the directory in which the default option files that linker usesis stored.
This environment variable can be omitted.
When it is omitted, the default option files in the development environment directory are referred to.

The default option files in the development environment directory are shown below.

@ Linker

%FETOOL%\LIB\911\FLNK911.0PT
[Example]
SET OPT911=C:\Softune6\LIB\911

18 PART | LINKAGE KIT

1.10 Environment Variables

1.10.6 OPT (Default Option File Storage Directory)

Specify the directory that stores the librarian and object tools default option files to the
OPT (default option file storage directory).
Description format, explanation and example of OPT are shown below.

B OPT (Default Option File Storage Directory)
[Description format]

SET OPT = < Path name >

Specify the <path name> including the drive name.
[Description]
It specifies the directory in which the default option files that are used by the librarian and the object
tools are stored.
This environment variable can be omitted.
When it is omitted, the default option files in the development environment directory are referred to.

The default option files in the development environment directory are shown below.

@ Librarian
e 9%FETOOL%\LIB\FLIB.OPT

@ Object tools

e %FETOOL%\LIB\F2M.OPT

* %FETOOL%\LIB\F2H.OPT

* %FETOOL%\LIB\M2B.OPT

o %FETOOL%\LIB\M2M.OPT

e %FETOOL%\LIB\H2B.OPT

* %FETOOL%\LIB\H2H.OPT

o %FETOOL%\LIB\F2I.OPT

* %FETOOL%\LIB\F2E.OPT

* %FETOOL%\LIB\M2I.OPT

* %FETOOL%\LIB\M2E.OPT

e %FETOOL%\LIB\I2M.OPT

* %FETOOL%\LIB\E2M.OPT
[Example]

SET OPT=C:\Softune6\LIB

PART I LINKAGE KIT 19

CHAPTER 1 SPECIFICATIONS OF LINKAGE KIT

20 PART I LINKAGE KIT

CHAPTER 2

OPTIONS

This section describes options of the linkage Kit.

2.1 Option
2.2 Numeric Expression of Option Parameters
2.3 Notes and Evaluation When Option is Specified

2.4 Specifying Options that Have Inclusive or Contradictory Relation
Each Other

2.5 Example of Specifying Command Lines

PART I LINKAGE KIT 21

CHAPTER 2 OPTIONS

2.1 Option

An option consists of an option name and parameter. This section gives a synopsis of
an option and how to specify an option.

B Synopsis of Option
The following section is a synopsis of an option.

-Optionname [Parameter]

Add a hyphen (-) to the top of the option name.
Insert a space to separate the option name from the parameter.

Whether the parameter is used or not used and the format of the parameter is defined in each option. Refer

to the description of the respective options.

Pay attention to the following points when specifying an option.

» Capital letters and small letters of alphabetical letters must be distinguished when specifying option
name.

« When a parameter needs an option, the parameters cannot be omitted entirely.

» When specifying two or more options, they cannot be specified as a group. For example, -aand -V as
-aV isnot acceptable.

« Spaces cannot be used in between hyphens and the option name.
B Parameter

Parameters are used to specify a file name or module name, which become the target of operation of an
option. Two or more parameters are usually separated using a comma (,). However, symbols other than
the comma (,) are also used when specifying sophisticated parameters. Refer to the description of each
option for more details.
[Exampl€]

-a

gets.obj,puts.obj,getc.obj,putc.obj

-sc CODE=0xC1000,DATA=0x1000

22 PART I LINKAGE KIT

2.2 Numeric Expression of Option Parameters

2.2 Numeric Expression of Option Parameters

Decimal numbers and hexadecimal numbers can be used for the numeric expression of
option parameters.

B Numeric Expression of Option Parameters
When the numeric value of an option parameter starts with (0x), the numera is recognized as a
hexadecimal number. The other numerals are recognized as decimal numbers. Both capital and small
letters can be used for ato f of the hexadecimal notation.

[Example]
0x100... Hexadecimal notation (= 256)
100... Decimal notation (= 0x64)

O0xff and OxFF are the same.

PART I LINKAGE KIT 23

CHAPTER 2 OPTIONS

2.3

Notes and Evaluation When Option is Specified

When specifying options, some options need duplicated specification and some need
sequence to specify them.
In the linkage kit, the options are evaluated according to rules.

B Notes and Evaluation When Specified Option

The precautions and rules of evaluation when specifying options are described below.

@ Options that require no parameters
Specifying only once is enough. Duplicated specifications have no meaning.

[Exampl€]
-V : Specifying the message output
Duplicated specification like -V -V has no meaning and is error-free.

@ Options that require parameters

24 PARTI

When duplicated specification is required, there are different methods of evaluation as shown below.

* Only thelast specification is effective.

< Theorder in which the specifications appear has specific intent, and all specifications are effective.
« Theorder in which the specifications appear isirrelevant, and all specifications are effective.
[Example 1 Only the last option which is specified is valid]

-o file.abs :Specifying the output file
When options are specified two or more times like -0 file.abs -o file.rel, the specification that is entered last
becomes effective. (In this case, file.rel becomes effective.)

[Example 2 Order of specifying options has meaning and all specifications are effective]

-1 1ibl.1ib -1 1ib2.1ib : Specifying the library retrieval (linker)
When options are specified in order, such as -l lib2.lib -1 libl1.lib, order of retrieving library isinverted.
[Example 3 Order of specifying options has no meaning, yet all specifications are effective]

-sc CODE=0x1000 -sc DATA=0x200 : Specifying location of sections (linker)

When options are specified in order, such as -sc DATA=0x200 -sc CODE=0x1000, all options are effective
because the location of sections are individually independent.

LINKAGE KIT

2.4 Specifying Options that Have Inclusive or Contradictory Relation Each Other

2.4 Specifying Options that Have Inclusive or Contradictory
Relation Each Other

When an option has an inclusive relation with other options, specifying an option of
higher order becomes effective. When an option has a contradictory relation with other
options, the option that is specified later becomes effective.

B Example of Specifying an Option that has an Inclusive Relation with Other Options
[Exampl€]
Xm -pw 80 : Specifying suppression of outputting list and specifying page width
Since the option -pw is effective only in specifying output of list, this option itself has no
meaning when the option -Xm (suppression of outputting list) is specified. These options
have no meaning even though the order isinverted, for example -pw 80 -Xm.
B Example of Specifying an Option that has a Contradictory Relation with Other Options

When an option that has a contradictory relation with other options is specified, the option that is specified
later becomes effective.

[Example 1]
a -r
Specifying absolute format output and specifying relative format output (linker) -r becomes effective.
[Example 2]
-m mapfile -Xm
Specifying aname of list file -m is canceled by suppression of list output -Xm, so that list is not executed.

PART I LINKAGE KIT 25

CHAPTER 2 OPTIONS

2.5

Example of Specifying Command Lines

The three types of examples when specifying command lines are listed and described

as follows.

B Example of Specifying Command Lines

[Example 1]
flnk9lls
flnk91lls filel.obj file2.o0bj -g -a -help

When only the command name is specified or details of options are unclear, the ssimple help message is
displayed by specifying the -help option.

[Example 2]
flibs sys.lib -m sys.mp2... *1
flibs -m sys.mp2 sys.lib... *2

Since the position of options is not fixed, options can be freely written on command line. Options in both
examples*1 and *2 are valid and have the same meaning.

[Example 3]

flnk91ls *.obj -g -o sample.abs
flnk91ls ’"*.0bj’ -g -o sample.abs

Wild card is used to specify two or more input file names in this example.

Note:

In the UNIX System OS, there are cases where a wild card coded by the command line is expanded
by the shell which can cause unexpected result (option specified).

In order to avoid this situation, use single quotation marks to enclose when specifying options
including wild cards on UNIX System OS.

26 PARTI

LINKAGE KIT

CHAPTER 3

COMMON OPTIONS

Linkage kit has common options that can be used in any
tools. These options are also prepared in C/C++
compiler and assembler.

This chapter explains the common options of the
linkage Kit.

The options that are unique in this tool are also
described in the respective paragraphs.

3.1 List of Common Options

3.2 Details of Common Options

PART I LINKAGE KIT 27

CHAPTER 3 COMMON OPTIONS

3.1 List of Common Options

The following table lists options that can be used in the linkage Kit.

B List of Common Options
Table 3.1-1 lists common options that can be specified in linkage kit.

Table 3.1-1 List of Common Options

Function Option Remarks
Specifying suppression to read default option file -Xdof
Specifying option file name -f
Specifying display of help message -help
Specifying version number and startup message of program -V
Suppression to output version number and startup message of program | -XV Default
Specifying display of end message -cmsg
Suppression to output end message -Xcmsg Default
Specifying to set the end code to 1 when warning isissued -cwno
Specifying to set the end code to 0 when warning isissued -Xcwno Default

28 PART I LINKAGE KIT

3.2 Details of Common Options

3.2 Details of Common Options

The following section describes the common options that can be used in the linkage Kit.

B -Xdof Option
The -Xdof option cancels reading of the default option file. Refer to Section "3.2.1 Specifying
Suppression to Read Default Option File (-Xdof)" for more details.

W -f Option
The -f option starts reading option from the file in which option is described. Refer to Section "3.2.2
Specifying Option File Name (-f)" for more details.

W -help Option
The -help option displays the help message. Refer to Section "3.2.3 Specifying Display of Help Message
(-help)" for more details.

W -V Option
The -V option outputs a message at program startup. This message is not displayed when the default
processing is executed. Refer to Section "3.2.4 Specifying Version Number and Startup Message of
Program (-V)" for more details.

B -XV Option
The -XV option suppresses output of message during startup. Refer to Section "3.2.5 Suppression to
Output Version Number and Startup Message of Program (-XV)" for more details.

B -cmsg Option
The -cmsg option displays the end message of the program. Refer to Section "3.2.6 Specifying Display of
End Message (-cmsg)” for more details.

B -Xcmsg Option
The -Xcmsg option suppresses display of the end message for the program. Refer to Section "3.2.7
Suppression to Output End Message (-Xcmsg)" for more details.

B -cwno Option
When a warning is issued in this program, 1 is returned to OS as the end code. Refer to Section "3.2.8
Specifying to Set the End Code to 1 When Warning is Issued (-cwno)" for more details.

B -Xcwno Option

When a warning is issued in this program, O is returned to OS as the end code. Refer to Section "3.2.9
Specifying to Set the End Code to 0 When Warning is Issued (-Xcwno)" for more details.

PART I LINKAGE KIT 29

CHAPTER 3 COMMON OPTIONS

3.2.1 Specifying Suppression to Read Default Option File
(-Xdof)

It cancels reading of default option file.
When this option is not specified, default option file is always read.

B Specifying Suppression to Read Default Option File (-Xdof)
[Format]

-Xdof

[Parameter]
None
[Description]
It cancels reading of default option file.
When this option is not specified, default option file is always read.
Refer to Section "4.5 Default Option File" for the default option file.
[Note]
This option is valid when specified in the command line.
[Example]
flnk91ls test.obj -Xdof -cpu MB91101

30 PART I LINKAGE KIT

3.2 Details of Common Options

3.2.2 Specifying Option File Name (-f)

-f option issues directions to read option from the file that describes option. Contents
of the file in the command line and this file are regarded equally.

B Specifying Option File Name (-f)
[Format]

-f < Option file name >

[Parameter]

<Option file name>
Option or file name that describes an input file

[Description]
Describe options and input file names into the file that is specified by < Option file name >.
This option issues direction to read contents of the option from the file in which options is described.
Contents of the file specified in the command line and this file are evaluated and processed equally.
Extension of the file nameis not determined in default.
[Note]
The -f option itself cannot be specified in the option file.
[Example 1]
f2ms -V -f optfile.f2m
Contents of optfile.f2m

#

from FJ-OMF to S Format

#

ccp903.abs # IN ABS-LM
-0 ccp903.mhx # OUT S Format

Thisisequivalent to what iswritten in the command line as follows.
f2ms -V ccp903.abs -o ccp903.mhx
[Example 2]
flibs syslib.lib -f objfile.opt
Describe the module that is registered in sydib.lib to objfile.opt. The librarian creates a library file by
referring to the contents of thisfile.

PART I LINKAGE KIT 31

CHAPTER 3 COMMON OPTIONS

32 PARTI

For example, contents of objfile.opt are as follows:

-a putc.obj, getc.obj, puts.obj, gets.obj,
memchr.obj, strcat.obj, strerr.obj, strpbrk.obj,
strchr.obj, strcmp.obj, strcpy.obj, strlen.obj

It can al'so be specified as shown below including specifying the library name.
flibs -f libfile.opt
In this case, contents of libfile.opt are as follows.

syslib.1lib

-a putc.obj, getc.obj, puts.obj, gets.obj,
memchr.obj, strcat.obj, strerr.obj, strpbrk.obj,
strchr.obj, strcmp.obj, strcpy.obj, strlen.obj

Option file name can be specified twice.

flibs syslib.lib -f objgrl.opt -f objgr2.opt
For example, contents of objgrl.opt and objgr2.opt are as follows:
Contents of objgrl.opt

-a putc.obj, getc.obj, puts.obj, gets.obj

Contents of objgr2.opt

-a memchr.obj, strcat.obj, strerr.obj, strpbrk.obj,
strchr.obj, strcmp.obj, strcpy.obj, strlen.obj

LINKAGE KIT

3.2 Details of Common Options

3.2.3 Specifying Display of Help Message (-help)

-help option issues directions to display the help message without executing the
program. Format to specify the command line and option outline are displayed as help
message.

B Specifying Display of Help Message (-help)
[Format]

-help

[Parameter]
None
[Description]
-help option briefly displays the format to specify the command line and list of options.
Help message is output to the standard output (stdout).
When the command name only is specified, the same help message is output.

When input file name and other options are specified, the help message only is displayed without
executing programs if this option is specified.

PART I LINKAGE KIT 33

CHAPTER 3 COMMON OPTIONS

3.2.4

Specifying Version Number and Startup Message of
Program (-V)

-V option outputs the message during program startup.

B Specifying Version Number and Startup Message of Program (-V)

34 PARTI

[Format]

-V

[Parameter]
None
[Description]
-V option specifies to output the startup message. Note that the respective tools of the linkage kit do not
output the startup message in default setting. Be sure to use this -V option to output the startup
message.
The startup message includes the program version number, copyright message, etc.
Message is output to the standard output (stdout).
[Example 1]
flnk91ls ccp903
If this option is not specified, the startup message is not displayed when starting execution of program.
When a program is terminated, the OS prompt appears while waiting for the command input.
[Example 2]

f2ms ccp903 -V

SOFTUNE FJ-OMF to S-FORMAT Converter V60LO02

ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1992
LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

When starting execution of a program, a startup message (program name, version number, and copyright) is
displayed.
[Example 3]

flibs -V
When only the -V option is specified, a message including program name, version number, and copyright,
is displayed and the program is terminated immediately.

LINKAGE KIT

3.2 Details of Common Options

3.2.5 Suppression to Output Version Number and Startup
Message of Program (-XV)

-XV option disables the -V option. This prevents the startup message of a program from
being output.

B Suppression to Output Version Number and Startup Message of Program (-XV)
[Format]

-XV

[Parameter]
None
[Description]
Since the respective tools of the linkage kit do not output the startup message in default setting, specify
the -V option to show the startup message.
-XV option is set to disable the -V setting.
[Example 1]

flnk91ls ccp903
flnk911ls ccp903 -XV

The startup message is not output when starting execution of program in default setting.
The two options specified as above have the same meaning.
[Example 2]
f2ms -f lkit.opt «ccp903 -XV
When a program is being executed using option files, sometimes setting of an option file might need to be
changed temporarily.
When Ikit.opt has -V option in it, contents of Ikit.opt remain unchanged. However, -XV can be specified
on the command line in order to cancel the -V option.

PART I LINKAGE KIT 35

CHAPTER 3 COMMON OPTIONS

3.2.6

Specifying Display of End Message (-cmsg)

It displays the end message of a program.

B Specifying Display of End Message (-cmsgQ)

36 PARTI

[Format]

-cmsg

[Parameter]

Note
[Description]

It displays the end message of a program.

The linkage kit does not display the end message of a program in default setting.
[Example 1]

flnk911ls ccp903

If this option is not specified, no message is output at the end of the program.
At the end of the program, the OS prompt appears waiting for input of next command.
[Example 2]

f2ms ccp903 -cmsg
F2MS COMPLITED FOUND NO ERROR

At the end of the program, the end message (program name and presence or absence of errors) is displayed.

LINKAGE KIT

3.2 Details of Common Options

3.2.7 Suppression to Output End Message (-Xcmsg)

It suppresses display of end message.

B Suppression to Output End Message (-Xcmsg)
[Format]

-Xcmsg

[Parameter]
None
[Description]
It suppresses display of end message.
The linkage kit does not display the end message at the end of the program in the default setting.
Use this option to cancel the display option (-cmsg) to display the end message of the program.
[Example 1]

flnk911ls ccp903
flnk91lls ccp903 -Xcmsg

The end message is not output at the end of the program in the default setting.
The two options that are specified as shown above are the same.
[Example 2]

f2ms -f lkit.opt «ccp903 -Xcmsg

When a program is executed using option files, setting of an option file may occasionally need temporary
changes.

When the -cmsg option is used in Ikit.opt, the -cmsg option can be canceled by specifying -Xcmsg on the
command line without changing contents of the Ikit.opt.

PART I LINKAGE KIT 37

CHAPTER 3 COMMON OPTIONS

3.2.8

Specifying to Set the End Code to 1 When Warning is
Issued (-cwno)

It sets the end code to 1 when a warning is issued while the program is being executed.

B Specifying to Set the End Code to 1 When Warning is Issued (-cwno)

38 PARTI

[Format]

-Cwno

[Parameter]
None
[Description]
The end code is set to 1 when awarning isissued while the program is being executed.
SOFTUNE linkage kit sets the end code of 0 when awarning isissued only.
[Example 1]
flnk911ls ccp903 -cwno
When awarning isissued during execution of program, the end codeto OSis 1.
[Example 2]
flnk91ls ccp903

When a warning is issued during execution of program, the end code to OS remains 0 that is the default
value.

LINKAGE KIT

3.2 Details of Common Options

3.2.9 Specifying to Set the End Code to 0 When Warning is
Issued (-Xcwno)

It sets the end code to 0 when a warning is issued while the program is being executed.

B Specifying to Set the End Code to 0 When Warning is Issued (-Xcwno)
[Format]

-Xcwno

[Parameter]
None
[Description]
It returns the end code to O, that is the default value, when warning only is issued during execution of
program.
SOFTUNE linkage kit sets the end code to 0 when warning only isissued.
Use this option to cancel the option (-cwno) that sets the end code to 1 when warning is issued.
[Example 1]

flnk911ls ccp903
flnk91ls ccp903 -Xcwno

When warning only isissued during execution of program, the end code is 0 in the default setting.
The two settings as specified above are the same.
[Example 2]
f2ms -f lkit.opt «ccp903 -Xcwno
When a program is executed using option files, setting of an option file may occasionally need temporary
changes.

When the -cwno option is used in Ikit.opt, the -cwno option can be canceled by specifying -Xcwno on the
command line without changing contents of the Ikit.opt.

PART I LINKAGE KIT 39

CHAPTER 3 COMMON OPTIONS

40 PART | LINKAGE KIT

CHAPTER 4

OPTION FILES

This section describes option files of the linkage kit.

4.1 Outline of Option File

4.2 Specification to Continue in the Option File
4.3 Specifying Comment in the Option File

4.4 Example of Describing Option File

4.5 Default Option File

PART I LINKAGE KIT 41

CHAPTER 4 OPTION FILES

4.1

Outline of Option File

In option files, file names and options required for processing could have been input
earlier in order to simplify input into command line every time.

B Option File

Option file is the file in which input file name and options that are input from the command line are
described.

Syntax for description remains the same as that on the command line.
However, the following two items are added in option file.

» Comment statement can be described.

» Linefeedispossible at any desired separating point.

Starts a comment statement with the comment symbol (#) and ends with line feed.

Comment statement and line feed symbol are handled equally as a space on the command line.

B Execution by Specifying Option File

42 PART |

Since the number of characters to be input into command line is limited when specification alone is used,
specification becomes impossible if there are too many file names and options to be specified. Also, it can
decrease efficiency and affect operation due to input errors.
When process becomes formalized or when there are too many options and file names to be specified, the
contents that are described in the file can be treated equally as the specification on the command line in
order to save inputting work. Input the necessary file names and options into option file using text editor
and execute it using the -f option.
[Exampl€]

flibs -f optfile

Content of option file T"optfile™

prg.lib

-a main.obj

-a send.obj,receive.obj, exchange.obj
-a account.obj

-m prg.mp2

The format of the statement in option line is the same as the one in command line. In the above example,
options are written separately for each line. However, they can be written in oneline.

prg.lib -a main.obj..... -a account.obj -m prg.mp2

This example describes not only options but also the library file (prg.lib)that is atarget of editing.

As described above, all specifications that can be described in command line (excluding -f option and
-Xdof option) can be described using the same format.

LINKAGE KIT

4.2 Specification to Continue in the Option File

4.2 Specification to Continue in the Option File

In option file, specification to continue option file is possible by using line feed at a
separating point in option and parameter.

B Specification to Continue in the Option File

When describing options and file names into option file, there are cases that option cannot be described in
one line or more than two lines are desired.

Line feed is made possible at a separating point in option and parameter. The following two types of
examples describe this occurrence.

[Example 1 when content of option file is described in one ling]

-a mod0l, mod02, obj03, objo4

[Example 2 when content of option fileis described in two lines]

-a mod01l, modO02,
0obj03, obj04 <« the continued line

PART I LINKAGE KIT 43

CHAPTER 4 OPTION FILES

4.3 Specifying Comment in the Option File

Comment can be input into option file.

B Specifying Comment in the Option File
When inputting comment into option file, use (#) as the comment start symbol.

[Example when comment is input into content of option fil€e]
The underlined portion is comment.

Example of Library Options
syslib.lib INDICATES LIBRARY FILE
-a mod0l, mod02, obj03, objo4 # Add Modules

44 PART | LINKAGE KIT

4.4 Example of Describing Option File

4.4 Example of Describing Option File

The examples below show how to specify option file that can be handled equally as -a
mod01, mod02, obj03, 0bj04 in command line.

B Example of Describing Option File

[-amod01,mod02,0bj03,00j04 | Same
-amod01, mod02 ,0bj03 , obj04 Inserting a space before
and after comma
-amod01,mod02,0bj03,0bj04 # comment Adding comment to end
of statement
comment line Inserting acomment line
-amod01,mod02,0bj03,0bj04
-amod01,mod02,0bj03, line feed after comma,
obj04 continues the parameter
-amod01,mod02,0bj03 line feed before comma,
,0bj04 continues the parameter
-amod01,mod02,0bj03, # comment inserting a comment
obj04 continues the parameter
-a line feed after -a
mod01,mod02,0bj03,0bj04 continues all parameters

PART I LINKAGE KIT 45

CHAPTER 4 OPTION FILES

4.5 Default Option File

This is one of the functions of option file. The previously specified option files can be
read and executed without specifying -f option at system startup.
This function is called default option file.

B Default Option File

The default option file is one of the functions of option file. The previously specified option files can be
read and executed without specifying -f option at system startup. This function is called default option file.

The default option file is read each time the system starts up. The user can choose to specify the startup

option earlier.

Specify -Xdof in order to suppress function of the default option. When this option is specified, default

option file is not read.

Table 4.5-1 shows names of the default option files as they are set.

Table 4.5-1 Names of Default Option Files of the Linkage Kit

Name of tool Name of program Name of option file
Linker fink911s fink911.opt
Librarian flibs flib.opt
f2ms f2m.opt
f2hs f2h.opt
m2bs m2b.opt
m2ms m2m.opt
h2bs h2b.opt
Object type converter hehs h2h.opt
f2is f2i.opt
f2es f2e.opt
m2is m2i.opt
m2es m2e.opt
i2ms i2m.opt
e2ms e2m.opt

Procedure to refer to the default option file is shown as follows.

46 PART | LINKAGE KIT

4.5 Default Option File

@ When the environment variable OPT911 or OPT has already been set.
The file in the directory that is set by the environment variable is referred to.

e Linker
%OPT911%\default option file
e Librarian, Object tool
%OPT%\default option file

@ When the environment variable OPT911 or OPT has not been set
The default option file in the development environment directory is referred to.

e Linker
%FETOOL%\LIB\911\default option file
e Librarian, Object tool
%FETOOL%\LIB\default option file

Note:
When default option file cannot be found, the linkage kit does not issue error message.

PART I LINKAGE KIT 47

CHAPTER 4 OPTION FILES

48 PART | LINKAGE KIT

PART Il LINKER

Part Il describes the specifications, options, and output lists of a linker.

CHAPTER 5 SPECIFICATIONS OF A LINKER
CHAPTER 6 LINKER OPTIONS

CHAPTER 7 OUTPUT LIST FILE OF THE LINKER
CHAPTER 8 LINKER RESTRICTIONS AND Q&A

PART Il LINKER 49

50 PART Il LINKER

CHAPTER 5

SPECIFICATIONS OF A
LINKER

This chapter describes the overview and functions of a
linker.

5.1 Outline of a Linker

5.2 Functions of a Linker

5.3 Types of Sections

5.4 Combining Sections

5.5 Locating Sections

5.6 Automatically Locating Sections

5.7 Searching Libraries

5.8 ROM and RAM Areas

5.9 Sections to be Transferred from ROM to RAM
5.10 CPU Information File

5.11 Input of the Objects generated with SOFTUNE V3/V5 Tool
5.12 Mixing a FR Object and a FR80 Object

PART Il LINKER 51

CHAPTER 5 SPECIFICATIONS OF A LINKER

51 Outline of a Linker

A linker is a tool that combines multiple object modules that are output by an
assembler, then allocates memory location addresses. The purpose is to create a load
module in the executable form.

B Outlineofal

The larger a program to be developed, the more difficult it becomes to describe everything in one source

inker

program.

Also, if you develop a program using a C/C++ compiler, you usually need to import library filesin C and

C++.

A linker is used to combine multiple object modules that are related with each other, then allocate memory

location addresses to create aload module in the executable form.

Figure 5.1-1 shows the relationship between a linker and input-output files.

Figure 5.1-1 Relationship between a Linker and Input-output Files

Assembler

o

Relative format

Library _ Assemble list
object
(.lib) (.obj) (.Ist)
_ |
Linker ——p» Absolute format
assemble list
Relative format
(.als)
load module
(.rel) Object contents
list
Absolute format
.mp1l
load module (mp1)
(-mpx)
(-abs) (.mps)
(-mpm)

52 PART Il LINKER

5.2 Functions of a Linker

5.2 Functions of a Linker

A linker has many functions which can be roughly classified into the following four

groups.

e Control on input-output files and messages
* Control on combining and locating sections
» Control on searching libraries

e Setting entry addresses and symbol values

B Control on Input-output Files and Messages
The following describes the overview of control and input-output files. For details, see Section "5.2.1
Control on Input-Output Files and Messages'.

There are the following four types of input files:
- Object modulefile that an assembler outputs

- Listfile

- Relative format load module file that alinker outputs

- Library file

Object module files and load module files are processed in the order that they are written on a command

line or in an option file.

There are the following three types of output files:

- Absolute format load modulefile that is the final objective

- Relative format load module file that can be input again

- Link map list file

The output load module format (absolute or relative) may be specified and the output file name may be

changed.

For amap list, the number of lines per page and the width of a page may be changed.

Specify an option to output one of the following four types of files.

- Absolute format assemble list file is created by adding to the absolute format a list file that an
assembler has output.

- External symbol cross-reference information list that shows the cross-reference between external
defined symbols and reference symbols used in modules

- Local symbol information list that shows the information on local symbols used in each module
- Section detailed map list that shows section location addresses in each module
To output these files, the link load module must be in the absolute format.

Messages consist of startup messages including the program version number, help messages briefly
describing how to use the program, and error messages. You can specify whether or not to output a
startup message and the level of detecting awarning status.

PART Il LINKER 53

CHAPTER 5 SPECIFICATIONS OF A LINKER

B Control on combining and locating sections

The following is an overview of the control on combining and locating sections. For details, see Section
"5.2.2 Control on Combining and L ocating Sections".

You can make sure that a section is not located outside the specified area by specifying the address
ranges of ROM and RAM.

When specifying sections, you may create a group of multiple sections to process them in a batch or
select sections according to attributes.

You may use a wild card to specify sections. This will allow you to easily specify sections to be
combined or located when many sections are involved.

The function to support creating aROM is provided.
The sections may be automatically located to the specified ROM and RAM areas.

B Control on Searching Libraries

The following describes in detail the control on searching alibrary. For details, see Section "5.2.3 Control
on Searching Libraries’.

When a program is developed in C/C++, the runtime library in C/C++ reguired for linking can be
automatically identified and combined (searching the default library file).

Multiple libraries created by the user may be searched.
The library file to be searched may be specified for each symbol.
Library searching may be inhibited.

B Setting Entry Addresses and Symbol Values

A value may be temporarily alocated to an undefined external symbol or an entry address may be
temporarily set. For details, see Section "5.2.4 Setting Entry Addresses and Symbol Vaues'.

54 PART Il LINKER

5.2 Functions of a Linker

5.2.1 Control on Input-Output Files and Messages

Section 5.2.1 describes those linker functions that control the input-output files and
messages.

B Specifying Input Object Files
The input files for a linker include object module files that an assembler outputs and relative format load
modulefiles that alinker outputs.

All the input files must be specified, which can be facilitated by using wild card.

B Specifying an Output Load Module File Name
An output load module file name created after linking is based on the file name of the module that a linker
first inputs.
This function is provided to change the default output file name because it is often inappropriate as a name
to represent the entire linking result.
In particular, the output file name is difficult to understand if a file name is specified using awild card. In
such acase, it is recommended to specify afile name.

B Inheriting Debugging Information
Information on symbols and source filesis required for debugging.

If debugging information is specified to be created (-g option) in C/C++ or for an assembler, an object
module will contain debugging information.

A linker inherits this debugging information. Y ou can decide either to output it into a load module or to
deleteit.

B Specifying the Output Format
Use this function to specify creating an absolute or relative format load module as aresult of linking.

B Specifying a List File Name
A list file name is created based on the output object file name. Use this function to change this default file
name.

B Changing the Format of a List File

Page control is performed when a list file is created. You may change the number of lines per page and
number of characters per line.

A long symbol name is truncated to fit into one line. You can specify to display the name exactly as you
defined it.
B Selecting the Warning Check Level

A warning indicates a minor error. A warning message is issued if a problem occurs but the linking
processing may be continued. Some warnings must be resolved and others may be ignored. Use this
function to select the check level.

B Selecting whether or not to Display a Startup Message
Y ou can select whether or not to display the tool name and the copyright at startup.

B Selecting whether or not to Display a Termination Message
Y ou can select whether or not to display atermination message.

PART Il LINKER 55

CHAPTER 5 SPECIFICATIONS OF A LINKER

5.2.2 Control on Combining and Locating Sections

Section 5.2.2 describes those linker functions used to control combining and locating
sections.

B Specifying ROM and RAM areas

Defining an area name by specifying the address range of the ROM and RAM areas alows you to use this
area name instead of an address when specifying where to locate a section. It also alows you to make sure
that the section is not located outside the range.

To have sections automatically located, locate them in this arearange.

B Specifying the Order of Locating Sections and the Location Addresses
All the sections may be located in any areain any order. To specify a section name, use awild card.
Additionally, you can specify sections using a name plus a section contents type. Use these together with a
wild card to collect only the sections with the same contents type (code, data, etc.).

B Creating a Group of Sections

A linker combines and locates sections. |If many sections are used to create a program, specifying where to
locate the sections will be troublesome.

Multiple sections may be handled as if they are one section by giving them a group name and collecting
them in continuous areas.
B Support for Creating a ROM

When developing a program in C/C++, a variable with an initial value is created. The variable must often
be rewritten and other processing must be performed.

In an application to be imported, the initial value data must be placed in ROM and transferred to RAM
before the application is executed.

This function enables these operations. For details, see Section "5.9 Sections to be Transferred from ROM
to RAM".

56 PART Il LINKER

5.2 Functions of a Linker

5.2.3 Control on Searching Libraries

Section 5.2.3 describes those linker functions that control searching for a library.

B Specifying a Path to Search a Library
To specify a path to search a library, specify the directory containing the C/C++ library in an environment
variable. However, specify the path if alibrary created by the user is stored in another directory.

B Specifying a Library File to be Searched
As the library to be searched, specify the name of a library file created by the user in addition to the
runtime libraries provided by a C/C++ compiler.

B Specifying a Library File to be Searched for Each Symbol
If, in the linking processing, multiple library files are searched and you know that the same external symbol
is contained in the libraries, use this function to explicitly specify which library module should be linked.

B Inhibiting the Search for a Library

Y ou can disable the search of adefault library or al the libraries.

PART Il LINKER 57

CHAPTER 5 SPECIFICATIONS OF A LINKER

5.2.4 Setting Entry Addresses and Symbol Values

Section 5.2.4 describes those linker functions that set entry addresses and symbol
values.

B Specifying an Entry Address
Use this function to set an address at which to start executing the program in an output |oad module.
B Setting an External Symbol Value

An error occurs if an external symbol is not defined after linking because of an incomplete program or an
incorrect external symbol name.

Use this function to set a temporary value to temporarily remove this error and create a load module
executable for the time being.

58 PART Il LINKER

5.3 Types of Sections

5.3 Types of Sections

The minimum unit that a linker can combine is a section.

Depending on the purpose of using sections in a program, they are located and
combined differently.

Section 5.3 describes section names, contents types, location attributes, and
combination attributes.

B Section Name
A section name is used to identify a section.

B Types of Section Contents
Depending on the purpose of usage, there are the following five types of section contents:

An assembler determines the attributes of execution, read, or write. Table 5.3-1 shows the section types.

Table 5.3-1 Section Types

Type Description Attribute
CODE Program code area Executable, Read
DATA Variable area Read, Write
CONST Areaof variable with initial value Read
STACK Stack area Read, Write
10 1/O area Read, Write

B Section Location Attribute
There are two section location attributes representing whether or not the section is relocatable. Table 5.3-2
shows the section location attributes.

Table 5.3-2 Section Location attributes

Attribute Description

ABS Section in which absolute addresses are specified

REL Relocatable section

B Section Combination Attribute
There are two section combination attributes representing whether the section is shared or combined. Table
5.3-3 shows the section combination attributes.

Table 5.3-3 Section Combination attributes

Attribute Description
PUBLIC Sections are combined in succession.
COMMON Sections are combined and overlapped at the same address.

PART Il LINKER 59

CHAPTER 5 SPECIFICATIONS OF A LINKER

B Section Identification

A linker handles the sections with the same section name, contents type, and combination attribute and the
REL attribute as the same section.

A linker does not locate a section with the ABS attribute.

Since alinker identifies a section by the section name, do not define sections with the same section name
and different types of contents and attributes.

60 PART Il LINKER

5.4 Combining Sections

54 Combining Sections

For a linker, we often write "combining multiple objects" but more accurately we should
write "combining sections in objects".

A section may be combined through a simple connection combination (PUBLIC) and
shared combination (COMMON).

B Simple Connection Combination of Sections

The REL sections with the same section hame and contents type and the combination attribute of PUBLIC
are connected through simple connection combination.

Figure 5.4-1 is an overview of the simple connection combination of the same sections in two object files.

The entire size after combination isthe total of the A-1 and A-2 sizes plus the gap size between A-1 and
A-2 generated due to boundary adjustment.

Figure 5.4-1 Simple Connection Combination of Sections

Section A-1

Section A-1

. Section A-2
Section A-2

B Shared Combination of Sections

The REL sections with the same section name and contents type and the combination attribute of
COMMON are connected through shared combination.

Use this function, for example, for a data section without initial values.
Figure 5.4-2 is an overview of shared combination of the same sectionsin two object files.

The entire size after combination isthe larger one of the A-1 and A-2 sizes.

Figure 5.4-2 Shared Combination of Sections

Section A-1 —_—

A-1
—> Section A-2

Section A-2 —

PART Il LINKER 61

CHAPTER 5 SPECIFICATIONS OF A LINKER

5.5 Locating Sections

A linker combines the same sections and then determines the location addresses of
sections. Section 5.5 describes how a linker locates sections including a case where
the user specifies the addresses.

B Links of Sections
Only relative sections may be combined or located.
Absolute sections may not be combined or located.
Sections are combined or located in the following way:
1. The same sections are collected from object modules.
2. These sections are combined according to their combination attributes.
3. Then the sections are located.

Sections are located according to an option concerning a section location order, if any specified, or
otherwise, according to the order in which they appear in an object file.

For details, see Sections "5.5.1 Example of Location when the Order of Combining Sections is not
Specified”, "5.5.2 Example of Location when the Order of Combining Sections is Specified”, and "5.5.3
Example of Location when the Section Group is Specified".

62 PART Il LINKER

5.5 Locating Sections

5.5.1 Example of Location when the Order of Combining
Sections is not Specified

Section 5.5.1 describes an example of location when the order of combining sections is
not specified according to Figure 5.5-1.

B Example of Location when the Order of Combining Sections is not Specified
If Modules 1, 2, and 3 are input in this order, Sections A, B, and C appear in this order. Therefore, the
location addresses are A, B, and C in ascending order.

Figure 5.5-1 Example of Location when the Order of Combining Sections is not Specified

Module 1 Module 2 Module 3 Load module
A A A A-1
A-2
B B
> A-3
C C
B
C-1
C-2
Note: Sections A and C have the PUBLIC attribute and Section B the COMMON attribute.

PART Il LINKER 63

CHAPTER 5 SPECIFICATIONS OF A LINKER

5.5.2 Example of Location when the Order of Combining
Sections is Specified

Section 5.5.2 describes an example of location when the order of combining sections is
specified according to Figure 5.5-2.

B Example of Location when the Order of Combining Sections is Specified

If Modules 1, 2, and 3 are input in this order, Sections A, B, and C appear in thisorder. However, the order
of location is specified as A, C, and B.

Figure 5.5-2 Example of Location when the Order of Combining Sections is Specified

Module 1 Module 2 Module 3 Load module
A A A A-1
A-2
B B
> A-3
C C
C-1
C-2
B
Note: Sections A and C have the PUBLIC attribute and Section B the COMMON attribute.

64 PART Il LINKER

5.5 Locating Sections

5.5.3 Example of Location when the Section Group is
Specified

Section 5.5.3 describes an example of location when the section group is specified
according to Figure 5.5-3.

B Example of Location when the Section Group is Specified

If the group is specified, the sections to belong to each section are located in continuous areas. Sections A,
B, C, D, E, and F appear in this order. F is located before E because it belongs to the group to which C
belongs (C, D, and F).

Figure 5.5-3 Example of Location when the Section Group is Specified

Module 1 Module 2 Module 3 Load module
A A A A-1
A-2
B B
> A-3
C
______________________ B
e e —
D
A C-1
C-2
E
E D
F F F-2
R R F-3
E
Note: Sections B and E have the COMMON attribute and other sections the PUBLIC attribute.
The order of location is not specified and Sections C, D, and F are put into the same group.

PART Il LINKER 65

CHAPTER 5 SPECIFICATIONS OF A LINKER

5.6 Automatically Locating Sections

Normally, a linker determines the section location addresses according to the location
specification provided by the user. However, you can have the linker automatically
determines section location addresses by specifying the -AL option.

If any absolute section exists when sections are located in the area specified in the -ra
or -ro option, the relocatable sections are located so that the location addresses do not
overlap. At this time, the sections with a larger alignment value or size are located
before others so that the optimal location is achieved and the available area is the
smallest.

B Automatically Locating Sections
Thislinker supports automatically locating of the following two types of sections:
« Automatically locating sections when -AL 1 is specified
» Automatically locating sections when -AL 2 is specified

For details of automatically allocating sections, see Sections "5.6.1 Automatically Locating Sections when
-AL 1is Specified”, and "5.6.2 Automatically Locating Sections when -AL 2 is Specified”.

66 PART Il LINKER

5.6 Automatically Locating Sections

5.6.1 Automatically Locating Sections when -AL 1is Specified

If -AL 1 is specified, a linker locates the relocatable sections so that their location
addresses do not overlap with the absolute sections existing in the area.

B Determining Location Addresses
The sections with the area name specified in the -sc option may be automatically located.

Sections with larger alignment values are located before others. For sections with the same alignment
values, ones with alarger size are located before others.

Table 5.6-1 shows the alignment values and sizes of sections.

Table 5.6-1 Alignment Values and Sizes of Sections

Section name Alignment value Size
codel 2 0x0180
code2 2 0x0100
code3 2 0x0200
coded 4 0x0100
code5 4 0x0200
code6 2 0x0020

For example, the order of locating sections shown in Table 5.6-1 is determined as follows:

1. Sections with an alignment value of 4 (coded4 and codeb) are located before those with an alignment
value of 2 (codel,code2,and code3).

2. The codeb sections, being larger in size, are located before the code4 sections.
Therefore, the order of locating sections shown in Table 5.6-1 isas shown in Table 5.6-2.

Table 5.6-2 Alignment Values and Sizes of Sections

Order of location processing S:;:r:(;n Ali\gljglrl?:nt Size
1 code5 4 0x0200
2 code4 4 0x0100
3 code3 2 0x0200
4 codel 2 0x0180
5 code? 2 0x0100
6 code6 2 0x0020

Sections are located in the smallest available area where they can be located.

PART Il LINKER 67

CHAPTER 5 SPECIFICATIONS OF A LINKER

B Example of Location when -AL 1 is Specified

The following is an example of location when the linker options are specified and the sections contents are
as shown below (Figure 5.6-1 and Table 5.6-3).

Figure 5.6-1 Option Specification for a Linker

-ro ROM=0xC1000/0xC18FF
-sc

codel+code2+code3+code4+code5+code6=ROM
-AL 1

Table 5.6-3 Contents of Sections

Section hame Loc_ation Address range Alignment Size
attribute value
codel REL - 2 0x0180
code2 REL - 2 0x0100
code3 REL - 2 0x0200
code4 REL - 4 0x0100
codeb REL - 4 0x0200
code6 REL - 2 0x0020
AbsSec ABS 0x1120-0x121F 0 0x0100

Figure 5.6-2 shows an example of location when -AL 1 is specified.

As shown in this example, specify -AL 1 to have a linker optimally locate sections in the specified area so
that they do not overlap with absolute sections and the available areais the smallest.

Figure 5.6-2 Example of Location when -AL 1 is Specified

0xC1000

code4
0xC1100

code6
0xC1120

AbsSec
0xC1220

code5
0xC1420

code3
0xC1620

codel
0xC17A0

code2
0xC18A0

Unused(available)
0xC18FF
ROM area specified in -sc

68 PART Il LINKER

5.6 Automatically Locating Sections

Automatically Locating Sections when -AL 2 is Specified

If -AL 2 is specified, a linker automatically locates sections without location
specification into an available space of area.
Linker determines into which the location place of a section shall be made between
ROM area or RAM area based on the type of a section in that case.

Section 5.6.2 describes the location destinations for each section type and the order of
determining location addresses.

Figure 5.6-4 shows an example of location when -AL 2 is specified.

B Section Types and Location Destinations

If -AL 2 is specified, a linker automatically locates sections without location specifications. At this time,
the linker determines their location destinations (areas) according to their section types as shown in Table

5.6-4.

Table 5.6-4 Section Types and Location Destinations

Location destination

Section type

ROM area CODE

(specified in -ro) CONST
[}

(Ec?fli\gdairr?a}ra) DATA

P STACK

B Determining Location Addresses

If -AL 2 isspecified, alinker determines the section location addresses in the order shown in Table 5.6-5.

As shown in Table 5.6-5, the order specified by the user is prioritized to the automatic location.

A linker always searches a place to locate a section, starting from low-order addresses.

Table 5.6-5 Section Location Destinations

Order

Section to be processed

Location destination and method

1 Section with the ABS attribute

Located at the address provided with the section

Section with a specified location
2 addressin the -sc option, e.g., as
"-sc Section=0x0100"

Located at the specified address

Section with a specified location
3 areain the -sc option as "-sc
Section=ROM"

In the specified area, the linker searches aplace where it
can locate the section without overlapping with another
section, then locatesiit.

4 Section without a specified location

The linker determines the location area according to
Table 5.6-4. Then, in the determined area, the linker
searches a place where it can locate the section without
overlapping with another section. The linker then
locatesit.

PART Il LINKER 69

CHAPTER 5 SPECIFICATIONS OF A LINKER

B Example of Location when -AL 2 is Specified

The following is an example of location when the linker options are specified and the sections contained in
modules are as shown below (Figure 5.6-3 and Table 5.6-6).

Figure 5.6-3 Linker Option Specification

filel.obj, file2.obj file3.obj

-ro ROM=0xFF8000/0xFFFFFF
-ra RAM=0x000000/0x0007FF
-sc ivect=0xFFFF00

-AL 2

Table 5.6-6 Sections Contained in Modules

Module SNe;:rt:)en Type I;\(t)t(r:if;l)tllj?g Address Size
pl CODE REL - 0x0C00
filed.obj p4 CODE REL - 0x1000
stk STACK REL - 0x0100
ivect CONST REL - 0x0100
il 10 ABS 0x0000 0x0080
file2.0bj dl DATA REL - 0x0040
d3 DATA ABS 0x0200 0x0180
p3 CODE REL - 0x1000
, , d2 CONST REL - 0x0300

file3.0bj

p2 CODE ABS 0x9000 0x0C00
d4 DATA REL - 0x0100

Figure 5.6-4 is an example of location when -AL 2 is specified.

Thus, specifying -AL 2 causes a linker to automatically locate sections in the specified area. This alows
the user to specify only the area and section location minimally required for the program operations which
frees the user from having to specify the section location.

Figure 5.6-4 Example of Location when -AL 2 is Specified

0x0000 0xFF8000 ”
i1 0xFF8C00 P
d1
0x00C0 OxFF8F00 -
d4 OxFF9000 Unused(available)
0x01CO0 -
Unused(available) p2
0x0200
0xFF9C00
d3 4
0x0380 P
stk 0xFFACO00
0x0480 p3
0xFFBCO00
Unused(available) Unused(available)
OxFFFFOO ——
ivec
0x07FF OxFFFFFF
RAM area ROM area

70 PART Il LINKER

5.7

5.7 Searching Libraries

Searching Libraries

Specify a library file to be searched by a linker in one of the following three ways:
» Setting the default library

» Specification in the -l option

» Specification in the -el option

B Specifying a Library to be Searched

A linker, if any undefined symbol remains when the specified input files have been combined, searches a
library file to solve this status.

The linker searches library files recursively so as not to omit anything in the search.

Specify alibrary file to be searched in one of the following three ways:

@ Setting the default library

If aprogram iswritten in C/C++, a C/C++ library is required at the time of linking.

It is troublesome for the user to specify the library files to be searched at the time of linking. Furthermore,
if the user specifies wrong files, unintended modules will be combined.

To prevent this, a C/C++ compiler uses an assembler's pseudo instructions to provide the information on
library file names to be selected. Then, the assembler sets the information in an object module.

A library file name thus set in the object module to be linked is called the default library.

@ Specification in the -1 option

To search alibrary file not defined as the default library, you must specify it at the time of linking.

If you want to create and link a library file, either write a pseudo instruction to specify a library using an
assembler, or specify it in the - option when you start up alinker.

For details on the -| option, see Section "6.2.26 Retrieval Library File Specification (-1)".

@ Specification in the -el option

One or more library files may be specified.

Different library files may contain an external defined symbol with the same name. (Avoid such a status
because it may cause a malfunction.)

The -¢el option is used to identify for each symbol a library file name in which to search a symbol. For
details, see Section "6.2.28 Library Specification for Each Symboal (-el)".

B Order of Searching a Library File

A linker solves a symbol with the -el option specified, then searches libraries in the order specified in the -|
option. Lastly, it searches the default library. This series of searches will be repeated until no more
modules are imported from library files.

PART Il LINKER 71

CHAPTER 5 SPECIFICATIONS OF A LINKER

5.7.1 Example of a Search when there is one Library File (1)

There are three examples of a search when there is one library file. Section 5.7.1

provides one of these examples as shown in Figure 5.7-1.

B Example of a Search when there is One Library File (1)

Figure 5.7-1 Example of a Search when there is One Library File (1)

Object X

X
Reference(S1)
Reference(S2)

Object Y

Load module after linking

Y
Definition {S2}

Library file

Symbol table
{$1y — A
{82y — B

A
Definition {S1}

B
Definition {S2}

- (X
Reference(S1)
f Reference(S2)

Extracted module

Y

oA Definition {S2}
Definition {S1}

A

Definition {S1}

As a result of combining Object Modules X
and Y, the external reference symbol (S2) in
X is solved by the external defined symbol
{S2}inY.

Since the external reference symbol (S1) is
unsolved, the libraries are searched.

Module A, containing the external defined
symbol {S1}, is newly linked.

Since there are no more unsolved external
reference symbols, the load module
consisting of Modules X, Y, and A is created,
and the link processing is completed.
Although Module B in the library contains the
external defined symbol {S2}, it is in Module
Y which is already linked.

Therefore, (S2) will not be a target in the
library search.

Note: The symbol name enclosed in () means a reference and
that enclosed in {} means a definition.

72 PART Il LINKER

5.7 Searching Libraries

5.7.2 Example of a Search when there is one Library File (2)

There are three examples of a search when there is one library file. Section 5.7.2
describes one of these examples as shown in Figure 5.7-2.

B Example of a Search when there is One Library File (2)

Figure 5.7-2 Example of a Search when there is One Library File (2)

Object X Load module after linking
X X
——> +t—>
Reference(S1) Reference(S1)
Reference(S2) f Reference(S2)
Extracted module
Y
. A
> Reference(S2
Object ¥ Definition {S1} (52)
Y A
Reference(S2) B Definition {S1}
o Definition {S2} B
Library file Definition {S2}
Symbol table
As a result of combining Object Modules X
81} — A and Y, both the external reference symbols
{2} — B (S1) and (S2) in X and Y become unsolved.
: As a result of searching a library, Module A
contains the external defined symbol {S1}
A and Module B the external defined symbol
Definition {S1} {S2}.These two modules are newly linked.
Since there are no more unsolved external
B reference symbols, the load module
— consisting of Module X, Y, A, and B is
DT 2 created, and the link processing is
completed.
Note: The symbol name enclosed in () means a reference and
that enclosed in {} means a definition.

PART Il LINKER 73

CHAPTER 5 SPECIFICATIONS OF A LINKER

5.7.3 Example of a Search when there is one Library File (3)

There are three examples of a search when there is one library file. Section 5.7.3
describes one of these examples as shown in Figure 5.7-3.

B Example of a Search when there is One Library File (3)

Figure 5.7-3 Example of a Search when there is One Library File (3)

Object X Load module after linking
X N X
—— >+ —>
Reference(S1) ? Reference(S1)
Y
Object Y Extracted module Reference(S1)
Y > A A
Definition {S1
Reference(S1) Reference{(S2§ Definition {S1}
- Reference(S2)
Library file .|B B
Definition {S2} Definition {S2}
Symbol table
{81} — A

As a result of combining Object Modules X

sy — B and Y, both the external reference symbol
: (81) in X and Y become unsolved.
As a result of searching a library, Module A
A contains the external defined symbol {S1},
Definition {S1} and this module is newly linked.
Reference(S2) As a result, the external reference symbol
(S2) newly becomes unresolved, and then
B the library is retrieved again. Module B in
Definition {S2} which {S2} is defined is linked.

Since there are no more unsolved external
reference symbols, the load module
consisting of Module X, Y, A, and B is
created, and the link processing is
completed.

Note: The symbol name enclosed in () means a reference and
that enclosed in {} means a definition.

74 PART Il LINKER

5.7 Searching Libraries

5.7.4 Example of a Search when there are Multiple Library
Files (1)

There are two examples of a search when there are multiple library files. Section 5.7.4
describes one of these examples as shown in Figure 5.7-4.

B Example of a Search when there are Multiple Library Files (1)

Figure 5.7-4 Example of a Search when there are Multiple Library Files (1)

Object X Load module after linking
X . X
>+ —>
Reference(S1) ? Reference(S1)
Extracted module Y
Object Y Reference(S3)
oA
Y "| Definition {S1} A o
Reference(S3) Definition {S1}
.| C C
Library file 1 | Definition {S3} Definition {S3}
Symbol table

If there are multiple library files to be
81— A searched, they are searched in the order in
{82 — B which they are specified.

: After Module X and Y are linked,
the unsolved symbols (S1) and (S3)

A remain.

Definition {S1} Libraries 1 and 2 are searched in this
order.

B After Library 1 is searched, Module A

containing the definition {S1} is linked.

Definition {S2} Next, Library 1 is searched for (S3)
unsuccessfully, and the search is ended.
Then, Library 2 is searched.
Since {S3} is defined in Module C, it is
linked.

Library file 2

Symbol table

{83} — C

C

Definition {S3}

Note: The symbol name enclosed in () means a reference and
that enclosed in {} means a definition.

PART Il LINKER 75

CHAPTER 5 SPECIFICATIONS OF A LINKER

5.7.5 Example of a Search when there are Multiple Library
Files (2)

There are two examples of a search when there are multiple library files. Section 5.7.5
describes one of these examples as shown in Figure 5.7-5.

B Example of a Search when there are Multiple Library Files (2)

Figure 5.7-5 Example of a Search when there are Multiple Library Files (2)

Object X Load module after linking
X + X
Reference(S1) ? Reference(S1)
Extracted module A
Library file 1 Definition {S1}
oA

Symbol table | Definition {S1}
{$81y — A
{82} — B If there are multiple library files to be

searched, they are searched in the order in
which they are specified.

A If multiple library files contain an external
Definition {S1} symbol with the same name, the one in the
library searched earlier is linked.

To solve an unsolved symbol (S1) in

B S
N Module X, the program searches Libraries 1

Definition {S2} and 2 in this order.
After Library 1 is searched, Module A
containing the definition {S1} is linked.
At this time, no unsolved symbol remains
and the library search is ended.

Library file 2 In this case, Library 2 is not searched.

Symbol table

{83} — C

C

Definition {S2}

Note: The symbol name enclosed in () means a reference and
that enclosed in {} means a definition.

76 PART Il LINKER

5.7 Searching Libraries

5.7.6 Processing when Library Files are Individually Specified

Section 5.7.6 shows the processing when library files are individually specified as
shown in Figure 5.7-6.

B Processing when Library Files are Individually Specified

Figure 5.7-6 Processing when Library Files are Individually Specified

Object X Load module after linking
X > > | X
+
Reference(S1) Reference(S1)
Reference(S2) f Reference(S2)
Extracted module
C
.) C N
> Definition {S2
Library file 1 Definition {S2) {82}
A
Symbol table A Definition {S1}
81— A Definition {S1}
{Ss2} — B
- The external reference symbols for which
A the library files are individually specified are
Definition {S1} searched first.
Here, the (S2) symbol is assumed to be
B imported from Library 2.
— Library 2 is searched for (S2) and Module
Definition {S2} Cis linked.
To solve (S1), the program searches
Library File 1 and link Module A.
{S2}in Library File 1 is not searched.
Library file 2
Symbol table
{82} —C
C
Definition {S2}
Note: The symbol name enclosed in () means a reference and
that enclosed in {} means a definition.
Be sure that, even if the specified libraries does not contain
the target external defined symbol but another search target
library does, the symbol is solved.

PART Il LINKER 77

CHAPTER 5 SPECIFICATIONS OF A LINKER

5.8

ROM and RAM Areas

When you develop an application to be imported, there are often restrictions on the
ROM and RAM sizes and the address range that can be used.

By notifying these areas to a linker at the time of linking, you may check for a size
exceeding the limit and a section located to an unusable address.

To allocate sections automatically, sections are allocated in the area specification

range.

B ROM and RAM Areas Setting and Section Allocation

To have a linker locate sections, specify the section name (CODE) and the starting address at which to
locate the section (0x1000) as shown in [Example 1].

[Example 1]
-sc CODE=0x1000,DATA=0x0180
Check the ending address of a section in the list map that is output as a result of linking.
Specify the starting and ending addresses at which is located a section to have this linker check whether it
is located within the specified range.
First, as shown in [Example 2], use the -ro and -ra options to determine the location address range and
associate it with the area name.
[Example 2]
-ro CodeA=0x1000/0x3FFF
-ra DataA=0x0180/0x57F
The area name CodeA represents the address range of 0x1000 through Ox3FFF.
The area name DataA represents the address range of 0x0180 through 0x057F.
The section location specification using an area name is as shown in [Example 3].
[Example 3]
-sc CODE=CodeA, DATA=DataA

If you specify an area name to locate a section, this program can check whether the section is located in the
specified address range.

Note:

The ROM/RAM areas are automatically set using the following hame from the CPU information file
based on the MB number specified by the -cpu option.

ROM areas _ROM_*
RAM areas _RAM_*_

These are used to set -sc options. See Section "5.10 CPU Information File" for details on the CPU
information file.

78 PART Il LINKER

5.9 Sections to be Transferred from ROM to RAM

5.9 Sections to be Transferred from ROM to RAM

When developing a program using a C/C++ compiler, a variable with an initial value is
created and you must often rewrite the variable and perform other processing.

Such avariable, being rewritten at the time of execution, must be in RAM when the
application is executed. Therefore, in a program to be imported, the initial value data
must be placed in ROM and transferred to RAM before the application is executed.

The section to be transferred from ROM to RAM is a function that enables such a usage.

B Sections to be Transferred from ROM to RAM
When developing a program using a C/C++ compiler, a variable with an initial value is created and you
must often rewrite the variable and perform other processing.
In a program to be imported, the variable data with initial values are placed in ROM. However, sinceit is
being rewritten at the time of execution, it must be in RAM when the application is executed.
Therefore, theinitial value dataistransferred to RAM before the application is executed.
To facilitate such a usage, this linker, as long as the sections to be transferred from ROM to RAM are
specified, supports the system of solving the reference addresses of a program on RAM and placing the
datawith initial values on ROM.

B Using the Sections to be Transferred from ROM to RAM
Specify the sections to be transferred from ROM to RAM in the -sc option as follows:
The sections containing variables with initial values shall be INIT.
DATA shall be the sections containing variables without initial values, start shall be a program used to
transfer the data of variables with initial values on ROM to RAM, and CODE shall be the application
program to be executed.

-sc DATA+INIT=0x1000, start+CODE+@INIT=0xC000

As shown in the figure, specify to locate INIT on RAM (0x1000), and aso to locate INIT on ROM
(OxC000) using a section name starting with an at sign, @.

If the section is thus located, INIT is processed as a section to be transferred from ROM to RAM, and the
location is as shown in Figure 5.9-1. Then, the addresses are solved on RAM and the initial value data is
located on ROM.

PART Il LINKER 79

CHAPTER 5 SPECIFICATIONS OF A LINKER

Figure 5.9-1 Example of Locating a Section to be Transferred from ROM to RAM

0x1000
DATA
RAM <4—— _RAM_INIT(Transfer destination starting address symbol)
INIT
0xC000
start
ROM CODE <4—— _ROM_INIT(Transfer source starting address symbol)
(INIT)

At this time, the symbols for showing the beginning of a section to be transferred from ROM to RAM are
automatically generated as " _ROM_section-name" and " _RAM_section-name'. For example, as
_ROM_INIT or _RAM_INIT.

You can use these symbols in the program to transfer the data of variables with initial values on ROM to
RAM.

" ROM_section-name" and "_RAM _section-name" are symbols reserved for alinker. Do not define these
names in a program. For details, see Section "8.1 Linker Restrictions'. For an example of a program to
transfer data of variables with initial values, see Section 8.2 Q&A for Using the Linker".

B Precautions on the Sections to be Transferred from ROM to RAM

Specifying the sections to be transferred from ROM to RAM changes the Write attribute of the sections
unconditionally.

For the section located on ROM, the Write attribute is disabled. For the sections located on RAM, the
Write attribute is enabled.

The following section is an example of sectionsto be transferred from ROM to RAM in a program:

.program sample

.section init, data
vall: .word 0x1234
val2: .word 0x5678

.section Data, data
val3: .res.w 0x1

.section Progl, code

1d @vall, r2
1d @val2, r3
.section Prog2, code
1di @val3, rl3
cmp #0, rl3

80 PART Il LINKER

5.9 Sections to be Transferred from ROM to RAM

The above program has the init section containing variables with initial values, the Data section containing
variable areas, and the Progl and Prog2 sections containing program code.

Table 5.9-1 shows for each section whether execution, read or write is enabled or disabled after assembling.

Table 5.9-1 Attributes of Sections after Assembly

Section hame Execution Read Write
init x 0] O
Data X O] 0]
Progl 0] 0] X
Prog2 O o X

O...Enabled x...Disabled

If init and Progl are specified as the sections to be transferred from ROM to RAM at the time of linking,
the execution, read, and write for these sections after linking are enabled or disabled as shown in Table 5.9-2.

Table 5.9-2 Attributes of Sections after Linking

Section name Execution Read Write Remarks
init (RAM) X @) 0]
init (ROM) » o 9 \I/?V(?il\t/leissegiigwb Iper((j).vided by the linker
Data X O
Progl(RAM) (0] (0] O Write is enabled.
Prog1l(ROM) @) @) X ROM section provided by the linker
Prog2 (0] (0] X

O...Enabled x...Disabled

PART Il LINKER 81

CHAPTER 5 SPECIFICATIONS OF A LINKER

5.10 CPU Information File

The linker specifies the CPU from -cpu option and automatically specifies the ROM/RAM
areas from the CPU information file.

B CPU Information
The linker specifies the CPU from the -cpu option and selects the information of the appropriate chip to
automatically specify the ROM/RAM areas from the CPU information file.

B ROM/RAM Areas Names
Thelinker sets the following names for the ROM/RAM areas.
* ROM Areas._ROM_*_

Numbers are entered at the asterisk (*) in order from the lower address region starting from 1. If thereis
only 1 area, the number will be’ ROM 1 .

« RAM Areas._ RAM_*
Numbers are entered at the asterisk (*) in order from the lower address region starting from 1. If thereis
only 1 area, the number will be’ RAM_1 .
These names are used by the -sc options.

B CPU Information File
The following shows the CPU information file name and the search directory.

@® CPU Information file name

e 9ll.csv

@ Search Directory

+ %FETOOL%\LIB\911
B Specifies to Prevent the Internal ROM/RAM Area from being Set Automatically

The linker specifies the CPU from the -cpu option by default and selects the appropriate chip information
from the CPU information file to automatically set the ROM/RAM areas. Specify the -Xset_rora option
when you want to deter this function.

Note:

If the CPU information file cannot be found, or the appropriate MB number in the CPU information
file does not exist, the linker will issue an error.

82 PART Il LINKER

5.11 Input of the Objects generated with SOFTUNE V3/V5 Tool

5.11 Input of the Objects generated with SOFTUNE V3/V5 Tool

You can interleave objects generated using the SOFTUNE V3/V5 language tool on the
Linker (flnk9115s).

B Input of the Objects Generated with SOFTUNE V3/V5 Tool
You can interleave objects and libraries generated using the SOFTUNE V 3/V5 language tool (fasm911s,
flib911s or flibs) on the Linker (flnk911s).

The linker outputs information when there are objects interleaved only when "2" is specified by the -w
option.

Note:

The load module file that is output by flnk911s, outputs in a new file format that corresponds to high-
speed downloading. Therefore, this file cannot be input to the SOFTUNE V3/V5 Debugger or
SOFTUNE V3/V5 load module converter.

New load module converters (f2ms, f2is, f2es) can process SOFTUNE V3/V5 format load modules.

PART Il LINKER 83

CHAPTER 5 SPECIFICATIONS OF A LINKER

5.12 Mixing a FR Object and a FR80 Object

Linker (fink911s) outputs a warning, when target CPU specified by -cpu option is FR80 if
FR objects are mixed.

Linker outputs an error, when target CPU specified by -cpu option is FR if FR80 objects
are mixed.

B Mixing a FR Object and a FR80 Object
Linker (flnk911s) outputs a warning, when target CPU specified by -cpu option is FR80 if FR object are
mixed.
Object mixing warning when target CPU is FR80 can be changed to an error or mixing allowed by the
object mix check level option (-omcl).
Linker invariably outputs an error, when target CPU specified by -cpu option is FR if FR80 object are
mixed.

Note:

If you mix FR object when target CPU specified by -cpu option is FR80, be careful of the
incompatibility of FR and FR80 instructions in Table 5.12-1.

B Incompatibility of FR and FR80 Instructions
With FR and FR80, instructions shown in the Table 5.12-1 Incompatibility of FR and FR80 Instructions are
not completely compatible.

For that reason, the linker outputs a warning when object modules for FR and FR80 are mixed.

Table 5.12-1 Incompatibility of FR and FR80 Instructions

Instructions incompatibility FR FR80
LDRES @Ri+,#u4 0] X
STRES #u4, @RI @] X
COPOP #u4,#CC,CRj,CRi o) x
COPLD #u4 #CC,Rj,CRi @] X
COPST #u4 #CC,CRj,Ri 0] X
COPSV #u4,#CC,CRj,Ri o) x
SRCHO Ri X 0]
SRCH1Ri x o
SRCHCRI X 0]

O : Compatible x : Incompatible

84 PART Il LINKER

5.12 Mixing a FR Object and a FR80 Object

B Common Object of FR and FR80
FR/FR80 common object have never instructions shown in Table 5.12-1.

Therefore FR/FR80 common object can be linked with the target that are both FR and FR80.

For details about the method of output FR/FR80 common object, please refer to "FR Family SOFTUNE
ASSEMBLER MANUAL for V6".

B List of CPUs for which objects may be mixed with the -cpu option
Table 5.12-2 lists the abjects and libraries for CPUs that may be mixed with the -cpu option.

Table 5.12-2 List of CPUs for which objects may be mixed with the -cpu option

-cpu option for creating objects and libraries
-cpu option specified for linking
FR FR80 FRIFR80
common object
FR © x o
FR80 A © o]

@)

: Same target specified. Thisis not mixing.
: Mixing allowed because of FR/FR80 common object.

: Warning outputted when linking.
Warning can be changed to an error or mixing allowed (Massage is not output) by -omcl option.
: Mixing not allowed. The linker outputs an error.

PART Il LINKER 85

CHAPTER 5 SPECIFICATIONS OF A LINKER

86 PART Il LINKER

CHAPTER 6

LINKER OPTIONS

This chapter explains each linker option in more detail.

6.1 List of Linker Options
6.2 Details of Linker Options

PART Il LINKER 87

CHAPTER 6 LINKER OPTIONS

6.1

List of Linker Options

Options are available to specify linker operations in more detail.

B List of Linker Options

Table 6.1-1 shows thelist of linker options.
Table 6.1-1 List of Linker Options (1/ 3)

Function Option Remarks
Output load module file name specification -0 Default
Output debug information specification -g
Debug information delete specification -Xg Default
Specification of outputting absolute format load a Defauilt
module
Specification Specification of outputting relative format load "
regarding output | module
load modules Specifying padding data -p Default O
Specification to fill ROM area -fill
Specification for external symbol information out- _symtab
= put
% Speuﬂcgnon for inhibiting the external symbol X symtab Default
Q information output
2 Map list file name specification -m Default
§ Specification for inhibiting map list output -Xm
3 Cancellation of omitting names displayedinthe | ot
9 list
o Output Specification of the Memory Used Infor- .
a N ion List -mmi
Specification mation L1
regarding output | Disable Output of Demangled Symbol Name -Xdemangle
lists Enable Output of Demangled Symbol Name -demangle Default
Specification of the number of digitsinthelist line| W Default
P 80
Specification of the number of lines on onelist i Default 0
page
Checksum specification of ROM area -Cs
Specification Warning message output level specification
regarding output -w Default 1
messages
ROM area specification -ro
o RAM area specification -ra
AIIpcaMon/ link Section alocation -sC
options - —
Section group specification -gr
Pack link specification -pk
Automatic allocation specification -AL Default 0

88 PART Il LINKER

Table 6.1-1 List of Linker Options (2 / 3)

6.1 List of Linker Options

check for size 0

Function Option Remarks
Retrieval library file specification -l
) Library retrieval path specification -L

Ic_);)l;roar?; control Library specification for each symbol -el
Library retrieval inhibit specification -nl
Specification for inhibiting default library retrieval | -nd
Entry address specification -e
Dummy setting of external symbol values -df
Target CPU specification -cpu need
Specifying CPU information file -cif
Object Mix Check Level Specification -omcl Default 1
Inhibiting Check for Presence of Debug Data -NCI0302L1B
Function that sets automatically internal ROM/ _st_rora Defauilt
RAM areas
fsr?)en(;,lggsnto Sp;eg/uetr;t r:;ﬁ glernal ROM/RAM areas Xset_rora

Other link control g y N

options User-specified-area check specification -check_rora
tLiJOSEr—speuﬂed—area check suppression specifica- X check_rora Default
Section-placed-area check specification -check_locate
tSi(e;tr:]’uon—pl aced-area check suppression specifica _Xcheck_locate Default
S_pemﬂcahon of section arrangement check for _check Si7e0 sec
size0 = -
Suppression specification of section arrangement _Xcheck_size0_sec | Default

symbol and address display position

Disable Pre-linking -XPLNK
Specification for relative format assemble list .
; . -ain
input directory
Specification for absolute format assemble list out-
. -alout
Onti dina th put directory format
ptions regarding the —— . -
absolute format szdﬂcatlon for absolute format assemble list out als
assemble list output P _ :
Specification for absolute format assemble list out- as
put module
Specification for inhibiting absolute format assem- Xals
blelist output
Specification for ROM/RAM and ARRAY list out- alr
put
) i Specification for ROM/RAM and ARRAY list out- alrf
Optionsregarding the put module -ar
absolute format —— —
assemble list output Specification for inhibiting ROM/RAM and Xalr
ARRAY list output
Specification for ROM/RAM and ARRAY list nal-an

PART Il LINKER 89

CHAPTER 6 LINKER OPTIONS

Table 6.1-1 List of Linker Options (3/ 3)

isissued

Function Option Remarks
Specification for external symbol cross-reference ™
information list output
Specification for external symbol cross-reference SIf
information list file name
Specification for inhibiting the external symbol
. Y -XxI
cross-reference information list output
Optionsregarding the | specification for local symbol list output -dl
EB{SSI content list Specification for local symbol list file name -df
Specification for inhibiting the local symbol list X4
output
Specification for section detail map list output -ml
Specification for section detail map list file name | -mif
Specification for inhibiting section detail map list Xl
output
Specifying suppression to read default option file | -Xdof
Specifying option file name -f
Specifying display of help message -help
Specifying version number and startup message of R
program
_ Suppression to output version number and startup XV Defauilt
Common options message of program
Specifying display of end message -cmsg
Suppression to output end message -Xcmsg Default
Specifying to set the end code to 1 when warning _CWNo
isissued
Specifying to set the end code to 0 when warning X CWNO Defauilt

90 PART Il LINKER

6.2 Details of Linker Options

6.2 Details of Linker Options

This section explains each option of the linker.
For common options in the linkage kit, see "PART1, CHAPTER 3 COMMON OPTIONS".

B Options Related to the Output Module
Details of options related to the output module in Sections "6.2.1 Output Load Module File Name
Specification (-0)" to "6.2.9 Specification for Inhibiting the External Symbol Information Output (-
Xsymtah)".

B Options Related to the Output List
Details of options related to the output list in Sections "6.2.10 Map List File Name Specification (-m)" to
"6.2.18 Checksum specification of ROM area (-cs)".

B Specification Related to Output Messages
Details of options related to output messages in Section "6.2.19 Warning Message Output Level
Specification (-w)".

B Allocation/link Options

Details of options related to the allocation/link in Sections "6.2.20 ROM Area Specification (-ro)" to
"6.2.25 Automatic Allocation Specification (-AL)".

B Library Control Option
Details of options related to the library control in Sections "6.2.26 Retrieval Library File Specification (-1)"
t0"6.2.30 Specification for Inhibiting Default Library Retrieval (-nd)".

B Other Link Control Options
Details of options related to other link controls in Sections "6.2.31 Entry Address Specification (-)" to
"6.2.45 Disable Pre-linking (-XPLNK)".

B Options Related to the Absolute Format Assemble List Output
Details of options related to the absolute format assemble list output in Sections "6.2.46 Specification for
Relative Format Assemble List Input Directory (-ain)" to "6.2.54 Specification for ROM/RAM and
ARRAY List Symbol and Address Display Position (-na,-an)".

B Options Related to the Object Content List Output

Details of options related to the object content list output in Sections "6.2.55 Specification for External
Symbol Cross-reference Information List Output (-xI)" to "6.2.63 Specification for Inhibiting Section
Detail Map List Output (-Xml)".

PART Il LINKER 91

CHAPTER 6 LINKER OPTIONS

6.2.1 Output Load Module File Name Specification (-0)

Specify the file name for the linked load module. If this option is not specified, the
output file name is created from the first input file name.

B Output Load Module File Name Specification (-0)
[Format]

-0 < Load module file name > (Default)

[Parameters]
<L oad module file name>
Output load module file name
[Description]
Specify the file name for the linked output load module.
If this option is not specified, the linker creates an output file of the name with the added extension
corresponding to the link mode based on the first input file name.

Link mode Default extension
Absolute format output (-a option) .abs
Relative format output (-r option) rel

If the extension is omitted when specifying a <load module file name>, a similar extension is also added
depending on the link mode.

[Example 1]

flnk91lls putc.obj,getc.obj
A load module file is created with the file name putc.abs.

[Example 2]

flnk91lls *.obj -o outfile
A load modulefileis created with the file name outfile.abs.

When using the wild card to specify an input object file as shown in this example, it is recommended to
specify the output file name using this option.

[Example 3]
flnk91lls *.obj -o outfile.
A load module file is created with the file name ouitfile.
If aperiodis placed at the end of afile name, an extension is assumed.
[Example 4]
flnk91lls *.obj -r -o outfile.rel
A load module filein the relative format is created with the file name outfile.rel.

92 PART Il LINKER

6.2 Details of Linker Options

6.2.2 Output Debug Information Specification (-g)

Object modules created by specifying the output of debug information in the C/C++
compiler or assembler contain debug information to be used by the debugger.
To use debug information after linking, specify the -g option.

B Output Debug Information Specification (-g)
[Format]

-9

[Parameter]
None

[Description]
If debug information is contained in the input object module file or relative format load module file, the
linker deletes the debug information in the default output.

To leave debug information in the output load module file, specify this option.

Since the linker does not create new debug information, it is meaningless to specify this option when
the input file contains no debug information.

To perform symbolic debug while debugging, specify the -g option for al tools from the C/C++
compiler and assembler to the linker.

[Example]

Figure 6.2-1 The Example of Output Specification of Debugging Information

flnk911s -f rlink.opt b1 b2

rlink.opt
-r # relocatable LM output
-g # debug info.
-pw 100 # page width
-orelt.rel # output filename

PART Il LINKER 93

CHAPTER 6 LINKER OPTIONS

6.2.3 Debug Information Delete Specification (-XQ)

Object modules that are created by specifying the output of debug information in the C/
C++ compiler or assembler contain debug information to be used by the debugger.

To remove debug information after linking, specify the -Xg option. Otherwise, do not
specify the -g option.

B Debug Information Delete Specification (-XQ)
[Format]

-Xg (Default)

[Parameter]
None

[Description]
The linker deletes the debug information in the default output. So there is no need to specify this
option.
This option is used to cancel the -g option if, for example, the -g option is contained in the option file
when linking using the option file.

[Exampl€]

Figure 6.2-2 The Example of Deletion Specification of Debugging Information

flnk911s -f rlink.opt a1 a2 a3 -Xg -0 a123.rel

rlink.opt
-r # relocatable LM output
-g # debug info.
-pw 100 # page width
-o rell.rel # output filename

94 PART Il LINKER

6.2 Details of Linker Options

6.2.4 Specification of Outputting Absolute Format Load Module
(-a)

The -a option is an option to specify the creation of a load module of the absolute
format which is the final object file of the linker.

B Specification of Outputting Absolute Format Load Module (-a)
[Format]

-a (Default)

[Parameter]
None
[Description]
This option specifies the load modul e file output in the absolute format.

Since the default output of the linker is in the absolute format, this option is nhormally not used. This
option is used to cancel the -r specification and to enable the -a specification.
Output files of the absolute format are created with the following names.
« |f the-o option is not specified
Name of the input file specified first with the extension changed to ".abs".
e |f the-o option is specified
Specified name. If no extension is specified, ".abs" is added to the name.
[Example]
f1lnk911ls al a2 a3 -r -o al23.abs -a
The -r option in the middle of the command line is canceled.

An output load modulefileis created in the absolute format.

PART Il LINKER 95

CHAPTER 6 LINKER OPTIONS

6.2.5 Specification of Outputting Relative Format Load Module
(-r)

The -r option is an option to specify creating a load module of the relative format that
can be reentered. A load module of the relative format has a format that gathers
multiple modules in one file without performing address resolution.

B Specification of Outputting Relative Format Load Module (-r)
[Format]

[Parameter]
None
[Description]
This option specifies the load module file output in the relative format.
Specify this option when changing the default output (absolute format) of the linker.
If the -r option is specified after -a option, the -a option can be canceled.

A load module of the relative format has a format that gathers multiple object modules in one file
without performing address resolution. A file of this format can be reentered in the linker, reducing the
number of input files to be specified for the following link processing. However, if any change occurs
in amodule contained in the load module, it cannot be replaced with alibrary format file.
If this option is specified, all options related to the absolute format assemble list and object content list
areignored and their files are not output.
Output files are created with the following names.
« |If the-o option is not specified
Name of the input file specified first with the extension changed to ".rel".
e |f the-o option is specified
Specified name. If no extension is specified, ".rel" is added to the name.
[Example]
flnk91ls al a2 a3 -r -o al23.rel
The output object format of the linker is changed to the relative format.

Note:

If the extension of the input file specified first is ".rel", the output file name will be the same. Since
the contents of the input file are not saved in this case, specify the output file name with -o option to
avoid any inconvenience.

96 PART Il LINKER

6.2 Details of Linker Options

6.2.6 Specifying Padding Data (-p)

This option is an option filled up with the value which specified the crevice between the
objects generated in boundary adjustment etc.

This option is effective only when creating a absolute format load module.

It is invalid when creating a relative format load module.

B Specifying Padding Data (-p)
[Format]

-p < Value > (Default:0)

[Parameter]
<Vaue>
One-byte data
[Description]
The value of the byte that fills the crevice between the objects which generated the absolute format load
module file by section arrangement at the time of creation is directed.
The value of 0 to 255 can be specified.

In case section arrangement is performed by linker, several bytes of crevice where object data does not
exist as shown in Figure 6.2-3 may occur according to conditions, such as boundary adjustment of a
section.

Figure 6.2-3 Example which the Crevice Generated by Boundary Adjustment of Section locate.

. Section A
0x1000 0xAOQ
0x1001 0xB1
0x1002 2 bytes of crevice generated by
0x1003 boundary adjustment of Section B
0x1004 0xAQ)
Section B

The section specified that it
arranges on a 4-byte boundary.

This option is used when the crevice generated by section arrangement is filled up with a specific data
value.

Linker fills the crevice where object data does not exist by 0, when this option is not specified.

[Exampl€]
flnk91ls al a2 a3 -p 255... A crevice is filled up with 255.
flnk91lls al a2 a3 -p Oxff... A crevice is filled up with 255.
flnk91lls al a2 a3 -p 0xaa... A crevice is filled up with 170.

PART Il LINKER 97

CHAPTER 6 LINKER OPTIONS

6.2.7 Specification to fill ROM area (-fill)

-fill option is used to fill the specified area with the specified value.

B Specification to fill ROM area (-fill)
[Format]

-fill <start address>/<end address>,<filling value>/<[{8]|16]32}]1>/<[{B|L}]>

[Parameters]
<Start address>
Starting address for area to be filled: Specifies the start address for the areato be filled.
<End address>
End address for areato befilled: Specifies the end address for the areato be filled.
<Filling value>
Filling value: Specifies avaluefor filling the specified area.
<[{8|16[32}]>

Bit width: Specifies a bit width for the filling value. When its specification is omitted, the bit width is
8hit.

<[{BIL}]>

Endian: Specifies the endian of the filling value (B: big endian/L: little endian). When its specification
is omitted, the endian is big endian.

[Description]
This option is used to fill the area specified by the start address and end address with the filling value.
The -fill options can be used for multiple specifications if necessary.

In addition to the value for filling the area, bit width (8/16/32bit) and endian (big endian/little endian)
can be specified for filling value.

When a filling value is specified, linker outputs the specified area to the absolute format load module
(ABS) as an object data.

If the filled areas are overlapping, the overlapping areaisfilled by the later-specified filling value.

This option is enabled only when an absolute format load module file is made.

[Exampl€]
When the specification is made as follows, the filling areais all ocated as shown in Figure 6.2-4.

flnk911ls -£ill O0xFD0000/OXFEFFFF, 0x0055AAFF/32/B -fill 0xFF0000/0xFFFFFF,0x1234/16/L
-fill OxFF8000/0xXFFFFFF, 0x5678/16/B

98 PART Il LINKER

6.2 Details of Linker Options

Figure 6.2-4 Filling area specification example

fink911s

-fill OXFDOOOO/OXFEFFFF/OX0055AAFF/32/B (1)

-fill OXFFOO000/0OxFFFFFF/0x1234/16/L (2)
-fill OXFF8000/0xFFFFFF0x5678/16/B 3
(Filling area Filling area allocation image)
oxFDoooo[[T
I o Area is filled with the filling
S:ree(:f'fg?t('cl))n Specification | value specified in (1).
areafor (1) | (0x00,0x55,0xAA,0xFF,0x00,0x
55,0xAA,00xFF, ...)
OXFEFFFF
OxFF0000 Specification Specification Area_;_s gll_ed(gith the filling value
area for (2 area for (2) |specifiedin
OXFFIFFE ... @ ()| ox34,0x12,0x34,0x12, .
OxFF8000 Specification Specification | Area is filled with the filling value
area for (3 specified in (3)

OXFFFFFF . 3) area for (3)

0x56,0x78,0x56,0x78, ...

The filled areas for (2) and (3) are overlapping. Because the
specification in (3) is made later than (2), the overlapping area is
filled by the filling value specified in (3).

After thefilling specification areais allocated, sections are arranged.

Figure 6.2-5 Final object data

(Object data before section arrangement]

0xFD0000

OXFEFFFF

OXFFFFFF

Sections are arranged after the
filling area is allocated.

(Object data after section arrangement)

Object data

OXFF0000
OXFF7FFF|

OxFF8000

Object data

Object data

Object data

PART Il LINKER 99

CHAPTER 6 LINKER OPTIONS

6.2.8 Specification for External Symbol Information Output
(-symtab)

This option is an option which directs to output external symbol information to a
absolute load module.

This option is effective only when creating a absolute format load module.

It is invalid when creating a relative format load module.

B Specification for External Symbol Information Output (-symtab)
[Format]

-symtab

[Parameter]
None
[Description]
It directsto include external symbol information in a absolute format load modulefile.

External symbol information is information which linker uses for solution of an external symbol value,
and is information other than the debugging information which is needed in case it debugs by
SOFTUNE Workbench.

By the default of linker, external symbol information is not outputted to a absolute format load module
file

[Example]
fInk911ls al a2 a3 -symtab

100 PART Il LINKER

6.2 Details of Linker Options

6.2.9 Specification for Inhibiting the External Symbol
Information Output (-Xsymtab)

This option is an option which deters outputting external symbol information to a
absolute format load module.

This option is effective only when creating a absolute format load module.

It is invalid when creating a relative format load module.

B Specification for Inhibiting the External Symbol Information Output (-Xsymtab)
[Format]

-Xsymtab

[Parameter]
None
[Description]
It directs not to output external symbol information to a absolute format load modulefile.

External symbol information is information which linker uses for solution of an external symbol value,
and is information other than the debugging information which is needed in case it debugs by
SOFTUNE Workbench.

It isthe default of linker.
This option is used to cancel the -symtab option.
[Exampl€]
flnk91lls al a2 a3 -symtab -Xsymtab

PART Il LINKER 101

CHAPTER 6 LINKER OPTIONS

6.2.10 Map List File Name Specification (-m)

This option specifies the name of the map list file to be output by the linker.
If this option is not specified, a file name is created from the output load module file
name.

B Map List File Name Specification (-m)
[Format]

-m < Map list file name > (Default)

[Parameters]
<Map list file name>
Output map list file name
The parameters cannot be omitted.
[Description]
By default, the linker outputs a map list file. At this point, afile is created with the name of the output
load module file whose extension is changed to ".mp1".

The -m option is used to change the default map list file name.
If the -m option is specified after the -Xm option, the -Xm option can be canceled.
[Example]
flnk91lls al a2 a3 -r -o al23.rel -m al23.map
The map list file name output by the linker is changed to al23.map.

102 PART Il LINKER

6.2 Details of Linker Options

6.2.11 Specification for Inhibiting Map List Output (-Xm)

This option instructs the linker not to output map list files. If this option is not
specified, a map list file is always created.

B Specification for Inhibiting Map List Output (-Xm)
[Format]

-Xm

[Parameter]
None
[Description]
This option inhibits output of map list files.
If the -Xm option is specified after the -m option, the -m option can be canceled.
By specifying the -Xm option, the -dt, -pw, and -pl options can be canceled.
[Exampl€]
flnk91lls al a2 a3 -r -o al23.rel -Xm
Creating amap list fileisinhibited.

PART Il LINKER 103

CHAPTER 6 LINKER OPTIONS

6.2.12 Cancellation of Omitting Names Displayed in the List
(-dt)

Names such as the section names and symbol names are displayed in the map list and
object content list of the linker. By default list output, considering legibility of the lists,
long names are only partially displayed.

This option instructs to output the names without omission.

For the display format of the map lists, see Section "7.2 Link List File".

B Cancellation of Omitting Names Displayed in the List (-dt)
[Format]

-dt

[Parameter]
None

[Description]
Symbol names or section names displayed in the map list or object content list are displayed without
omission. In such cases, one symbol name or section nameis displayed in several lines.

By default, about 80 characters can be displayed. If asmall number is set as the number of charactersto
be displayed in one list line, the number of characters that can be displayed decreases accordingly. In
such cases, symbol names or section names may be displayed with some parts omitted.

[Exampl€]
flnk91lls al a2 a3 -o al23.abs -m al23.map -dt
The symbol names and section names in use are displayed in the list without omission.

104 PART Il LINKER

6.2 Details of Linker Options

6.2.13 Output Specification of the Memory Used Information
List (-mmi)

This outputs the memory used information of the map list files that are output by the
linker.

B Output Specification of the Memory Used Information List (-mmi)
[Format]

-mmi

[Parameter]
None

[Description]
This outputs the memory used information list that indicates the usage conditions of the ROM or RAM
areas specified by the options of the map list files that are output by the linker as the default.

The information, such as the usable area, used area, position of gap in area, size, is displayed.
[Exampl€]

flnk911ls 10mpO00 im lnk -mmi -ra RAM1=0x1000/0x1FFF,RAM2=0x2000/0x23FF
-ro ROM1=0xBC000/0xBCFFF,ROM2=0xBD000/0XxBFFFF -AL 2

Notes:
The following will not be output despite -mmi being specified.
(1)The memory area is not specified. (-ra or -ro is not specified).
(2)The map list file output is not valid.

PART Il LINKER 105

CHAPTER 6 LINKER OPTIONS

6.2.14 Disable Output of Demangled Symbol Name
(-Xdemangle)

This option disables the display of a demangled symbol name of the external symbol
name displayed in the symbol list part in the linker map list.

B Disable Output of Demangled Symbol Name (-Xdemangle)
[Format]

-Xdemangle

[Parameter]
None
[Description]
This option disables the display of a demangled symbol name of the external symbol name displayed in
the symbol list part in the linker’s map list.
-Demangled symbol name

A symbol name mangled in the C++ compiler is used as a template function name so as not to coincide
with other symbol names. The demangled symbol name is a user-identifiable symbol name into which
the mangled symbol nameis converted.

[Exampl€]
flnk91lls al a2 a3 -o al23.abs -m al23.abs -Xdemangle

106 PART Il LINKER

6.2 Details of Linker Options

6.2.15 Enable Output of Demangled Symbol Name (-demangle)

This option enables the display of a demangled symbol name of the external symbol
name displayed in the symbol list part in the linker map list.

B Enable Output of Demangled Symbol Name (-demangle)
[Format]

-demangle (Default)

[Parameter]
None
[Description]
This option enables the display of a demangled symbol name of the external symbol name displayed in
the symbol list part in the linker map list.
-Demangled symbol name

A symbol name mangled in the C++ compiler is used as a template function name so as not to coincide
with other symbol names. The demangled symbol name is a user-identifiable symbol name into which
the mangled symbol name is converted.

[Exampl€]
flnk91lls al a2 a3 -o al23.abs -m al23.abs -demangle

PART Il LINKER 107

CHAPTER 6 LINKER OPTIONS

6.2.16 Specification of the Number of Digits in the List Line
(-pw)

By default, up to 80 digits can be displayed in one line of the map list and object
content list output by the linker. This option is specified to change the number of digits
to be displayed in one line.

B Specification of the Number of Digits in the List Line (-pw)
[Format]

-pw < Number of digits > (Default : 80)

[Parameter]

<Number of digits>
Number of digitsto be displayed in oneline. Specify the number in the range of 80 to 1023.

[Description]
The length of oneline of the link list file and object content list is specified.
If thisvalue is not specified, 80 is set.
If the values 70 to 79 are specified, the linker sets the number of digitsto 80 after outputting 10311L.
[Exampl€]
flnk91lls al a2 a3 -o al23.abs -m al23.map -dt -pw 100
The number of digitsto be displayed in onelist lineis set to 100.

Notes:
The following lists can specify the number of digits of one line by -pw option.
e Link Map List(.mp1)
e Section Detail Map List(.mpm)
The following lists can not specify the number of digits of one line by -pw option.
« Absolute Format Assemble List(.als)
» External Symbol Cross-reference Information List(.mpx)
e Local Symbol Information List(.mps)

108 PART Il LINKER

6.2 Details of Linker Options

6.2.17 Specification of the Number of Lines on One List Page

(-pl)

By default, no limit lines are displayed on one page of the map list and object content
list output by the linker.
This option is specified to change the number of lines to be displayed on one page.

B Specification of the Number of Lines on One List Page (-pl)
[Format]

-pl < Number of lines > (Default : 0)

[Parameter]

<Number of lines>
Number of lines to be displayed on one page. Specify 0 or in the range of 20 to 255.

[Description]
The number of lines on one page of the link list file and object content list is specified.
If thisvalueis not specified, 0 is set.
If O is specified, page control is canceled.
[Exampl€]
flnk91lls al a2 a3 -o al23.abs -m al23.map -dt -pl 64 -pw 100
The number of lines to be displayed on one page of the list is set to 64.

Notes:
The following lists can specify the number of lines on one list page by -pl option.
e Link Map List(.mp1)
e Section Detail Map List(.mpm)
The following lists can not specify the number of lines on one list page by -pl option.
« Absolute Format Assemble List(.als)
» External Symbol Cross-reference Information List(.mpx)
e Local Symbol Information List(.mps)

PART Il LINKER 109

CHAPTER 6 LINKER OPTIONS

6.2.18

Checksum specification of ROM area (-cs)

-cs option is used to perform checksum operation on the specified area.

There are two types for the checksum operation: Simple addition (SUM) and cyclic
redundancy check (CRC).

The checksum result is output on the map list.

B Specification of checksum of ROM area (-cs)

[Format]

-cs <start addresss>/<end address>|[,<start address><end addresss, bbPP],

<{SUM16 [= complement format] | SUM32[= complement format] |
CRC16 [=checking polynomial] | CRC32[=checking polynomial]}>,<filling values>
[Parameters]

<Start address>

Starting address of target area for checksum operation: Specifies the start address for the target area for
checksum operation.

<End address>

End address of target area for checksum operation: Specifies the end address for the target area for
checksum operation.

<{ SUM16[= complement format] | SUM32[= complement format] | CRC16[= checking polynomial] |
CRC32[= checking polynomial]}>

Specifies the checksum operation method.

16bit simple addition (SUM16), 32bit simple addition (SUM32), 16hit cyclic redundancy check
(CRC16), and 32bit cyclic redundancy check (CRC32) can be specified.

When simple addition (SUM 16, SUM32) is specified, complement format can be specified.
Complement format: 0: no complement, 1. complement of 1, 2: complement of 2

When specification of complement format is omitted, checksum is performed without complement.
When cyclic redundancy check (CRC16, CRC32) is specified, checking polynomial can be specified.

When specification of checking polynomial is omitted, the following checking polynomia is used in
checksum operation.

For CRC16: 0x8005(CRC-ANSI)
For CRC32: 0x104C11DB7(CRC-32 ITU-T)
<Filling value>

If there are areas without object data in the checksum operation target area, they are filled with the
filling value.

If checksum operation target areas are overlapping, the filling value for the later-specified -cs option is
enabled.

110 PART Il LINKER

6.2 Details of Linker Options

[Description]
Checksum operation is performed for the area specified by start address and end address.
When checksum operation is performed on severa areas collectively, specify in one -cs option.
When checksum operation is performed in different areas, specify the areasin -cs options.

-cs OxFE8000/0xFE8FFF,0xFF8000/0x FFFFFF,SUM 32=2,0xAA

Checksum operation is performed on areas OxFE8000/OXFE8FFF and OxFF8000/OxFFFFFF
collectively.

-cs OxFEOO00/OXFESFFF,SUM 32=2,0xAA -cs OxFF8000/0xFFFFFF,SUM 32=2,0xAA
Checksum operation in area OxFEOOOO/OXFE8FFF and checksum operation on area OxFF8000/
OXFFFFFF are performed separately.

In -cs option, checksum operation types and the value for filling the sections without object codes can
be set up.

[Example 1]
flnk91lls -cs O0xFE8000/0xFF7FFF,SUM32, 0x7F

Checksum operation is performed on area OXFE8000/0xFF7FFF with 32bit simple addition.
Sections in checksum operation target area without object data are filled with Ox7F.

Settings for checksum Object data after section
operation area arrangement
Object data
OxFE8000

Checksum operation is performed
by filling the sections without
Checksum Object data object data with Ox7F.

operation
area

Object data

OXFF7FFF

OXFFFFFF

PART Il LINKER 111

CHAPTER 6 LINKER OPTIONS

[Example 2]
flnk91ls -fill O0xFF0000/0xFF7FFF,0xFF/8 -cs 0xFE8000/0xFFFFFF,SUM16=2, 0x7F

Checksum operation is performed on area OxFE8000/OXFFFFFF with 16bit simple addition
(complement 2).

When -cs and -fill are specified simultaneously, checksum operation is performed by filling the sections
without object data or filling specification with Ox7F.

Settings for :
checksum Settings for area Object data after
operation area to be filled section arrangement |
Object data
OxFE8000 XChecksum operation is
performed by filling the
: sections without object data
Object data . e .
OXFEFFEF or filling specification with
OXFFO000[S Checksum OX7F.
operation Area to be
area filled Object data
OXFF7FFF
OxFF000 Object data
OXFFFFFF LSOO et J
0xFFO0000 - OXFF7FFF is filled with OXFF by
filling option.
[Example 3]

f1lnk91ls -cs O0xFE8000/0xFEFFFF, 0xFF8000/0xFFFFFF, CRC16, 0x7F
Checksum operation is performed on areas OxFE8000/OxFEFFFF,0xFF8000/OxFFFFFF with 16bit

cyclic redundancy check (CRCL16).
Checksum operation is executed on areas OXFE8000/OxFEFFFF and OxFF8000/0xFFFFFF collectively.

112 PART Il LINKER

6.2 Details of Linker Options

Settings for checksum Object data after section
operation area arrangement
Object data Checksum operation is
"""""""""""""""" formed by filling the
OXFE8000 performed. .
8 Checksum sections without object data
operation with Ox7F.
area . .
Object data Checksum operation is
OXFEFFFF performed on these two areas
"""""""" collectively.
0xFF8000 PR T T T Object data
Checksum
operation
area
OXFFFFFF LXK e
[Example 4]

flnk911ls -cs O0xFE8000/0xFEFFFF,CRC16,0x7F -cs 0xFF8000/0xFFFFFF,CRC32, 0XFF

Checksum operation is performed on area OXFE8000/OXxFEFFFF with 16bit cyclic redundancy check

(CRC16).
Checksum operation is performed on area OxFF8000/0OxFFFFFF with 32bit cyclic redundancy check
(CRC32).
Settings for checksum Object data after section
operation area arrangement
Object data
OXFE8000 fOO000a] ~ T T T e Checksum operation is
Checksum performed by filling the
Opzr;ta'l"” sections without object data or
Object d illi ificati i 3
OXFEEFEE ject data filling specification with OX7F.
OXFF8000 [C S T Objectdata Checksum operation is
C()';Z?;ignm performed by filling the
area sections without object data or
OXFFFFFEIDOOCNSNNNY filling specification with OXFF.

PART Il LINKER 113

CHAPTER 6 LINKER OPTIONS

[Example 5]

flnk91ls -cs O0xFE8000/0xFFFFFF,SUM16=1,0x7F -cs 0xFF8000/0xFFFFFF,SUM32=2, 0XxFF

Checksum operation is performed on area OxFE8000/0x FFFFFF with 16bit simple addition.
Checksum operation is performed on area OxFF8000/OxFFFFFF with 32bit simple addition.
Section in area OxFE8000/OxFF7FF without object data are filled with Ox7F.
Section in area OxFF8000/0x FFFFF without object data are filled with OxFF.

Settings for checksum Object data after section
operation area arrangement
Object data
OxFE8000 Checksum operation is
performed by filling the
sections without object data or
Object data filling specification with Ox7F.
Checksum
operation
area
O0xFF8000 Object data 1 Checksum operation is
%geefggnm performed by filling the
area sections without object data or
OXFFFFEF . .) filling specification with OxFF.

If checksum operation target areas are overlapping,
the filling value for the later-specified -cs option
is enabled.

114 PART Il LINKER

6.2 Details of Linker Options

6.2.19 Warning Message Output Level Specification (-w)

The output level of warning messages is set. This option is used to inhibit warning
messages of the linker completely or to check the operating state of the linker.

B Warning Message Output Level Specification (-w)
[Format]

-w < Numeric value >

[Parameter]
<Numeric value>
Specify 0, 1, or 2 asawarning level.
[Description]
Information to be obtained is controlled such as the inhibition of outputting warning level messages or
the output of more detailed messages.
0......Warning level messages are not output.
1.....Normal checking. (default)
2......Messages of the level that can normally be ignored and those to report simply linker operations are
also output.
For details, see "APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT".
[Description]
flnk91lls al a2 a3 -o al23.abs -w 2 -Xm
All messages are output.

PART Il LINKER 115

CHAPTER 6 LINKER OPTIONS

6.2.20

ROM Area Specification (-ro)

Addressing for section allocation can be simplified by defining the ROM area to be used
by a program.
Program size checking is also enabled.

B ROM Area Specification (-ro)

[Format]
-ro < Area name > = < Start address > / < End address >
[, < Area name > = < Start address > / < End address >]
[Parameters]
<Areaname>

Name to indicate the address area to be set

<Start address>
Start address of the address area to be set

<End address>
End address of the address area to be set

[Description]
The ROM areas are defined. As many areas as required can be defined.
Specify the start address and end address, then name the area.
The area name defined by this option is used in the section allocation option.

The definition of the -ro option alone does not affect linker operation. Be sure to use the area name
defined here for the addressing parameter in the section allocation option.

[Example]
flnk91ls *.obj -o ap.abs -ro RomA=0x1000/0x2FFF -sc code=RomA ...
Section alocation of the section name code to the address 0x1000 to Ox2FFF is specified.

The section is allocated starting with the address 0x1000. A warning message is output if the address
Ox2FFF is exceeded.

116 PART Il LINKER

6.2 Details of Linker Options

6.2.21 RAM Area Specification (-ra)

By defining the RAM area to be used by a program, addressing for section allocation
can be simplified.
The program size can also be checked.

B RAM Area Specification (-ra)

[Format]
-ra < Area name > = < Start address > / < End address >
[, < Area name > = < Start address > / < End address >]
[Parameters]
<Areaname>

Name to indicate the address area to be set

<Start address>
Start address of the address area to be set

<End address>
End address of the address area to be set

[Description]
The RAM areas are defined. As many areas as required can be defined.
Specify the start address and end address, then name the area.
The area name defined by this option is used in the section allocation option.

The definition of the -ra option alone does not affect linker operation. Be sure to use the area name
defined here for the addressing parameter in the section allocation option.

[Example]
flnk91ls *.obj -o ap.abs -ra RamD=0x0100/0x01FF -sc data=RamD ...
The section allocation of the section name data to the address 0x0100 to Ox1FF is specified.

The section is allocated starting with the address 0x0100, and a warning message is output if the address
OxO1FF is exceeded.

PART Il LINKER 117

CHAPTER 6 LINKER OPTIONS

6.2.22 Section Allocation (-sc)

This option specifies the start address and allocation order of the section allocation for
the linker.

B Section Allocation (-sc)

[Format]
-sc < Section name list > [/ < Content type >]

[= { < Address > | < Area name > }] [, ..]
[Parameters)

<Section name list>
The wild card can be used to specify the section name, section group name, or list section name.

When specifying multiple names, link them with the + symbol.

<Content type>
code, data, stack, const, 1O

<Address>
Start address of the allocation

<Areaname>
Area name specified in the ROM/RAM specification option

[Description]
The order of section allocation and the all ocation address are specified.
The order of section allocation follows the order described in the parameters.
Allocation starts with the address 0 if the address or area name is not specified.

If the @ mark is attached to the head of a section name, the address is specified on the ROM side of the
ROM -> RAM transfer section. This section operates transferring data from ROM to RAM during
execution.

Use double quotation marks (") to indicate a wild card. Do not use double quotation marks (*) in an
option file.

[Example 1]
flnk911ls *.obj -0 ap.abs -sc "*/code"=0xC1000,D=0x1000
Figure 6.2-6 shows the allocation example in this case.

The section whose content type is code is alocated starting with the address 0xC1000 and section D is
allocated starting with the address 0x1000.

Figure 6.2-6 Section Allocation Example 1

0x1000

D

0xC1000

Sections whose
content type is code

118 PART Il LINKER

[Example 2]

6.2 Details of Linker Options

flnk91ls *.obj -o ap.abs -ro ROM=0xC1000/0xCFFFF
-ra RAM=0x1000/0x13FF -sc P+code+textl1=ROM,D=RAM

Figure 6.2-7 shows the allocation example in this case.

If section allocation is specified using the ROM/RAM option, the allocation end address can be checked.

Figure 6.2-7 Section Allocation Example 2

0x1000

0xC1000

OXCFFFF

D

P

code

text1

The wild card character that can be used in the <section name list> is only *' and the following four

description patterns are available.

Pattern Example Explanation
* -sc "*/code" Match with all sections whose content
Match ab_1, code 1, XXsect, etc. typeis code
Mismatch None
_x -sc"ab _*/code" Match with all sections whose content
Match ab 1,ab XX, ab_, etc. typeis code and whose first three

Mismatch aab XX, ab, etc.

charactersare"ab "

* -sc"*_1/code"

Match a_1,XX_1, 1, etc.

Mismatch ab 11, , etc.

Match with all sections whose content
typeis code and whose last two
charactersare" 1"

* -sc"ab_* 1/code"

Match ab XX 1,ab 1, etc.

Mismatch aab XX 11, ab 1, etc.

Match with all sections whose content
typeis code, whose first three
charactersare"ab ", and whose last two
charactersare" 1"

Note:

Sections agreeing with the wild card specifying do not include sections specified by other sc options
or absolute addresses (sections arrangement attributes that are ABS).

-sc *=RAM -sc CODE=RAM
All wild card specifying, in specifying like the one above, agree with sections other than the '"CODE’
that can be rearranged (sections arrangement attributes that are REL).

PART Il LINKER 119

CHAPTER 6 LINKER OPTIONS

6.2.23 Section Group Specification (-gr)

Multiple sections are linked to create a group according to the purpose of the user and
a group name is given to the group.

By using this group name when specifying the section allocation, multiple sections can
be handled as one group.

B Section Group Specification (-gr)
[Format]

-gr <Group name> = <Section name list> [/ <Content type> 1 [, ..]

[Parameters)
<Group hame>
Generic name of multiple sections to be grouped
<Section name list>
Describes section names to be grouped.
The wild card can be used.
When specifying multiple names, link them with the + symbol.
<Content type>
code, data, stack, const, 10
[Description]
Sections to be grouped and the order of section allocation in the group are specified.
The order of section allocation follows the order described in the parameters.

Each group name must be a unique name which does not overlap with the section names and other
group names.

A section that belongs to one group must not belong to another group.

When using the wild card, indicate it using double quotation marks("). Do not use double quotation
marks (") in an option file.

[Example 1]
flnk91ls *.obj -o ap.abs -ro ROM=0xC1000/0xCFFFF
-ra RAM=0x1000/0x13FF...-gr romG=P+code+textl -sc romG=ROM,D=RAM ...

When using the grouping option, the whole group can be represented by its group name instead of
specifying any number of section names.

[Example 2]

flnk91ls *.obj -o ap.abs -gr cdgrp="*/code" -sc cdgrp=0xC1000
All sections whose content type is code are linked to a group and the group name cdgrp is given to the
group. Then the group is alocated to the address 0xC1000 using the -sc option.

120 PART Il LINKER

6.2 Details of Linker Options

6.2.24 Pack Link Specification (-pk)

The alignment specification (boundary adjustment) for allocation information of
sections is canceled, then sections are linked and allocated with 1-byte boundary.
Application programs may not be executed correctly. Sufficient care must be taken
when using this option.

B Pack Link Specification (-pk)
[Format]

-pk < Section name >

[Parameter]

<Section name>
Specify the section name to be pack linked.

[Description]
The alignment specification (boundary adjustment) for allocation information of sections is canceled
and then sections are linked (with 1-byte boundary).

Be careful when specifying -pk. By specifying this option, program operations may be slower or
programs may become inoperable.
The -pk option is not intended for alignment of structured members.
[Exampl€]
flnk91lls *.obj -o ap.abs -pk code ...

PART Il LINKER 121

CHAPTER 6 LINKER OPTIONS

6.2.25 Automatic Allocation Specification (-AL)

Automatic allocation of sections is specified.

B Automatic Allocation Specification (-AL)
[Format]

-aL {0 | 1] 2}

[Parameters)

<0>

No automatic alocation (default)

<1>

If an absolute section exists in the area, the order of allocation is changed appropriately to avoid
overlapping with the section.

<2>

Whether to allocate to the ROM area or RAM area is determined based on the section attributes. Then
alocation is carried out to free space of each area.

[Descriptions]

Automatic allocation of sectionsis specified.

If the parameter is 1

If an absolute section exists when allocating sections to the areas specified by the -ra or -ro option,
relocatable sections are allocated in such a way that allocation addresses do not overlap. In such cases,
sections are allocated in descending order of the alignment value and size starting with the section of the
largest alignment value and size. In this way, optimal alocation is implemented where free space is
minimum.

If the parameter is 2

Whether to alocate sections whose alocation is not specified by the -sc option to the ROM area or
RAM area is determined based on the section attributes. Then such sections are allocated to free space
of each area.

See also Section "5.6 Automatically Locating Sections'.
[Example]

flnk91lls -AL 1 -ro ROM=0x1000/0x1FFF
-sc codel+code2+code3=ROM. ..

Each section is given as follows.

codel: relocatable, size=0x18

code2 : relocatable, size =0x10

code3: relocatable, size =0x30

AbsSec : absolute, address range=0x1010 to 0x1017

The following figure shows the link map for this case.

122 PART Il LINKER

6.2 Details of Linker Options

Figure 6.2-8 Example of Link Map

S Addr. -E_Addr Size SectionType AL Sec

00001000-0000100F 00000010 CODE P R-XI 02 REL code2
00001010-00001017 00000008 CODE N R-XI 00 ABS AbsSec
00001018-00001047 00000030 CODE P R-XI 02 REL code3
00001048-0000105F 00000018 CODE P R-XI 02 REL codel

Notes:
Even if -AL 1 is specified, automatic allocation is not carried out in the following cases.
- No area is set. (-ra or -ro is not set)
- No area name is used in addressing of -sc.

- No absolute section exists to be allocated in the specified area.
Even if -AL 2 is specified, errors occur and no link processing is performed in
the following cases.

- No area is set. (-ra or -ro is not set)
Normally, the linker will automatically set -ra and -ro from the CPU Information File.
If -w 2 is specified and the automatic allocation function works, a message is
output.

PART Il LINKER 123

CHAPTER 6 LINKER OPTIONS

6.2.26 Retrieval Library File Specification (-I)

Libraries to be retrieved other than the default library are specified. If multiple libraries
are available, they are specified in order of retrieval.

B Retrieval Library File Specification (-I)
[Format]

-1 < Library file name > [, ..]

[Parameter]

<Library file name>
Describe the names of the library files to be retrieved. Library file names with path names are allowed.
The wild card can also be used.

[Descriptions]
Library files areretrieved in the specified order.
Libraries specified here are retrieved before the default library.
If the library files are specified without path names, directories are retrieved in the following order.

1. The directory specified by the -L option.
2. Thedirectory specified in the environmental variable LIB911.
3. The system library path derived from the environmental variable FETOOL.

The current directory is not retrieved. If you want to retrieve the current directory, specify either the -L
option or aperiod (.) in the environmental variable LIB911.

By specifying the -I option after the -nl option, the -nl option can be canceled.

Indicate a wild card with double quotation marks. Do not use double quotation marks (") in an option
file.

[Exampl€]

flnk911ls *.obj -o ap.abs -1 ..\lib\com.lib,libu
flnk91lls *.obj -o ap.abs -1 "p*.lib"

All library files whose file name's first character is"p" are retrieved.

124 PART Il LINKER

6.2 Details of Linker Options

6.2.27 Library Retrieval Path Specification (-L)

The path name for retrieving the library file is specified.

B Library Retrieval Path Specification (-L)
[Format]

-L < Library path name > [, ..]

[Parameter]

<Library path name>
Name of the path storing the library file

[Description]
In which directory the library file specified by the - option existsisinstructed for the linker.
Normally, specify the environmental variable LIB911 so that this option need not be specified.

The C libraries attached to the C/C++ compiler are stored in the path specified by the environmental
variable LIB911. To manage libraries created specially by the user, use the -L option to manage them
in another directory.

If multiple paths are specified, they are retrieved in order of specification.

The library file is first retrieved in the path specified here, then in the environmenta variable LIB911
and system library path derived from the environmental variable FETOOL .

If alibrary path is specified with its path name, only the specified path isretrieved.
If the -nl option exists, library retrieval is not performed, thus the -L option is canceled.
[Exampl€]
flnk911ls *.obj -o ap.abs -L C:\usr\usrlib -1 com.lib,libu

PART Il LINKER 125

CHAPTER 6 LINKER OPTIONS

6.2.28 Library Specification for Each Symbol (-el)

The library file to be used for the resolution of external reference symbol value can be
specified.

B Library Specification for Each Symbol (-el)
[Format]

-el < Symbol name list > = < Library file name > [

[Parameters]

<Symbol name list>
Describe the external reference symbol names.
When specifying multiple symbols, separate them with /.

<Library file name>
Library file nameto be retrieved.
Library file names with path names can also be specified. The wild card cannot be used.

[Description]

The library file to be used for the resolution of the external reference symbol value specified in this
option is specified.

This option is used when a module containing the same external definition symbol name exists in
multiple libraries and the linker links undesirable modulesin the standard library retrieval order.

Libraries are not often created appropriately so it is inevitable that this function will be applied when
using multiple libraries. However, since using this function may cause unexpected problems.

Examine whether library files can be recreated.

The retrieval directories when a library file name is specified without its path name are the same as
those for the - option.

[Exampl€]
flnk911ls *.obj -o sp.abs -L C:\usr\usrlib -1 libu,sublib -el syml=sublib

126 PART Il LINKER

6.2 Details of Linker Options

6.2.29 Library Retrieval Inhibit Specification (-nl)

The inhibition of the library file retrieval is instructed.

B Library Retrieval Inhibit Specification (-nl)
[Format]

-nl

[Parameter]
None
[Description]
The inhibition of the library file retrieval is specified.
[Example 1]
flnk911ls -L C:\usr\usrlib -1 libu,sublib *.obj -o ap.abs -nl
The -L, -I, and -el options previoudy specified are canceled and library retrieval including the default
library isinhibited.
[Example 2]
flnk91lls -1 1ibl *.obj -o ap.abs -nl -1 1ib2
lib1.lib specified onceis canceled and retrieval of lib2.lib isinstructed.

As shown in this example, if the -nl option is specified between multiple, -I options specified before -nl are
al canceled. However, the -L option specification, -el option specification, -nd option specification, and
default library retrieval are restored to the settings before the -nl specification.

Thus, in this example, lib2.1ib and the default library are retrieved.

PART Il LINKER 127

CHAPTER 6 LINKER OPTIONS

6.2.30 Specification for Inhibiting Default Library Retrieval (-nd)

The default library is a library presumed to be used by the C/C++ compiler and its
library file names are set in the object file.
This option instructs not to retrieve the default library file.

B Specification for Inhibiting Default Library Retrieval (-nd)
[Format]

-nd

[Parameter]
None
[Description]
The specification of the default library file is canceled, therefore, it is not retrieved.
[Example]
flnk911ls -L C:\usr\usrlib -1 libu,sublib *.obj -o ap.abs -nd
Only the libraries specified by the - option are retrieved and the default library is not retrieved.

128 PART Il LINKER

6.2 Details of Linker Options

6.2.31 Entry Address Specification (-e)

The start address of a user program is specified using an external definition symbol.

B Entry Address Specification (-e)
[Format]

-e < Symbol name >

[Parameter]

<Symbol name>
Symbol name of the entry point

Only external definition symbols can be used.

[Description]
The start address of a user program is changed to that specified by the external definition symbol.
The start address can be specified using the .end pseudo-instruction of the assembler.

The entry point is set as the initial value of the PC (program counter) when starting execution of the
simulator debugger.

[Example]
flnk91ls *.obj -o ap.abs -e ProgStart

PART Il LINKER 129

CHAPTER 6 LINKER OPTIONS

6.2.32 Dummy Setting of External Symbol Values (-df)

Undefined symbol values of a user program are forced to be defined.

B Dummy Setting of External Symbol Values (-df)
[Format]

-df <Symbol name> = { <Numeric value> | <External definition symbol names>}

[Parameters]

<Symbol name>
Symbol name of an external reference symbol

<Numeric value>
Value to be defined

<External definition symbol name>
External symbol name whose value is defined

[Description]
Values of undefined external reference symbols are forced to be defined.

The linker creates object data using this value for the resolution of relocation. Symbol information in
the absolute format load module file to be output is not affected.

If loaded using a debugger, the symbol name specified here remains undefined.
[Exampl€]
flnk911ls -L \usr\usrlib -1 libu,sublib *.obj -o ap.abs -df Syml=100
If Symlisnot defined, 100 is set asits value.

130 PART Il LINKER

6.2 Details of Linker Options

6.2.33 Target CPU Specification (-cpu)

The target CPU is specified.
The target CPU of programs to be linked is specified using the MB number.

B Target CPU Specification (-cpu)
[Format]

-cpu < MB numbers

[Parameter]

<MB number>
MB number of the target CPU

[Description]
The target CPU of programs to be linked is specified using the MB number.
[Example]
flnk91lls *.obj -o ap.abs -cpu MB91110

Note:
When executing link processing, the target CPU must be specified using this option.

PART Il LINKER 131

CHAPTER 6 LINKER OPTIONS

6.2.34 Specifying CPU Information File (-cif)

This specifies the CPU information file used by the linker.

B Specifying CPU Information File (-cif)
[Format]

-cif < CPU information file name >

[Parameter]

<CPU information file name>
CPU information file used by linker

[Description]
This specifies the CPU information file used by the linker.

[Example]
flnk911ls *.obj -o ap.abs -cpu MB91110 -cif C:\Softune6\1ib\911\MB91110.csv

Note:
SOFTUNE Tools get CPU information by referring the CPU information file. Reference to a CPU
information file different between the related tools may cause an error to the program to be created.
The CPU information file that comes standard with SOFTUNE Tools is located at:
Installation Directory\lib\911\911.csv
When installing the compiler and assembler pack in different directory, specify -cif so that each tool
can refer the same CPU information file.

132 PART Il LINKER

6.2.35

6.2 Details of Linker Options

Object Mix Check Level Specification (-omcl)

This option sets the operation when target CPU specified by -cpu option is FR80 if FR

objects are mixed.

Mixing allowed (Message is not output), warning output or error output can be

specified.

B Object Mix Check Level Specification (-omcl)

[Format]

-omcl < Numerical value >

[Parameter]

<Numerical value>
Specify 0, 1 or 2 for the warning level.

[Explanation]

This option sets the operation when target CPU specified by -cpu option is FR80 if FR objects are

mixed.

Mixing allowed (Message is not output), warning output or error output can be specified.

0: No message output when mixed.

(Mixing enabled)

1: Warning message output when mixed. (Default)

2: Error message output when mixed.

(Mixing not possible)

This option cannot set the operation when target CPU specified by -cpu option is FR if FR80 objects are

mixed.

About -cpu option and CPUs for which objects can be mixed, please refer to Section "5.12 Mixing a

FR Object and a FR80 Object".

[Exampl€]

* When thereisno -omcl option specification (Default)

flnk911ls -cpu MB91680 al
*** W1312L: Uncompatible
Mixing istreated as a warning.

e When -omcl 0 is specified
flnk91lls -cpu MB91680 al
Mixing is not detected.

e When -omcl 1is specified
flnk911ls -cpu MB91680 al
*** W1312L: Uncompatible
Mixing istreated as a warning.

e When -omcl 2 is specified
flnk91lls -cpu MB91680 al
x RE4312L: Uncompatible
Mixing istreated as an error.

a2 a3 module fr.

obj

cpu type module

a2 a3 module fr.

(module fr.obj)

obj -omcl 0

a2 a3 module fr.

obj -omcl 1

cpu type module

a2 a3 module fr.

(module fr.obj)

obj -omcl 2

cpu type module

(module fr.obj)

PART Il LINKER

133

CHAPTER 6 LINKER OPTIONS

6.2.36 Inhibiting Check for Presence of Debug Data
(-NCl10302LIB)

This option inhibits check for presence of debug data in the module extracted from the
library file.

B Inhibiting Check for Presence of Debug Data (-NCI0302LIB)
[Format]

-NCIO302LIB

[Parameter]
None
[Description]
When debug data output (-g) and warning level 2 (-w2) are specified to operate the linker, the linker
outputs the following data message to the module that has no debug data.
10302L : Debug information not exist (file name)

When this option is specified, the linker does not output the above information message to the module
extracted from the library file.

[Exampl€]

flnk91ls -cpu MB911F155 -g -w 2 test.obj -1 1ib911.1lib
*%% T0302L: Debug information not exist (C:\Softune6\1ib\911\1ib911.1ib)
*%% T0302L: Debug information not exist (C:\Softune6\1ib\911\1ib911.1ib)

Information 'I0302L' is outputted.

flnk91ls -cpu MB911F155 -g -w 2 test.obj -1 1ib911.1ib -NCIO0302LIB
Information 'I0302L' is not outputted.

134 PART Il LINKER

6.2 Details of Linker Options

6.2.37 Function that Sets Automatically Internal ROM/RAM

Areas
(-set_rora)

Refers to CPU information file to set the information regarding the internal ROM/RAM
areas of the targeted CPU.

B Function that Sets Automatically Internal ROM/RAM Areas (-set_rora)
[Format]

-set rora

[Parameter]
None

[Descriptions]
Refers to CPU information file to set the information regarding the internal ROM/RAM areas of the
targeted CPU.
The linker, when this option is specified, refers to CPU information file and automatically sets the
internal ROM/RAM areas of the appropriate chip.
The linker sets the following names for the ROM/RAM areas.

* ROM Areas._ROM_* _
Numbers are entered at the asterisk (*) in order from the lower address region starting from 1. If

thereisonly 1 area, the number will be’ ROM_1 .

¢ RAM Areas. RAM_*
Numbers are entered at the asterisk (*) in order from the lower address region starting from 1. If
thereisonly 1 area, the number will be’ RAM_1 .

These names are used by the -sc options.
[Example]
flnk911ls *.obj -o ap.abs -cpu MB91110 -set rora

PART Il LINKER 135

CHAPTER 6 LINKER OPTIONS

6.2.38 Specifies to Prevent the Internal ROM/RAM Areas from
being Set Automatically (-Xset_rora)

Prevents the information from being set regarding the internal ROM/RAM areas of the
targeted CPU that is referred to the CPU information file.

B Specifies to Prevent the Internal ROM/RAM Areas from being Set Automatically
(-Xset_rora)

[Format]

-Xget rora

[Parameter]
None
[Description]

Prevents the information from being set regarding the internal ROM/RAM areas of the targeted CPU
that is referred to the CPU information file.

[Exampl€]
flnk911ls *.obj -o ap.abs -cpu MB91110 -Xset rora

136 PART Il LINKER

6.2 Details of Linker Options

6.2.39 User-specified-area Check Specification (-check _rora)

When the -check_rora option is previously specified, you can check whether the
memory map has been changed, by changing only the specified MB number.

The -check_rora option checks whether the specified ROM and RAM areas (-ro and -ra
options) correspond to the actual addresses of the internal ROM and internal RAM.
Use this option when single-chip mode is used.

B User-specified-area Check Specification (-check_rora)
[Format]

-check rora

[Parameter]
None

[Descriptiong]
A check is made on whether the specified ROM and RAM areas (-ro and -ra options) exceed the
internal ROM and internal RAM.

The following warnings are output when the areas specified for the -ro and -ra options are not within the
internal ROM and internal RAM:

W1368L: The area specified for the -ro option is outside the internal-ROM area (area name)
W1369L: The area specified for the -ra option is outside the internal-RAM area (area name)

When the -check_rora option and the MB number are specified in using single-chip mode, a check is
made on whether the specified ROM and RAM areas correspond to the actual addresses of the internal
ROM and internal RAM of the product concerned. So, for instance, when a program is ported to a
different product, you can check whether the memory map has been changed, by changing only the
specified MB number.

Also, when the -check_locate option is specified together with the -check _rora option, you can check
whether the program is within the internal ROM and internal RAM.

[Example]
flnk911ls -cpu MB91F155 -check rora -ro ROM = 0x00080800/0x000fffff
-ra RAM1=0x00001000/0x00008fff, RAM2=0x00080000/0x000807ff ...

-> The areas specified for the -ro and -ra options are within the ranges of the internal ROM and internal
RAM:; so no warning is output.

flnk91ls -cpu MB91154 -check rora -ro ROM = 0x00080800/0x000fffff
-ra RAM1=0x00001000/0x00008fff, RAM2=0x00080000/0x000807ff

W1368L: The area specified for the -ro option is outside the internal-ROM area (ROM)
W1369L: The area specified for the -raoption is outside the internal-RAM area (RAM)

-> The underlined areas specified are not within the ranges of the internal ROM and internal RAM; so
the warnings are output.

PART Il LINKER 137

CHAPTER 6 LINKER OPTIONS

flnk911ls -cpu MB91154 -check rora -ro ROM = 0x000A0000/0x000fffff
-ra RAM1=0x00001000/0x00005fff, RAM2=0x00080000/0x000807ff

-> The areas specified for the -ro and -ra options are within the ranges of the internal ROM and internal
RAM:; so no warning is output.

Notes:
< A warning is output when the -check_rora option is specified even if warning output suppression (-
w 0) is specified.
» The -check_rora option is only valid when creating absolute format load modules.
The -check_rora option is ignored when creating relocatable load modules.

e The -check rora option uses internal-ROM data and internal-RAM data contained in the CPU data
file. So, no warning is output when the CPU data file contains no data concerned. Specify the correct
MB number for the -cpu option.

138 PART Il LINKER

6.2 Details of Linker Options

6.2.40 User-specified-area Check Suppression Specification
(-Xcheck _rora)

The -Xcheck_rora option suppresses the check on the specified ROM area and the
specified RAM area (-ro and -ra options) and on the internal-ROM area and the internal-
RAM area.

Use the -Xcheck_rora option when you want to cancel the -check _rora option.

B User-specified-area Check Suppression Specification (-Xcheck_rora)
[Format]

-Xcheck rora

[Parameter]
None
[Description]
The -Xcheck_rora option suppresses the check on the specified ROM area and the specified RAM area
(-ro and -ra options) and on the addresses of the internal ROM and the internal RAM.
Use the -Xcheck_rora option when you want to cancel the -check_rora option.
[Example]

flnk911ls -cpu MB91154 -check rora -ro ROM = 0x00080800/0x000fffff
-ra RAM1=0x00001000/0x00008fff, RAM2=0x00080000/0x000807£ff ...

W1368L: The area specified for the -ro option is outside the internal-ROM area (ROM)
W1369L: The area specified for the -ra option is outside the internal-RAM area (RAM1)

-> The underlined areas specified are not within the ranges of the internal ROM and internal RAM; so
the warnings are output.

flnk91ls -cpu MB91154 -check rora -Xcheck rora -ro ROM = 0x00080800/0x000fffff
-ra RAM1=0x00001000/0x00008fff, RAM2=0x00080000/0x000807£ff
-Xcheck _rora...

-> Although the underlined areas specified are not within the ranges of the internal ROM and internal
RAM, no warning is output because the check is suppressed using the -X check_rora option.

PART Il LINKER 139

CHAPTER 6 LINKER OPTIONS

6.2.41 Section-placed-area Check Specification (-check_locate)

A check is made to see that no section is specified outside the memory area.

The -check_locate option checks the section-placed address, based on the specified
ROM area and the specified RAM area (-ro and -ra options) or based on the internal
ROM data and internal RAM data in CPU data file; and outputs a warning if a section is
specified outside the memory area.

B Section-placed-area Check Specification (-check_locate)
[Format]

-check_locate

[Parameter]
None
[Descriptiong]
The -check_locate option checks the section-placed address, based on the specified ROM area and the

specified RAM area (-ro and -ra options) or based on the internal ROM data and internal RAM datain
CPU datafile; and outputs awarning if a section is specified outside the memory area.

W1370L: The section is placed outside the ROM area (section name)

W1371L: The section is placed outside the RAM area (section name)

W1372L: The section is placed outside the RAM area or the |/O area (section name)
W1373L: The section is placed outside the 1/O area (section name)

The section types and the check areas are shown below.

140 PART Il LINKER

6.2 Details of Linker Options

Section type

Area to be checked

The -check_rora option is specified.

The -check_rora option is not

placed outside the internal-1/0O area.

specified.
Section that should be placed within the ROM area
CODE
CONST A warning is output when asection is A warning is output when a section is
ROM/RAM | placed outside the area specified for placed outside the area specified for
Send-from -ro and outside the internal-ROM area. -ro.
section
Section that should be placed within the RAM area
STACK - L o o
] A warning is output when a section is A warning is output when a section is
ROM/RAM placed outside the area specified for placed outside the area specified for
Sencti”t)cr)]sec -raand outside the internal-RAM area. -ra.
Section that should be placed within the RAM area or the |/O area
A warning is output when a section is L L
placed outside the area specified for A warning IS output when a.s-ecuon 'S
DATA -raand outside the internal-RAM area or placed outside the area specified for
; -ra.
theinternal-1/0 area.
Section that should be placed within the 1/O area
10 A warning is output when a section is A warning is output when a section is

placed outside the internal-1/0O area.

In single-chip mode, when the -check_locate option is specified together with the
-check_rora option, you can check whether the program is placed outside the internal-memory area.

Also, even not in single-chip mode, when the -check_locate option is specified together with the ROM area
specification and RAM area specification (-ro and -ra options), you can check whether the program is
placed outside the memory area.

[Exampl€]

When DATA_A, DATA_B, DATA_C (these are section type DATA), CODE_D, CODE_E, CODE_F
(these are section type CODE), and STACK_G (thisis section type STACK) are placed in the following
memory map, the following check will be made:

flnk911ls -cpu MB91154 -check locate -ro ROM =
-ra RAM1=0x00001000/0x00005££ff,

0x000A0000/0x000f£fEff

RAM2=0x00080000/0x000807£ff ...

W1372L: The section is placed outside the RAM area or the I/O area (DATA_A).
W1371L: The section is placed outside the RAM area (STACK_G).

W1372L: The section is placed outside the RAM area or the |/O area (DATA_C).
W1370L: The section is placed outside the ROM area (CODE_D).

W1370L: The section is placed outside the ROM area (CODE_F).

PART Il LINKER 141

CHAPTER 6 LINKER OPTIONS

0x00000000
o | DATAA |
0x00000800
Access
inhibited
0x00001000
RAML1 Internal | DATA B |
RAM 20K
0x00006000 H STACKG |
Access
inhibited
0x00080000 DATA C
RAM2 Internal
RAM 2K DATA D
0x00080800
Access
inhibited
0x000A0000
ROM Internal CODEE |
ROM 384K
0x00100000 H cober |
Access
inhibited
OXFFFFFFFF

DATA_A isplaced within the internal-1/O area; so no warning is output.
DATA_B isplaced within the area specified for -ra; so no warning is output.
DATA_C isplaced outside the area specified for -ra; so the warning is output.
CODE_D is placed outside the area specified for -ro; so the warning is output.
CODE_E is placed within the area specified for -ro; so no warning is output.
CODE_F is placed outside the area specified for -ro; so the warning is output.
STACK_G is placed outside the area specified for -ra; so the warning is output.

Notes:
« A warning is output when the -check_locate option is specified even if warning output
suppression (-w 0) is specified.
« The -check_locate option is only valid when creating absolute format load modules.
The -check_locate option is ignored when creating relocatable load modules.

« When using the -check_locate option, you must specify the areas for the -ro and -ra options in
advance.

« The -check_locate option also checks ABS-attribute sections not to be processed by the linker.

142 PART Il LINKER

6.2 Details of Linker Options

6.2.42 Section-placed-area Check Suppression Specification
(-Xcheck_locate)

The -Xcheck_locate option suppresses the section-placed-area check.
Use the -Xcheck_locate option when you want to cancel the -check_locate option.

B Section-placed-area Check Suppression Specification (-Xcheck_locate)
[Format]

-Xcheck_locate

[Parameter]
None
[Description]
The -Xcheck_locate option suppresses the section-placed-area check.
Use the -Xcheck_locate option when you want to cancel the -check _|ocate option.

PART Il LINKER 143

CHAPTER 6 LINKER OPTIONS

6.2.43 Specification of Section Arrangement Check for Size 0O
(-check_size0_sec)

This performs arrangement check for size 0.

B Specification of Section Arrangement Check for Size 0 (-check_size0_sec)
[Format]

-check size0_sec

[Parameter]
None

[Description]
The section with a size 0 has no meaning as a program, and so this check is unnecessary.
However, to check the arrangement of all sections, including a section with a size 0, specify -
check sizeQ sec.
When -check_sizeQ sec is specified, the program checks whether the arrangement is correct for the 0
Size section.

Check items:

« Whether awritable section is arranged in the ROM area
* Whether a section with an initial valueis arranged in the RAM area
* Whether aROM arranged section is arranged outside of the ROM area
« Whether aRAM arranged section is arranged outside of the RAM area
* Whether an 1/0O arranged section is arranged outside of the 1/0 area
* Whether an arrange-able address exists
When -check_sizeQ sec is specified, the program displays a message below, for the size 0 section.
W1301L : Writable section located in ROM area (section name)
W21303L : Section with initial datalocated in RAM area (section name)
W1370L : The section is placed outside the ROM area (section name)
W1371L : The section is placed outside the RAM area (section name)
W1372L : The section is placed outside the RAM area or the 1/O area (section name)
W1373L : The section is placed outside the I/O area (section name)
E4365L : Not found locatable address in area name (section name)
E4366L : Not found locatable address (section hame)
[Exampl€]
flnk911ls -cpu mb91101 -check size0 sec modulel.obj module2.obj

Note:

In default, the section arrangement check for size 0 is not performed.
To perform the section arrangement check for size 0, specify the -check_size0Q_sec option.

144 PART Il LINKER

6.2 Details of Linker Options

6.2.44 Suppression Specification of Section Arrangement
Check for Size 0 (-Xcheck_size0_sec)

This suppresses the section arrangement check for size 0.
When -Xcheck_size0_sec is specified, the program checks the arrangement for sections
other than size 0 as usual.

B Suppression Specification of Section Arrangement Check for Size 0
(-Xcheck_size0_sec)

[Format]

-Xcheck size0_ sec (Default)

[Parameter]
None

[Descriptions]
The section with a size 0 has no meaning as a program, and so this check is unnecessary.
When the section arrangement check for size 0 is unnecessary, specify the -Xcheck _size0_sec option.
When -Xcheck_sizeQ sec is specified, the program checks the arrangement for sections other than size 0.
Check items:

« Whether awritable section isarranged in the ROM area

* Whether a section with aninitial valueis arranged in the RAM area

» Whether a ROM arranged section is arranged outside of the ROM area

* Whether a RAM arranged section is arranged outside of the RAM area

« Whether an 1/0 arranged section is arranged outside of the I/O area

» Whether an arrange-able address exists

Specification of -Xcheck size0 sec suppresses the display of the messages below for the size 0 section.

W1301L : Writable section located in ROM area (section name)
W21303L : Section with initial datalocated in RAM area (section name)
W1370L : The section is placed outside the ROM area (section name)
W1371L : Thesectionis placed outside the RAM area (section name)
W1372L : The section is placed outside the RAM area or the 1/O area (section name)
W1373L : The section is placed outside the I/O area (section name)
E4365L : Not found locatable address in area name (section name)
E4366L : Not found locatable address (section name)
[Example]
flnk91ls -cpu mb91101 -Xcheck size0 sec modulel.obj module2.obj

PART Il LINKER 145

CHAPTER 6 LINKER OPTIONS

6.2.45 Disable Pre-linking (-XPLNK)

This option disables pre-linking used for template function processing.

B Disable Pre-linking (-XPLNK)
[Format]

-XPLNK

[Parameter]
None

[Description]
To disable an increase in code size by the template function for the C++ program, the linker starts the
pre-linker to perform pre-linking before linking.

This option disables pre-linking.
[Example]
flnk91lls al a2 a3 -o al23.abs -m al23.abs -XPLNK

146 PART Il LINKER

6.2 Details of Linker Options

6.2.46 Specification for Relative Format Assemble List Input
Directory (-alin)

The directory in which a relative assemble list file is stored is specified.
If this option is not specified, the directory in which the object module is located is
specified.

B Specification for Relative Format Assemble List Input Directory (-alin)
[Format]

-alin < Path name >

[Parameter]

<Path name>
Directory in which arelative assemble list fileis stored

[Description]
Thisisan option to be used when an absolute format assemble list file should be output.
The directory in which arelative assemble list fileis stored is specified.
If this option is not specified, the directory in which the object module is located is specified.

If arelative assemble list file with its path name is specified using the -alf option, the path specified by
the -alf option is prioritized.

[Exampl€]
flnk91ls *.obj -o ap.abs -alin d:\fr20 -alf swctrl.lst,mstdef.lst

flnk91ls *.obj -o ap.abs -alsf d:\fr20\swctrl.lst,d:\fr20\mstdef.lst
The above two examples share the same meaning.

PART Il LINKER 147

CHAPTER 6 LINKER OPTIONS

6.2.47 Specification for Absolute Format Assemble List Output
Directory Format (-alout)

The directory which outputs an absolute format assemble list file is specified.

B Specification for Absolute Format Assemble List Output Directory Format (-alout)
[Format]

-alout < Path name >

[Parameter]

<Path name>
Directory which outputs an absolute format assemble list file

[Description]
The directory which outputs an absolute format assemble list file is specified.
If this option is not specified, the current directory is specified.

[Exampl€]

flnk91ls *.obj -o ap.abs -alin d:\fr20 -alf swctrl.lst,mstdef.lst -alout d:\fr20\als

148 PART Il LINKER

6.2 Details of Linker Options

6.2.48 Specification for Absolute Format Assemble List Output
(-als)

The output of absolute format assemble list files is specified.
This is an instruction for all object modules.

B Specification for Absolute Format Assemble List Output (-als)
[Format]

-als

[Parameter]
None
[Description]
All modules are instructed to create absolute format assemble lists.
If this option is not specified, absolute format assemble lists are not created.
-alsf and -Xals specified before are canceled.
[Exampl€]
flnk91ls *.obj -o ap.abs -als

PART Il LINKER 149

CHAPTER 6 LINKER OPTIONS

6.2.49 Specification for Absolute Format Assemble List Output
Module (-alsf)

Modules to output absolute format assemble list files are specified.
Selective output for object modules is instructed.

B Specification for Absolute Format Assemble List Output Module (-alsf)
[Format]

-alsf < Relative assemble list file name > [

;e]

[Parameter]
<Relative assemble list file name>
Name of the relative assemble list file which is the source of creating the absolute format assemble list
The wild card can be used to specify the file name.
[Description]
Modulesto create the absolute format assemble lists are selected.

The relative assemble list file names are used to specify the modules. If the extension is omitted, ".Ist"
is assumed.

Any module which is not specified does not create any absolute format assemble list.
This option can be specified in divided multiple parts.
The previousdly specified -als and -Xals are canceled.

Since the store path of arelative assemble list can be specified in the -alin option, the path specification
can be omitted when this option is specified.
[Example]
flnk91lls *.obj -o ap.abs -alsf swctrl.lst,mstdef.lst
flnk91ls *.obj -o ap.abs -alsf swctrl.lst -alsf mstdef.lst
flnk91lls *.obj -o ap.abs -alsf swctrl -alsf mstdef
The above three examples share the same meaning.

150 PART Il LINKER

6.2 Details of Linker Options

6.2.50 Specification for Inhibiting Absolute Format Assemble
List Output (-Xals)

The inhibition of creating the absolute format assemble lists is instructed for all
modules.

B Specification for Inhibiting Absolute Format Assemble List Output (-Xals)
[Format]

-Xals (Default)

[Parameter]
None
[Description]
Theinhibition of creation for absolute format assemble listsisinstructed for all modules.
This option is a default option and is used to cancel the previously specified -als and -alsf.
[Exampl €]
flnk91ls *.obj -o ap.abs -alf sectrl.lst,mstdef.lst -nl

PART Il LINKER 151

CHAPTER 6 LINKER OPTIONS

6.2.51 Specification for ROM/RAM and ARRAY List Output (-alr)

The ROM/RAM list and ARRAY list output is specified.
The output of debug information when compiling or assembling is required.

B Specification for ROM/RAM and ARRAY List Output (-alr)
[Format]

-alr

[Parameter]
None
[Description]
The ROM/RAM and ARRAY lists are added all absolute format assemble lists.
When using this option, the -al's option can be omitted.
The previously specified -alrf and -Xalr are canceled.

To output the ROM/RAM and ARRAY lists, specify the debug information output option (-g) when
compiling, assembling, and linking.
[Exampl€]
flnk91lls *.obj -o ap.abs -als -alr -g
flnk91ls *.obj -o ap.abs -alr -g
The above two examples share the same meaning.

152 PART Il LINKER

6.2 Details of Linker Options

6.2.52 Specification for ROM/RAM and ARRAY List Output
Module (-alrf)

Modules to output the ROM/RAM and ARRAY lists are specified.
The output of debug information when compiling or assembling is required.

B Specification for ROM/RAM and ARRAY List Output Module (-alrf)
[Format]

-alrf < Relative assemble list file name > [, ..]

[Parameter]

<Relative assemble list file name>
Specify the modules to output the ROM/RAM and ARRAY lists using the relative assemble list file

names.
The wild card can be used to specify the file name.

[Description]
Modules to output the absolute format assemble lists with the added ROM/RAM and ARRAY lists are
selected.
Modules are specified using the relative assemble list file names. If the extension is omitted, ".Ist" is
assumed.

Any module which is not specified does not create any ROM/RAM and ARRAY lists.
If this option is used, the -alsf option can be omitted.
This option can be specified in divided multiple parts.
Previoudly specified -alr and -Xalr are canceled.
[Example]
flnk91ls *.obj -o ap.abs -alsf swctrl.lst,mstdef.lst -alrf swctrl.lst,mstdef.lst

flnk91ls *.obj -o ap.abs -alsf swctrl.lst -alrf swctrl.lst,mstdef.lst
flnk91ls *.obj -o ap.abs -alrf swctrl -alrf mstdef

The above three examples share the same meaning.

PART Il LINKER 153

CHAPTER 6 LINKER OPTIONS

6.2.53 Specification for Inhibiting ROM/RAM and ARRAY List
Output (-Xalr)

The inhibition of adding the ROM/RAM and ARRAY lists is specified for all absolute
assemble list.

B Specification for Inhibiting ROM/RAM and ARRAY List Output (-Xalr)
[Format]

-Xalr (Default)

[Parameter]
None
[Description]
Theinhibition of adding the ROM/RAM and ARRAY listsis specified for all absolute assemble list.
This option is a default option, therefore, it is not necessary to specify it.
The previously specified -alr and -alrf are canceled.
[Exampl€]
flnk91lls *.obj -o ap.abs -als -alr -Xalr

flnk91ls *.obj -o ap.abs -als -Xalr
The above two examples share the same meaning.

154 PART Il LINKER

6.2 Details of Linker Options

6.2.54 Specification for ROM/RAM and ARRAY List Symbol and
Address Display Position (-na,-an)

The display positions of the symbols and addresses for the ROM/RAM and ARRAY lists
are specified.

If -nais specified, symbols (NAME) are output first, then addresses (ADDRESS).

If -an is specified, addresses (ADDRESS) are output first, then symbols (NAME).

B Specification for ROM/RAM and ARRAY List Symbol and Address Display Position
(-na,-an)
[Format]

-na (Default)

[Parameter]
None
[Description]
Symbols and addresses of the ROM/RAM and ARRAY lists are output in order of NAME and
ADDRESS.
Symbols are output in al phabetical order.
This option is valid only for modules for which the output of the ROM/RAM and ARRAY lists is
specified.
This option is adefault option and is specified to cancel the -an option.
[Exampl€]
flnk91ls *.obj -o ap.abs -alr -na
flnk91ls *.obj -o ap.abs -alr
The above two examples share the same meaning.

[Format]

-an

[Parameter]
None
[Description]
Symbols and addresses of the ROM/RAM and ARRAY lists are output in order of ADDRESS and
NAME.
Symbols are output in order of address.
This option is used to change the -na option (default).
This option is valid only for modules for which the output of the ROM/RAM and ARRAY lists is
specified.
[Example]
flnk91ls *.obj -o ap.abs -alr -na -an
flnk91ls *.obj -o ap.abs -alr -an
The above two examples share the same meaning.

PART Il LINKER 155

CHAPTER 6 LINKER OPTIONS

6.2.55 Specification for External Symbol Cross-reference
Information List Output (-xI)

The output of the external symbol cross-reference information list file is specified.

B Specification for External Symbol Cross-reference Information List Output (-xI)
[Format]

-x1

[Parameter]
None
[Description]
The creation of a external symbol cross-reference information list file is instructed.
If this option is not specified, no external symbol cross-reference information list fileis created.
[Example]
flnk91ls *.obj -o ap.abs -x1

156 PART Il LINKER

6.2 Details of Linker Options

6.2.56 Specification for External Symbol Cross-reference
Information List File Name (-xIf)

This option is used to change the output destination directory or file name of the
external symbol cross-reference information list file.

B Specification for External Symbol Cross-reference Information List File Name (-xIf)
[Format]

-x1f < Output file name >

[Parameter]

<Output file name>
Specify the output file name. To change the directory of the output destination, add the path name prior
to the output file name.

[Description]
The external symbol cross-reference information list file is created with the specified name.
When using this option, the -xI option can be omitted.

If the extension is omitted in the <output file name> specification, the default extension ".mpx" is
added.

If this option is not specified, the absolute format load module file name whose extension is changed to
".mpx" isused asthe output file name.

[Exampl€]
flnk91ls *.obj -o ap.abs -x1 -x1f ccp903.mpx

flnk91ls *.obj -o ap.abs -x1f ccp903
The above two examples share the same meaning.

PART Il LINKER 157

CHAPTER 6 LINKER OPTIONS

6.2.57 Specification for Inhibiting the External Symbol Cross-
reference Information List Output (-XxI)

Inhibiting the output of the external symbol cross-reference information list file is
specified.

B Specification for Inhibiting the External Symbol Cross-reference Information List
Output (-XxI)
[Format]

-Xx1 (Default)

[Parameter]
None
[Description]
Inhibiting the output of the external symbol cross-reference information list fileis specified.
This option is adefault option, therefore, it is not necessary to specify it.
The previoudly specified -xI and -xIf are canceled.
[Exampl€]
flnk91lls *.obj -o ap.abs -xl1 -Xx1
flnk91lls *.obj -0 ap.abs -Xx1

flnk91lls *.obj -o ap.abs
The above three examples share the same meaning.

158 PART Il LINKER

6.2 Details of Linker Options

6.2.58 Specification for Local Symbol List Output (-sl)

The output of the local symbol information list file is specified.
The output of debug information when compiling, assembling, and linking is required.

B Specification for Local Symbol List Output (-sl)
[Format]

-sl

[Parameter]
None
[Description]
The creation of alocal symbol information list file isinstructed.
If this option is not specified, no local symbol information list file is created.

To output the local symbol information list file, specify the debug information output option
(-g) when compiling, assembling, and linking.

[Exampl€]
flnk91lls *.obj -o ap.abs -sl -g

PART Il LINKER 159

CHAPTER 6 LINKER OPTIONS

6.2.59 Specification for Local Symbol List File Name (-slf)

This option is used to change the output destination directory or file name of the local
symbol information list file.

B Specification for Local Symbol List File Name (-slf)
[Format]

-slf < Output file name >

[Parameter]

<Output file name>
Specify the output file name. To change the directory of the output destination, add the path name prior
to the output file name.

[Description]
Theloca symbol information list file is created with the specified name.
When using this option, the -sl option can be omitted.

If the extension is omitted in the <output file name> specification, the default extension ".mps" is
added.

If this option is not specified, the absolute format load module file name whose extension is changed to
".mps" is used as the output file name.

[Exampl€]
flnk91lls *.obj -o ap.abs -sl -slf ccp903.mps -g

flnk91ls *.obj -o ap.abs -slf ccp903 -g
The above two examples share the same meaning.

160 PART Il LINKER

6.2 Details of Linker Options

6.2.60 Specification for Inhibiting the Local Symbol List Output
(-Xsl)

Inhibiting the output of the local symbol information list file is specified.

B Specification for Inhibiting the Local Symbol List Output (-Xsl)
[Format]

-Xsl (Default)

[Parameter]
None
[Description]
Inhibiting the output of the local symbol information list file is specified.
This option is adefault option, therefore, it is not necessary to specify it.
-d and -df specified before are canceled.
[Exampl€]
flnk91lls *.obj -o ap.abs -sl -Xsl
flnk91lls *.obj -0 ap.abs -Xsl

flnk91lls *.obj -o ap.abs
The above three examples share the same meaning.

PART Il LINKER 161

CHAPTER 6 LINKER OPTIONS

6.2.61 Specification for Section Detail Map List Output (-ml)

The output of the section detail map list file is specified.

B Specification for Section Detail Map List Output (-ml)
[Format]

-ml

[Parameter]
None
[Description]
The creation of a section detail map list file is specified.
If this option is not specified, no section detail map list fileis created.
[Exampl €]
flnk91lls *.obj -o ap.abs -ml

162 PART Il LINKER

6.2 Details of Linker Options

6.2.62 Specification for Section Detail Map List File Name (-milf)

This option is used to change the output destination directory or file name of the
section detail map list file.

B Specification for Section Detail Map List File Name (-mlf)
[Format]

-mlf < Output file name >

[Parameter]

<Output file name>
Specify the output file name. To change the directory of the output destination, add the path name prior
to the output file name.

[Description]
The section detail map list file is created with the specified name.
When using this option, the -ml option can be omitted.

If the extension is omitted in the <output file name> specification, the default extension ".mpm" is
added.

If this option is not specified, the absolute format load module file name whose extension is changed to
".mpm" is used as the output file name.

[Exampl€]
flnk91lls *.obj -o ap.abs -ml -mlf ccp903.mpm

flnk91ls *.obj -o ap.abs -mlf ccp903
The above two examples share the same meaning.

PART Il LINKER 163

CHAPTER 6 LINKER OPTIONS

6.2.63 Specification for Inhibiting Section Detail Map List
Output (-Xml)

Inhibiting the output of the section detail map list file is specified.

B Specification for Inhibiting Section Detail Map List Output (-Xml)
[Format]

-Xml (Default)

[Parameter]
None
[Description]
Inhibiting the output of the section detail map list fileis specified.
This option is adefault option, therefore, it is not necessary to specify it.
-ml and -mif specified before are canceled.
[Exampl€]
flnk91lls *.obj -o ap.abs -ml -Xml
flnk91lls *.obj -o ap.abs -Xml
flnk91lls *.obj -o ap.abs
The above three examples share the same meaning.

164 PART Il LINKER

CHAPTER 7

OUTPUT LIST FILE OF THE
LINKER

This chapter explains the formats of each list file output
by the linker and how to view the information.

7.1 Types of List Files Output by the Linker

7.2 Link List File

7.3 Absolute Format Assemble List File

7.4 External Symbol Cross-reference Information List File
7.5 Local Symbol Information List File

7.6 Section Allocation Detailed Information List File

PART Il LINKER 165

CHAPTER 7 OUTPUT LIST FILE OF THE LINKER

7.1 Types of List Files Output by the Linker

The following five types of list files are output by the linker.

* Link list file

» Absolute format assemble list

» External symbol cross-reference information list

* Local symbol information list

» Section detail map list

Whether to output these files can be selected as options when activating the linker.

B Link List File

The link list file outputs the options and input module name when starting up the linker, the section and
memory use status information after the module link and the external symbol information.

B Absolute Format Assemble List

The absolute format assemble list is a list which displays the assemble list output by the assembler in the
relative format based on information after module linking in the absolute format.

This list can be referred when debugging on the assembler language level, and the addresses in each step of
the machine language that are unidentifiable in the link list can be known.

B External Symbol Cross-reference Information List

The external symbol cross-reference information list outputs information about external definition symbols
of each module after linking and inter-module cross-reference of external reference symbols.

B Local Symbol Information List

The local symbol information list outputs information about variables and functions including loca
symbols of each module after linking.

B Section Detail Map List
The section detail map list creates information about the section allocation of each module after linking.

166 PART Il LINKER

7.2 Link List File

7.2 Link List File

The link list file can be divided into the following four parts depending on the
information contents.

» Control list

e Map list

* Memory used information list

» External symbol list

We explain here the items output in each list.

B Configuration of Link List File
Thelink list file can be divided into the following four parts.

@ Control list
» Specified option
« Input option
e Error message

@ Map list

¢ Section name
« Section attributes
« Section allocation address after linking

@ Memory used information list

« ROM/RAM used information
* Areainterna information
* Generd evaluation value information

@ External symbol list

* External symbol name

» Types of the definition and reference

e Symbol values

A control character of the page break is output at the boundary of each list.

PART Il LINKER 167

CHAPTER 7 OUTPUT LIST FILE OF THE LINKER

7.2.1 Control List

In the control list, the options specified when the linker was executed and input module
names are displayed. Errors detected during linking are also displayed.

B List Output Format of the Control List Part
The following shows the list output format of the control list part.

Figure 7.2-1 List Output Format of Control List Part

FR/FR80 Family SOFTUNE Linker Control List YYYY-MM-DD hh:mm:ss Page: 1

Option File(s)

Page header
The linker name, list name, date and time, and page number are displayed in the first line.

1. Option file name display area
If any option fileis used, the file name is displayed.
If no option fileis used, [** no use**] is displayed.

2. Linker control option display area
Specified options and valid options by default are displayed.
If an option is specified in any option file, @ is put prior to the option.
3. Input module display area
File names and modul e names with the serial number starting with 1 are displayed.

4. Error message display area
Error messages detected during processing are displayed.
If no error has been detected, [** Nothing **] is displayed.

168 PART Il LINKER

W List display example of the control list part

The following shows alist display example of the control list part.

Figure 7.2-2 List Display Example of Control List Part

7.2 Link List File

Option File(s)

** no use *¥*
Control (s)

-9

-a

-1 usrlb.lib

-ro prog=0x8000/0xffff

-ra data=0x0000/0x03ff

-sc P+code=prog,D+data+S=data
Input Module (s)

1 pcal02.0obj (pcall)

2 pcasb.obj (pcasb)

3 xccdef.obj (xccdef)
Error(s)

** Nothing **

FR/FR80 Family SOFTUNE Linker Control List 2003-08-26 15:18:11 Page: 1

PART Il LINKER 169

CHAPTER 7 OUTPUT LIST FILE OF THE LINKER

7.2.2 Map List

In the map list, the section names, content types, attributes, and section allocation
addresses after linking are displayed.

B List Output Format of the Map List Part
The following shows the list output format of the map list part.

Figure 7.2-3 List Output Format of the Map List Part

FR/FR80 Family SOFTUNE Linker Mapping List YYYY-MM-DD hh:mm:ss Page: 2

S_Addr. -E_Addr. Size Section Type Al Sec.(Top **) C

(1) Map information display area

Page header
Thelinker name, list name, date and time, and page number are displayed in the first line.
(1) Map information display area

Map information is displayed in order of start address, or if the start address is the same, in order of section
occurrence.

S-Addr : Section start address (hexadecimal)
E-Addr : Section end address (hexadecimal)
Size : Section size (hexadecimal)
Section : Section content type

The section content type is displayed.

CODE Program section

DATA Data section

CONST Data section with initial values
STACK Stack section

10 10 section

After the section type, the link attribute is displayed.

P Simple concatenation link
C Shared link
N Nolink

Type . Section attributes
The following attributes are displayed from | eft.

R/- Read enabled/disabled
W/- Write enabled/disabled
X/- Executable/non-executable
I/- Initial value Yes/No
Al : Boundary adjustment value for section allocation (hexadecimal)

If the boundary adjustment value is 0x100 or greater, "**" is displayed.

170 PART Il LINKER

7.2 Link List File

Sec.(Top **) : Section name
The section generated by ROM to RAM transfer section is displayed "#" in the beginning.
"**"indicates how many digits of the section name can be displayed with the specified page width.

Note: The end address of a section with the section size 0 is displayed by [........]

B List Display Example of the Map List Part
The following shows alist display example of the map list part.

Figure 7.2-4 List Display Example of Map List Part

FR/FR80 Family SOFTUNE Linker Mapping List 2003-08-09 20:41:12 Page: 2

S Addr. -E _Addr. Size Section Type Al Sec. (Top 29) c
00000000-0000001F 00000020 DATA P RW-- 08 REL D

00000020-00000039 0000001A DATA RW-- 02 REL data

0000003A-00000053 0000001A STAK RW-- 02 REL S

00000054-0000006D 0000001A DATA RW-I 02 REL init

00008000-00008039 0000003A CODE R-XI 02 REL P

0000803A-00008053 0000001A CODE R-XI 02 REL code

00008054-0000806D 0000001A DATA R--I 02 REL #init

'y ' ¥ v o

PART Il LINKER 171

CHAPTER 7 OUTPUT LIST FILE OF THE LINKER

7.2.3 Memory Used Information List

The memory used information list displays the name of the area of the RAM specified
area or the ROM specified area and the size of the free space or the over range and the
header and end address of the specified area.

B Memory Used Information List Field List Output Format
The following shows the memory used information list field list output format.

Figure 7.2-5 Memory Used Information List Field List Output Format

FR/FR80 Family SOFTUNE Linker ROM/RAM Used Info YYYY-MM-DD hh:mm:ss Page: 3

S_Addr. -E_Addr. Size Remain Name/State C

Page Header

Linker name, list name, date and time, and page number are shown in the page header.

1. ROM/RAM Used Information Display Area

e Lines containing a # character at their head among those output to the ROM/RAM Used Information
display areaindicate the information specified by the —ro or —ra options.

e Linesthat do not contain a# character at the head of the lines that were output, display the header address
and end address of the sections in the valid area and the size of the area that is used including the gap
area and the remainder or insufficient values for the sizes of the used areas.

¢ Areas specified by the —o or —ra option, have the names of their sections that could not be located and the
size of the section.

S Addr: Start Address (Hex)

E _Addr: End Address (Hex)

Size: Area Size (Hex)

Remain: Size of the areain the memory (Hex)

The following shows the header symbols.

+: Free Area Size

- Over AreaSize

Space: When free/over areaisO.

Name/State: Memory Area Name and Section Name

2. Arealnternal Information Area

The internal information area displays the free area of the valid area, the used area and the gap area in a
map image. The information displayed in this areais information only of the located section with regard to
the specified area.

172 PART Il LINKER

7.2 Link List File

S Addr: Area Start Address (Hex)
E_Addr: Area End Address (Hex)
Size: Area Size (Hex)
Name/State: AreaType

FREE: Free Area

USED: Used Area

GAP: Gap Area

3. Genera Evauation Vaue Information

General evauation value information shows the following types of information for the overall ROM and
RAM aress.

« Total value of the specified area (Total)
* Total value of the used area (Used)
Note: Includes the Gap area.

* Total value of the free or over area (Remainder)

PART Il LINKER 173

CHAPTER 7 OUTPUT LIST FILE OF THE LINKER

B Example Display of the Memory Used Information List Field List

174

Thefollowing is an example of the Memory Used Information List Field list display.

Figure 7.2-6 Example Display of the Memory Used Information List Field List

FR/FR80 Family SOFTUNE Linker

ROM/RAM Used Info List 2003-09-02 20:45:25 Page: 3

S-Addr. - E-Addr. Size Remain Name/State C
00001000 - OOOO1FFF 00001000 --------- RAM1 <« Memory area specified in the option
00001000 - 00001774 00000775 +0000088B <+ Memory status of the section located
00001000 - 00001136 00000137 --------- USED
00001137 - 00001137 00000001 --------- GAP
00001138 - 0000152B 000003F4 --—------ USED RAM1 area information
0000152C - 0000152F 00000004 --------- GAP
00001530 - 00001774 00000245 --------- USED
00001775 - O00001FFF 0000088B @ --------- FREE
00002000 - 000023FF 00000400 --------- RAM2
00002000 - O0OOO003A1E O00001A1F -0000161F «*
** Not Locate ** 00000B28 --------- data01 Section inf . | q*
** Not Locate ** 00000EE6 -oeemmev data02 < Section information not locate
RAM2 area information
00002000 - 000023FF 00000400 --------- FREE

RAM -- Total(00001400) Used(00002194)

Remainder(-00000D94) « All RAM area information

000BCOOO0 - OOOBCFFF 00001000 --------- ROM1
000BBFOO - OOOBDFFF 00002100 -00001100
000BCOOO0 - OOOBCFFF 00001000 --------- USED

000BDO0O0 - OOOBFFFF 00003000 --------- ROM2
000BDO0OO - 00000000 +00003000
000BDO0O0 - OOOBFFFF 00003000 --------- FREE

ROM -- Total(00004000) Used(00002100)

¢+ *3
ROM1 area information

ROM2 area information

Remainder(+00001F00) « All ROM area information

*1: Memory area information that has sections not located that were to be located in the memory
area by the automatic locating option indicates the status with added section size. (When the
numerical value expression exceeds OxFFFFFFFF, the lower part of the 32-bit is displayed of

*2:

*3:

PART II' LINKER

that value.)

When Mode 2 of the automatic location option is specified, this displays the memory area

specified last for the section not located (for either the ROM area or the RAM area).

Sections specified by the user location are included in the memory area which includes the

section header address.

7.2 Link List File

7.2.4 Symbol List

In the symbol list, the external symbol names, definitions, reference types, and symbol
values are displayed.

B List Output Format of the Symbol List Part
The following shows the list output format of the symbol list part.

Figure 7.2-7 List Output Format of the Symbol List Part

FR/FR80 Family SOFTUNE Linker Symbol List YYYY-MM-DD hh:mm:ss Page: 1

Symbol Value Type Def. Symbol Name(Top **) C

Page header
Thelinker name, list name, date and time, and page number are displayed in the first line.
1. Symbol list display area
Symbol Value : Symbol address or symbol value (hexadecimal)
Type : Symbol type
One of the following is displayed.
Addr. : Addresslevel
EQU : EQU defined symbol
bit : Bit attributes
Def. : Symbol definition
One of the following is displayed.
OM/LM Defined in theinput object module or relative format |oad module
LIB Defined in the linked library
user Symbol whose value is temporarily set using the -df option
Symbol Name: Symbol name
"**" indicates how many digits of the symbol name can be displayed with the specified page width.

Note: If a symbol is referred, the symbol name is displayed as it is. If it is not referred, @ is
displayed prior to the symbol name.

Moreover, the mangle name and the symbol name are displayed for the symbol generated
with the C/C++ compiler.

PART Il LINKER 175

CHAPTER 7 OUTPUT LIST FILE OF THE LINKER

W List display example of the symbol list part

The following shows alist display example of the symbol list part.

Figure 7.2-8 List Display Example of the Symbol List Part

FR/FR80 Family

Symbol Value
000000CA (ABS)

00001234 (ABS)
00000000 (ABS)

0000004A (ABS)

SOFTUNE Linker Symbol List 2003-08-15 15:26:32
Type Def. Symbol Name (Top **)
Addr. OM/LM ct_ 8USDollarFUiT1l

USDollar: :USDollar (unsigne dint,unsigned int)

Addr. user ___ nw__ FUi

operator new(unsigned int)
Addr. OM/ILM _ pl FR8USDollarTl

operator +(USDollar &,USDollar &)
Addr. OM/LM _main

main

Page:

176 PART Il LINKER

7.3 Absolute Format Assemble List File

7.3 Absolute Format Assemble List File

The absolute format assemble list output by the linker consists of the following parts.
» Header

* Information list

* ROM/RAM and ARRAY lists

» Assemble source list

» Section information list

» Cross-reference list

We explain here the items output in each list.

Bl Absolute Format Assemble List File

@ Header

Output in thefirst line of each page.

@ Information list

Theinformation list output by the assembler is output asit is.

@ ROM/RAM and ARRAY lists

* ROM/RAM lists
Global symbol names allocated in the ROM/RAM areas and absolute address information are output.

« ARRAY list
Array element names, structure member names, and absolute address information are output.
If the option-alr is specified, the ROM/RAM and ARRAY lists are displayed.
If -Xalr is specified, the ROM/RAM and ARRAY lists are not displayed.

@ Assemble source list
The assemble source list displays a variety of information about assembling of the source program in units
of lines. Error information, locations, object code are displayed.

@ Section information list

Section names and attributes defined in the source program are displayed.

@ Cross-reference list

Definitions of the symbol names used in the source program and references are displayed using the line
numbers.

PART Il LINKER 177

CHAPTER 7 OUTPUT LIST FILE OF THE LINKER

Figure 7.3-1 shows the structure of thelist.

Figure 7.3-1 Assemble List Structure

Information list

(ROM/RAM list)
-- -alr specification
(ARRAY list)

Assemble source list

Section information list

Cross-reference list

B Error Messages in the Assemble List

If errors which occurred when assembling are in the assemble list, the error messages are displayed as they
are.

178 PART Il LINKER

7.3 Absolute Format Assemble List File

7.3.1 Header and Information List

The header consists of four lines.
On the first page of the list, the information list is displayed after the header.
The following information is displayed on an information list.

Option settings when activating the assembler.
Number of errors and number of warnings.
Source file name.

Include file names.

Option file names.

etc.

B Header Format

The header consists of four lines. It is displayed at the head of each page. The first and second lines have
the same format for all assemble lists, and the third line depends on each source program. The following
shows the header format.

Figure 7.3-2 Header Format

[1st and 2nd lines]

FR/FR80 Family SOFTUNE Linker VxxLxx YYYY-MM-DD hh:mm:ss Page: xxxx

Tool name Absolute assembile list creation date Page number

[3rd line]

| - Each list name - (Module name)

The contents of the original assemble list are displayed as they are.

[4th line]

A blank line is output.

PART Il LINKER 179

CHAPTER 7 OUTPUT LIST FILE OF THE LINKER

7.3.2 ROM/RAM and ARRAY Lists

The ROM/RAM and ARRAY lists show information about the symbols described in the
C/C++ source programs.

To output the ROM/RAM and ARRAY list, the output specification of debug information
when compiling or assembling is required.

B ROM/RAM and ARRAY List
The following shows the ROM/RAM and ARRAY list format.

Figure 7.3-3 ROM/RAM and ARRAY List Format
ROM/RAM list format

- ROM/RAM LISTING - (Module name)

NAME ADDRESS VALUE KIND MEMORY
--- name --- XXXXXXXX XXXXXXXX X XXX
*1 *2 *3 *4 *5

ARRAY list format

- ARRAY LISTING - (Module name)

NAME ADDRESS VALUE
--- hame --- XXXXXXXX XXXXXXXX
*1 *2 *3

*1: Symbol name
The names of symbols described in programs are displayed.
In the case of an ARRAY list, all elements of the arrays and structures are displayed.
*2: Address
The absolute address is displayed using a hexadecimal value.
The display positions of the symbol name and address can be changed as options.
If -nais specified, the symbol name isfirst displayed and then the address is displayed.
If -anis specified, the address isfirst displayed and then the symbol nameis displayed.
For details, see Section "6.2.54 Specification for ROM/RAM and ARRAY List Symbol and Address Display
Position (-na,-an)".
*3: Value
If aninitial value is assigned to the symbol, the value is displayed as a decimal number.
*4: Symbol type
The following symbol types are available.
L :Variable value
F :Function name
T :Tag name reference
*5: Memory allocation
The memory areato which a symbol is alocated is displayed
ROM:ROM area
RAM:RAM area

180 PART Il LINKER

7.3 Absolute Format Assemble List File

[Example 1]
Figure 7.3-4 Example of ROM/RAM Lists
- ROM/RAM LISTING - (samplel)
NAME ADDRESS VALUE KIND MEMORY
_Line 000002B8 00000100 L ROM
_Nameleng 0000004C 00000016 L RAM
_symref 00005592 T ROM
_Tflg 00000763 00000002 L RAM
[Example 2]
Figure 7.3-5 Example of ARRAY List
- ARRAY LISTING - (samplel)
NAME ADDRESS VALUE

_symref [0] .val 00005592 00000100
_symref [0] .nam 00005596 00000002
_symref [0] .atr 00005598 00000016
_symref[1] .val 0000559A 00012000
_symref[1l] .nam O0O000559E 00000002
_symref [1] .atr 000055A0 00000016
_Xpcr[0] [0] 00001066 00000400
_Xpcr[0] [1] 000010A0 00000120

PART Il LINKER 181

CHAPTER 7 OUTPUT LIST FILE OF THE LINKER

7.3.3

Assemble Source List

The assemble source list is displayed with the location part using the absolute address
and the object code part using the determined code after linking.

B Assemble Source List

182

The following shows the assemble source list format.

Figure 7.3-6 Assemble Source List Format

SN
XX
*1

- SOURCE LISTING - (Module name)

LOC OBJ LLINE SOURCE
KXXXKXKKXK KXXXXXXXXXXXXXXXXXKXKXKK X XXXXXXXXXXKKKX X ———=----------~-
*2 *3 *4 *5 *6 *7

The first line of the above format is called the source list header. The source list header is displayed on
each page.

1: Section acronym

Thefirst two characters of a section name are displayed.
2: Location

The 32-bit location value is displayed as a hexadecimal value.
3: Object code

The determined object code after linking is displayed as hexadecimal values. If the object code cannot be
displayed in oneline, it isdisplayed in multiple lines.
4: Object codetype
The attributes of values contained in object code are displayed in the following order of priority.
I : External reference value
S : Section value
Blank : Absolute value
Since "R" displayed in the relative assemble list is converted to an absolute value in the absolute format
assembleligt, it is not displayed.
5: Line number
The line number is displayed as a decimal 10-digit number.
6: Progressdisplay of the preprocessor and optimization code check
Preprocessor
X : Linefor assembling
& : Macro expansion line
Optimization code check
X @ Instruction deletion for optimization
C : Replaced with another instruction for optimization
O : New instruction generated for optimization
V : Replaced with alow-level instruction for optimization (pair with A)
A : Replaced with an informational instruction for optimization (pair with V)
7: Sourceline
One line of the source programs is displayed. If the line does not fit in one line of the lit, it is displayed
in multiple lines of thelist.

PART II' LINKER

7.3 Absolute Format Assemble List File

[Exampl€]

Figure 7.3-7 Example of assemble Source List

- SOURCE LISTING - (samplel)

SN LOC OBJ LLINE SOURCE
IN 002CE724 -------- <INIT>------- 1025
IN 002CE724 [2] 02 1026 .DATAB.B2, 2
IN 002CE726 0020 0010 1027 label .DATA.H 32,16
CO 0000A280 -------- <CODE>------- 1028 .SECTIONCODE, CODE
CO 0000A280 9F840000043C 1029 LDI:32 #LS1,R4
t..—- Line number i---- Source program

: t.... Object code: Determined value after linking
oo Location counter: Display with the 32-bit absolute address
haees Section acronym: Display first two characters of section names

PART Il LINKER 183

CHAPTER 7 OUTPUT LIST FILE OF THE LINKER

7.3.4 Section Information List

The section information list shows information about the sections defined in a program.
The section information list is displayed on a new page after page break.

B Section Information List
The following shows the section information list format.

Figure 7.3-8 Section Information List Format

FR/FR80 Family SOFTUNE Linker VxXxLXxX YYYY-MM-DD hh:mm:ss Page: xxXxX
- SECTION LISTING - (Module name)

NO SECTION-NAME SIZE ATTRIBUTES

XX -------- Section name------- KXXKXXXKK KXX XXX KXXX=XXXX

*1 *2 *3 *4 *5

1: Section occurrence number
Startswith 0. This number corresponds to the section number in an object file.
2: Section name
The defined section names are displayed in order of occurrence.
3: Section size
The section sizeis displayed as a 32-bit hexadecimal value.
4: Section type
Thetype of the sectionsis displayed. The following types are available.
CODE :Code section
DATA :Data section
CONST :Datasection with initial values
COMMON :Shared section
STACK :Stack section
10 :10 section
5: Section allocation format
The display of arelative assemblelist is output asit is.

The ALIGN value is displayed for a relative section when assembling. The LOCATE value is displayed
for an absolute section.

[Exampl€]
Figure 7.3-9 Example of Section Information List

FR/FR80 Family SOFTUNE Linker V60L04 2003-08-23 10:04:51 ©Page: 78
- SECTION LISTING - (samplel)
NO SECTION-NAME SIZE ATTRIBUTES

0 DATA .. e 00000004 DATA REL ALIGN=4

R 0 0000001C DATA REL ALIGN=4

2 CONST 00000020 CONST REL ALIGN=4

3 CODE ...t 00000038 CODE REL ALIGN=2

184 PART Il LINKER

7.3 Absolute Format Assemble List File

7.3.5 Cross-reference List

The cross-reference list shows information about the names described in a program
and the relations between the their definition and reference.
The cross-reference list is displayed on a new page after page break.

B Cross-reference List
The following shows the cross-reference list format.

Figure 7.3-10 Cross-reference List Format

FR/FR80 Family SOFTUNE Linker VxxLxx YYYY-MM-DD hh:mm:ss Page: XXXX
- CROSSREFERENCE LISTING - (Module name)
NAME ATTRIB. VALUE DEFINITION/REFERENCE
———————— name-------- XXXX/XXXX KX XXKXXXX XXX XXX XXX
*7 *2 *3 *4
1: Name _ _ _
The symbol names and section names are displayed in order of upper-case letter, lower-case letter and
alphabet.
2: Symboal type

&/mbol types are displayed in the following formats.
: Absolute symbol
REL : Relative symbol
ABS/EXP : Absolute symbol (external definition)
REL/EXP : Relative symbol (externa definition)
IMP : External reference symbol
SECT/ABS : Absolute section
SECT/REL : Relative section
UNDEFINED : Undefined symbol
REGLIST : Register symbol
3: Value
If the symbol has avalue, the value is displayed with a 32-bit absolute address.
4: definition and reference line number
Theline in which the symbol is defined and the lines which are referred are displayed.
The sharp symbol "#" is added to the end of the line number in which the symbol is defined.

[Exampl €]
Figure 7.3-11 Example of Cross-reference List
FR/FR80 Family SOFTUNE Linker V60L04 2003-08-23 13:58:00 Page: 86
- CROSSREFERENCE LISTING - (sample)
NAME ATTRIB. VALUE DEFINITION/REFERENCE
ARRSY SECT/REL 000021C2 266 #
BINCOL REL/EXP 00000308 40 # 92 13
DATAC REL 00006D58 437 #
IROAS ABS 00000101 79 # 10 4

PART Il LINKER 185

CHAPTER 7 OUTPUT LIST FILE OF THE LINKER

7.4 External Symbol Cross-reference Information List File

The external symbol cross-reference information list file displays the external definition
symbols of each object module after linking and cross-reference information between
modules of the external reference symbols.

B External Symbol Cross-reference Information List File
The following shows the output format of the external symbol cross-reference information list.

Figure 7.4-1 Output Format of External Symbol Cross-reference Information List

External Symbol Cross Reference List YYYY-MM-DD hh:mm:ss Page: 1
Module (s)

1. ModuleOl
2. DModule02

15. Modulels

External Symbol Cross Reference List YYYY-MM-DD hh:mm:ss Page: 2

--- symbol --- --- type/value --- --- module (No.) ---

extsyml Addr. 0x000012ES8 1# 2 3 4 56 8 11 12 14

extsym2 Addr. 0x000C3F34 2 3 4% 5 6 8 11 12 14

extsym3 Addr. 0x000012E6 1# 2 3 4 56 8 11 12 13
14 15

operator new(unsigned int) Addr. 0x00000ARA 1234 7# 8

operator new[] (unsigned int) Addr. 0x00000B1lE 4 8#

extsymunresolved ???? 0x00000000 10 15

nlp EQU 0x00000001 4 5 6 11 12 14#

main Addr. 0x00000314 3# 5

@ Module(s)

The serial number starting with 1 is added to indicate the module name.

@ symbol

The symbol names or function names are displayed. (up to 50 characters)

186 PART Il LINKER

7.4 External Symbol Cross-reference Information List File

@ type/value

The following types are available.
e Addr. :Address

¢ EQU :EQU symbol

e Bit :Bit symbol

e ?2?7?7?:Undefined

"value" indicatesavalue. In the case of abit symboal, its bit position is displayed in parentheses.

@ module (No.)

Modules which are defined/referred are displayed using their numbers. The # symbol indicates a defined
module.

PART Il LINKER 187

CHAPTER 7 OUTPUT LIST FILE OF THE LINKER

7.5 Local Symbol Information List File

The local symbol information list file displays information about the variables and
functions which include local symbols for each module constituting an absolute format
load module.

Since this list is created based on debug information when compiling and assembling,
it is necessary to specify the -g option.

B Local Symbol Information List File
The following shows the output format of the local symbol information list.

Figure 7.5-1 Output Format of Local Symbol Information List

Local Symbol List YYYY-MM-DD hh:mm:ss Page: 1
Module (s)

1. ModuleO1l
2. DModule02

15. Modulel5s

Local Symbol List YYYY-MM-DD hh:mm:ss Page: 2
=== Module No.1l(module0l) ===

--- symbol --- --- Kind --- --- val ---

funcl (int) Func. g 0x000C3F34
localstaticl var. s 0x000012EE
localstatic2 vVar. s 0x000012F0

=== Module No.15(module0l5) ===

--- symbol --- --- Kind --- --- val ---
operator+ (USDollar &,USDollar &) Func. g 0x00000000
main Func. g 0x0000004A
USDollar: :USDollar (unsigned int) Func. g 0x000000CA
Atable loc. s OXFFFFFFFC
Extsym Var. g 0x00001342
@ Module(s)

The serial number starting with 1 is added to indicate the module name.

@ symbol

The symbol names or function names are displayed.
Symbols used in afunction are displayed in the 3rd and following columns.
Up to 50 characters of the symbol name are displayed in one line of thelist.

188 PART Il LINKER

® Kind

® val

The following symbol types are displayed.

: Variable (C/C++)

: Function (C/C++)

: Local (C/IC++)

: Address (ASM)

: EQU symbol (ASM)
: bit symbol (ASM)

: Undefined

: static (C/C++)

: global (C/C++)

Var.

Func.

loc.

Addr.

EQU
bit
S

g

The value of asymbol isindicated.

7.5 Local Symbol Information List File

Note: No detailed information about structures (member names) nor the typedef definitions
are displayed.

PART Il LINKER 189

CHAPTER 7 OUTPUT LIST FILE OF THE LINKER

7.6

Section Allocation Detailed Information List File

The section allocation detailed information list file creates information about section

allocation for each module constituting an absolute format load module.

A mapping list of a whole section is displayed in one map list file and more detailed
information about section allocation can be found.

B Section Allocation Detailed Information List File
The following shows the output format of the section allocation detailed information list.

190

Figure 7.6-1 Output Format of Section Allocation Detailed Information List

Section Mapping List
Module (s)

1. ModuleOl

2. Module02

15. Modulel5s

Section Mapping List
S.Addr. -E.Addr.
00000000-00000048
0000004A-000003E1
00OOO03E4-........
000003E4-00000643
00000644-00000743

000C0000-000C0441
000C0442-000C148B
*000C148C-000C201D
*000C2000-000C2203
000C3000-000C325F

Size Section
00000049 DATA
00000348 DATA
00000000 DATA
00000260 DATA
00000100 STACK
00000442 CODE
0000104A CODE
00000B92 CODE
00000204 CODE
00000260 DATA

R-XI
R-XI
R-XI
R-XI
R--I

Al
04
04
04
04
04

02
02
02
02
04

YYYY-MM-DD hh:mm:ss

YYYY-MM-DD hh:mm:ss
M.No. Sec. (Top 18)

data

data

data

init

NI SR

toolong
code

code
code
subprogl

oo W

#init

Page:

Page:

sectionnametoolong+

1

2

@ Module(s)

The serial number starting with 1 is added to indicate the module name.

@ S.Addr.-E.Addr.

Section's start and end addresses.

A section with overlapping addresses has (*) prior to start addresses.

If the size of asection is O, the end address of itisdisplayed as"........

® Size

A section in which allowed address space is overflowed is displayed with the maximum size + 1.

PART II' LINKER

7.6 Section Allocation Detailed Information List File

@ Section
The following section content types are available.
CODE : Program section
DATA : Datasection
CONST : Data section with initia values
STACK : Stack section
10 : 10 section
Thelink attribute is added to the end of the section type.
P : Simple concatenation link
C : Shared link
N :no link
@ type
The following attributes are displayed from left.
R/- : Read enabled/disabled
W/- : Write enabled/disabled
X/- : Executable/non-executable
I/- . Initial value Yes/No
@ Al
The boundary adjustment value for section allocation is displayed as hexadecimal values.
@ M.No.

The module numbers are displayed. Module numbers displayed in Module(s) are displayed.

@ Sec.(Top xx)

The section names are displayed. xx of (Top xx) has the number of characters that alows the
section name to be displayed in oneline.

prior to a section name indicates that data with initial values to be transferred to RAM before
execution is allocated in the section.

PART Il LINKER 191

CHAPTER 7 OUTPUT LIST FILE OF THE LINKER

192 PART Il LINKER

CHAPTER 8

LINKER RESTRICTIONS
AND Q&A

This chapter explains about linker restrictions and Q&A
for use.

8.1 Linker Restrictions
8.2 Q&A for Using the Linker

PART Il LINKER 193

CHAPTER 8 LINKER RESTRICTIONS AND Q&A

8.1 Linker Restrictions

There are restrictions shown in Table 8.1-1 for processing of the input file count,
section count and symbol count when you are using the linker.

B Linker Restriction
There are restrictions shown in Table 8.1-1 for processing of the input file count, section count and symbol

count when you are using the linker.

However, thisis not the maximum limit value available for processing.
Linker performs processing, gaining amemory dynamically.

Linker outputs an error message with an insufficient memory, when gaining a memory required for

processing becomes impossible, and processing is interrupted.

Table 8.1-1 Linker Restrictions List

Item Restriction Value Remarks
Option file count Limitless Memory dependent
Option file internal line count Limitless Memory dependent
Option fileinternal character count per 1 line Limitless Memory dependent
Option file nest Not possible
Input file count 4,294,967,295 Memory dependent
Input module count 4,294,967,295 Memory dependent
I/Ofilesize Limitless OS dependent
g/lci);utlzs L:lr;c;mdsection name/symbol name char- Limitless Memory dependent
File name character count Limitless OS dependent
Section count 4,294,967,295 Memory dependent
Maximum section size 4GB
Externally defined symbol count 4,294,967,295 Memory dependent
Externally referred symbol count 4,294,967,295 Memory dependent
Externally defined symbol reference count Limitless Memory dependent
M aximum source count 4,294,967,295 Memory dependent
Maximum source line count 4,294,967,295 Memory dependent

B Linker Reservation Symbol
The linker automatically generates symbols with the” ROM _ section name" or "_RAM _ section name” for
each section using from the ROM to RAM transfer function. Therefore, if there are symbols in the user
program that have the same name, a "W1327L: Duplicate symbol definition (symbol name)" will occur.
The user should not define symbolsusing " _ROM _ section name" or "_RAM __ section name".

Also, the" ROM_ value" or "_RAM_ value" for the ROM/RAM region names are automatically set from
the CPU information file. The user should not define region names with the "_ROM_ value" or "_RAM_
value'.

194 PART Il LINKER

8.2 Q&A for Using the Linker

8.2 Q&A for Using the Linker

Section 8.2 shows the questions and answers on using a linker.

B Q&A for Using the Linker

@ Using the wild card

O

There are alarge number of input object module files. Can the wild card still be used?

A. If you use the wild card for specifying the input file on the command line, the linker
expands and executesit. You can specify the input file namein an option file, and the
wild card can also be used here. Refer to the following example for using the wild card.

Example | flnk911s*.obj -o outfile.abs
flnk911s mactrl.obj xz???.0bj

Q. The wild card can be used when specifying section allocation, but how can | use the wild
card?
A. The wild card may be useful when many sections with the same content type should be

unified or when programs are created using many section names. It may become
necessary to decide characters to become the keywords when naming the section names,
considering the use of the wild card by the linker.

Example | Section names are defined with the names like DTdatal, DTdata2, DTdata3, DTdatad

....for the sections whose content type is data, and the names like

CDprogl, CDprog2, CDprog3, CDprog4.... for the sections whose content type is code.

In this case, the following specification method can be selected. (Only the -sc option part

is shown)

-sc DTdatal+DTdata2+DTdata3+DTdatad=0x1000,
CDprogl+CDprog2+CDprog3+CDprog4=0X 3000

-sc DT*=0x1000,CD*=0x3000

-sc */data=0x1000,*/code=0x3000

PART Il LINKER 195

CHAPTER 8 LINKER RESTRICTIONS AND Q&A

@ Handling variables with initial values

When devel oping embedded programs using C/C++ compilers, variables with initial
values are created. Sincethese variables are rewritten during execution of programs, they
must be on RAM during execution. Tell usthe procedure for creating programs and
precautions.

In embedded programs, variableswith initial values are on ROM first and they must be on
RAM when they arereferred. Therefore, programs become inoperable if the reference
addressin programsisnot set to RAM and amechanism to transfer initial value datafrom
ROM to RAM before application execution is not implemented.

This mechanism isimplemented by using the ROM -> RAM transfer section function
supported by the linker.

Variableswith initial values generated by the C/C++ compilers are gathered inthe INIT
section.

Thereis no need of particular care when creating programs except the total number of
bytes of the variables with initial values and RAM size.

For the ROM > RAM transfer section function, see Section "5.9 Sectionsto be
Transferred from ROM to RAM™.

The user must write a program to transfer initial value data using assembler languages.
Example shows "Program example for transferring initial value data".

Example

[Program example for transferring initial value data :(data transfer in two bytes)]
.import ROM INIT, RAM INIT (1)
.section INIT,data,align=4 (2)
.section start,code,align=2
ILDI # (size of INIT + 1) & ~0x1, R13
CMP #0, R13
BEQ NOT INIT
LDI # ROM INIT,R2
LDI # RAM INIT,R3

LOOP:
ADD #-2, R13
ILDUH @ (R13, R2), RO
BGT:D LOOP
STH RO, @ (R13, R3)
NOT INIT:

(1) ROM_INIT isasymboal to indicate the start address of the INIT section (transfer
source) on ROM. RAM _INIT isasymbol to indicate the start address of the INIT
section (transfer destination) on RAM. These symbols are generated automatically by
the sections to be transferred from ROM to RAM. Declare them using the .import
instruction.

(2) Define an INIT section to extract the section size (transfer size).

196 PART Il LINKER

PART Il LIBRARIAN

Part Ill describes the specifications, options, and output lists of a librarian.

CHAPTER 9 SPECIFICATIONS OF A LIBRARIAN

CHAPTER 10 OPTIONS OF A LIBRARIAN

CHAPTER 11 LIST FORMATS OF A LIBRARIAN

CHAPTER 12 RESTRICTIONS AND QUESTIONS AND ANSWERS ON A LIBRARIAN

PART IIl LIBRARIAN 197

198 PART Il LIBRARIAN

CHAPTER 9

SPECIFICATIONS OF A
LIBRARIAN

This chapter describes the functions and the function
types of a librarian. A librarian is atool used to create a
library file.

9.1 Functions of a Librarian

9.2 Function Types of a Librarian

9.3 Creating and Editing a Library File

9.4 Extracting a Module from a Library File

9.5 Deleting Debugging Information of a Library

9.6 Checking and Displaying the Contents of a Library File

9.7 Objects Generated Using the SOFTUNE V3/V5 Language Tool
9.8 Library Made by the SOFTUNE V3/V5 Language Tool

9.9 Mixing a FR Object and a FR80 Object

PART Il LIBRARIAN 199

CHAPTER 9 SPECIFICATIONS OF A LIBRARIAN

9.1 Functions of a Librarian

A librarian is a tool used to create a library file by combining multiple object modules
that an assembler has output.

B Roles of a Librarian

To develop a program, divide a source program for each function into modules, each of which you then
compile and assembl e.

A linker then combines the compiled and assembled modules into one to create the target program.

A librarian is used to create a library file by combining multiple object modules that an assembler has
output.

You may register multiple modules that make up a program in the library file dedicated to the program to
manage them in a batch.

Registering the frequently used modules in a batch to create a general-purpose library file enables them to
be easily used in other programs. A good example of thisisalibrary in C.

Since a librarian allows you to add, delete, or replace modules of a library file, you can keep them up to
date.

Figure 9.1-1 shows the roles of alibrarian.

Figure 9.1-1 Roles of a Librarian

Assembler

v

Relative format

object L
(.obj)
Librarian
[
Library
(.lib)
) A <
Linker

v

Absolute format
object

(.abs)

200 PART IIl' LIBRARIAN

9.2 Function Types of a Librarian

9.2 Function Types of a Librarian

A librarian has the following six functions:
* Creates a new library file

« Edits alibrary file

» Extracts a module from a library file

* Deletes debugging information

» Checks the contents of a library file

» Displays the contents of a library file

B Creating a New Library File
This function is used to create anew library file using object module files as input files.

B Editing a Library File
This function is used to add an object module to, or delete an unnecessary object module from, an existing
library file.

If amodule registered in alibrary file is found to be defective or you want to change its functions, you need
to replace it with a modified one. This may be done by deleting and adding, but a replacement function is
also provided.

B Extracting a Module from a Library File

This function is used to extract an object module registered in alibrary file and put it back in the format of
an object modulefile.

B Deleting Debugging Information
This function is used, when an object module with debugging information is registered, to remove only
debugging information from it and register it again.

B Checking the Contents of a Library File

This function is used to check that correspondence between external defined and reference symbols is
properly solved in the group of object modules that make up alibrary file.

Thisfunction is also used to check whether object modul es with debugging information are registered.
B Displaying the Contents of a Library File

This function is used to output information such as module names and external symbols registered in a
library fileinto alist file or the standard output.

PART IIl LIBRARIAN 201

CHAPTER 9 SPECIFICATIONS OF A LIBRARIAN

9.3 Creating and Editing a Library File

Object modules (more than one) that an assembler has output may be united and
registered as a library file.

A module may be added to, deleted from, or replaced with the one in an existing library
file.

B Creating a New Library File
Object modules (more than one) that an assembler has output may be united and registered as a library file
(See Figure 9.3-1).

Figure 9.3-1 Creating a New Library File

Object module files
to be registered
- New library file

Module A

Module A
Created

Module B —> Module B
Module C

Module C

B Editing a Library File
A module may be added to, deleted from, or replaced with the onein an existing library file.

@ Adding a module
A module may be added to an existing library file (See Figure 9.3-2).

Figure 9.3-2 Adding a Module

Existing library Library file after
file editing
Module A Module A
Added
© Updated

Module D + Module B e Module B
Module C Module C

Module D

202 PART Il LIBRARIAN

@ Deleting a module

9.3 Creating and Editing a Library File

An unnecessary module may be deleted from an existing library file (See Figure 9.3-3).

Figure 9.3-3 Deleting a Module

Deleted
—

Existing library

file editing
Module A Module A
Updated
Module B —_ Module B
Module C Module D
Module D

Library file after

@ Replacing a module

A modulein an existing library file may be replaced with a new one (See Figure 9.3-4).

Figure 9.3-4 Replacing a Module

Replaced
Module B

Existing library
file

Module A

<« Module B

Module C

Updated
—>

Library file after

editing

Module A

Module B

Module C

PART IIl LIBRARIAN 203

CHAPTER 9 SPECIFICATIONS OF A LIBRARIAN

9.4 Extracting a Module from a Library File

A module may be extracted from a library file and put it back into an object module file.

B Extracting a Module from a Library File
A module may be extracted from alibrary file and put it back into an object module file (See Figure 9.4-1).

Figure 9.4-1 Extracting a Module

Existing library Obiect file
file :
Module A B.obj
Extracted
Module B }—b Module B
Module C

204 PART Il LIBRARIAN

9.5 Deleting Debugging Information of a Library

9.5 Deleting Debugging Information of a Library

An object module registered with a debugging information block in a library may be re-
registered without it.

W Deleting Debugging Information
An object module registered with a debugging information block in a library may be re-registered without
it (See Figure 9.5-1).

Figure 9.5-1 Deleting Debugging Information

LHD LHD
------------ LMD1 ;-==-p------- LMD1
-------------- LMD2 peteeeoteeeee LMD2
----------------- LMD3 sodrebeesstesoeee LMD3
LED1 ; : LED1
LED2 —> | LED2
LED3 : R LED3
g OM1 4 OM1
OM1 debugging | i : OomMm2
information g OoM3
""" 4 oMm2 LTR
g OoM3
. . 1an 3 registered with a
OMB3 debugging OM d OMS3 regi d with
information o .
debugging information block may
LTR be re-registered without it.

PART IIl LIBRARIAN 205

CHAPTER 9 SPECIFICATIONS OF A LIBRARIAN

9.6 Checking and Displaying the Contents of a Library File

The following two items are checked.

* Whether an unsolved external reference symbol exists in a library

* Whether a module with debugging information exists

Additionally, this function provides you with information such as the date and time of
creating and updating a library file and registering a module and the names of external
definition symbols defined in each module.

B Checking the Contents of a Library File
The following two items may be checked.

@ Whether an unsolved external reference symbol exists in a library
A linker, when a module taken in from alibrary contains an external reference symbol, first searches for a
defined symbol in the same library file.

Therefore, it is recommended that whenever an external reference symbol exists in a module in a library
file, the module containing the concerned externa definition symbol should be registered in the same
library file.

The program checks the correspondence between external reference and defined symbolsin a library file.
If any undefined reference symbols remain, it outputs a diagnostic message.

@ Whether a module with debugging information exists

If an object module with debugging information is contained, a diagnostic message is output.

If amodule to be registered with the -g option specification in alibrary file contains debugging information in
the object module, it is registered in the library with the debugging information unremoved.

The above function is provided so that a module registered in alibrary may be debugged. However, after
the operation check, the debugging information will no longer be required.

B Displaying the Contents of a Library File

The module and external definition symbol information of alibrary file is edited and output to alist file or
the standard output.

The list provides information such as. the date and time a library file was created and updated, when a
module was registered, and the name of an external definition symbol defined in each module.

For the contents of display, see"CHAPTER 11 LIST FORMATS OF A LIBRARIAN".

206 PART Il LIBRARIAN

9.7 Objects Generated Using the SOFTUNE V3/V5 Language Tool

9.7 Objects Generated Using the SOFTUNE V3/V5 Language
Tool

The librarian can input objects generated using the SOFTUNE V3 or V5 language tool as
alibrary.

B Objects Generated Using the SOFTUNE V3/V5 Language Tool
Librarian (flibs) can interleave objects generated using the SOFTUNE V3 or V5 language tool in the
library.
The librarian will output information when you process objects generated using the SOFTUNE V3 or V5
language tool.

PART IIl LIBRARIAN 207

CHAPTER 9 SPECIFICATIONS OF A LIBRARIAN

9.8 Library Made by the SOFTUNE V3/V5 Language Tool

Librarian can edit the library made by the SOFTUNE V3 or V5 language tool.

B Library Made by the SOFTUNE V3/V5 Language Tool
Librarian can edit the library made by the SOFTUNE V3 or V5 language tool.

When the library made by the SOFTUNE V3 or V5 language tool is edited, the librarian outputs
information.

And also, the librarian automatically makes a backup file with an extension changed .bak for the library file
that has not been edited yet.

208 PART Il LIBRARIAN

9.9 Mixing a FR Object and a FR80 Object

9.9 Mixing a FR Object and a FR80 Object

Librarian (flibs) outputs a warning, when target CPU specified by -cpu option is FR80 if
FR objects are mixed.

Librarian outputs an error, when target CPU specified by -cpu option is FR if FR80
objects are mixed.

B Mixing a FR Object and a FR80 Object
Librarian (flibs) outputs a warning, when target CPU specified by -cpu option is FR80 if FR object are
mixed.
Object mixing warning when target CPU is FR80 can be changed to an error or mixing allowed by the
object mix check level option (-omcl).
Librarian invariably outputs an error, when target CPU specified by -cpu option is FR if FR80 objects are
mixed.

Note:

If you mix FR object when target CPU specified by -cpu option is FR80, be careful of the
incompatibility of FR and FR80 instructions in Table 9.9-1.

B Incompatibility of FR and FR80 Instructions

With FR and FR80, instructions shown in the Table 9.9-1 Incompatibility of FR and FR80 Instructions are
not completely compatible.

For that reason, the librarian outputs a warning when object modules for FR and FR80 are mixed.

Table 9.9-1 Incompatibility of FR and FR80 Instructions

Instructions incompatibility FR FR80
LDRES @Ri+,#u4 0] X
STRES #u4, @RI @] X
COPOP #u4,#CC,CRj,CRi o) x
COPLD #u4 #CC,Rj,CRi @] X
COPST #u4 #CC,CRj,Ri 0] X
COPSV #u4,#CC,CRj,Ri o) x
SRCHO Ri X 0]
SRCH1Ri x o
SRCHCRI X 0]

O : Compatible x : Incompatible

PART IIl LIBRARIAN 209

CHAPTER 9 SPECIFICATIONS OF A LIBRARIAN

B Common Object of FR and FR80
FR/FR80 common object have never instructions shown in Table 9.9-1.
Therefore FR/FR80 common object can be used with the target that are both FR and FR80.

For details about the method of output FR/FR80 common object, please refer to "FR Family SOFTUNE
ASSEMBLER MANUAL for V6".

B List of CPUs for which objects may be mixed with the -cpu option
Table 9.9-2 lists the objects for CPUs that may be mixed with the -cpu option.

Table 9.9-2 List of CPUs for which objects may be mixed with the -cpu option

-cpu option for creating objects
-cpu option specified for editing
library file R FRS0 FR/FR8Q
common object
FR © x o
FR80 A © o]

(o) : Sametarget specified. Thisisnot mixing.

o

: Mixing allowed because of FR/FR80 common object.

A Warning outputted when editing library.
Warning can be changed to an error or mixing allowed (Massage is not output) by -omcl option.
x : Mixing not allowed. The librarian outputs an error.

210 PART IIl LIBRARIAN

CHAPTER 10

OPTIONS OF A LIBRARIAN

This chapter describes the syntax, parameters, and
precautions for options of a librarian.

10.1 List of Options of a Librarian
10.2 Details of the Options of a Librarian

PART Il LIBRARIAN 211

CHAPTER 10 OPTIONS OF A LIBRARIAN

10.1 List of Options of a Librarian

Options are provided to specify the operations of a librarian in detail.

B List of Options of a Librarian
The table below gives the option names and an overview of their functions.

For details on the parameters and functions required for an option, see the description on each option.
Table 10.1-1 List of Options for a Librarian

warning occurs

Function Option | Remarks
Adding (registering) a module -a
Optionsfor creating | Replacing (registering) amodule -
and editing alibrary | Deleting amodule -d
Extracting amodule -X
Specifying to output alist file -m
Specifying not to output alist file -Xm Default
Options for outputting Specifying to output detailed information of alist file -dt sdra
alist Specifying the number of lines per page of alist pl Deg%ult:
Specifying the number of columns per line of alist pw Defs?)ult:
Creating a backup file -b
Options for searching | Inhibiting the creation of a backup file -Xb Default
and protecting afile | Checking the contents of alibrary file -C
Optimizing the contents of afile -0
Specifying to output debugging information -0
Specifying not to output debugging information -Xg
Other options Specifying atarget CPU -cpu need
Specifying CPU information file -cif
Specifying object mix check level -omcl | Default: 1
Specifying not to read a default option file -Xdof
Specifying to read an option file -f
Specifying to display help messages -help
Specifying to output the version number and messages -V
Specifying not to output the version number and messages| -XV Default
Common options Specifying to display atermination message -cmsg
Specifying not to display a termination message -Xcemsg | Default
Speci_fyi ng to set the termination code to 1 when a .
warning occurs
Specifying to set the termination code to 0 when a Xewno | Default

212 PART Il LIBRARIAN

10.2 Details of the Options of a Librarian

10.2 Details of the Options of a Librarian

Section 10.2 describes the options of a librarian.
The options common throughout linkage kit are described in "CHAPTER 3 COMMON
OPTIONS".

B Options for Creating and Editing a Library
Details of the options for creating and editing a library are described in Sections "10.2.1 Adding
(Registering) aModule (-a)" through "10.2.4 Extracting a Module (-x)".

B Options for Outputting a List
Details of the options for outputting alist are described in Sections "10.2.5 Specifying to Output aList File
(-m)" through "10.2.9 Specifying the Number of Columns Per Line of aList (-pw)".

B Options for Searching and Protecting a File

Details of the options for searching and protecting a file are described in Sections "10.2.10 Creating a
Backup File (-b)" through "10.2.13 Optimizing the Contents of aFile (-O)".

B Other Options

Details of other options are described in Sections "10.2.14 Specifying to Output Debugging Information
(-g)" through "10.2.17 Specifying a Target CPU (-cpu)"”.

PART IIl LIBRARIAN 213

CHAPTER 10 OPTIONS OF A LIBRARIAN

10.2.1 Adding (Registering) a Module (-a)

Use the -a option to create a new library file or to add a module to an existing library
file.

B Adding (Registering) a Module (-a)
[Format]

-a < Object module file name > [, ..]

[Parameter]

<Object module file name>
Object module file name that the assembler has output

[Description]
Specify afile name for the module to be registered in alibrary file.
If the file name has no extension specified, the ".obj" extension is assigned.

If an aready registered module has the same name as the one to be registered, an error message is
output and the latter module is not registered.
If an external definition symbol with the same name exists, amodule is not registered either.
To specify <Object module file name>, you may use awild card.
[Example 1]
flibs syslib.lib -a modl.obj,mod2.obj,modx.obj
To register the object module files, mod1.obj, mod2.obj, and modx.obj in the library file, sydib.lib:
e If sydib.lib does not exist: Creating one
e |If sydib.lib exists: Adding modulesto it and re-registering it
[Example 2]
flibs syslib -a "mod*.obj" -a chksw

The object module files with the extension .obj and the first three characters as mod in the current directory
and chksw.obj are registered.

Note:

When using a wild card, you cannot specify <Object module file name> separated with commas.
Specify them in multiple -a options as shown in the example above.

If a wild card is specified, you are not supplied with an extension. Be sure to specify an extension.
For information on the expansion of a wild card in a file nhame which depends on the OS, see
"APPENDIX G SPECIFICATION DIFFERENCES DEPENDING ON THE OS".

214 PART Il LIBRARIAN

10.2.2

10.2 Details of the Options of a Librarian

Replacing (Registering) a Module (-r)

A module in an existing library file is replaced with a new module with the same name.

B Replacing (Registering) a Module (-r)

[Format]

-r < Object module file name > [, .1

[Parameter]

<Object module file name>
An object module file name that the assembler has output

[Description]
If amodulein the library file being edited has the same name as the one in the specified file, the former
module isreplaced. Otherwise, the specified moduleis registered.
If the file name has no extension specified, the ".obj" extension is assigned.
To specify <Object module file name>, you may use awild card.
[Example 1]
flibs syslib.lib -r loadx.obj, loady.obj

The two modules in loadx.obj and loady.obj replace those with the same names in the library file being
edited.

If no module with the same name exists in the library file, the modules are added to the library file
which isthen re-registered.
[Example 2]
flibs syslib.lib -r "load?.obj"
The object module files with the extension .obj and the first four characters as load followed by one
arbitrary character in the current directory are replaced.

Note:

When using a wild card, you cannot specify <Object module file name> separated with commas.
Specify them in multiple -r options.

If a wild card is specified, you are not supplied with an extension. Be sure to specify an extension.
For information on the expansion of a wild card in a file name which depends on the OS, see
"APPENDIX G SPECIFICATION DIFFERENCES DEPENDING ON THE OS".

PART IIl LIBRARIAN 215

CHAPTER 10 OPTIONS OF A LIBRARIAN

10.2.3 Deleting a Module (-d)

An unnecessary module is deleted from a library file.

B Deleting a Module (-d)
[Format]

-d < Module name > [, .1

[Parameter]

<Module name>
Name of a module to be deleted

[Description]
The specified module is deleted from alibrary file.
Be sure to specify a module name, not a file name.
[Example]
flibs syslib.lib -d inchar,outchar
Two modules, inchar and outchar are deleted from sydlib.lib.

Note:

Although you may specify a module name using a pseudo instruction of assembler, use the same
name for an object module file and a module unless absolutely necessary. Using different names for
them will cause an error when editing a library.

To specify the same name for a file and a module, use a name consisting only of alphanumeric
characters and underscores.

To check the module name, use the list output option (-m) to refer to the module name that is output
in the beginning of a list file.

216 PART Il LIBRARIAN

10.2.4

10.2 Details of the Options of a Librarian

Extracting a Module (-x)

A module is extracted from a library file and put it back into an object module file before

registration.

B Extracting a Module (-x)

[Format]

-X < Module name > [, < Object module file name >]

[Parameters]

<Module name>
Name of module to be extracted

<Object module file name>
Name of output file of extracted module

[Description]
The specified module is extracted from alibrary file.
The extracted module becomes the same object module file before registration.

If the <Object module file name> is not specified, afile is created with the <Module name> followed by
the ".obj" extension.

[Example]
flibs syslib -x add
flibs syslib.lib -x add,add.obj
The module, add is extracted from an existing library file and the add.obj file is created.

flibs sydlib -x add,add.o
The module, add is extracted from an existing library file and the add.o file is created.

Note:

You may specify as many -x options as the modules to be extracted.

If two module names are specified, the second one specified is valid. In the following example,
add.obj is not created and only addfunc.obj is created.

flibs syslib -x add -x add,addfunc.obj

Modules generated using the SOFTUNE V3 language tools output using the current object formats.

PART IIl LIBRARIAN 217

CHAPTER 10 OPTIONS OF A LIBRARIAN

10.2.5 Specifying to Output a List File (-m)

Module names and external definition symbol names registered in a library file are
output as the information list.

B Specifying to Output a List File (-m)

218

[Format]

-m { < List file name > | - }

[Parameter]

<List file name>
Specify the file name of the librarian list to be output.

Specify ahyphen (-) to output the list in the standard outpuit.
[Description]
Module names and external definition symbol names registered in a library file are output as the
information list.
If the <List file name> has no extension specified, ".mp2" isadded to it.

This option allows you to output only the information of module names registered. To display more
detailed information, use the -dt option described later.

The list contents show the status when the librarian is terminated.
If no other option related to editing is provided, the contents of the specified library fileislisted.

If you want to check the contents of a library file on the screen without storing it in a list, specify a
hyphen in the parameter.

[Example 1]
flibs syslib.lib -m libx.mp2
The module name list registered in syslib.lib is output to libx.mp2.
[Example 2]
flibs syslib -a objl,obj2 -m libx.lis
The contents of sydlib.lib created after the objl.obj and obj2.0bj modules are added are output to
libx.lis.

[Example 3]
flibs syslib -m -
The module name list registered in sydlib.lib is output to the standard outpuit.

PART Il LIBRARIAN

10.2 Details of the Options of a Librarian

10.2.6 Specifying not to Output a List File (-Xm)

This specification inhibits a librarian from outputting a list file.

B Specifying not to Output a List File (-Xm)
[Format]

-Xm

[Parameter]

None
[Description]

This specification inhibits the output of alist file.

Specifying the -Xm option after the -m option disables the -m option.
[Exampl€]

flibs syslib.lib -m libx.mp2 -Xm
Thelist fileis not created.

PART IIl LIBRARIAN 219

CHAPTER 10 OPTIONS OF A LIBRARIAN

10.2.7 Specifying to Output Detailed Information of a List File
(-dt)

The -m option specifies outputting the list but only displays the list of registered
module names.

Use the -dt option to obtain information on sections and external symbols for each
module registered in a library, or to obtain information on external definition and
external reference symbols for the entire library.

B Specifying to Output Detailed Information of a List File (-dt)
[Format]

-dt < Information type > [, < Information type >]

[Parameter]

<Information type>
s : Outputs a section name and its size for each module.

d : Outputs external definition symbolsfor each module.
r : Outputs external reference symbols for each module.

a : Outputsfor the entire library external definition symbols and external reference symbols yet
unsolved in thelibrary.

[Description]

If this option is not specified, only the registered module names are output in alist file. This option is
used to obtain more detailed information.

The <Information type> must always be specified.
The <Information type> may be specified by listing multiple keywords separated with commas.
If the -m option is not specified, this option isinvalid.
[Example 1]
flibs syslib.lib -m libx.mp2 -dt r,s
The list containing external reference symbols and section namesis output to libx.mp2.
[Example 2]
flibs syslib -m libx.lis -dt s,d,r,a
All the information that alibrarian can output is output to libx.lis.

220 PART Il LIBRARIAN

10.2 Details of the Options of a Librarian

10.2.8 Specifying the Number of Lines Per Page of a List (-pl)

Use this option to change the number of lines output per page of a list from its default
(60 lines).

B Specifying the Number of Lines Per Page of a List (-pl)
[Format]

-pl < Number of lines > (Default: 60)

[Parameter]

<Number of lines>
Specify 0 or between 20 and 255 inclusive.

[Description]
Specify the number of linesto be printed per page of alist file.
Specifying 0 disables the page control when the list fileis output.
If the -m option is not specified, this option isinvalid.
[Example 1]
flibs syslib.lib -m libx.mp2 -pl 40
The number of lines per page of alist is 40.
[Example 2]
flibs syslib.lib -m - -dt s -pl 0
A list with section information added is output to the standard output without page ejection.

PART IIl LIBRARIAN 221

CHAPTER 10 OPTIONS OF A LIBRARIAN

10.2.9 Specifying the Number of Columns Per Line of a List
(-pw)

Use this option to change the number of columns per line of a list from its default (80
characters).

B Specifying the Number of Columns Per Line of a List (-pw)
[Format]

-pw < Number of columns > (Default: 80)

[Parameter]

<Number of columns>
Specify between 80 and 1023 inclusive.

[Descriptions]|
Specify the number of columnsto be printed per line of alist file.
Use this option when the default number of columns causes a long symbol name, section name, or
modul e name to extend over two lines, making it difficult to comprehend.
At the default number of columns (80), the number of characters displayable per line are as follows:
e Module name : 21 characters
e Section name : 19 characters
e Symbol name : 34 characters
If the -m option is not specified, this option isinvalid.
[Exampl€]
flibs syslib.lib -m libx.mp2 -pw 90
The number of columns per line of alist is changed to 90.
In this case, the number of characters displayable per line for each name are asfollows:
* Modulename : 31 characters
e Sectionname : 29 characters
e Symbol name : 39 characters

Note:
In a list of a librarian, specifying the number of columns per line in the -pw option changes the
number of characters displayed per line for the module name, section name, and symbol name.
Since one line of a symbol name is separated on the screen into two fields on the left and right,
specifying twice the number of characters in the longest symbol name plus 12 will display an easy-
to-understand list.

222 PART Il LIBRARIAN

10.2 Details of the Options of a Librarian

10.2.10 Creating a Backup File (-b)

Editing a library file causes its contents to be lost.
Use the -b option to store a backup of the library file before editing it.

B Creating a Backup File (-b)
[Format]

-b

[Parameter]
None
[Description]
When alibrarian edits alibrary file by adding or deleting a module, the origina contents of the file are
changed and | ost.
Use this option to create a backup file of the original.
The backup file hasthe ".bak" extension.

A backup is created for only one generation of alibrary file. If you edit an important library file, you
must create a backup for yourself before using alibrarian.

[Example]
flibs syslib -a putc.obj -b
syslib.lib before editing is stored as syslib.bak after editing.
To sydlib.lib after editing, putc.obj and getc.obj are added.

Note:

If a library file which the input library is created using the SOFTUNE V3 tool is provided, the backup
file will be stored as ".bak" file according to the file using the SOFTUNE V3.

If a library file which the input library is created using the SOFTUNE V5 tool is provided, the backup
file will be stored as ".bak" file according to the file using the SOFTUNE V5.

PART IIl LIBRARIAN 223

CHAPTER 10 OPTIONS OF A LIBRARIAN

10.2.11 Inhibiting the Creation of a Backup File (-Xb)

Use the -Xb option to cancel the -b option used to obtain a backup.

B Inhibiting the Creation of a Backup File (-Xb)
[Format]

-Xb (Default)

[Parameter]
None
[Description]
By default, a librarian does not create a backup for the library file to be edited. This is the same as
specifying the -Xb option.
Specify this option to nullify the -b option when it is specified.

[Example]
All of the following three specifications result in the same processing.
flibs syslib -a putc.obj,getc.obj
flibs syslib -a putc.obj,getc.obj -Xb

flibs syslib -b -a putc.obj,getc.obj -Xb
sydlib.lib before editing is deleted after editing.
To sydlib.lib after editing, putc.obj and getc.obj are added.

224 PART Il LIBRARIAN

10.2 Details of the Options of a Librarian

10.2.12 Checking the Contents of a Library File (-c)

Use this option to briefly check the contents of a library file.

B Checking the Contents of a Library File (-c)
[Format]

[Parameter]
None
[Description]
The following two items are checked.

@ Whether an unsolved external reference symbol exists in the library

A linker, when a module taken in from a library contains an unsolved externa reference symboal, first tries
to solve the symbol in the same library file, assuming that a module containing a defined symbol existsin
the samelibrary file.

The program checks the correspondence between externa reference and defined symbols in a library file.
If any external reference symbols without the corresponding external definition symbol is contained, it
outputs a message.

@ Whether a module with debugging information exists
If amodule to be registered with the -g option specification in alibrary file contains debugging information
in the object module, it is registered in the library with the debugging information unremoved.

The above function is provided so that a module registered in alibrary may be debugged. However, after
the operation check, the debugging information will no longer be required.

The program checks whether a module with debugging information is registered in a library and, if so,
outputs a message.
[Example]
flibs syslib.1lib -c
The contents of sydlib.lib are checked.

Note:

This option cannot be specified with other options.
Specify this option alone as shown in the example above.

PART IIl LIBRARIAN 225

CHAPTER 10 OPTIONS OF A LIBRARIAN

10.2.13 Optimizing the Contents of a File (-O)

Any debugging information contained in an object module registered in a library is
removed.

B Optimizing the Contents of a File (-O)
[Format]

-0

[Parameter]
None
[Description]
An object module registered with a debugging information block in alibrary is re-registered without it.

Since debugging information occupies avery large part of an object module file, you can make alibrary
file significantly smaller by deleting the debugging information.

[Exampl€]
flibs syslib -O
Debugging information is deleted from the sydlib.lib file.

Note:

This optimization option cannot be specified with other options.
Specify this option alone as shown in the example above.

226 PART Il LIBRARIAN

10.2 Details of the Options of a Librarian

10.2.14 Specifying to Output Debugging Information (-g)

Use this option so as not to delete debugging information when registering an object
module in a library file.

B Specifying to Output Debugging Information (-g)
[Format]

-9

[Parameter]
None
[Description]
A librarian usually removes any debugging information that may be contained in an object module

beforeregistering it in alibrary file. Use this option to register the specified object without any changes
regardless of whether or not it has debugging information.

To delete debugging information after creating a library, use the optimization option -O to recreate a
library file.

[Exampl€]
flibs syslib.lib -a inchar,outchar -g

inchar.obj,outchar.obj is registered with debugging information unremoved, if any are contained, in a
library file.

PART IIl LIBRARIAN 227

CHAPTER 10 OPTIONS OF A LIBRARIAN

10.2.15 Specifying not to Output Debugging Information (-Xg)

Use the -Xg option to nullify the -g option used to specify not to delete debugging
information.

B Specifying not to Output Debugging Information (-Xg)
[Format]

-Xg (Default)

[Parameter]
None
[Description]
A librarian usually removes any debugging information that may be contained in an object module
beforeregistering it in alibrary file. Thisisthe same as specifying this-Xg option.
Specify this option to nullify the specification of the -g option.
You may use the optimization option -O to delete debugging information in a batch after creating a

library.
[Example]
The following three specifications result in the same processing.
flibs syslib.1lib -a inchar, outchar
flibs syslib.1lib -a inchar,outchar -Xg

flibs syslib.lib -g -a inchar,outchar -Xg
Debugging information contained in inchar.obj,outchar.obj is not registered in alibrary file.

228 PART Il LIBRARIAN

10.2 Details of the Options of a Librarian

10.2.16 Specifying CPU Information File (-cif)

This specifies the CPU information file used by the library.

B Specifying CPU Information File (-cif)
[Format]

-cif <CPU information file name>

[Parameter]
<CPU information file name>
CPU information file name used by library
[Description]
This specifiesthe CPU information file used by the library.
[Example]
flibs syslib.lib -a inchar,outchar -cpu MB91100A
-cif C:\Softune6\1ib\911\cpu info\MB91100A.csv
flibs syslib.lib -a inchar,outchar -cpu MB91130
-cif C:\Softune6\1ib\911\911l.csv

Note:
SOFTUNE Tools get CPU information by referring the CPU information file. Refer to a CPU
information file different between the related tools may cause an error to the program to be created.
The CPU information file that comes standard with SOFTUNE Tools is located at:
Installation Directory\lib\911\911.csv

When installing the compiler and assembler pack in different directory, specify -cif so that each tool
can refer the same CPU information file.

PART IIl LIBRARIAN 229

CHAPTER 10 OPTIONS OF A LIBRARIAN

10.2.17 Specifying a Target CPU (-cpu)

Use this option to specify a target CPU.
Use an MB number to specify a target CPU of the programs to be combined into a
library file.

B Specifying a Target CPU (-cpu)
[Format]

-cpu < MB number >

[Parameter]

<MB number>
MB number of atarget CPU

[Description]
A target CPU of the programs to be combined into alibrary fileis specified using an MB number.
[Exampl €]

flibs syslib.lib -a inchar,outchar -cpu MB91100A
flibs syslib.lib -a inchar,outchar -cpu MB91130

Note:

To create a library, you must specify a target CPU using this option.
This option may not be omitted.

230 PART Il LIBRARIAN

10.2 Details of the Options of a Librarian

10.2.18 Object Mix Check Level Specification (-omcl)

This option sets the operation when target CPU specified by -cpu option is FR80 if FR
objects are mixed.

Mixing allowed (Message is not output), warning output or error output can be
specified.

B Object Mix Check Level Specification (-omcl)
[Format]

-omcl < Numerical value >

[Parameter]

<Numerical value>
Specify 0, 1 or 2 for the warning level.

[Explanation]
This option sets the operation when target CPU specified by -cpu option is FR80 if FR objects are
mixed.
Mixing allowed (Message is not output), warning output or error output can be specified.
0: No message output when mixed. (Mixing enabled)
1: Warning message output when mixed. (Default)
2: Error message output when mixed. (Mixing not possible)

This option cannot set the operation when target CPU specified by -cpu option is FR if FR80 objects are
mixed.

About -cpu option and CPUs for which objects can be mixed, please refer to Section "9.9 Mixing a FR
Object and a FR80 Object".

[Exampl€]

* When thereisno -omcl option specification (Default)
flibs -cpu MB91680 -a module fr.obj fr80.1lib
*** W1412U: Uncompatible cpu type module (module fr.obj)
Mixing istreated as a warning.

e When -omcl 0 is specified
flibs -cpu MB91680 -a module fr.obj fr80.l1lib -omcl 0
Mixing is not detected.

e When -omcl 1is specified
flibs -cpu MB91680 -a module fr.obj fr80.1ib -omcl 1
*** W1412U: Uncompatible cpu type module (module fr.obj)
Mixing istreated as a warning.

e When -omcl 2 is specified
flibs -cpu MB91680 -a module fr.obj fr80.lib -omcl 2
*** E4412U: Uncompatible cpu type module (module fr.obj)
Mixing istreated as an error.

PART IIl LIBRARIAN 231

CHAPTER 10 OPTIONS OF A LIBRARIAN

232 PART Il LIBRARIAN

CHAPTER 11

LIST FORMATS OF A
LIBRARIAN

This chapter describes the configuration of a list file of a
librarian.

11.1 Contents of Information in a List File
11.2 List of Module Names
11.3 Detailed Information of a Module

11.4 External Defined and Reference Symbol Information in a Library

PART IIl LIBRARIAN 233

CHAPTER 11 LIST FORMATS OF A LIBRARIAN

11.1 Contents of Information in a List File

In a list file of a librarian, the contents of a library file is output in the following five
groups

* Module name

» Section information of each module

» External reference symbol information for each module

» External definition symbol information for each module

» External defined and reference symbol information for all the modules

To output a list, you must specify the -m option and the -dt option.

B Configuration of a List File
Figure 11.1-1 shows a configuration of alist file.

Figure 11.1-1 Configuration of a List File

< List header >
.) Only -m

Library file name
Numbers of registered modules and external definition symbols
CPU information etc.

< Number of modules > Only -m
Number of registered modules
i < Section information for each module > : -dt s specified
| < External reference symbol name information for each module > i -dt r specified
| < External definition symbol name information for each module > -dt d specified
| < External defined and reference symbol name information for whole modules > -dt a specified

234 PART Il LIBRARIAN

11.2 List of Module Names

11.2 List of Module Names

In the default list output of a librarian (when the -dt option is not specified), only the
registered module names in a library file are displayed.

B List Output Overview
If the -m option is specified, the contents of alibrary file are displayed.
The format of alibrarian list isasfollows:

Figure 11.2-1 Format of a Librarian List (default)

*1| Library File Name : sample.lib
*2| Number of Modules 03
*3| Number of Symbols 19
*4| CPU information :MB91101

*5| Library Creation Date 1999-03-01 14:23:50
*6| Library Revision Date 1999-04-17 09:41:15

[Module Name] [Entry Date] [Creation Date] [OMF]
*7| ModuleA 1999-03-01 14:23:50 1999-03-19 10:03:21

ModuleB 1997-04-17 09:41:15 1996-10-07 20:18:58 *

ModuleC 1999-03-01 14:23:50 1999-02-23 15:15:00

*1: Library file name

*2: Number of modules registered in alibrary file (expressed in decimals)

*3: Number of external definition symbols registered in alibrary file (expressed in decimals)

*4: CPU information (M B number)

*5: Date and time when the library fileisfirst created

*6: Date and time when the library fileislast updated...... Same as*5 for anew file

*7: [Module Name] Registered module name (in alphabetical order)
For amodule name, each line displays as many characters as (Page width -59).
The default (-pw 80) is 21 characters.

[Entry Date] Date and time when the moduleis registered in alibrary file

[Creation Date] Date and time when the moduleis created

[OMF] OMF Type
* isdisplayed beside the modules generated using the SOFTUNE V 3 language tools.

PART IIl LIBRARIAN 235

CHAPTER 11 LIST FORMATS OF A LIBRARIAN

11.3 Detailed Information of a Module

Detailed information of a module comes in the following three groups. Use the -dt
option to specify outputting the detailed information.

» Section information (-dt s)

» External definition symbol information (-dt d)

» External reference symbol information(-dt r)

B List Output Overview
Figure 11.3-1 shows the format of alibrarian list (when detailed information is specified).

Figure 11.3-1 Format of a Librarian List (when Detailed Information is Specified)

Library File Name : sample.lib
Number of Modules 03
Number of Symbols]
CPU information - MB91101

Library Creation Date 1999-03-01 14:23:50
Library Revision Date 1999-04-17 09:41:15

[Module Name] [Entry Date] [Creation Date] [OMF]
ModuleA 1999-03-01 14:23:50 1999-03-19 10:03:21 *
*1 | -- Section - -- Type -- -- Size --
code code 0x000002ES8
data data 0x0000006A
*2 | -- Ext_Ref Symbol(s) --
p_text tx_len
*3 | -- Ext_Def Symbol(s) --
prtext

[Module Name] [Entry Date] [Creation Date] [OMF]

*1: Output by the s parameter in the -dt option.
Thisisthe information of sectionsin a module.
The section name, section attribute, and size are displayed.
For a section name, each line displays as many characters as (Page width - 61).
*2: Output by the r parameter in the -dt option.
Each line displays two of the external reference symbol namesin a module.
*3: Output by the d parameter in the -dt option.
Each line displays two of the external definition symbol namesin a module.
For an external symbol name, each line displays as many characters as ((Page width -12) /2).

236 PART Il LIBRARIAN

11.4 External Defined and Reference Symbol Information in a Library

11.4 External Defined and Reference Symbol Information in a
Library

The external defined and reference symbol information of all the modules registered in
a library file may be displayed. Use the -dt option to specify to output this information.
(-dt a)

B List Output Overview
Figure 11.4-1 shows the format of alibrarian list (when detailed information is specified).

Figure 11.4-1 Format of a Librarian List (when Detailed Information is Specified)

Library File Name : sample.lib
Number of Modules 03
Number of Symbols 03
CPU information : MB91101

Library Creation Date 1999-03-01 14:23:50
Library Revision Date 1999-04-17 09:41:15

[Module Name] [Entry Date] [Creation Date] [OMF]
ModuleA 1999-03-01 14:23:50 1999-03-19 10:03:21 *

*1 | [ALL Ext_Def Symbol(s)]

chrlget p_text
prtext

*2 | [ALL Ext_Ref Symbol(s)]
chr_get tx_len

* 1. Output by the a parameter in the -dt option.
Each line displays two of &l the external definition symbol namesin the library file.

*2: Each line displays two of al the external reference symbols without corresponding external definition
symbolsin thelibrary file.
For an external symbol name, each line displays as many characters as ((Page width - 12) / 2).

PART IIl LIBRARIAN 237

CHAPTER 11 LIST FORMATS OF A LIBRARIAN

238 PART Il LIBRARIAN

CHAPTER 12
RESTRICTIONS AND
QUESTIONS AND ANSWERS
ON A LIBRARIAN

12.1 Restrictions on a Librarian

CHAPTER 12 RESTRICTIONS AND QUESTIONS AND ANSWERS ON A LIBRARIAN

12.1 Restrictions on a Librarian

This section describes the restrictions concerning the number of modules and external
symbols that can be registered to one library file when using the librarian and it
describes circumstances of which you should be aware.

B Restrictions on a Librarian
Table 12.1-1 shows the restrictions when using the librarian.
However, thisis not the maximum limit value available for processing.
Librarian performs processing, gaining a memory dynamically.
Librarian outputs an error message with an insufficient memory, when gaining a memory required for
processing becomes impossible, and processing is interrupted.

Table 12.1-1 Restrictions on a Librarian

Item Restriction Value Remarks
Option File Count Limitless Memory Dependent
Option File Internal Line Count Limitless Memory Dependent
Option File Internal Character Count Per 1 Line 4,095
Option File Nest Not Possible
Input File Count 4,294,967,295 Memory Dependent
Input Module Count 4,294,967,295 Memory Dependent
I/O File Size Limitless OS Dependent
Module Name/Section Name/Symbol Name Char- Limitless Memory Dependent
acter Count
File Name Character Count Limitless OS Dependent
Section Count 4,294,967,295 Memory Dependent
Maximum Section Size 4GB
Externally Defined Symbol Count 4,294,967,295 Memory Dependent
Externally referred Symbol Count 4,294,967,295 Memory Dependent
Externally Defined Symbol Reference Count Limitless Memory Dependent

B Cautionary Information Concerning the Necessary Disk Space
If you are editing your pre-existing library file and generating a back-up file, do so after checking if you
have enough disk space to store both the newly generated library file and the pre-existing librarian.

B Cautionary Information Concerning the Specification of Options

Individually specify both options of the librarian file contents search (-c) and file data optimizer
(-0).
This cannot be used in conjunction with other options.

240 PART Il LIBRARIAN

12.2 Questions and Answers on Using a Librarian

12.2 Questions and Answers on Using a Librarian

Section 12.2 shows the questions and answers on using a librarian.

B Questions and Answers on Creating a Library File

What isthe format of afilethat can beregistered in alibrary file?

It is an object module that an assembler outputs. Thisisafile created with the .obj
extension by default.

Example

fasm9llsfilel -> filel.obj isoutput.
fasm9llsfile2 -> file2.0bj isoutput.
flibslibfile -afilel.obj,file2.obj

| want to debug a module taken in from alibrary file that | have created because it seems
to have problems. But | cannot access the symbol information.

You can access symbol information for debugging only in an object module with
debugging information.

You must replace the object module with the one with debugging information. When you
create alibrary out of the object modules that may need to be debugged, it is
recommended to register them with debugging information (using the -g option). When
debugging is complete, you can delete debugging information (using the -O option)

Example

fasm911sfilel -g -> filel.obj with debugging information is outpuit.
flibs libfile -r filel -g -> libfile.lib with debugging information is output.
flibs libfile -O -> libfile.lib without debugging information is output.

| want to create alibrary out of the subroutinesthat | created for general purposes, but
there are so many object modules and | do not want to specify all the file names.

Use awild card to specify object modules to be added to alibrary (in the -a option) or
replaced with the onein alibrary (in the -r option).

Example

flibslibfile-a"*.obj" -> All thefileswith the".obj" extension are registered.

| forgot what is contained in alibrary filethat | created awhile ago. How can | find what
kind of modules are registered in it?

Use the -m option to see what is contained in alibrary file. Specify "-m File-name" to
create alist file with the . mp2 extension by default. If the contents output by the -m
option is not sufficient for you, use the -dt option together to obtain more detailed
information.

Example

flibslibfile-m libdoc -> A list file, libdoc.mp2 is output.
flibslibfile -m libdoc -dt a,s
-> A list file with detailed information, libdoc.mp2 is output.

PART Il LIBRARIAN 241

CHAPTER 12 RESTRICTIONS AND QUESTIONS AND ANSWERS ON A LIBRARIAN

| want to check the contents of alibrary file but they need not be stored in afile. How can
| simply display them on the screen?

Specify a hyphen (-) instead of afile namein the -m option to display the contentsin the
standard output.

Example

flibs libfile -m -
flibslibfile-m - -dt a,s
flibslibfile -afile3.obj -m -

| output the contents of alibrary fileinto alist, but some long symbol names are
displayed over two lines and difficult to comprehend. How can | evade this?

Use the -pw option to increase the number of columns to be displayed per line. 1tis80
characters by default. If four characters are in the second line, add twice that number,
i.e., eight to specify the number of columns as 88. Then the names will fitin oneline.

Example

flibs libfile -m libdoc -pw 90

| replaced modulesin alibrary file with the new ones only to realize later that | had
registered some of them by mistake. Since | did not keep any backup for the library file
before the replacement, | had a hard time restoring it.

A librarian allows you to create a backup file for one generation (with the ".bak"
extension) using the -b option. Naturally, it is recommended to create a backup of a
library before editing it. However, specify the -b option as required.

Example

flibslibfile -r filel,file2 -d mod4 -b

242 PART Il LIBRARIAN

PART IV OBJECT FORMAT CONVERTERS

Part IV describes the types of object format converters, list of options, functions, and
conversions of object formats.

CHAPTER 13 SPECIFICATIONS OF AN OBJECT FORMAT CONVERTER
CHAPTER 14 COMMON OPTIONS OF AN OBJECT FORMAT CONVERTER
CHAPTER 15 LOAD MODULE CONVERTER (f2ms,f2hs,f2is,f2es)
CHAPTER 16 FORMAT ADJUSTER (m2ms, h2hs)

CHAPTER 17 BINARY CONVERTER (m2bs, h2bs)

CHAPTER 18 OTHER CONVERTERS

CHAPTER 19 RESTRICTIONS AND QUESTIONS AND ANSWERS ON AN OBJECT FORMAT
CONVERTER

PART IV OBJECT FORMAT CONVERTERS 243

244 PART IV OBJECT FORMAT CONVERTERS

CHAPTER 13

SPECIFICATIONS OF AN
OBJECT FORMAT
CONVERTER

This chapter gives an overview and describes the types
of object format converters.

An object format converter is a tool used to convert an
object format.

13.1 Outline of Object Format Converter
13.2 Types of Object Format Converters

13.3 Executing an Object Format Converter

PART IV OBJECT FORMAT CONVERTERS 245

CHAPTER 13 SPECIFICATIONS OF AN OBJECT FORMAT CONVERTER

13.1 Outline of Object Format Converter

The object format converter processes four types of the following file formats.
Absolute format load module of linker output

S format

HEX format

Binary data file

B Outline of Object Format Converter

Object format converters include four types of converters; load module converter, adjuster (adjusting tool),
binary converter and converter.

@ Load Module Converter

This converter converts the absolute format |oad module of the linker output to a general-purpose format.

Figure 13.1-1 shows input and output of the load module converter.

Figure 13.1-1 Input and Output of the Load Module Converter

Absolute format
Load module
| (.abs)
f2ms f2hs f2is f2es
A y A y
S format HIEI)E()E; /EET(?L / HEX8 format HEX16 format
S1/52/S3 (Only HEXS type) (Only HEX16 type)
HEX32
(.mhx) (-hex) (.ihx) (.ehx)

246 PART IV OBJECT FORMAT CONVERTERS

13.1 Outline of Object Format Converter

@ Adjuster, Binary converter

The adjuster adjusts the S format or HEX format. The binary converter convertsthe S or HEX format into a
binary format.

Figure 13.1-2 shows input and output of the adjuster and binary converter.

Figure 13.1-2 Input and Output of the adjuster and Binary Converter

S format HEX format
| (mhx) | (hex)
m2ms m2bs h2hs h2bs
A A 4 A A 4
Adjusted . Adjusted .
S format Binary format HEX format Binary format
(-ahx) (-bin) (-ahx) (-bin)
@ Converter
The converter converts the S format and HEX8/HEX 16 format with each other.
Figure 13.1-3 shows input and output of the converter.
Figure 13.1-3 Input and Output of the Converter
S format HEX8 format HEX8/HEX16
format
| (mhx) (.ihx) (.ehx)
¢ * A A 4
m2is m2es i2ms e2ms
A A 4 A A 4
HEX8 format HEX16 format S format S format
(.ihx) (.ehx) (.mhx) (.mhx)

PART IV OBJECT FORMAT CONVERTERS 247

CHAPTER 13 SPECIFICATIONS OF AN OBJECT FORMAT CONVERTER

13.2 Types of Object Format Converters

The command for an object format converter is x2ys, where the x represents the object
format of an input file and the y represents the object format of an output file.

An alphabetical character assigned in the x and y format means one of the following
formats:

» f:Absolute format load module that a linker outputs

m:S format

h:HEX format (HEX8/HEX16/HEX32)

b:Binary data format

I:HEX8 format (Only HEXS8)

e:HEX16 format (Only HEX16)

B Types of Load Module Converters
Use the commands in Table 13.2-1 to convert an object format
f2msis used for conversion to the S format.
f2hsis used for conversion to the HEX format.
It is enabled to convert to the HEX8 format using f2is and to the HEX16 format using f2es, but it is
recommended to use f2hs corresponding HEX8/HEX 16/HEX32.

Table 13.2-1 Conversions Made by Load Module Converters

Command name Conversion
f2ms Absolute format load module to S format
f2hs Absolute format |oad module to HEX8/HEX 16/HEX 32 format
f2is Absolute format load module to HEX8 format
f2es Absolute format load module to HEX 16 format

B Format Adjuster
The S Format Adjuster formats an object file in the S format and the HEX format. For details, see
"CHAPTER 16 FORMAT ADJUSTER (m2ms, h2hs)".

B Binary Converter
An object filein the S format and the HEX format is converted to binary data (a memory image) and output
into aconverted file. For details, see"CHAPTER 17 BINARY CONVERTER (m2bs, h2bs)".

B Types of Other Converters
Use the commands in Table 13.2-2 to convert an object format.

Table 13.2-2 Conversions Made by Other Converters

Command name Conversion
m2is Sformat to HEX8 format
m2es Sformat to HEX 16 format
i2ms HEX8 format to S format
e2ms HEX16 format to S format

248 PART IV OBJECT FORMAT CONVERTERS

13.3 Executing an Object Format Converter

13.3 Executing an Object Format Converter

Simply specify a command name followed by an input file name to execute an object
format converter.

B Executing a Command of an Object Format Converter
Simply specify acommand name followed by an input file name to execute the command.

x2ys < Input file name > [Option]

The specified <Input file name> is processed as the x format and afilein they format is created.
A converter uses the following extensions by default to identify an object format from afile name:
¢ Absolute format load module: .abs
o Sformat : .mhx, ahx
* HEX8/HEX16/HEX32: .hex, .aix
e Binary dataformat: .bin
e HEXS: .ihx
e HEX16: .ehx
The -ran option is always required to execute the binary converter and adjuster. For details, see Section
"17.3.1 Specifying the Output Range (-ran)".
[Example]
f2ms sample

The absolute format load module that a linker outputs, sample.abs, is input and the sample.mhx file in
the Sformat is output.

PART IV OBJECT FORMAT CONVERTERS 249

CHAPTER 13 SPECIFICATIONS OF AN OBJECT FORMAT CONVERTER

250 PART IV OBJECT FORMAT CONVERTERS

CHAPTER 14

COMMON OPTIONS OF AN
OBJECT FORMAT
CONVERTER

This chapter describes the common options of an object
format converter in detail.

14.1 List of Common Options of an Object Format Converter
14.2 Changing an Output File Name (-0)
14.3 Specifying Padding Data (-p)

PART IV OBJECT FORMAT CONVERTERS 251

CHAPTER 14 COMMON OPTIONS OF AN OBJECT FORMAT CONVERTER

14.1 List of Common Options of an Object Format Converter

Simply specify a command name followed by an input file name to execute an object
format converter. Also, some options may be used.

B Common Options of an Object Format Converter
For each command of an object format converter, the following common options may be used.
Table 14.1-1 lists types of common options of an object format converter.

Table 14.1-1 List of Common Options of an Object Format Converter

Function Option Remarks

Changing an output file name -0

Specifying padding data -p

Specifying not to read a default option file -Xdof * Common option
Specifying to read an option file -f * Common option
Specifying to display help messages -help * Common option
Specifying to output the version number and messages -V * Common option
Specifying not to output the version number and messages -XV * Common option
Specifying to display a termination message -cmsg * Common option
Specifying not to display atermination message -Xcmsg * Common option
iggﬁfsyi ng to set the termination code to 1 when awarning _ewno * Common option
ggg::fsyi ng to set the termination codeto 0 when awarning X CWNO * Common option

To display abrief explanation of an option, enter the command name alone or use the -help option.

X2YS
x2ys -help

252 PART IV OBJECT FORMAT CONVERTERS

14.2 Changing an Output File Name (-0)

14.2 Changing an Output File Name (-0)

The directory in which creates an output file after conversion and the file name are
changed from the default.

B Changing an Output File Name (-0)
[Format]

-0 < Object file name >

[Parameter]
<Object file name> Output file name
[Descriptiong]
Specify this option to change the output file name after conversion.
Specify this option with a path name to change al so the output destination directory.

If this option is omitted, the output file name will be the same as the input file name. However, its
extension will be changed to the default of one of the formats used after conversion.

If the extension is omitted in the <Object file name> specification, the default extension is added.
One of the following six default extensionsis used for each format:
» Absolute format load module : .abs

« Sformat . .mhx .ahx

e HEX8/HEX16/HEX32 . .hex, .aix

* Binary datafile :.bin

 HEXS8 :.ihx

« HEX16 . .ehx
[Example 1]

f2ms ccp903 (Example of not using the -o option)
The absolute format load module ccp903.abs is input and ccp903.mhx in the S format is output. The
following four examples are equivalent to the above.

f2ms ccp903.abs -0 ccp903.mhx

f2ms ccp903.abs -0 ccp903

f2ms ccp903 -0 ccp903.mhx
f2ms ccp903 -0 ccp903
[Example 2]

f2ms ccp903 -0 ccp903.hex
The output file name is changed to ccp903.hex.

[Example 3]
f2ms ccp903 -o ..\hex\ccp903m.hex
The current output destination directory is changed to ..\hex and the output file name to ccp903m.hex.

PART IV OBJECT FORMAT CONVERTERS 253

CHAPTER 14 COMMON OPTIONS OF AN OBJECT FORMAT CONVERTER

Note:
If the -sp option is specified for binary converter, the <Obiject file name> is evaluated differently. The
<Object file name> is assumed to have no extension and an extension is unconditionally added to
the file name specified in <Object file name>.
For example, if "binary.bin" is specified as the object file name, the output file names will be
"binary.bin.b01", "binary.bin.b02", ..., "binary.bin.bxx".

254 PART IV OBJECT FORMAT CONVERTERS

14.3 Specifying Padding Data (-p)

14.3 Specifying Padding Data (-p)

The specified range of addresses is padded with data of a specified value.

With the binary converter and adjuster, the portion of an input file containing no data is
padded with data of a specified value when the adjust option of the load module
converter (f2ms or f2hs) is specified.

B Specifying Padding Data (-p)
[Format]

-p < Value > [, < Starting address > , < Ending address >]

[Parameters)
<Vaue> One-byte data
<Starting address> Starting address at which sets <Value>

* When the adjust option (-adjust) of f2ms or f2hs is specified, binary converter and adjuster cannot
be used.

<Ending address> Ending address at which sets <Value>

* When the adjust option (-adjust) of f2ms or f2hs is specified, binary converter and adjuster cannot
be used.

[Description]
Embed the specified address range with the specified value data.

Set only for <value> with the adjust option (-adjust) for the load module converter (f2ms or f2hs) and
with the binary converter and adjuster.

Embeds with value data specified by locations that do not exist for datain the file with the adjust option
(-adjust) for the load module converter (f2ms or f2hs) and with the binary converter and adjuster.

[Example 1]
f2ms ccp903 -p OxEF, 0x1FE4, Ox1FFF
An absolute format load module is converted into the S format.

At thistime, the data at the addresses Ox1FE4 through Ox1FFF is created as the OXEF data and added to
theend of aSformat file.

[Example 2]
f2ms ccp903 -p O0xEF, 0x1FE4,0x1FFF -adjust
The error is generated at specifying adjust(-adjust) because the starting/ending addresses are specified
by the padding option(-p).
f2ms ccp903 -p OXEF -adjust

An absolute format load module is converted into the S format. At that time, pad the portion which the
data dose not exist using data of OXEF.

[Example 3]
m2bs ccp903 -ran 0x0, 0x1FFF -p OxEF
The data at the addresses 0x0 through Ox1FFF in the S format file is converted to a binary image.
At thistime, the portion of an Sformat file containing no data is padded with data of OxEF.

PART IV OBJECT FORMAT CONVERTERS 255

CHAPTER 14 COMMON OPTIONS OF AN OBJECT FORMAT CONVERTER

256 PART IV OBJECT FORMAT CONVERTERS

CHAPTER 15
LOAD MODULE CONVERTER
(f2ms,f2hs,f2i1s,f2es)

This chapter describes the conversion formats of the
load module converter.

15.1 Outline of Load Module Converter
15.2 List of Options of the Load Module Converter
15.3 Details of Load Module Converter Options

15.4 f2ms (Converting an Absolute Format Load Module into the S
Format)

15.5 f2hs (Converting an Absolute Format Load Module into the HEX
Format)

15.6 f2is (Converting an Absolute Format Load Module into the HEX8
Format), f2es (Converting an Absolute Format Load Module into
the HEX16 Format)

PART IV OBJECT FORMAT CONVERTERS 257

CHAPTER 15 LOAD MODULE CONVERTER (f2ms,f2hs,f2is,f2es)

15.1 Outline of Load Module Converter

The load module converter converts an absolute format load module to the S format or
HEX format which are general-purpose formats.

B Outline of Load Module Converter

The load module converter converts the absolute format load module to an S format or HEX format which
are general-purpose formats.

f2ms can be used to convert to the S format. f2hs can be used to convert to the HEX format.

f2is convertsto HEX 8 format, and f2es to HEX 16 format, but if f2hsisused, it is possible to convert to all
HEX 8, HEX 16 and HEX 32 HEX formats.

As shown in Figure 15.1-1, by specifying the adjust option (-adjust), f2ms and f2hs can adjust the output
file together with adjuster.

Figure 15.1-1 Outline of Load Module Converter

Absolute format Absolute format
Load module Load module
(.abs) (.abs)
y y
f2ms f2hs
Cooperation Cooperation
A 4 A 4
m2ms h2hs
A 4 A 4
Adjusted Adjusted
S format HEX format
(.mhx) (-hex)

258 PART IV OBJECT FORMAT CONVERTERS

15.2 List of Options of the Load Module Converter

15.2 List of Options of the Load Module Converter

The following lists the option names and function outlines of the load module converter.

B List of Options of the Load Module Converter
The table below gives the option of the load module converter.

Table 15.2-1 Options of the Load Module Converter

Function Option Remarks
Changing an output file name -0 * Common option of
a converter
Specifying padding data -p * Common option of
aconverter
Specifying to output S1 format -S1 Only f2ms
Specifying to output S2 format -S2 Only f2ms
Specifying to output S3 format -S3 Only f2ms
Specifying to output HEX8 format -116 Only f2hs
Specifying to output HEX 16 format -120 Only f2hs
Specifying to output HEX32 format -132 Only f2hs
Specifying to output start address record -entry Only f2hs
Specifying not to output start address record -Xentry Only f2hs
Specifying to Adjust -adjust Only f2ms and f2hs
Specifying not to read default option file -Xdof * Common option
Specifying to read option file -f * Common option
Specifying display of help message -help * Common option
Specifying version number and message -V * Common option
Specifying not to output version number and message -XV * Common option
Specifying to output end message -cmsg * Common option
Specifying not to output end message -Xcmsy * Common option
Specifying to set the termination code to 1 when awarning -CWno * Common option
occurs
Specifying to set the termination code to 0 when awarning -Xcwno * Common option
occurs

PART IV OBJECT FORMAT CONVERTERS 259

CHAPTER 15 LOAD MODULE CONVERTER (f2ms,f2hs,f2is,f2es)

15.3 Details of Load Module Converter Options

This section describes each of the options for the load module converter.

Note that common options to the linkage kit are described in "CHAPTER 3 COMMON
OPTIONS", and common options to the converter are described in "CHAPTER 14
COMMON OPTIONS OF AN OBJECT FORMAT CONVERTER".

B Output S Format Option (-S1/-S2/-S3)
Specifies the record used to output with S format. For details, see Section "15.3.1 Specifying to Output S
Format (-S1/-S2/-S3)".

B Output HEX Format Option (-116/-120/-132)
Specifies the record used to output with HEX format. For details, see Section "15.3.2 Specifying to Output
HEX Format (-116/-120/-132)".

B Start Address Output Option (-entry)

This outputs the start segment address record or start linear address record when outputting with
HEX format. For details, see Section "15.3.3 Specifying to Output Start Address Record (-entry)".

B Start Address Output Inhibit Option (-Xentry)

This specifies when inhibiting the start address record output. For details, see Section "15.3.4 Specifying
not to Output Start Address Record (-Xentry)".

B Adjust Option (-adjust)
This specifies to start the adjuster after outputting the S format or HEX format. For details, see Section
"15.3.5 Specifying to Adjust (-adjust)".

260 PART IV OBJECT FORMAT CONVERTERS

15.3.1

Specifying to Output S Format (-S1/-S2/-S3)

15.3 Details of Load Module Converter Options

This option specifies the format used to output data.

B Specifying to Output S Format (-S1/-S2/-S3)

[Format]

-S1

-S2

-S3

[Parameter]
None
[Description]

Specifies the format used to output data.

f2ms outputs the data using either the S1 record, S2 record or the S3 record.

It will not output if both the S1 record and the S2 record are used.

The -S1, -S2 and -S3 options take effect when specified last. If these options are not specified, the f2ms
command outputs data in mixed formats of S1/S2/S3 according to the data address.

Note:

If the specification with this option conflicts with the output range, this option outputs an error and
performs no processing.
The terminator record (S9 record, S8 record, S7 record) for output varies with the specification of this
option. (See Table 15.3-1)

Table 15.3-1 Output S Format Specification List

Specification Range of data that can be output | Terminator record Remarks
-S1 (0x00000000-0x0000FFFF S9 record 16-bit address
-S2 0x00000000-0x00FFFFFF S8 record 24-bit address
-S3 0x00000000-OxFFFFFFFF S7 record 32-bit address

PART IV OBJECT FORMAT CONVERTERS

261

CHAPTER 15

15.3.2

LOAD MODULE CONVERTER (f2ms,f2hs,f2is,f2es)

Specifying to Output HEX Format (-116/-120/-132)

This option specifies the HEX format used to output data.

B Specifying to Output HEX Format (-116/-120/-132)

[Format]

-I16

-I20

-I32

[Parameter]
None

[Description]
This option specifies the HEX format used to output data. The f2hs command outputs data using either
HEX8, HEX16 or HEX32 format. The -116, -120, and -132 options take effect when specified last. If

these options are not specified, the f2hs command outputs data in mixed formats of HEX8, HEX 16, and
HEX32 according to the data address.

Note:
If the specification with this option conflicts with the output range, the f2hs command outputs an error
and performs no processing.
Table 15.3-2 List of Output HEX Format Options
Specification Range of data that can be output Format Remarks
-116 (0x00000000-0x0000FFFF HEX 8 format 16-bit address
-120 (0x00000000-0x000FFFFF HEX 16 format 20-bit address
-132 0x00000000-0xFFFFFFFF HEX 32 format 32-bit address
262 PART IV OBJECT FORMAT CONVERTERS

15.3 Details of Load Module Converter Options

15.3.3 Specifying to Output Start Address Record (-entry)

When outputting the data the start segment address record or the start linear address
record are output. This option can specify using f2hs only.

B Specifying to Output Start Address Record (-entry)
[Format]

-entry

[Parameter]
None
[Description]
Use this option to specify the start segment address record or the start linear address record are output.

If there is no start address information in the input file, a warning will be output (W1504U: Start
addressinformation is not in an input file).

To the Table 15.3-3 described below, the start address record is output according to specify output HEX
format option (-116/-120/-132) and the input data range.

Table 15.3-3 The Start Address Records of HEX Format Output

Specifying an
Output HEX input data range output start address record
format
-116 The warning 'W1503U: -entry option was
specified at the time of -116 specification' is
displayed. The start address record does not
output.
-120 0x00000000-0x000FFFFF Start segment address record
-132 (0x00000000-0x000FFFFF Start segment address record
0x00100000-0xFFFFFFFF Start linear address record
If Output HEX format is not specified, the data are processed as when the HEX32 format output option
(-132) is specified.
[Example]

f2hs ccp903.abs -entry -Il6
The warning 'W1503U: -entry option was specified at the time of -116 specification' is displayed
because -entry option specified when the HEX8 format output specification option (-116) was specified.
The start address record does not output.

f2hs ccp903.abs -entry -I20
The start segment address record output.

f2hs ccp903.abs -entry -I32

The start segment address record is output when the data address size is from 0x0 to OxFFFFF.
The start linear address record is output when the data address size is from 0x100000 to OxFFFFFFFF.

PART IV OBJECT FORMAT CONVERTERS 263

CHAPTER 15 LOAD MODULE CONVERTER (f2ms,f2hs,f2is,f2es)

15.3.4 Specifying not to Output Start Address Record (-Xentry)

It specifies to suppress the start segment address record and the start linear address
record output.
This option can specify only for the f2hs.

B Specifying not to Output Start Address Record (-Xentry)
[Format]

-Xentry

[Parameter]
None
[Description]
It specifies to suppress the start segment address record and the start linear address record output.
Use this option when you want to cancel the -entry option.
[Example]
f2hs -entry cpp903.abs -I20 -Xentry

The start address record output specification(-entry) is canceled and the start address record does not
output.

264 PART IV OBJECT FORMAT CONVERTERS

15.3 Details of Load Module Converter Options

15.3.5 Specifying to Adjust (-adjust)

This option automatically calls the adjuster for adjustment after converting the load
module.

B Specifying to Adjust (-adjust)
[Format]

-adjust

[Parameter]
None

[Description]
This option automatically calls the adjuster for adjustment after converting the load module.
The starting/ending addresses to be adjusted are automatically set.

If the starting/ending address parameters are specified with the padding (-p) option when this option is
given, an error occurs.

When this option is specified, the option for the adjuster can also be specified.
[Exampl€]
f2ms ccp903 -p OxEF,0x1FE4, 0x1FFF -adjust
Because the starting/ending addresses are specified with the padding option, an error occurs.

f2ms ccp903 -p OxEF -adjust
This option converts the absolute format load module to an adjusted S format. In this case, it pads the
location where no data exists with data named OxEF.

PART IV OBJECT FORMAT CONVERTERS 265

CHAPTER 15 LOAD MODULE CONVERTER (f2ms,f2hs,f2is,f2es)

15.4 f2ms (Converting an Absolute Format Load Module into
the S Format)

An absolute format load module that is output by a linker is converted into the S format.
Data at the addresses 0 through OxFFFFFFFF is to be converted.
The f2ms command can process the absolute format load module of the SOFTUNE V3/V5.

B f2ms (Converting an Absolute Format Load Module into the S Format)
[Function]

The f2ms command reads the object data from an absolute format load module that is output by a linker
and convertsit into a Sformat file.

Figure 15.4-1 f2ms (Converting an Absolute Format Load Module into the S Format)

Absolute format

—» f2ms —p S format
Load module

(.abs) (.mhx)

[Address]
The maximum values of addresses that can be represented in the S format are:.
Sltype OxFFFF
S2type OxFFFFFF
S3type OXFFFFFFFF

The absolute format load module that is output by a linker can represent the addresses between 0 and
OxFFFFFFFF inclusive.

Since the S format supports the same range of addresses, conversions can be made without losing any
data.

According to the address allocation, f2ms outputs the following records:

0x00000000 to Ox0000FFFF : Sltype
0x00010000 to OXOOFFFFFF : S2 type
0x01000000 to OXFFFFFFFF : S3type

266 PART IV OBJECT FORMAT CONVERTERS

15.5 f2hs (Converting an Absolute Format Load Module into the HEX Format)

15.5 f2hs (Converting an Absolute Format Load Module into the
HEX Format)

An absolute format load module that is output by a linker is converted into the HEX

format.
Data at the addresses 0 through OxFFFFFFFF is to be converted.
The f2hs command can process the absolute format load module of the SOFTUNE V3/V5.

B f2hs (Converting an Absolute Format Load Module into the HEX Format)
[Function]
The f2hs command reads the object data from an absolute format load module that is output by alinker
and convertsit into aHEX format file.

Figure 15.5-1 f2hs (Converting an Absolute Format Load Module into the HEX Format)

Absolute format

Load module » f2hs — HEX format

(.abs) (-hex)

[Address]
The maximum values of addresses that can be represented in the HEX format are:.
HEX8 OxFFFF
HEX16 OxFFFFF
HEX32 OxFFFFFFFF

The absolute format load module that is output by a linker can represent the addresses between 0 and
OxFFFFFFFF inclusive.

Since the HEX format supports the same range of addresses, conversions can be made without losing
any data.
According to the address all ocation, f2hs outputs the following records:

(0x00000000 to OXO000FFFF : HEX8

0x00010000 to OXO00FFFFF : HEX16

0x00100000 to OXFFFFFFFF : HEX32

PART IV OBJECT FORMAT CONVERTERS 267

CHAPTER 15 LOAD MODULE CONVERTER (f2ms,f2hs,f2is,f2es)

15.6 f2is (Converting an Absolute Format Load Module into the
HEX8 Format), f2es (Converting an Absolute Format Load
Module into the HEX16 Format)

The f2is command converts the absolute format load module of the linker output to a
HEX8 format, and the f2es converts it to a HEX16 format.

The f2is command converts data at the addresses 0 to OxFFFF and the f2es command
converts data at the addresses 0 to OxFFFFF.

These f2is and f2es commands can also process the absolute format load modules for
SOFTUNE V5/V6.

To keep compatibility with the previous versions, these commands are included in the
linkage kit. Use of the f2hs command for conversion to a HEX format is recommended.

B f2is (Converting an Absolute Format Load Module into the HEX8 Format)
[Function]

The f2is command only reads the object data part from the absolute format load module of the linker
output, and convertsit to aHEX8 format file.

Figure 15.6-1 f2is (Converting an Absolute Format Load Module into the HEX8 Format)

Absolute format

Load module —p f2is —p HEX8 format

(.abs) (-ihx)

[Description]

The common options shown in "CHAPTER 14 COMMON OPTIONS OF AN OBJECT FORMAT
CONVERTER" can be used for f2is.

[Address]
The maximum value of addresses that can be represented in the HEX 8 format is OxFFFF.

Note:

The absolute format load module that is output by a linker can represent the addresses between 0
and OxFFFFFFFF inclusive. However, when the absolute format load module is converted into the
HEX8 format, the data allocated to the addresses 0x10000 and higher are truncated.

When using this command, be careful of the range of addresses in the conversion source.

An HEX8 format file consists of data records and a trailer record.

268 PART IV OBJECT FORMAT CONVERTERS

15.6 f2is (Converting an Absolute Format Load Module into the HEX8 Format), f2es (Converting an Absolute
Format Load Module into the HEX16 Format)

B f2es (Converting an Absolute Format Load Module into the HEX16 Format)
[Function]

The f2es command reads only the object data part from the absolute format load module of the linker
output, and convertsit to aHEX16 format file.

Figure 15.6-2 f2es (Converting an Absolute Format Load Module into the HEX16 Format)

Absolute format

Load module —p f2es —p HEX16 format

(.abs) (-ehx)

[Description]

The common options shown in "CHAPTER 14 COMMON OPTIONS OF AN OBJECT FORMAT
CONVERTER" can be used for f2es.

[Address]
The maximum value of addresses that can be represented in the HEX 16 format is OxFFFFF.

Note:

The absolute format load module that is output by a linker can represent the addresses between 0
and OxFFFFFFFF inclusive. However, when the absolute format load module is converted into the
HEX16 format, the data allocated to the addresses 0x100000 and higher are truncated.

When using this command, be careful of the range of addresses in the conversion source.

In the HEX16 format, an extended segment address record is used to represent the addresses
0x10000 and higher.

An extended segment address record in a file is valid until the next extended segment address
record appears. If a data record appears without an extended segment address record, then the
program calculates addresses assuming that the extended segment address is specified to be 0.

A starting address record is created at the beginning of an HEX16 format file.

PART IV OBJECT FORMAT CONVERTERS 269

CHAPTER 15 LOAD MODULE CONVERTER (f2ms,f2hs,f2is,f2es)

270 PART IV OBJECT FORMAT CONVERTERS

CHAPTER 16

FORMAT ADJUSTER
(m2ms, h2hs)

This chapter describes the conversion formats of format
adjuster.

16.1 Outline of the Format Adjuster
16.2 List of Options of the Format Adjuster
16.3 Details of Options of the Format Adjuster

PART IV OBJECT FORMAT CONVERTERS 271

CHAPTER 16 FORMAT ADJUSTER (m2ms, h2hs)

16.1 Outline of the Format Adjuster

The format adjuster sorts data created in the S and HEX formats in the ascending order
of addresses, and causes each of the records to contain the specified number of data.

B Overview of the Format Adjuster

The format adjuster causes each of the records in one file of the format to contain the specified number of
datato unify the format. Figure 16.1-1 shows the concept of the format adjuster.

Figure 16.1-1 Overview of the Format Adjuster

. Adjusted
S format file —»m2ms —p S format file
(.mhx) (-ahx)
) Adjusted
HEX format fle ——% h2hs —p HEX format file

(-hex) (-aix)

The portion of an input format file containing no data is padded with OxFF (default value).
The output file is the contents of memory converted into the S and HEX formats.

Use the padding option (-p option) to pad the portion of an input format file containing no data with a
specified value. For information on using this option, see Section "14.3 Specifying Padding Data (-p)".

272 PART IV OBJECT FORMAT CONVERTERS

16.1 Outline of the Format Adjuster

B Example of operation

Use this option to unify the lengths of data contained in one record if an existing format file has records of
varying lengths.

Figure 16.1-2 Example of Operation of the Format Adjuster

Before conversion

5007000054455354B8
S20CFF00000109572C160C2D2CEC
S209FF0008020406080AD1
S20FFF000D020406080A0C0E1012141660
S20CFF00180109572C160C2D2CD4
S209FF0020020406080ABY
S20FFF0025020406080A0C0E1012141648
S20CFF00300109572C160C2D2CBC
S209FF0038020406080AA1
S20FFF003D020406080A0C0E1012141630
S20CFF00480109572C160C2D2CA4
S209FF0050020406080A89

S20FFF0055
5804000000| 5007000054455354B8

S31500FF00000109572C160C2D2C020406080A020406B9
S31500FF0010080A0C0EL101214160109572C160C2D2C5B
S31500FF0020020406080A020406080A0C0E1012141629
S31500FF00300109572C160C2D2C020406080A02040689
S31500FF0040080A0C0EL01214160109572C160C2D2C2B
S31500FF0050020406080A020406080A0C0E10121416F9

After conversion

B Functions of the Format Adjuster
The format adjuster has the following functions:

The datais sorted in the ascending order of addresses.
The portion of the specified range of addresses containing no data is padded with the specified data at
the time of startup (with Oxff by default).

As the starting address of a record, specify a value coordinated with the output data length specified at

the time of startup.

If the starting address specified for output is not the multiple of the specification value of the data length

at the time of starting.

(If the datalength in arecord is 16 bytes and the starting address is not a multiple of 16.)

- Thefirst record appearing in the output information stores the data from the specified starting address
to the address coordinated with the specified data length.

- The second and later record starting addresses become the one coordinated with the specified length.

If the input format information contains multiple terminator records, the entry address of the terminator
record that appears at last is converted and output.
Any other terminator records are del eted.

- If the value of the entry address defined in the conversion source data is not within the range of data
after conversion, O is set in the terminator record after conversion.

PART IV OBJECT FORMAT CONVERTERS 273

CHAPTER 16 FORMAT ADJUSTER (m2ms, h2hs)

The following section shows an example of converting the address range Oxff0008 through Oxff004a at the
record length of 16.

Figure 16.1-3 Example of Conversion of the Format Adjuster

Before conversion

5007000054455354B8
S20CFF00000109572C160C2D2CEC
S209FF0008020406080AD1
S20FFF000D020406080A0C0E1012141660
S20CFF00180109572C160C2D2CD4
S209FF0020020406080AB9
S20FFF0025020406080A0C0E1012141648
S20CFF00300109572C160C2D2CBC
S209FF0038020406080AA1
S20FFF003D020406080A0C0E1012141630
S20CFF00480109572C160C2D2CA4
S209FF0050020406080A89
S20FFF0055020406080A0C0E1012141618

5804000000 500700005445535488
S30D00FF0008020406080A020406C1
S31500FF0010080A0COEL01214160109572C160C2D2C5R
S31500FF0020020406080A020406080A0C0OEL012141629
S31500FF00300109572C160C2D2C020406080A02040689
S31500FF0040080A0COE10121416010957D7
S70500000000FA

After conversion

274 PART IV OBJECT FORMAT CONVERTERS

16.2 List of Options of the Format Adjuster

16.2 List of Options of the Format Adjuster

Section 16.2 lists the names and functions of options of the format adjuster.

B List of Options of the Format Adjuster
Table 16.2-1 lists the options of the format adjuster.
Table 16.2-1 List of Options of the Format Adjuster

Function Option Remarks
Changing an output file name 0 * Common option of
a converter
Specifying padding data " * Common option of
a converter
Specifying the output data length -len Default 16
Specifying the output range -ran need
Specifying the S1 format output -S1 Only m2ms
Specifying the S2 format output -S2 Only m2ms
Specifying the S3 format output -S3 Only m2ms
Specifying the HEX8 format output -116 Only h2hs
Specifying the HEX 16 format output -120 Only h2hs
Specifying the HEX 32 format output -132 Only h2hs
Specifying to change the starting address -ST
Specifying not to read default option file -Xdof * Common option
Specifying to read option file -f * Common option
Specifying to display of help message -help * Common option
Specifying to output version number and message -V * Common option
Specifying not to output version number and message -XV * Common option
Specifying to output end message -cmsg * Common option
Specifying not to output end message -Xcmsg * Common option
isss:;ying to set the termination code to 1 when awarning _owno * Common option
cs)gfsifsying to set the termination code to 0 when awarning X WNo * Common option

PART IV OBJECT FORMAT CONVERTERS 275

CHAPTER 16 FORMAT ADJUSTER (m2ms, h2hs)

16.3 Details of Options of the Format Adjuster

Section 16.3 describes the options of the format adjuster.

For information on the common options of linkage kit, see "CHAPTER 3 COMMON
OPTIONS". For information on the common options of a converter, see "CHAPTER 14
COMMON OPTIONS OF AN OBJECT FORMAT CONVERTER".

B Specifying the Output Record Data Length (-len)
This option specifies the output record data length. For details, see Section "16.3.1 Specifying the Output
Data Length (-len)".

B Specifying the Output Range (-ran)
This option specifies the range of formatting an format. For details, see Section "16.3.2 Specifying the
Output Range (-ran)".

B Specifying an Output S Format (-S1/-S2/-S3)
This option specifies an record to be used when data is output in the S format using m2ms. For details, see
Section "16.3.3 Specifying the S Format Output (-S1/-S2/-S3)".

B Specifying an Output HEX Format (-116/-120/-132)
Specifies the record used to output with HEX format using h2hs. For details, see Section "16.3.4
Specifying the HEX Format Output (-116/-120/-132)".

B Specifying to Change the Starting Address of Record (-ST)

This changes the starting address of the S record used when outputting in the S format. For details, see
Section "16.3.5 Specifying to Change the Starting Address (-ST)".

276 PART IV OBJECT FORMAT CONVERTERS

16.3 Details of Options of the Format Adjuster

16.3.1 Specifying the Output Data Length (-len)

Use this option to specify the number of data to be output into a record of an output
format.

B Specifying the Output Data Length (-len)
[Format]

-len <Data lengths>

[Parameter]
<Data length>
Select 16, 32, 64, or 128.
[Description]
Use this option to specify the number of bytes of data to be output into one record when an format
is formatted.
Specify 16, 32, 64, or 128 as the data length.
If this option is omitted, 16 is assumed to be specified in the processing.
[Note]

This option specifies the number of bytes of data contained in one record, not the record length
itsalf.

[Exampl€]
m2ms sfmtfile.mhx -len 32
sfmtfilemhx is formatted and 32-byte datais output per record.

m2ms sfmtfile.mhx (An example of omitting the -len specification)
sfmtfilemhx is formatted and 16-byte datais output per record.

m2ms sfmtfile.mhx -len 96
An error occurs because the specified data length is out of the specifiable range.

m2ms sfmtfile.mhx -len (An example of omitting all the parameters)

An error occurs because the data length specification is omitted.

PART IV OBJECT FORMAT CONVERTERS 277

CHAPTER 16 FORMAT ADJUSTER (m2ms, h2hs)

16.3.2 Specifying the Output Range (-ran)

Use this option to specify the range of formatting using address.

B Specifying the Output Range (-ran)
[Format]

-ran <Starting address> [, <Ending addresss>]

[Parameters)
<Starting address>
Starting address
<Ending address>
Ending address
[Description]
Use this option to specify the range of formatting using address.
Y ou must specify this option in order to convert.
Specify the starting and ending addresses between 0x0 and Oxffffffff inclusive.

The ending address may be omitted. |f omitted, data as much as 64Kbytes from the starting address is
formatted.

Y ou cannot specify values that will make the conversion size more than 2Gbytes.
[Example]
m2ms sfmtfile.mhx (An example of not using the -ran option)
An error occurs because the output range is not specified.

m2ms sfmtfile.mhx -ran 0xD000, OXFFFF
The datain sfmtfile.mhx at the addresses 0xD00O through OxFFFF is formatted.

m2ms sfmtfile.mhx -ran 0xD000 (An example of omitting the ending address)
The data in sfmfile.mhx as much as 64K bytes from the addresses 0xD000 (0x0D000 through Ox1CFFF)
is formatted.

m2ms sfmtfile.mhx -ran OxXFFFF, 0xD00O
An error occurs because the specified ending address is smaller than the starting address.

m2ms sfmtfile.mhx -ran (An example of omitting all the parameters)

An error occurs because the starting address is omitted.

278 PART IV OBJECT FORMAT CONVERTERS

16.3 Details of Options of the Format Adjuster

16.3.3 Specifying the S Format Output (-S1/-S2/-S3)

Use this option to specify an S format to be used when data is output.
This option is for the S format adjuster (m2ms).

B Specifying the S Format Output (-S1/-S2/-S3)
[Format]

-S1

-S2

-S3

[Parameter]
None
[Description]
Use this option to specify arecord to be used when data contents are output.
The Sformat adjuster outputs the data contents using one of the S1, S2, and S3 records.
It never outputs data using both the S1 and S2 records.

If more than one of the -S1, -S2, and -S3 options are specified, the one most recently specified is valid.
If none of the -S1, -S2, and -S3 options are specified, the S format adjuster outputs the data contents
into the S3 record.

[Note]
If the specification in this option and the output range are not consistent with each other, the S format
adjuster reports an error and performs no processing.

Specifying this option changes the terminator record to be used for output (S9, S8, and S7 records). (See
Table 16.3-1)

Table 16.3-1 List of Output Record Specifications

Specification Range of data that can be output | Terminator record Remarks
-S1 0x0000-OxFFFF 9 record
-S2 0x000000-0xFFFFFF S8 record
-S3 0x00000000-OxFFFFFFFF S7 record (Default)

PART IV OBJECT FORMAT CONVERTERS 279

CHAPTER 16 FORMAT ADJUSTER (m2ms, h2hs)

[Example]
m2ms sfmtfile.mhx -ran 0xD000,0x10000 -S1
An error occurs because the output range is up to 0x10000, which cannot be represented in the S1
record.

m2ms sfmtfile.mhx -ran 0xXE000,O0xFFFF -S1
The data from 0xEOQO through OxFFFF is formatted and output in the S1 record.

m2ms sfmtfile.mhx -ran O0xE000, OXFFFF -S2
The data from OxEOOO through OxFFFF is formatted and output in the S2 record.

m2ms sfmtfile.mhx -ran O0xE000, OxFFFF -S3
The data from OxXEQQO through OxFFFF is formatted and output in the S3 record.

280 PART IV OBJECT FORMAT CONVERTERS

16.3 Details of Options of the Format Adjuster

16.3.4 Specifying the HEX Format Output (-116/-120/-132)

Use this option to specify a HEX format to be used when data is output.
This option is for the HEX format adjuster (h2hs).

B Specifying the HEX Format Output (-116/-120/-132)
[Format]

-Il6

-I20

-I32

[Parameter]
None
[Description]
Use this option to specify arecord to be used when data contents are output.
The HEX format adjuster outputs the data contents using one of the HEX8, HEX 16, and HEX32 formats.

If more than one of the -116, -120, and -132 options are specified, the one most recently specified is
valid. If none of the -116, -120, and -132 options are specified, the HEX format adjuster outputs the data
contentsinto the HEX 32 format.

[Note]

If the specification in this option and the output range are not consistent with each other, the HEX
format adjuster reports an error and performs no processing.

[Example]
h2hs hfmtfile.hex -ran 0xD000,0x10000 -I16

An error occurs because the output range is up to 0x10000, which cannot be represented in the HEX8
format.

h2hs hfmtfile.hex -ran O0xE000,OxFFFF -I16
The data from 0xEOOO through OxFFFF is formatted and output in the HEX8 format.

h2hs hfmtfile.hex -ran 0xE000,O0XFFFF -I20
The data from OXEQQO through OxFFFF is formatted and output in the HEX 16 format.

h2hs hfmtfile.hex -ran O0xE000,OxXFFFF -I32
The data from OXEOQO through OxFFFF is formatted and output in the HEX 32 format.

PART IV OBJECT FORMAT CONVERTERS 281

CHAPTER 16 FORMAT ADJUSTER (m2ms, h2hs)

16.3.5 Specifying to Change the Starting Address (-ST)

This specifies the starting address used when outputting data. This is used to change
the address of the data.

B Specifying to Change the Starting Address (-ST)
[Format]

-ST <Starting address>

[Parameter]
<Starting address>
Starting address
[Description]
This specifies the starting address used when outputting data.
The format adjuster determines the starting address of data normally using the starting address specified
by the output range specification (-ran).
Specifying this option changes the starting address when outputting.
[Exampl€]
m2ms sfmtfile.mhx -ran 0xDO000,O0xFFFF -ST 0x0000

This forms the data in the sfmtfile.mhx from 0xD0O0O to OXFFFF address. It outputs this as data from
0x000 address.

m2ms sfmtfile.mhx -ran 0xD000,O0xFFFF -ST 0x10000
This forms the data in the sfmtfile.mhx from 0xD0O0O to OXFFFF address. It outputs this as data from
0x10000 address.

m2ms sfmtfile.mhx -ran 0xD000, OXFFFF -ST

(Example where parameters are omitted.)
There is an error where the starting address is omitted.

282 PART IV OBJECT FORMAT CONVERTERS

CHAPTER 17
BINARY CONVERTER
(m2bs, h2bs)

This chapter describes the conversion formats of binary
converter.

17.1 Outline of Binary Converter
17.2 List of Options of Binary Converter

17.3 Details on Options of the Binary Converter

PART IV OBJECT FORMAT CONVERTERS 283

CHAPTER 17 BINARY CONVERTER (m2bs, h2bs)

17.1 Outline of Binary Converter

The binary converter converts files output by the S format or HEX format into binary
data files.

It not only simply converts to binary data, but also supports a split mode that separates
files into several files for output.

B Outline of the Binary Converter

The binary converter converts object files of the S format or HEX format made by the linkage kit into
binary data (memory images) and outputs them to files.

Use m2bsto convert the S format into binary data; use h2bs to convert the HEX format into binary data.

It is possible to specify a multiple of input files (S format or HEX format). Also, it is possible to separate
converted binary data into a multiple of files of specified byte sizes (hereinafter referred to as the split
mode).

Figure 17.1-1 Overview of the Binary Converter

S format file > m2bs > Binary data file

(-mhx) (.bin)

HEX format file > hobs > Binary data file

(-hex) (.bin)

Note:

The portion of an input file containing no data is padded with OxFF (default value). The binary data
file to be output is the contents of memory that is output into a file without changes.

Use the padding option (-p) to pad with a specified value the portion of an input file containing no
data. For details on how to use this option, see Section "14.3 Specifying Padding Data (-p)".
The default extension of an output binary file is .bin. In the split mode, the extension .bxx (xx is a
two digit number (01 through 16)) is unconditionally added.

284 PART IV OBJECT FORMAT CONVERTERS

B Overview of the Split Mode

17.1 Outline of Binary Converter

A split mode means that the memory image converted by binary converter is split for specified bytes and
output into multiple binary datafile.

Figure 17.1-2 shows an overview of the split mode. In Figure 17.1-2, every byte of datais output in turns
into two files. In the split mode, every specified byte of data may be output in turns into sixteen files

maximum.

Use the -sp option to specify the split mode. For details on how to use the -sp option, see Section "17.3.2

Specifying the Split Mode (-sp)".

Figure 17.1-2 Overview of the Split Mode

—— Binary Converter

Input file

— Converted memory image

v

0x00 | Ox01 | 0x02 | Ox03 | 0x04

0x05 | 0x06 | Ox07

0x08 | 0x09

..

v

Binary data
file 1

— Contents of binary data file 1

0x00 | Ox02 | 0x04

0x06 | 0x08

Binary data
file 2

— Contents of binary data file 2

0x01 | 0x03 | 0x05

0x07 | 0x09

PART IV OBJECT FORMAT CONVERTERS 285

CHAPTER 17 BINARY CONVERTER (m2bs, h2bs)

17.2 List of Options of Binary Converter

Section 17.2 lists the option names and functions of binary converter.

B List of Options of the Binary Converter
Table 17.2-1 lists options of the binary converter.
Table 17.2-1 List of Options of the Binary Converter

Function Option Remarks
Changing an output file name -0 * Common option for a converter
Specifying padding data -p * Common option for a converter
Specifying the output range -ran need
Specifying the split mode -sp
Specifying the inhibition of the split mode -Xsp
Specifying to create amap list file -m
Specifying not to create amap list file -Xm
Specifying not to read a default option file -Xdof * Common option
Specifying to read an option file -f * Common option
Specifying to display help messages -help * Common option
Specifying to output the version number and messages -V * Common option
Specifying not to output the version number and messages -XV * Common option
Specifying to display atermination message -cmsg * Common option
Specifying not to display a termination message -Xcmsg * Common option
Specifying to set the termination code to 1 when awarning -cwno * Common option
occurs
Specifying to set the termination code to 0 when awarning -Xcwno * Common option
occurs

286 PART IV OBJECT FORMAT CONVERTERS

17.3 Details on Options of the Binary Converter

17.3 Details on Options of the Binary Converter

Section 17.3 describes the options of the binary converter.

For information on the common options for linkage kit, see "CHAPTER 3 COMMON
OPTIONS". For information on the common options for a converter, see "CHAPTER 14
COMMON OPTIONS OF AN OBJECT FORMAT CONVERTER".

B Specifying the Output Range (-ran)
This option specifies the range of an S format or HEX format to be converted to a binary image. For
details, see Section "17.3.1 Specifying the Output Range (-ran)".

B Specifying the Split Mode (-sp)
This option specifies that a binary image is output in the split mode. For details, see Section "17.3.2
Specifying the Split Mode (-sp)".

B Specifying the Inhibition of the Split Mode (-Xsp)
This option nullifies the split mode specification (-sp). For details, see Section "17.3.3 Specifying the
Inhibition of the Split Mode (-Xsp)".

B Specifying to Create a Map List File (-m)
This option specifies that conversion information is output in a map list file. For details, see Section
"17.3.4 Specifying to Create aMap List File (-m)".

B Specifying not to Create a Map List File (-Xm)

This option nullifies the specification to create a map list file (-m). For details, see Section "17.3.5
Specifying not to Create aMap List File (-Xm)".

PART IV OBJECT FORMAT CONVERTERS 287

CHAPTER 17 BINARY CONVERTER (m2bs, h2bs)

17.3.1

Specifying the Output Range (-ran)

Use addresses to specify the range to be converted to a binary image.
This option must be specified for binary converter.

B Specifying the Output Range (-ran)

288

[Format]

-ran < Starting address > [, < Ending address >]

[Parameters]

<Starting address>
Starting address

<Ending address>
Ending address

[Description]
Use addresses to specify the range of an S format file to be converted to a binary image.
This option must be specified before converting.
Specify the starting and ending addresses between 0x0 and OxFFFFFFFF inclusive.

The ending address may be omitted. If so, data as much as 64Kbytes from the starting address is
converted to binary.

Y ou cannot specify values that will make the conversion size more than 2Gbytes.
[Example 1]
m2bs sfmtfile.mhx (An example of not using the -ran option)
An error occurs because the output range is not specified.
[Example 2]
m2bs sfmtfile.mhx -ran 0xD000, OXFFFF
The data in sfmtfilemhx at addresses 0xD0O0O through OXFFFF is extracted and output into a binary
imagefile.
[Example 3]

m2bs sfmtfile.mhx -ran 0xD000 (An example of not using the ending address)
The datain sfmfile.mhx as much as 64K bytes from the address 0xD0O00 (0x0D000 through OX1CFFF) is
extracted and output into a binary image file.

[Example 4]
m2bs sfmtfile.mhx -ran OxFFFF, 0xD000
An error occurs because the specified ending address is smaller than the starting address.
[Example 5]
m2bs sfmtfile.mhx -ran (An example of omitting all the parameters)
An error occurs because the starting address is omitted.

PART IV OBJECT FORMAT CONVERTERS

17.3 Details on Options of the Binary Converter

17.3.2 Specifying the Split Mode (-sp)

Specify this option to output a binary image in the split mode.

B Specifying the Split Mode (-sp)
[Format]

-sp < Number of output files > [, < Number of bytes >]

[Parameters)

<Number of output files>
Specifies how many output destination files should be split into. A value between 2 and 16 inclusive
may be specified.
<Number of bytes>
Specifies the unit of splitting data in bytes. A value between 0x01 and OxFFFFFFFF inclusive may be
specified.

[Description]
This option is used to output data in turns into multiple files. Use this option, for example, to output
every two bytes of data in turns into two files when data in 32bits units is configured using two ROMs
with a 16bits data width.

In <Number of bytes>, you cannot specify a value that will cause one or more output files to have zero-
byte output.

The <Number of bytes> may be omitted. If so, thedatais split in 1byte units by default.

This option alows you to output the 64Kbytes data into two 32Kbytes binary image files. However,
this option is used only to output data in turns into multiple files. If you specify the parameters to split
the 65K bytes data into two 32K bytesfiles, the last 1Kbytes datais output into the former file.

If this option is specified, the extension ".bxx" (xX is a two-digit number between 01 and 16 inclusive)
is unconditionally added to the output file.

[Example 1]

m2bs sfmtfile.mhx (Example of not using the -sp option)

A binary image is output into sfmtfile.bin.
[Example 2]
m2bs sfmtfile.mhx -sp 2

Every one byte of abinary image is output in turnsinto sfmtfile.b01 and sfmitfile.b02.
[Example 3]
m2bs sfmtfile.mhx -sp 2,2

Every two bytes of abinary image is output in turnsinto sfmtfile.b01 and sfmtfile.b02.

PART IV OBJECT FORMAT CONVERTERS 289

CHAPTER 17 BINARY CONVERTER (m2bs, h2bs)

17.3.3 Specifying the Inhibition of the Split Mode (-Xsp)

The -Xsp option nullifies the split mode specification (-sp).

B Specifying the Inhibition of the Split Mode (-Xsp)
[Format]

-Xsp

[Parameter]
None
[Description]
Specify this option to nullify the -sp specification.
This option needs not be specified in particular because it is the default.
[Exampl €]
m2bs ccp903.mhx -ran 0xE000, OXFFFF
m2bs cpp903.mhx -Xsp -ran 0xE000, OXFFFF

The default processing does not run in the split mode.
The above specifications are equivalent.

m2bs -f option.file ccp903 -Xsp

Y ou may sometimes want to temporarily change the specification in an option file when the option file
is used to execute the program.

If the -sp option exists in option.file, there is no need to change the contents of option.file. Simply
specify the -Xsp option on acommand line to nullify the -sp option.

290 PART IV OBJECT FORMAT CONVERTERS

17.3 Details on Options of the Binary Converter

17.3.4 Specifying to Create a Map List File (-m)

Use this option to output the information at the time of conversion into a map list file.

B Specifying to Create a Map List File (-m)
[Format]

-m < Map list file name >

[Parameter]

<Map list file name>
Output map list file name

[Descriptions]
Use this option to output information at the time of conversion into amap list file.
The information at the time of conversion is output into a map list file. The following information is
output. Item (4) isoutput only if the -sp option is specified.
Input file name information
Output file name information
Output range information
Split unit information
5. Padding data value information
If the <Map list file> has no extension, the default extension ".mp3" is added.
[Example 1]
m2bs sfmtfile.mhx -ran 0x10000, 0x1FFFF (Example of not specifying the -m option)
A map list fileis not created because the -m option is not specified.
[Example 2]
m2bs sfmtfile.mhx -ran 0x10000,0x1FFFF -m logfile
The information at the time of conversion is output into logfilemp3.

A w bR

Figure 17.3-1 Example 1 of Contents of logfile.mp3

Input file :sfmtfile.mhx

Output file :sfmtfile.bin

Convert range :0x00010000 - OxOOO1lFFFF
Padding data : OXFF

[Example 3]
m2bs sfmtfile.mhx -ran 0x10000,0x1FFFF -m logfile -sp 2,2
Theinformation at the time of conversion is output into logfilemp3.

Figure 17.3-2 Example 2 of Contents of logfile.mp3

Input file :sfmtfile.mhx

Output file :sfmtfile.b0l
:sfmtfile.b02

Convert range :0x00010000 - OxOOO1lFFFF

Split byte 12

Padding data :0xFF

PART IV OBJECT FORMAT CONVERTERS 291

CHAPTER 17 BINARY CONVERTER (m2bs, h2bs)

17.3.5 Specifying not to Create a Map List File (-Xm)

Use the -Xm option to specify not to create a map list file.

B Specifying not to Create a Map List File (-Xm)
[Format]

-Xm

[Parameter]
None
[Description]
Specify this option to nullify the -m specification.
There is no need to specify this option because it is the default.
[Example 1]
m2bs ccp903.mhx -ran 0xE000, OXFFFF
m2bs ccp903.mhx -Xm -ran 0xE000, OXFFFF

A map list fileis not output by default.
The above specifications are equivalent.

[Example 2]
m2bs -f option.file ccp903 -Xm

Y ou may sometimes want to temporarily change the specification in an option file when the option file
is used to execute the program

If the -m option exists in option.file, you need not change the contents of option.file but simply specify
the -Xm option on acommand line to nullify the -m option.

292 PART IV OBJECT FORMAT CONVERTERS

CHAPTER 18

OTHER CONVERTERS

This chapter describes the commands of other
converters in detail.

18.1 m2is (Converting a S Format File into the HEX8 Format)
18.2 m2es (Converting a S Format File into the HEX16 Format)
18.3 i2ms (Converting a HEX8 Format File into the S Format)
18.4 e2ms (Converting a HEX16 Format File into the S Format)

PART IV OBJECT FORMAT CONVERTERS 293

CHAPTER 18 OTHER CONVERTERS

18.1 m2is (Converting a S Format File into the HEX8 Format)

A S format file is converted into the HEX8 format.
Data at the addresses 0 through OxFFFF is to be converted.

B m2is (Converting a S Format File into the HEX8 Format)
[Function]

The m2is command converts a S format file into the HEX8 format.

Figure 18.1-1 m2is (Converting S Format File into HEX8 Format)

S format file —» m2is —» HEX8 format file

(.mhx) (-ihx)

Note:

The S format can represent the addresses 0 through OxFFFFFFFF. However, when converted into
the HEX8 format, the data allocated at the addresses 0x10000 and higher is truncated.

When using this command, be careful of the range of addresses in the conversion source.

Since the HEXS8 format file consists of data records and a trailer record, the starting address
information in the S format will be lost.

294 PART IV OBJECT FORMAT CONVERTERS

18.2 m2es (Converting a S Format File into the HEX16 Format)

18.2 m2es (Converting a S Format File into the HEX16 Format)

A S format file is converted into the HEX16 format.
The data at the addresses 0 through OxFFFFF is to be converted.

Bl m2es (Converting a S Format File into the HEX16 Format)
[Function]
The m2es command converts a S format file into the HEX 16 format.

Figure 18.2-1 m2es (Converting S Format File into HEX16 Format)

S format file —» m2es —» HEX16 format file

(.mhx) (.ehx)

Note:
The S format can represent the addresses 0 through OxFFFFFFFF. However, when converted into
the HEX16 format, the data allocated at the addresses 0x100000 and higher is truncated.
When using this command, be careful of the range of addresses in the conversion source.

PART IV OBJECT FORMAT CONVERTERS 295

CHAPTER 18 OTHER CONVERTERS

18.3 i2ms (Converting a HEX8 Format File into the S Format)

A HEXS8 format is converted into the S format.
The data at the addresses 0 through OxFFFF is to be converted.

B i2ms (Converting a HEX8 Format File into the S Format)
[Function]

The i2ms command converts a HEX 8 format file into the S format.

Figure 18.3-1 i2ms (Converting HEX8 Format File into S Format)

HEXS8 format file |—» i2ms —p S format file

(.ihx) (.mhx)

Note:

Although the S format can represent the addresses 0 through OxFFFFFFFF, the HEX8 format cannot
represent the addresses 0x10000 and higher. A S format file after conversion is created without the
S2, S3, S7, and S8 types.

Since the HEX8 format does not have starting address information, the starting address after
conversion is to be 0.

296 PART IV OBJECT FORMAT CONVERTERS

18.4 e2ms (Converting a HEX16 Format File into the S Format)

18.4 e2ms (Converting a HEX16 Format File into the S Format)

A HEX16 format is converted into the S format.
The data at the addresses 0 through OxFFFFF is to be converted.

B e2ms (Converting a HEX16 Format File into the S Format)
[Function]
The e2ms command converts aHEX 16 format file into the S format.

Figure 18.4-1 e2ms (Converting HEX16 Format File into S Format)

HEX16 format file —» e2ms —p| S format file

(.ehx) (.mhx)

Note:
Although the S format can represent the addresses 0 through OxFFFFFFFF, the HEX16 format
cannot represent the addresses 0x100000 and higher. A S format file after conversion is created

without the S7 and S3 types.
The starting address information in the HEX16 format is set in the S9 or S8 type.

PART IV OBJECT FORMAT CONVERTERS 297

CHAPTER 18 OTHER CONVERTERS

298 PART IV OBJECT FORMAT CONVERTERS

CHAPTER 19

RESTRICTIONS AND
QUESTIONS AND ANSWERS
ON AN OBJECT FORMAT
CONVERTER

This chapter describes restrictions and questions and
answers on using an object format converter.

19.1 Restrictions on an Object Format Converter

19.2 Questions and Answers on Using an Object Format Converter

PART IV OBJECT FORMAT CONVERTERS 299

CHAPTER 19 RESTRICTIONS AND QUESTIONS AND ANSWERS ON AN OBJECT FORMAT CONVERTER

19.1 Restrictions on an Object Format Converter

There are several restrictions in the binary converter and format adjuster. No other
restrictions have been created for processing when using the other object format
converters. It is possible to process using the entire memory that the object format
converter can use in execution.

B Restrictions on a Object Format Converter
Table 19.1-1 shows the restrictions when using the object format converter.
However, thisis not the maximum limit value available for processing.
Object format converter performs processing, gaining a memory dynamically.
Object format converter outputs an error message with an insufficient memory, when gaining a memory
required for processing becomes impossible, and processing is interrupted.
Table 19.1-1 Object Format Converter Restrictions List

Item Restriction Value Remarks
Option file count Limitless Memory dependent
Option file internal line count Limitless Memory dependent
Option fileinternal character count per 1 line Limitless Memory dependent
Option file nest Not possible
Input file count (m2bs,m2ms,h2bs,h2hs) 64
Input file count (expected above) 1
I/Ofilesize Limitless OS dependent
I/Ofile Line Count Limitless OS dependent
File name character count Limitless OS dependent
Maximum Memory Address OxFFFFFFFF
Maximum convert size (m2bs,m2ms,h2bs,h2hs) 2Gbyte - 1byte Memory dependent

B Cautionary Information Concerning Binary Converter and Format Adjuster
Y ou can specify up to atotal of 64 itemsfor the input file.
If you have set a number of input files, they are processed in order their being set.
If there is data for the same address in the input file, the subsequent data overwrites the antecedent data.

Y ou can convert a maximum of 2Ghyte-1byte bytes at one time.

300 PART IV OBJECT FORMAT CONVERTERS

19.2 Questions and Answers on Using an Object Format Converter

19.2 Questions and Answers on Using an Object Format
Converter

Section 19.2 covers the questions and answers on using an object format converter.

B Questions and Answers on Using an Object Format Converter

Q. There are many converters available. Which one should | use?

A. A converter is used to convert an absolute format load module file that is output by a
linker to an object format that can be read by a ROM writer.

It is recommended to use f2ms converting to the S format and f2hsto the HEX format
because the f2ms and f2hs fully support the 32bits addressing space.

Use other conversion tools as required.

Example f2ms absfile.abs -> Outputs absfile.mhx in the S format

Q. When | use binary converter and format adjuster, an error, "FO001U: Insufficient
memory" isoutput and | cannot convert datato a binary image. What should | do?

A. Binary converter and format adjuster secure as much memory asthe areato be converted.
If you try to convert alarge areato the memory image at once, an error, "F9001U:
Insufficient memory" may be output and the processing interrupted. In such a case, split
the target area into multiple continuous areas and create a memory image for each of
them. Then, merge the files into one binary image.

Example Converting the binary image area from 0xC00000 through OxFFFFFF
- If enough memory can be secured (Normal):
1 m2bs absfile.mhx -ran 0xC00000,0xFFFFFF

- If an error, "FO001U: Insufficient memory" is output:

1 m2bs absfile.mhx -ran 0xC00000,0xDFFFFF -0 absfilel.bin
2 m2bs absfile.mhx -ran 0xE00000,0xFFFFFF -0 absfile2.bin
3 copy /b absfilel.bin + absfile2.bin absfile.bin

PART IV OBJECT FORMAT CONVERTERS 301

CHAPTER 19 RESTRICTIONS AND QUESTIONS AND ANSWERS ON AN OBJECT FORMAT CONVERTER

302 PART IV OBJECT FORMAT CONVERTERS

APPENDIX

These appendixes describe the error messages of the
linkage kit, HEX format, and S format.

APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT
APPENDIX B HEX FORMAT

APPENDIX C S RECORD FORMAT

APPENDIX D LIST OF LINKER OPTIONS

APPENDIX E LIST OF LIBRARIAN OPTIONS

APPENDIX F LIST OF COMMANDS AND OPTIONS OF THE OBJECT
FORMAT CONVERTER

APPENDIX G SPECIFICATION DIFFERENCES DEPENDING ON THE
(ON)

303

APPENDIX

APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT

This section explains the classification of error messages output by each tool of the
linkage kit and the display format.

B Linkage Kit Error Message Classes

304

Error messages can be classified into the following four levels based on their importance.

@ Information

Information notifies the user of contents to confirm the processing. Since thisis no errors, and the user can
obtain correct processing results.

@ Warning

Warnings are dlighter than errors, and output results can be used almost without causing any trouble. It is
possible that other processing than the user system is executed. Check the contents of messages before
determining whether output results can be used.

@® Error

Processing continues to be executed, but troubles which make it impossible to obtain correct results have
occurred. The causes of errors must be removed before rerun.

@ Fatal error

Errors which make it impossible to continue processing. This type of errors results from wrong
specifications of the user or problems of the execution environment.

APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT

B Linkage Kit Error Message Display Format
Error messages are output by each tool in the following format.

Figure A-1 Linkage Kit Error Message Display Format

*** Eile name (line number) XnnnnT: Message text (supplementary message)

Part

Explanation

File name
(line number)

The name of the source file in which an error occurred and the
source line number.
This information is only output in the massage of a part of linker.

The level of each error is indicated by the following one alphabetical
character.

X | ... Information E ... Error
W ... Warning message F ... Fatal error
Error number
The following shows the correspondence between the error number
and error level.
nnnn 0000 - 0999 ... |
1000 - 1999 ... W
4000 - 4999 ... E
9000 - 9999 ... F
The tool identification is indicated by the following one alphabetical
T character.

L ... Linker
U ... Librarian, object format converter

Message text

Error message text (Japanese/English can be selected)

Supplementary
message

Detailed information about error.
The causes of error are displayed with the symbol names.
This may also be output in error message text.

[Examples]

*** gample.c(234) E4329L: Value out of range (O0xFFFE37D4)

Thisis an example in which the source file name and line number are also displayed.

x R4402U: Duplicated module name (date.obj setdate)
Thisisan example in which neither the source file name nor line number is displayed.

*** F9001U: Insufficient memory
Thisis an example in which neither the source file name nor line number nor supplementary message is

displayed.

305

APPENDIX

B Error Messages of the Linker

I0301L | Unused library (file name)

There are one or more libraries that were not used in linking process.
Thisisamessage which is notified when 2 is specified in the -w option.

I0302L | Debug information not exist (file name)

Debug information is not contained in the input file.

Thisis amessage which is notified when 2 is specified in the -w option.
The error is dighter than W1351.

The message only reports that debug information does not exist.

I0303L | Removed debug information

Output file was created after removing debug information.
Thisisamessage which is notified when 2 is specified in the -w option.

10304L | File include WARNING level error (file name)

Thefileindicated here was warned in a warning message when linking.
Thisis amessage which is notified when 2 is specified in the -w option.

I0305L | Ignore address alignment

Because the -pk option was specified, allocation was carried out ignoring boundary alignment when
linking.
Thisis amessage which is notified when 2 is specified in the -w option.

306

APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT

I0306L | Section allocated automatically in "section name" area

Optimal section allocation was carried out in the areaindicated here.
Thisis amessage which is notified when 2 is specified in the -w option.

I0307L | Lower compatible cpu type object (file name)

Thefileindicated hereisamodule for adifferent CPU type with downward compatibility.

I0309L | Softune V3 type object (file name)

Files indicated here are modules generated using the SOFTUNE V 3 language tools.
Thisisamessage which is notified when 2 is specified in the -w option.

I0310L | Softune V5 type object (file name)

Files indicated here are modules generated using the SOFTUNE V5 language tools.
Thisisamessage which is notified when 2 is specified in the -w option.

I0311L | Specified value out of range (-pw)

The values of 70 to 79 are specified with the -pw option. The linker changes the number of digitsto 80.

W1301L | Writable section located in ROM area (section name)

A writable section was allocated in the address range specified asa ROM area.
Examine the section allocation specification.

307

APPENDIX

308

W1303L | Section with initial data located in RAM area (section name)

A section with initial data was allocated in the address range specified asa RAM area.
Examine the section allocation specification.

W1305L | Section (section name) located on out of ROM/RAM area (area name)

A section which is allocated outside the address range specified by using the -ro or -ra option exists. Check
the section using the section map.

If you cannot get full information from the linker's map list, you can get further information from the
section detail map list.

W1306L | Exceeded maximum address (section name)

A section which was allocated exceeding the maximum address exists.

W1307L | Duplicate section name exist (section name)

Sections with the same name and with different attributes or types exist in multiple modules.

W1308L | Overlap located section (section 1, section 2)

Section alocation is overlapped. Since program operations may be affected depending on the situation,
care must be taken.
It is recommended to avoid overlapping by using the options.

APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT

W1312L | Uncompatible cpu type module (file name)

Thefile displayed here is an incompatible module.
The target CPU for input modules must be the same or a compatible CPU.

This message is output in the following cases.
« Themodule for FR isinput when the load module for FR80 is made.
Please confirm that incompatible instructions are not used about the file to which warning is output.

For detail about incompatible instructions of FR and FR80, please refer to Section "5.12 Mixing a FR
Object and a FR80 Object".

W1314L | Specified address to absolute section (section name)

Since the absolute address has been determined for the section indicated here, the specified section
relocation isillegal.

W1320L | Not search library at mode-identification mode

Library retrieval processing is used only when creating absolute format load modules.
Thelibrary retrieval specification when the -r option is specified isillegal.
Thefollowing is displayed in the mode identification of the supplementary message.

« If therelative format load module output is specified(-r):REL

W1321L | Ignore (option) Option at mode-identification mode

This message is notified when an illegal specification in the specified link mode is set.
For example, since no section allocation is carried out when relative format load module output is
specified, it isillegal to specify the -sc option.

309

APPENDIX

W1325L | Entry point already set

Entry points are set in multiple input modules.
The entry point set first isvalid.

W1326L | Entry point was changed

The entry point already set has been changed by specifying the -e option.

W1327L | Duplicate symbol definition (mangle name / symbol name)

The same external definition symbol exists in multiple input modules.
The symbol value defined first isvalid.

W1328L | Mismatch symbol type (mangle name / symbol name)

This message is notified if the external definition symbol specified when an entry point was set using the -e
option is neither function name nor variable name nor address |abel name.
Thismessageis notified if the level islower than E4326.

W1332L | No match (file name) argument

A file was specified using the wild card, but no corresponding file was found. This specification isignored.

W1351L | Debug information not exist

Part of the list cannot be created due to insufficient debug information.
Specify the debug information add option -g when compiling, assembling, or linking.

310

APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT

W1367L | Duplicated module name (file name module name)

The same module name aready exists as that intended for linking.

Duplicated module names are not allowed because the problem, such as the correct modulesis not specified
at the time of creating the absolute assemble list and debugging is generated.

Please, change the module names.

The C/C++ compiler automatically generates the module name from the file name.

Please, change the file names.

W1368L | The area specified for the -ro option is outside the internal-ROM area
(area name)

The area specified for the -ro option is outside the internal-ROM area.
Check whether the specified areais correct.
Thiswarning is output even if warning output suppression (-w 0) is specified.

W1369L | The area specified for the -ra option is outside the internal-RAM area
(area name)

The area specified for the -ra option is outside the internal-RAM area.
Check whether the specified areais correct.
Thiswarning is output even if warning output suppression (-w 0) is specified.

W1370L | The section is placed outside the ROM area (section name)

The section that should be placed within the ROM areais placed outside the ROM area.
Check the map file to see if the placement is correct.
Thiswarning is output even if warning output suppression (-w 0) is specified.

W1371L | The section is placed outside the RAM area (section name)

The section that should be placed within the RAM areais placed outside the RAM area.
Check the map file to seeif the placement is correct.
Thiswarning is output even if warning output suppression (-w 0) is specified.

311

APPENDIX

312

W1372L | The section is placed outside the RAM area or the 1/0 area
(section name)

The section that should be placed within the RAM area or the I/O area is placed outside the RAM area or
the 1/O area.

Check the map file to see if the placement is correct.

Thiswarning is output even if warning output suppression (-w 0) is specified.

W1373L | The section is placed outside the I/O area (section name)

The section that should be placed within the I/O areais placed outside the 1/O area.
Check the map file to see if the placement is correct.
Thiswarning is output even if warning output suppression (-w 0) is specified.

E4302L | Not found section or section group name (section name or group hame)

The section name or group name specified by the -sc option cannot be found.

E4303L | Undefined ROM/RAM area name (area name)

The ROM/RAM area name specified by the -sc option is not defined.

E4304L | Symbol name is not found (mangle name / symbol name)

This message is notified if the external reference symbol specified by the -df option or the external
definition symbol specified by the -e option cannot be found.

APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT

E4305L | Unresolved external symbol (mangle name / symbol name)

Because the definition of the external definition symbol could not be found, relocation could not be carried
out.

This message is notified if the external definition symbol specified by the -df option cannot be found.

It is necessary to combine the modules contained the external definition symbol.

E4312L | Uncompatible cpu type module (file name)

Thefile displayed here is an incompatible module.
The target CPU for input modules must be the same or a compatible CPU.

This message is output in the following cases.
¢ Themodule for FR80 is input when the load module for FR is made.
e Themodulefor FR isinput when the load module for FR80 is made.

For detail about incompatible instructions of FR and FR80, please refer to Section "5.12 Mixing a FR
Object and a FR80 Object".

E4319L | Section not exists (section name)

The section specified by the grouping option(-gr) cannot be found.
This message is also notified if the section indicated here is an absolute section, sinceit is not intended for
section relocation.

E4326L | Different symbol type (mangle name / symbol name)

This message is notified if the external definition symbol specified when an entry point was set
using the -e option is neither function name nor variable name nor address label name.

E4327L | lllegal RL information

This message is notified if any error in relocation information is found.

313

APPENDIX

314

E4329L | Value out of range (value)

Overflow occurred in relocation operations.

This message contains the source program name including the description of data for relocation and the
line numbers. Use thisinformation to check the program.

If you can use the tag jump of your editor, you can jump to the corresponding source linesimmediately.

E4330L | Devide by O

Thedivisor in the division for relocation operationsis 0.

E4331L | Indispensable to locate address (section name)

This message is notified if there is no addressing by the -sc option or a section without any specification is
found.

E4332L | Not handling group name (group name)

A group name cannot be specified when aROM— RAM transfer section is specified using the -sc option.

E4333L | Not specified ROM address (section name)

No ROM address is specified for relocation information to be allocated in the ROM area.
Specify a ROM address using the -sc option.

APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT

E4351L | Relocatable assemble list not correspond to object file (file name)

No object corresponding to the relative assemble list file indicated by the supplementary message is found.
The linker stops processing of the list file indicated by the supplementary message, and proceeds with
processing of the next list file.

E4352L | Relocatable assemble list file not found (file name)

Therelative format assemble list file indicated by the supplementary message is not found.
The linker does not create an absolute format assemble list file corresponding to the file name indicated by
the supplementary message, and continues processing.

E4354L | lllegal relocatable assemble list file format (file name)

The linker cannot process the format of the relative assemble list file indicated by the supplementary
message.

The linker stops processing of the list file indicated by the supplementary message, and proceeds with
processing of the next list file.

E4355L | Object data not correspond (file name)

Object data of the absolute format load module file and source data of the relative format assemble list
indicated by the supplementary message do not match.
Rerun the program after reassembling.

E4357L | Too many array dimension or structure nested : exceeded 8

The number of dimensions of an array output to the ARRAY list or that of nesting levels of a structure
exceeds 8.
Processing continues, but those parts which exceed this limit are not output.

315

APPENDIX

E4362L | DUMMY section specified (file name)

A dummy section is specified in afileindicated by the supplementary message.
Do not write any dummy section when creating an absolute format assemble list.

E4363L | Exceeded maximum section size (section name)

One or more sections which exceed the maximum size of a section exist. Some sections have the
maximum size depending on their section identification. This message is output if such limits are
exceeded.

Examine such sections.

E4365L | Not found locatable address in area name (section name)

No place in the specified allocation area where the applicable section can be allocated can be found.
Examine the section configuration in the area.

E4366L | Not found locatable address (section name)

No placein all address space where the section can be alocated can be found.
Examine the program structure.

E4367L | Duplicated module name (file name module name)

The same module name already exists as that intended for linking.
Duplicated module names are not allowed. Change the module names.

316

APPENDIX A ERROR MESSAGES OF THE LINKAGE

KIT

E4369L | Invalid module : conflict compile model (file name)

A module of adifferent compile model cannot be linked.

E4370L | CPU information file not found (file name)

The target CPU information file specified by the -cpu option cannot find.
Thisis detected when the file below is not found.

e %FETOOL%\LIB\911\911.CSV

* %FETOOL%\LIB\911\cpu_info*.CSV

E4371L | CPU information not found (file name)

Thetarget CPU information, in the CPU information file, specified by the -cpu option cannot find.
Thisis detected when the target CPU information specified in the file below is not found.

* %FETOOL%\LIB\911\911.CSV

o %FETOOL%\LIB\911\cpu_info* .CSV

E4701L | Symbolis referenced as an explicit specialization and a generated instantiation
(symbol name)

The same function as the template function to which substance is generated is defined.

E4702L | Error occurred during symbol name decoding (symbol name)

The error occurred during the decoding of the symbol name.
The symbol nameisused asit is.

317

APPENDIX

F9001L | Insufficient memory

Enough memory is not available to execute the program. If the linker is activated from a batch file, start
the program directly from the command line.

F9011L | Input file not found (file name)

The specified input file cannot be found.

F9012L | Library file not found (file name)

If the name of the fileindicated here is a default library file, the following things are the causes.
When the environment variable LIB911 is set up.

- Thelibrary fileis not stored in the directory indicated by the environmental variable LIB911
When the environment variable LIB911 is not set up.

- Thelibrary fileis not stored in the directory derived from the environmental variable FETOOL

If thefileisalibrary file specified by the -1 or -el option, check whether the file name is specified correctly
or the retrieval path specified in the -L option is correct.

F9015L | File open error (file name)

If the file indicated here is an output file, it is possible that the number of files that can be managed by one
directory is exceeded. Remove or move unnecessary files.

F9016L | File read error (file name)

It is probable that the file is read-protected.

318

APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT

F9017L | File write error (file name)

The disk does not have enough free space, so the file indicated here can be written. Prepare sufficient free
space in the disk before rerunning the linker.
This message is aso notified if awrite-protected file with the same name exists.

F9021L | Too many options

Too many input file names and options (including those in the option file) are specified on the command
line.
Divide the files and options, and then activate the linker more than once.

F9022L | lllegal option name (option)

The option cannot be used by the linker. See the -help option or this manual .

F9023L | lllegal option parameter (option)

An error isfound in parameters to be specified for this option.
It is probable that the parameters fall short or a syntactical error such as adelimiter error has occurred.

F9024L | lllegal character (option)

An error isfound in parameters to be specified for this option.
This message is notified if an error due to the use of illegal characters such as that in the method of
specifying numeric valuesis assumed.

319

APPENDIX

320

F9026L

Specified value out of range (value)

A value which is outside the range of alowed values by the -pl, -pw, or -w option is specified.

F9027L

Option file nested

Nesting of option filesisnot allowed. Delete the -f option described in the option file.

F9030L

Missing input file name

Specify an input file.

F9032L

Output file name same as input one (file name)

Since the output file name indicated here is the same as the input file name, processing cannot continue.

FO033L

lllegal file format (file name)

This message is notified in one of the following cases.

e Thelibrary file format is not correct.

e Theobject module format in alibrary fileis not correct.

e Theinput fileis an absolute format load module.

e Contents of an input module are not correct.

« Theformat of arelative format assemble list fileis not correct.
» CPU Information file format is not correct.

APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT

F9040L | Duplicated file or path name (file name)

This message is notified in one of the following three cases.

* Input module files of the same name are specified.

e Library files of the same name are specified in the -I, or -el option.

* The same library path nameis specified in the -L option more than once.

F9042L | Duplicated section name (section name)

The same section name was specified in the -sc or -gr option more than once.

F9043L | Duplicated symbol name (mangle name / symbol name)

The same external reference symbol was specified in the -l option more than once.

F9044L | Duplicated section group name (group name)

The same group hame was used more than once when setting groups using the -gr option.

F9047L | No match file name argument

A filewas specified using the wild card, but no corresponding file was found.

F9052L | Missing ’-cpu’ option

No target CPU is specified using the -cpu option.
It is necessary to specify the target CPU by the -cpu option.

321

APPENDIX

F9053L | Missing '-ro’ or '-ra’ option

The -ro option or -ra option required for automatic allocation is not specified.

F9054L | Duplicate section name exist (section name)

Sections with the same name and with different attributes or types exist in multiple modules.
This error is output to "Absolute Assemble List Output”.

FO055L | Prelink command process returns error

The error occurred by pre-link process.

FO056L | Mismatch CPU information file version

The CPU information file is not suited old.
Please obtain the CPU information file of the latest.

F9070L | Cannot change directory (directory name)

The description of the directory in the Instantiation information file is not correct.
Please compile each object again, update the instantiation information file, and execute the linker again.

322

APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT

F9072L | Compile command process returns error

Linker uses a C/C++ compiler, in order to generate a template function, in case the object file created by
C++islinked.

In the following cases, this message is outputted.

- Theinput file format (.obj) is not correct.

- Thememoriesfor starting a C/C++ compiler are insufficient.
- The C/C++ compiler is outputting the error.

FI9073L | Instantiation assigned to more than one file (file name)

The instantiation of the same symbol is specified with another instantiation information file.
Please compile each input file again, update the instantiation information file, and execute the linker again.

F9074L | Instantiation information file is missing (file name)

The instantiation information file is not found though the instantiation is necessary for input file (*.obj).
Please compile each input file again, create the instantiation information file, and execute the linker again.

F9998L | File open failed (file name)

The message files used by the linker could not be opened.
Store the error message files in a predetermined directory.

e 1kt911 amsgor Ikt911 e.msg

F9999L | Internal error (identification information)

 If thiserror occurs, report it to Fujitsu immediately. Error Messages for the Librarian

323

APPENDIX

324

10401U | Reference to undefined symbol

This is a message reported if the -c option is specified. This message indicates that, after checking external
symbols in the library file, external reference symbols that cannot be resolved in the library file are
contained. When alibrary file for which this message is output is used in the linker, care must be taken to
know to which module of the external definition symbols to be used belong.

10402U | Debug information exists

This is a message reported if the -c option is specified. This library file contains a module which includes
debug information. Debug information in the library file can be removed using the -O option.

10407U | Lower compatible CPU type object (file name)

The file indicated here is an object file or a library file which contains a module of a different CPU type
downwardly compatible with the library file.

10409U | Softune V3 type object (file name)

Files indicated here are modules generated using the SOFTUNE V 3 language tools.

10410U | Softune V5 type object (file name)

Files indicated here are modules generated using the SOFTUNE V5 language tools.

10411U | This is an old-format library file. (file name)

Thefile displayed here is alibrary made by the SOFTUNE V3 (or V5) language tool.
A backup fileis automatically made for the library file that has not been edited yet. The extension is .bak.

APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT

W1401U

Ignore "-pl’ option

Though the number of lines of the list is specified(-pl options), the output of the target map list is not
specified. This specification isignored.

W1402U

Ignore "-pw’ option

Though the number of lines of the list is specified(-pw options), the output of the target map list is not
specified. This specification isignored.

W1403U

Ignore ’-g’ option

The specification of creation of a library with debug information (-g option) has any meaning only if

addition (-a option) or replacement (-r option) of amoduleis specified. This specificationisignored.

W1404U

Nothing to operate

There was no library file change nor module extract operation.

W1405U

Module not exists to delete (module name)

The module specified by the -d option is not included in the library file.
Check the registered module names using the -m option.

W1406U

Module not exists to extract (module name)

The module specified by the -x optionis not included in the library file.
Check the registered module names using the -m option.

325

APPENDIX

326

W1412U | Uncompatible cpu type module (file name)

Thefile displayed here is an incompatible module.
Thetarget CPU for input modules must be the same or a compatible CPU.

This message is output in the following case.
e Themodulefor FR isinput when the load module for FR80 is made.
Please confirm that incompatible instructions are not used about the file to which warning is output.

For detail about incompatible instructions of FR and FR80, please see Section "9.9 Mixing a FR Object
and aFR80 Object".

E4402U | Duplicated module name (file name module name)

An attempt was made to register amodule with the same name as that which has already been registered.
Duplicated names are not allowed in one library and so the module indicated here is not registered. Use the
-r option for replacement.

E4403U | Duplicated external definition symbol name
(file name symbol name)

The registered modules contain external definition symbols and the symbol indicated here has aready been
registered in the library.

Duplicated externa definition symbols are not alowed in one library, the module which contains the
symbol indicated here is not registered.

E4404U | Invalid module : type (file name)

Only the object module format output by the assembler can be registered in the library file. The absolute
format and relative format load modules output by the linker cannot be registered.

E4405U | Invalid module : conflict tool name (file name)

Thisisnot an object file output by the family assembler that can be handled by thislibrarian.

APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT

E4406U | Invalid module : conflict compile model (file name)

A module of a different compile model (such as the memory model) cannot be registered in the same
library.

E4407U | Invalid module : conflict CPU type (file name)

A module of adifferent CPU type cannot be registered in the same library.
Or , thelibrary file which is different from the target CPU is specified.

E4412U | Uncompatible cpu type module (file name)

Thefile displayed here is an incompatible module.
The target CPU for input modules must be the same or a compatible CPU.

This message is output in the following cases.
« Themodulefor FR80 isinput when the library file for FR is made.
e Themodulefor FR isinput when the library file for FR80 is made.

For detail about incompatible instructions of FR and FR80, please see Section "9.9 Mixing a FR Object
and a FR80 Object".

E4470U | CPU information file not found (file name)

Thetarget CPU information file specified by the -cpu option cannot find.
Thisis detected when the file below is not found.

e %FETOOL%\LIB\911\911.CSV
e %FETOOL%\LIB\911\cpu_info*.CSV

327

APPENDIX

328

E4471U | CPU information not found (file name)

Thetarget CPU information, in the CPU information file, specified by the -cpu option cannot find.
Thisis detected when the target CPU information specified in the file below is not found.

o %FETOOL%\LIB\911\911.CSV
* %FETOOL%\LIB\911\cpu_info*.CSV

F9001U | Insufficient memory

Enough memory is not available to execute the program.

F9015U | File open error (file name)

If the file indicated here is an output file, it is possible that the number of files that can be managed by one
directory is exceeded. Remove or move unnecessary files.

F9016U | File read error (file name)

It is possible that the file is read-protected.

F9017U | File write error (file name)

It is possible that a write-protected file with the same name exists.
Or it is aso possible that not enough free space of the disk is available, so the file can be written. Prepare
enough free space in the disk before rerunning the librarian.

APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT

F9021U | Too many options

Too many input file names and options (including those in the option file) are specified on the command
line.
Divide the files and options, and then activate the librarian more than once.

F9022U | lllegal option name (option)

An error isfound in the option name specification. Correct the command line and then reactivate.

F9023U | lllegal option parameter (option)

An error isfound in the parameters to be specified in this option.

F9026U | Specified value out of range (value)

The value cannot be specified in the parameters of the -pl or -pw option.
See the -help option or this manual .

F9027U | Option file nested

Nesting of option filesis not allowed. Delete the -f option described in the option file.

329

APPENDIX

F9033U | lllegal file format (file name)

This message is output in the following cases.

* Thelibrary file format is not correct.

¢ The object module format in the library file is not correct.
* Theinput fileis the absolute format load module.

« The contents of the input module is not correct.

e Theassemblelist file of the relative format is not correct.
* Theformat of the CPU information file is not correct.

F9035U | Missing library file name

Thelibrary file name is not correctly specified.
Specify the library file name correctly.

F9036U | Multiple library file name specified (file name)

Only one library file can be specified. Select either the file name indicated here or a library file name
specified before.

F9045U | -O' option conflict with another option

If the -O option is specified, other options cannot be specified.

F9046U | ’-c’ option conflict with another option

Do not combine the -c¢ option with any other options.

330

APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT

F9047U | No match (file name) argument

A filewas specified using the wild card, but no corresponding file was found.

F9052U | Missing '-cpu’ option

No target CPU is specified using the -cpu option.
The target CPU must be specified using the -cpu option.

F9056U | Mismatch CPU information file version

The CPU information file is not suited old.
Please obtain the CPU information file of the |atest.

F9998U | File open failed (file name)

The message files used by the librarian could not be opened.
Store the error message files(lkt_a.msg,Ikt_e.msg)in a predetermined directory.

F9999U | Internal error (identification information)

If this error occurs, report it to Fujitsu immediately.

331

APPENDIX

B Error Messages of the Object Format Converter

332

I0501U | Skip start address record

The start address record was contained in the HEX format, but it was skipped since it was not required.
Converter processing is not affected and conversion is carried out correctly.

W1501U | File include WARNING level error (file name)

Thefile specified for input contains an error of the warning level when linking. Check the file before using
it.

W1502U | Unable to convert address (address)

The file to be converted contains address data that cannot be represented in the converted format. All data
after the address indicated here is discarded.
Change the converted format.

W1503U | -entry option was specified at the time of -116 specification

The start address output specification option is specified at specifying -116.

W1504U | Start address information is not in an input file

The start address information dose not exist in the input load module file. The f2hs outputs the HEX format
without outputting the start address record.

APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT

F9001U | Insufficient memory

Enough memory is not available to execute the program.

F9011U | Input file not found (file name)

Thefile specified in the input file cannot be found.

F9015U | File open error (file name)

If the file specified here is an output file, it is possible that the number of files that can be managed by one
directory is exceeded. Remove or move unnecessary files.

F9016U | File read error (file name)

It is probable that the file is read-protected or hardware fault has occurred.

F9017U | File write error (file name)

The disk does not have enough free space, so the file indicated here can be written. Prepare sufficient free
space in the disk before rerunning the converter.

F9021U | Too many options

Too many input file names and options (including those in the option fil€) are specified on the command line.

333

APPENDIX

F9022U | lllegal option name (option)

The option cannot be used for the converter. See the -help option or this manual.

F9023U | lllegal option parameter (option)

An error isfound in parameters to be specified for this option.

F9026U | Specified value out of range (value)

A value outside the range allowed by the option is specified.

F9027U | Option file nested

Nesting of option filesis not allowed. Delete the -f option described in the option file.

F9028U | Specified address too large (option: s=addressl e=address2)

The address specified in parameters of the option cannot be represented in the converted file format.
Specify another address.

F9029U | Start address opposite to end one (option: s=address1 e=address2)

The end address in parameters of the option is smaller than the start address.

334

APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT

F9030U | Missing input file name

Specify the name of an input file to be converted.

F9031U | Multiple input file name (file name)

Only one input file can be specified. Specify either the file name indicated here or a file name specified
before astheinput file.

F9032U | Output file name same as input one (file name)

Since the output file name indicated here is the same as the input file name, processing cannot continue.

F9033U | lllegal file format (file name)

Theinput fileis not in the object format to be processed.
A file of adifferent format is entered or the file is damaged.

F9034U | Not absolute load module file (file name)

A fileisinput which is not an absolute format load module output from the linker. Change the format of
the file to the absolute format in the linker and then use it in the converter.

F9048U | Missing output range

The output range is not specified.
Specify the range of output(-ran).

335

APPENDIX

336

F9049U

Output range exceeded

The output range exceeds the limit value.

F9050U

Output filename same as other output one (file name)

The output file has the same name as that of another file.

Change the output file name.

F9051U

File name too long (file name)

The output file name indicated hereis too long to be processed.
Make the specified file name shorter.

F9998U

File open failed (file name)

The message files used by the converter could not be opened.
Store both |kt_e.msg and Ikt_a.msg in the predetermined directory.

F9999U

Internal error (identification information)

If this error occurs, report it to Fujitsu immediately.

APPENDIX B HEX FORMAT

APPENDIX B HEX FORMAT

This appendix explains the following three formats of the HEX formats.
« HEX8 format:Format set for the 8-bit

« HEX16 format:Format extended for the 16-bit

« HEX32 format:Format extended for the 32-bit

B HEX Format

Common Format (see "B.1 Common Format".)

Data Record (HEX8/HEX16/HEX32) Type: 00
(see "B.2 Data Record (HEX8/HEX16/HEX32) Type: 00".)

End Record (HEX8/HEX16/HEX32) Type: 01
(see "B.3 End Record (HEX8/HEX16/HEX32) Type: 01".)

Extended Segment Address Record (HEX16/HEX32) Type: 02
(see "B.4 Extended Segment Address Record (HEX16/HEX32) Type: 02".)

Start Segment Address Record (HEX16/HEX32) Type: 03
(see "B.5 Start Segment Address Record (HEX16/HEX32) Type: 03".)

Extended Linear Address Record (HEX32) Type: 04
(see "B.6 Extended Linear Address Record (HEX32) Type: 04".)

Start Linear Address Record (HEX32) Type: 05
(see "B.7 Start Linear Address Record (HEX32) Type: 05".)

337

APPENDIX

B.1 Common Format

The HEX format consists of six fields, (a) to (f).
Each field is set using the ASCII code. Field (g) is explained later.

B Common Format

Figure B-1 Common Format

11112 |ala2lazaalt 12 |d1id2|d3id4] |d* d* |d d* [s11s2
I | | | | | |

@ (b) (o) d (e V)

(a):

Indicates the start of arecord. The character ":" (0x3A) is used.

(b):

Indicates the number of bytesin the data part of ().

Since the actual 1-byte datais represented by 2-byte ASCII code in this format, d1 and d2 in the above
figure are counted as one.

I1 indicates the high-order digits and |12 indicates the low-order digits. Vaues in the range of 0 to 255
can be set.

Itis"00" to "FF" in ASCII notation and "0x3030" to "0x4646" in hexadecimal notation.

(©):

Indicates the address all ocated to the first dataif the contents of (€) are object data.

al indicates the high-order digits and a4 indicates the low-order digits. Values in the range of 0 to 65535
can be set.

Itis"0000" to "FFFF" in ASCII notation and "0x30303030" to "0x46464646" in hexadecimal notation.

(d):

Indicates the record type.

00:
01
02:
03:
04.
05:

(e):

Data record (HEX8/HEX 16/HEX 32 format)

End record (HEX8/HEX 16/HEX 32 format)

Extended segment address record (HEX16/HEX 32 format)
Start segment address record (HEX 16/HEX 32 format)
Extended linear address record (HEX 32 format)

Start linear address record (HEX 32 format)

This field depends on the record type of (d). See the explanations of each record in Appendix "B.2 Data
Record (HEX8/HEX16/HEX32) Type: 00" to Appendix "B.7 Start Linear Address Record (HEX32)
Type: 05".

338

APPENDIX B HEX FORMAT

(f):
Checksum. Each 2-byte data of (b), (c), (d), and (e) represented in ASCII is converted into 1-byte
hexadecimal data. Each byte without a sign is added regardless of overflow.

The two's complement of the result is calculated, then set as 2-byte ASCII data.

sl indicates the high-order digits.

Two's complement: Value obtained by adding 1 to the value obtained by reversing each bit.
(9):

Generally, acontrol code (such as CR and LF) is added.

Datain thisfield is skipped until the start character ":" of (a) appears.

Since the (a), (b), (c), (d), and (f) fields aways exist, the minimum length of arecord is 11 bytes long and
the maximum length is 521 bytes long.

[Example]
020000020036C6 Extended segment address record
0600100090D9226BB4FD43 Data record
040000035162000541 Start address record
00000001FF End record

339

APPENDIX

B.2 Data Record (HEX8/HEX16/HEX32) Type: 00

d1l and d2 are byte data at the address indicated by (C) and d3 and d4 are byte data of
the next address.

B Data Record (HEX8/HEX16/HEX32)

Figure B.2-1 Data Record (HEX8/HEX16/HEX32)

: Ili|2 al:a2 aSE a4050 dlEdZ d35d4 d*: d* d*id* 31:52
@® © @ © ' ' — O ©

For (a), (b), (c), (d), (f), and (g), see the explanation of the common format.

(e) isobject data and the actual 1-byte datais represented by 2-byte ASCII code.
In the above figure, byte data at the address indicated by (c) isdl1 and d2.
Likewise, byte data of the next addressis d3 and d4.

340

APPENDIX B HEX FORMAT

B.3 End Record (HEX8/HEX16/HEX32) Type: 01

The end record is always 00000001FF.
Only one end record exists as the last record.

B End Record (HEX8/HEX16/HEX32)

Figure B.3-1 End Record (HEX8/HEX16/HEX32)

0:10

010

010

01

|
Fi F

@) (b)

©

®)

©

(9)

The (e) field does not exist. ThereforeQissetin (b).
(c) isnot used and normally O is set.

341

APPENDIX

B.4 Extended Segment Address Record (HEX16/HEX32)
Type: 02

If extended segment address code appears, the address of each byte data of the

following data records is calculated according to the following formula.

((PA X 0x10) + ((DA + DP) MOD 0x10000)) MOD 0x100000

* PA: (e) field value of the record

* DA: (c) field value of the data record. Here, this value is arelative address.

» DP: Value indicating the data position in the (e) field of the data record calculated by
setting the position of the first data to O.

B Extended Segment Address Record (HEX16/HEX32)

Figure B.4-1 Extended Segment Address Record (HEX16/HEX32)

| ' | i | .
012(010|010]|012|plip2p3 p4|sl s2
| | |

(@ (b) (o) d (e ®

(e):
Thisis aparagraph address and the actual 2-byte data is represented as 4-byte ASCII code.
In the above figure, pl indicates the high-order digits.

(©:
Thisfield isnot used and normally O is set.

If extended segment address code appears, the address of each byte data of the following data records is
calculated according to the following formula.

[(PA x0x10) + [(DA + DP) MOD 0x10000]] MOD 0x100000
- PA: (e) field value of the record
- DA: (c) field value of the datarecord. Here, thisvaueisarelative address.
- DP: Vaue indicating the data position in the (e) field of the data record calculated by setting the
position of the first datato O.

This is the same method used for calculating the physical address in i8086. With the addition of
extended segment address record, up to 20-bit addresses can be represented.

For the data records which appear before the extended segment address record, the address is calculated
with the above PA setting as 0x0000.

342

APPENDIX B HEX FORMAT

B.5 Start Segment Address Record (HEX16/HEX32) Type: 03

This is arecord to specify the start address of a program being executed.
The start address is calculated using the following formula.
((PAXx0x10) +1IP) MOD 0x100000

* PA: (el) field value of the record

* IP: (e2) field value of the record

B Start Segment Address Record (HEX16/HEX32)

Figure B.5-1 Start Segment Address Record (HEX16/HEX32)

| | | | | | | | |
0:4[010[0:0|03[plip2/p3ip4 il i2|i3iis||s1is2
| | | |

@ () (o d (e) ® (9

As shown in the above figure, (€) is divided into two fields. The paragraph address is set in (e1), and the
offset valueis set in (e2).

Both pl and il are high-order digits.
(c) isnot used and normally O is set.

The start address is calculated using the following formula.

[(PA x0x10) +I1P] MOD 0x100000
- PA: (el) field value of the record

- 1P (e2) field value of the record

Thisrecord can appear anywhere before the end record.
The appearance count isO or 1.

343

APPENDIX

B.6 Extended Linear Address Record (HEX32) Type: 04

If extended linear address record appears, the address of each byte data of the

following data records is calculated according to the following formula.

((PA x 0x10000) + ((DA + DP) MOD 0x10000)) MOD 0x100000000

* PA: (e) field value of the record.

* DA: (c) field value of the record. Here, this value is a relative address.

 DP: Value indicating the data position in the (e) field of the data record calculated by
setting the position of the first data to 0.

B Extended Linear Address Record (HEX32)

Figure B.6-1 Extended Linear Address Record (HEX32)

0 2 0 0 0 0 0 4 [pl ip2 | p3 ip4d|sl:s2

(@) (b) (©) (d) (e) (f) (9)

(e):
Thisis aparagraph address and the actual 2-byte data is represented as 4-byte ASCII code.
In the above figure, pl indicates the high-order digits.

(©:
Thisfield is not used and normally O is set.

If extended linear address record appears, the address of each byte data of the following data records is
calculated according to the following formula.

[(PA x 0x10000) + [(DA + DP) MOD 0x10000]] MOD 0x100000000
- PA: (e) field value of the record

- DA: (c) field value of therecord. Here, thisvalueisarelative address.

- DP: Vaue indicating the data position in the (e) field of the data record calculated by setting the
position of the first datato O.

With the addition of extended linear address record, up to 32-bit addresses can be represented.

For the data records which appear before the extended linear address record, the address is calculated with
the above PA setting as 0x0000.

344

APPENDIX B HEX FORMAT

B.7 Start Linear Address Record (HEX32) Type: 05

This is arecord to specify the start address of a program being executed.

B Start Linear Address Record (HEX32)

Figure B.7-1 Start Linear Address Record (HEX32)

0:4]0:0|]0;:0]0:i!5|]el e2|e3 ed|e5 eb6|e7 e8|sl: s2

(@) (b) (©) (d) (€)) (9)

(e) indicates the 32-bit execution start addressis set.

€l becomes high-order digits.

(c) isnot used and normally O is set.

This record can appear anywhere before the end record.

The appearance count isO or 1.

345

APPENDIX

APPENDIX C S RECORD FORMAT

The S record format always starts with the character “S” (0x53). Eight types from SO to
S9 are available (S4 and S6 are not used).

B S Record Format

346

SO0 Type (Header Record) (see "C.1 SO Type (Header Record)".)

S1 Type (Data Record: 2-Byte Address) (see "C.2 S1 Type (Data Record: 2-Byte Address)".)
S2 Type (Data Record: 3-Byte Address) (see "C.3 S2 Type (Data Record: 3-Byte Address)".)
S3 Type (Data Record: 4-Byte Address) (see "C.4 S3 Type (Data Record: 4-Byte Address)".)

S5 Type (Record to Manage the Number of Records)
(see "C.5 S5 Type (Record to Manage the Number of Records)".)

S7 Type (Terminator Record) (see "C.6 S7 Type (Terminator Record)".)
S8 Type (Terminator Record) (see "C.7 S8 Type (Terminator Record)".)
S9 Type (Terminator Record) (see "C.8 S9 Type (Terminator Record)".)

APPENDIX C S RECORD FORMAT

C.1 SO Type (Header Record)

This record is used for comments.

B SO Type (Header Record)

Figure C.1-1 SO Type (Header Record)

siolimi2foi0]010]|ctic2|caical|ctictstis2
@ (b)) (o) (d) (e) ()

2 bytes 2 bytes 4 bytes n bytes 2 bytes

This record consists of the above five fields (a) to (e).

The SO type is caled the header type and is placed at the start of a file ahead of each record of S1 to S9.
Each field isset in ASCII code.

(@):
Typefield. "S0" (0x5330) in ASCII code.
(b):
Indicates the number of bytesin (c), (d), and (€).

Actual 1-byte data is represented as 2-byte ASCII code in this format and the number of charactersin
these fields divided by 2 is set.

11 indicates the high-order digits and 12 indicates the low-order digits. Values in the range of 0 to 255

can be set.

Itis"00" to "FF" in ASCII notation and "0x3030" to "0x4646" in hexadecimal notation.
(©):

Thisfield is not used and normally "0000" in ASCII notation is set.
(d):

M essages such as version number management information are set.
For the setting method, see the example below.

(e):
Checksum.

Each 2-byte data of (b), (c), and (d) represented in ASCII notation is converted into 1-byte data in
hexadecimal notation. Each byte without asign is added regardless of overflow.

One's complement of the result is calculated and then set as 2-byte ASCII code.
sl indicates the high-order digits.
One's complement: value obtained by reversing each bit
(®):
Generaly, control code (such as CR and LF) is added.
Datain thisfield is skipped until the start character "'S" of (a) appears.

[Example]
S00600004844521B

L Indicates ASCII character string "HDR"

347

APPENDIX

C.2 S1Type (Data Record: 2-Byte Address)

This is arecord to store object data that can be represented in two bytes (0x0000 to
OXFFFF).

B S1 Type (Data Record: 2-byte Address)

Figure C.2-1 S1 Type (Data Record: 2-byte Address)

s11 |11 12 |alia2]a3ia4 |dLid2|d3) da| | d*id*|st s2
| | I

@ (b ((d) € 0

2 bytes 2 bytes 4 bytes n bytes 2 bytes

The S1 type consists of the above five fields (a) to (e).
(a):
Typefield. "S1" (0x5331) in ASCII code.
(b):
Indicates the number of bytesin (c), (d), and (e).
(See the description in Appendix "C.1 SO Type (Header Record)".)
(©):
Indicates the address all ocated to the first data of (d).

al indicates the high-order digits and a4 indicates the low-order digits. Values in the range of 0 to 65535
can be set.

It is"0000" to "FFFF" in ASCII notation and "0x30303030" to "0x46464646" in hexadecimal notation.
(b):

Object data. Actua 1-byte data is represented by 2-byte ASCII code. In the above figure, d1 and d2 are
byte data at the address indicated by (c).

Likewise, d3 and d4 are byte data of the next address.
(e):

Checksum.

(See the description in Appendix "C.1 SO Type (Header Record)".)
(f):

Generally, control code (such as CR and LF) is added.

(See the description in Appendix "C.1 SO Type (Header Record)".)

348

APPENDIX C S RECORD FORMAT

C.3 S2 Type (Data Record: 3-Byte Address)

The S2 type differs from the S1 type in (c) field size, and is a record to store object data
which requires the 3-byte address.

B S2 Type (Data Record: 3-byte Address)

Figure C.3-1 S2 Type (Data Record: 3-byte Address)

| | | | | | I |
s 211112 ala2[a3a4| a5 1a6ld1d2 |d31d4| |d*1 d¥|s1is2
| | |

@ (B (o) (d) e

2 bytes 2 bytes 6 bytes n bytes 2 bytes

The S2 type differs from the S1 type in the above (c) field size, and is a record to store object data which
requires the 3-byte address.

349

APPENDIX

C.4 S3 Type (Data Record: 4-Byte Address)

The S3 type differs from the S1 type in (c) field size, and is a record to store object data
which requires the 4-byte address.

B S3 Type (Data Record: 4-byte Address)

Figure C.4-1 S3 Type (Data Record: 4-byte Address)

| | | | | | | | |
8:3 Il:l2 al:a2 a3:a4 a5:a6 a7:a8 dl:d2 d3:d4 d*:d* sl: s2

@ (B (o) (d) (e) (f)

2 bytes 2 bytes 8 bytes n bytes 2 bytes

The S3 type differs from the S1 type in the above (c) field size, and is a record to store object data which
requires the 4-byte address.

350

APPENDIX C S RECORD FORMAT

C.5 S5 Type (Record to Manage the Number of Records)

This record sets the number of records contained in a file and may not be specified. It
can appear anywhere between S0 and S9.

B S5 Type (Record to Manage the Number of Records)

Figure C.5-1 S5 Type (Record to Manage the Number of Records)

S 50013 |n1n2(n3ing|s1 s2

@ () (o) (e) ®

2 bytes 2 bytes 4 bytes 2 bytes

The S5 type consists of the above four fields (a) to (e).
(@):
Typefield. "S5" (0x5335)in ASCII code.
(b):
Indicates the number of bytesin (c) and (e).
(See the description in Appendix "C.1 SO Type (Header Record)".)
(©):
Indicates the number of datarecords (S1, S2, S3) in afile.

nl indicates the high-order digits and n4 indicates the low-order digits. Vauesin the range of 0 to 65535
can be set.

Itis"0000" to "FFFF" in ASCII notation and "0x30303030" to "0x46464646" in hexadecimal notation.
(d):

Thisfield does not exist.
(e):

Checksum.

(See the description in Appendix "C.1 SO Type (Header Record)".)
(®):

Generaly, control code (such as CR and LF) is added.

(See the description in Appendix "C.1 SO Type (Header Record)".)

351

APPENDIX

C.6 S7 Type (Terminator Record)

This record indicates the end of a file and contains the start address of execution.

This record is placed at the end of a file.

This terminator record is used when 4 bytes are required to represent the start address
of execution.

B S7 Type (Terminator Record)

Figure C.6-1 S7 Type (Terminator Record)

| | | | | |
Si710:5 el:e2 e3:e4 e5:e6 e7:e8 slis2

@ () (o) e
2 bytes 2 bytes 8 bytes 2 bytes

The S7 type consists of the above four fields (a) to (e).
(@):
Typefield. "S7" (0x5337)in ASCII code.
(b):
Indicates the number of bytesin (c) and (e). Always"05".
(©):
Indicates the start address of execution.
el indicates the high-order digits and e8 indicates the low-order digits.
(d):
Thisfield does not exist.
(e):
Checksum.
(®):
Generally, control code (such as CR and LF) is added.

352

C.7 S8 Type (Terminator Record)

APPENDIX C S RECORD FORMAT

The S8 type differs from the S7 type in (c) field size, and is a terminator record when 3
bytes are required to represent the start address of execution.

B S8 Type (Terminator Record)

Figure C.7-1 S8 Type (Terminator Record)

S8

04

el:e2

e3: e4

e5 :e6

|
slis2

(@)

(b)

(©

2 bytes 2 bytes 6 bytes

e 0
2 bytes

The S8 type differs from the S7 type in the above (c) field size, and is a terminator record when 3 bytes are
required to represent the start address of execution.

353

APPENDIX

C.8 S9 Type (Terminator Record)

The S9 type differs from the S7 type in (c) field size, and is a terminator record when 2
bytes are required to represent the start address of execution.

B S9 Type (Terminator Record)

Figure C.8-1 S9 Type (Terminator Record)

S19| 03 |elie2]e3ea|s1 s2

@ (b)) (o) (e) ®

2 bytes 2 bytes 4 bytes 2 bytes

The S9 type differs from the S7 type in the above (c) field size, and is a terminator record when 2 bytes are
required to represent the start address of execution.

354

APPENDIX D LIST OF LINKER OPTIONS

APPENDIX D LIST OF LINKER OPTIONS

Appendix D lists the linker options.

B List of Linker Options

Table D-1 List of Linker Options (1/3)

Function Option Remarks
Output load module file name specification -0 Default
Output debug information specification -g
Debug information delete specification -Xg Default
Specification of outputting absolute format load module -a Default
Specification of outputting relative format load module -r
Specifying padding data -p Default 0
Specification to fill ROM area -fill
Specification for external symbol information output -symtab
Specification for inhibiting the external symbol information output -Xsymtab Default
Map list file name specification -m Default
Specification for inhibiting map list output -Xm
Cancellation of omitting names displayed in the list -dt
Output Specification of the Memory Used Information list -mmi
Disable Output of Demangled Symbol Name -Xdemangle
Enable Output of Demangled Symbol Name -demangle Default
Specification of the number of digitsin thelist line -pw Default 80
Specification of the number of lines on one list page -pl Default O
Checksum specification of ROM area -Cs
Warning message output level specification -w
ROM area specification -ro
RAM area specification -ra
Section allocation -sC
Section group specification -gr
Pack link specification -pk
Automatic allocation specification -AL Default 0
Retrieval library file specification -l

355

APPENDIX

356

Table D-1 List of Linker Options (2/3)

list output

Function Option Remarks
Library retrieval path specification -L
Library specification for each symbol -el
Library retrieval inhibit specification -nl
Specification for inhibiting default library retrieval -nd
Entry address specification -e
Dummy setting of external symbol values -df
Specifying atarget CPU -cpu must be
specified
Specifying CPU information file -cif
Object Mix Check Level Specification -omcl Default 1
Inhibiting Check for Presence of Debug Data -NCI0302L1B
Function that sets automatically internal ROM/RAM areas -set_rora Default
Specifies to prevent the internal ROM/RAM areas from being set -Xset_rora
automatically
User-specified-area check specification -check _rora
User-specified-area check suppression specification -Xcheck_rora Default
Section-placed-area check specification -check_locate
Section-placed-area check suppression specification -Xcheck_locate Default
Specification of section arrangement check for size 0 -check_size0_sec
Suppression specification of section arrangement check for size 0 -Xcheck_size0_sec Default
Disable Pre-linking -XPLNK
Specification for relative assemble list input directory -ain
Specification for absolute format assemble list output directory format -alout
Specification for absolute format assemble list output -as
Specification for absolute format assemble list output module -alsf
Specification for inhibiting absolute format assemble list output -Xas
Specification for outputting ROM/RAM and ARRAY lists output -ar
Specification for ROM/RAM and ARRAY list output module -arf
Specification for inhibiting ROM/RAM and ARRAY list output -Xalr
Specification for ROM/RAM and ARRAY list symbol and address -nal-an
display position
Specification for outputting external symbol cross-referenceinformation | -xI

APPENDIX D LIST OF LINKER OPTIONS

Table D-1 List of Linker Options (3/3)

Function Option Remarks

Specification for external symbol cross-reference information list file -xIf

name

Specification for inhibiting the external symbol cross-reference -Xxl

information list output

Specification for local symbol list output -d

Specification for local symbol list file name -df

Specification for inhibiting the local symbol list output -Xd

Specification for section detail map list output -ml

Specification for section detail map list file name -mif

Specification for inhibiting section detail map list output -Xml

Specification for inhibiting default option file read -Xdof * Common
option

Option file read specification -f * Common
option

Help message display specification -help * Common
option

Specification for version number/message output -V * Common
option

Specification for inhibiting version number/message output -XV * Common
option

End message display specification -cmsg * Common
option

Specification for inhibiting end message display -Xcmsg * Common
option

Specification to set end code to 1 when warning occurs -cwno * Common
option

Specification to set end codeto O when warning occurs -Xcwno * Common
option

357

APPENDIX

APPENDIX E LIST OF LIBRARIAN OPTIONS

Attached Table E-1 lists the librarian options.

W List of Librarian Options

Table E-1 Attached Table E List of Librarian Options

Function Option Remarks
Module addition (registration) -a
Module replacement (registration) -r
Module deletion -d
Module extraction -X
List file output specification -m
Specification for inhibiting list file output -Xm Default
Specification for outputting list file detail information -dt s,dra
Specification of the number of lines on onelist page -pl Default 60
Specification of the number of digitsin onelist line -pw Default 80
Creating backup file -b
Inhibiting backup file creation -Xb Default
Library file content inspection -C
File content optimization -O
Specification for outputting debugging information -g
Specification for inhibiting the output of debugging information -Xg
Specifying CPU Information File -cif
Target CPU specification -cpu must be specified
Specifying object mix check level -omcl Default: 1
Specification for inhibiting default option file read -Xdof * Common option
Option file read specification -f * Common option
Help message display specification -help * Common option
Specification for outputting version number/message -V * Common option
Specification for inhibiting version number/message output -XV * Common option
End message output specification -cmsg * Common option
Specification for inhibiting end message output -Xcmsg * Common option
Specification to set end code to 1 when warning occurs -cwno * Common option
Specification to set end code to 0 when warning occurs -Xcwno * Common option

358

APPENDIX F LIST OF COMMANDS AND OPTIONS OF THE OBJECT FORMAT CONVERTER

APPENDIX F LIST OF COMMANDS AND OPTIONS OF THE
OBJECT FORMAT CONVERTER

Attached Table F-1 lists the commands of the object format converter and Attached
Table F-2 lists the options of the object format converter.

B List of Commands of the Object Format Converter

Table F-1 List of Commands of the Object Format Converter

Command name Function
f2ms Absolute format load module -> Sformat
f2hs Absolute format load module -> HEX format(HEX8/HEX 16/HEX 32)
f2is Absolute format load module -> HEX8 format
f2es Absolute format load module -> HEX16 format
m2ms Sformat -> Adjusted Sformat
h2hs HEX format -> Adjusted HEX format
m2bs Sformat -> binary data (memory image)
h2bs HEX format -> binary data (memory image)
m2is Sformat -> HEX8 format
m2es Sformat -> HEX16 format
i2ms HEX8format -> Sformat
e2ms HEX16 format -> Sformat

359

APPENDIX

M List of options of the object format converter

360

Table F-2 List of Options of the Object Format Converter

Function Option Remarks
Specification for outputting load module name -0
Padding data specification -p
Output range specification -ran m2ms, h2hs,

m2bs, h2bs(need)

Split mode specification -sp m2bs, h2bs only
Specification for inhibiting split mode -Xsp m2bs, h2bs only
Map list file creation specification -m m2bs, h2bs only
Specification for inhibiting map list file creation -Xm m2bs, h2bs only
Specifying an Output S format -S1,-S2,-S3 f2ms, m2ms only
Specifying an Output HEX format -116,-120,-132 | f2hs, h2hsonly
Specifying to output start address record -entry f2hsonly
Specifying to not output start address record -Xentry f2hsonly
Adjust specification -adjust f2ms, f2hs only
Specifying Changes to the Starting Address -ST m2ms, h2hs only
Specification for inhibiting default option file read -Xdof * Common option
Option file read specification -f * Common option
Help message display specification -help * Common option
Specification for version number/message display -V * Common option
Inhibiting version number/message display -XV * Common option
End message display specification -cmsg * Common option
Specification for inhibiting end message display -Xcmsg * Common option
Specification to set end code to 1 when warning occurs -cwno * Common option
Specification to set end code to 0 when warning occurs Xcwno * Common option

APPENDIX G SPECIFICATION DIFFERENCES DEPENDING ON THE OS

APPENDIX G SPECIFICATION DIFFERENCES DEPENDING ON

THE OS

Attached Table G-1 to G-3 show specification differences depending on the OS.

B Specification Differences Depending on the OS

Table G-1 Specification Differences Depending on the OS

OS-dependent item

OS type

UNIX system OS version

Windows version

variable TMP is specified

Distinction of uppercase/lowercase characters Yes No

in the file name

Default extension of the file name L owercase character Uppercase and lowercase
characters are not
distinguished

Working directory when no environmental /tmp Current directory

command line

File specification using the wild card on the

Expanded by the shell and
delivered to tools

Expanded inside tools

Table G-2 Differences in Wild card Expansion

OS type

Wild card pattern

UNIX system OS version

Windows version

? Matches any one character Matches the null character or any one
character
* Matches any character string Matches any character string

Table G-3 Concrete Examples of Wild card Expansion

Wild card pattern OS type
UNIX system OS version Windows version
ar.obj al.obj matches. al.obj matches.
a.obj does not match. a.obj also matches.
a* a.obj, a.obj, and a.abs match. al.obj, a.obj, and a.abs match.
* abcz and abc.z match. abcz and abc.z match.

361

APPENDIX

362

Index
A
-a
Adding (Registering) aModule (-a) 214
Specification of Outputting Absolute Format Load
MOdUIE (-8) ..o 95
Absolute
Absolute Format Assemble List.............cceeeee. 166
Absolute Format Assemble List File.................. 177
Specification for Absolute Format Assemble List
OUutput (-alS) cooeveeeeeeieeee e, 149
Specification for Absolute Format Assemble List
Output Directory Format (-alout).......... 148
Specification for Absolute Format Assemble List
Output Module (-alsf).......cccoeererenenenen. 150
Specification for Inhibiting Absolute Format Assemble
List Output (-XalS) ..vvvveeevireereeiiiieeeenns 151
Specification of Outputting Absolute Format L oad
Module (-8) ...oeeveeeeereiiiierer e, 95
Adding
Adding (Registering) aModule (-8) 214
Adjust
Adjust Option (-adjust)ccovrvrereerriiieee e, 260
-adjust
Adjust Option (-adjust)cceevevvveevverneniiinnnnnn. 260
Specifying to Adjust (-adjust)...........cceevvvevernnnnes 265
-AL
Automatic Allocation Specification (-AL) 122

Example of Location when -AL 1 is Specified...... 68

Example of Location when -AL 2 is Specified...... 70
-alin

Specification for Relative Format Assemble List Input

Directory (-alin)cccceevviviiieiiiiieeeene 147
Allocation
Allocation/link Optionscevvvvvvvvvviveinennnnnnn. 91
-alout
Specification for Absolute Format Assemble List
Output Directory Format (-alout).......... 148
-alr
Specification for ROM/RAM and ARRAY List Output
(58I e 152
-alrf
Specification for ROM/RAM and ARRAY List Output
Module (-alrf)eeeeeiiiiieieeee e 153
-als
Specification for Absolute Format Assemble List
OULPUL (-8IS) wevveerieeeeeiiiiiiiiiieeee e 149
-alsf
Specification for Absolute Format Assemble List
Output Module (-alSf)ovvveeeeereeeeennnne 150

Index

-an
Specification for ROM/RAM and ARRAY List
Symbol and Address Display Position

(-NB-AN). . 155

ARRAY

ROM/RAM and ARRAY LiStcccvvveeiiiiiiieeenns 180
Assemble

Assemble SOUrCe Listccoveeeeeiiiiiiiiiieiieeeeeen, 182
Automatic

Automatic Allocation Specification (-AL)........... 122
Automatically Locating Sections

Automatically Locating Sections.......................... 66
B
-b

Creating aBackup File (-b)cooeeiiiiiiiiiiiine 223
Binary

Binary CONVErter.........eeeeeiiieieeeiiiieee e 248
C
-C

Checking the Contents of a Library File (-¢)........ 225

Cancellation
Cancellation of Omitting Names Displayed in the List

Cautionary Information
Cautionary Information Concerning Binary Converter

and Format Adjusteroccvveeeennee 300
Cautionary Information Concerning the Necessary
Disk SPace.......ccuvvveeiiiieeeeiiee e 240
Cautionary Information Concerning the Specification
Of OPLIONS.....oevieiiiiieie i 240
Changing
Changing an Output File Name (-0)ccccceunnn. 253
Changing the Format of aList File.............c......... 55
Character
Character Code of the File Name...............cc..ueeeee. 12
Number of Characters for the File Name............... 12

Types of Characters Consisting of Identifiers........ 11

-check_locate
Section-placed-area Check Specification

(-check_locate).......cccovvvvviiiniiiineenn 140
-check_rora
User-specified-area Check Specification
(-check_rora)coeeeeeeiviiiiiiiieeeiis 137

-check_size0_sec
Specification of Section Arrangement Check for Size0
(-check_size0 SeC)ooovviiviiiiiieeeeeenn, 144

363

Index

Checking
Checking the Contents of a Library
File. i 201, 206
Checking the Contents of aLibrary File (-C) 225
-cif
Specifying CPU Information File (-cif) 132, 229
-cmsg
=CMSY OPLION ... 29
End Message and -cmsg Option............cceeeeeeeinnneee 9
Specifying Display of End Message (-cmsg)......... 36
Command
Command Line FOrmat..............ceeeveeeeniniiiiiiiiinen. 5
Example of Specifying Command Lines............... 26
Executing a Command of an Object Format
CoNVEteroooviieiiiieeeeeeeeee 249
List of Commands of the Object Format
CoNVEEr ... 359
Common
Common FOrmatooovvviiiiieiiiiiiiiiiiiiieens 338
Common Options of an Object Format
COoNVEEr ..o 252
Configuration
Configuration of aList File............vvviviiiinnnnnn. 234
Configuration of Link List File..........ccccccvvvnnne. 167
Control
Control on Input-output Files and Messages.......... 53
Control on Searching Libraries..............cccuvvvneeee. 54
CPU
CPU INformation...........cocccvvvieeireeeeeees e 82
CPU Information File.........ccceeeveveeeiiiiiiiiiiee, 82
Specifying CPU Information File (-cif) 132, 229
-cpu
Specifying a Target CPU (-Cpu).........vvvvvvvvnnnnnn. 230
Target CPU Specification (-Cpu)ccoeeeereeennnn. 131
Creating
Creating aBackup File (-b) ..., 223
Creating a Group of Sections............cooovevviviieneen. 56
Creating aNew Library File..................... 201, 202
Cross-reference
Crossreference Listc.vveveviiiieei e, 185
-cwno
-CWNO OPLION.......cceeeeiieieieiee e 29
Specifying to Set the End Codeto 1 When Warning is
Issued (-CWNO) ..vvvveeriiiceie i, 38
D
-d
DeletingaModule (-d)cooorviiiiiiiiiiiiieieeen, 216
Data Record
Data Record (HEX8/HEX16/HEX32) 340
S1 Type (Data Record: 2-byte Address) 348
S2 Type (Data Record: 3-byte Address) 349
S3 Type (Data Record: 4-byte Address) 350

364

Debug
Debug Information Delete Specification (-Xg) 94
Deleting Debugging Information................ 201, 205
Inheriting Debugging Information..............c.c....... 55
Output Debug Information Specification (-g) 93
Specifying not to Output Debugging Information
(-XG) crrreeee it 228
Specifying to Output Debugging Information
(50) oo 227
Default
Default Option File..........ccooviiiiiiiiiiiiiiiieeeeee 46
Specification for Inhibiting Default Library Retrieval
(-N) e 128

Default Option File Storage Directory
OPT (Default Option File Storage

Directory)cccoeeeeeeeeeeeeeeeeeeeeas 13,19
OPT911 (Default Option File Storage
Directory)cccoeeeeeeeeeieeeeees 13,18
Deleting
Deleting aModule (-d)oeeeeieieiiiiiiiiiiinee. 216
Deleting Debugging Information................ 201, 205
-demangle
Enable Output of Demangled Symbol Name
(-demangle)........ccvvieeiiiieeeeie e 107
Determining
Determining Location Addresses 67, 69
-df
Dummy Setting of External Symbol Values
(-OF) e 130
Disable
Disable Output of Demangled Symbol Name
(-Xdemangle)cceeeeeieeeieiiiiiiiiienaen, 106
Disable Pre-linking (-XPLNK)ccooovviivvinnnen. 146
Displaying
Displaying Identifier Name when Outputting
I PP 11
Displaying the Contents of aLibrary
FIle e, 201, 206
-dt
Cancellation of Omitting Names Displayed in the List
(FOL) e 104
Specifying to Output Detailed Information of a List
File (=db) .o 220
Dummy
Dummy Setting of External Symbol Values
(=) e 130
E
-e
Entry Address Specification (-€)cccceeeeeennn. 129
e2ms
e2ms (Converting aHEX 16 Format Fileinto the
SFOrmat)......coociiiiiiiiieeee e 297

Editing

EditingaLibrary File..........cccovviieeeinnn, 201, 202
-el

Library Specification for Each Symbol (-€) 126
Enable

Enable Output of Demangled Symbol Name

(-demangle)cceevniieiee s 107
End Code
End Code Value and End Status...........c.coevevrvvneeen. 7
Specifying to Set the End Code to 0 When Warning is
Issued (-XCWNO) ...evveeeeieieeeeiiiiiiiieeeeee 39
Specifying to Set the End Codeto 1 When Warning is
ISSUEd (-CWNO) ... 38
End Message
ENd MESSA0E ..ot 9
End Message and -cmsg Option..........cceeeeernieneeen. 9

(-XCMSY) e eeeeeieieee e 37
End Record
End Record (HEX8/HEX16/HEX32)................. 341
End Status
End Code Value and End Status.........ccoeeeeeeiennnneee 7
Entry
Entry Address Specification (<€)cccveeenee. 129
-entry
Specifying to Output Start Address Record
(FENEMY) e 263
Start Address Output Option (-entry) 260
Entry Address
Setting Entry Addresses and Symbol Values......... 54
Specifying an Entry Address..........ooooiiiiiiiinenen. 58
Error
Error Messagesin the Assemble List 178
Linkage Kit Error Message Classes.................... 304

Linkage Kit Error Message Display Format........ 305

Evaluation
Notes and Evaluation When Specified Option....... 24

Example
Example of a Search when there are Multiple Library
FIES (1) weveeieeeiiiee e 75
Example of a Search when there are Multiple Library
FIES (2) weveiieieiiiee e 76
Example of a Search when thereis One Library
FIlE (1) e 72
Example of a Search when thereis One Library
File (2) coeeeeeeeii e, 73
Example of a Search when thereis One Library
File (3) ceeeeeeeeiiiee e, 74
Example of Describing Option File...................... 45

Example of Location when -AL 2 is Specified...... 70
Example of Location when the Order of Combining
Sectionsis not Specified..........ccccceeennn. 63

Index

Example of Location when the Order of Combining

Sectionsis Specified.........cccouvviieeennen. 64
Example of Location when the Section Group is
SPECIfiedoooviieiie e 65

Example of Specifying an Option that hasa
Contradictory Relation with Other

OPLIONS......iiiiiiieeee e 25
Example of Specifying an Option that has an Inclusive
Relation with Other Options................... 25
Example of Specifying Command Lines............... 26
List Display Example of the Map List Part.......... 171
Executing
Executing a Command of an Object Format
CONVENTENovviieiiiieeeeeee e 249
Execution
Execution by Specifying Option File.................... 42

Extended Linear Address Record
Extended Linear Address Record (HEX32)......... 344
Extended Segment Address Record
Extended Segment Address Record
(HEXA6/HEX32)....coceeeeveveveeeeeeaan 342
External Symbol
External Symbol Cross-reference Information

LISt weeeeeiiieie e 166
External Symbol Cross-reference Information List
FIlE e 186
Setting an External Symbol Value...........ccccceuenn.. 58
Specification for External Symbol Cross-reference
Information List File Name (-xIf).......... 157
Specification for External Symbol Cross-reference
Information List Output (-xI) 156

Specification for Inhibiting the External Symbol
Cross-reference Information List Output

(XX e 158
Extracting
Extracting aModule (-X) ..cceoeeeeeeiiiiiiiiiiiieeeeeenn, 217
Extracting aModule from a Library
FIle o, 201, 204
F
-f
SFOPLON. .. 29
Specifying Option File Name (-f)cccoevviienens 31
f2es
f2es (Converting an Absolute Format Load Module
into the HEX 16 Format)..........c.c..eeuvees 269
f2hs
f2hs (Converting an Absolute Format Load Module
into the HEX Format)ccceeeeeeeeenn. 267
f2is

f2is(Converting an Absolute Format Load Moduleinto
the HEX8 Format)ceevveveeeeriiiinnnns 268

365

Index

f2ms
f2ms (Converting an Absolute Format Load Module
into the SFormat)ccccvvveeeeennennnnn. 266
FELANG
FELANG (Message Language)cc.cccuueeee. 13,15
FETOOL
FETOOL (Installation Directory).........ccc....... 13,16
File Name
Character Code of the File Name...........ccccceunene. 12
Forced Termination
Forced Termination............cooovveieiiiiiiinieeeee e 6
Format
Absolute Format Assemble List..............cceeenee. 166
Absolute Format Assemble List File.................. 177
Cautionary Information Concerning Binary Converter
and Format Adjuster...........cvvvevnnnnnn. 300
Changing the Format of aList File.............ccc....... 55
Command Line FOrmat..............ceeevieeeiininiiiiininen. 5
Common FOrmatoooevvviveieeeieiiiieens 338
Common Options of an Object Format
CONVEIErooeeiiiieeiieeeeeeeeeee 252
e2ms (Converting aHEX 16 Format File into the
SFormat)ccoevvviiiieeeeen 297
Executing a Command of an Object Format
CoNVENErcoeeeiiieviieeeeeeeeeee 249
f2es (Converting an Absolute Format Load Module
into the HEX16 Format)ccceeeeee 269
f2hs (Converting an Absolute Format Load Module
intothe HEX Format)ccevvveeees 267
f2is (Converting an Absolute Format Load Module
into the HEX8 Format)cccceeee. 268
f2ms (Converting an Absolute Format Load Module
intotheSFormat)coooevvvvvvennnns 266
Format AQJUSLEYvvveeiiiieie e 248
Functions of the Format Adjuster....................... 273
Header FOrmatcuevevveieiiiiiiiiiiiiieiceeeeeeen 179
i2ms (Converting a HEX8 Format Fileinto the
SFormat)ccoovvviiiieeeeeen 296
Linkage Kit Error Message Display Format 305
List of Options of the Format Adjuster 275
List Output Format of the Control List Part......... 168
List Output Format of the Map List Part............. 170

List Output Format of the Symbol List Part 175
m2es (Converting a S Format File

into the HEX16 Format)cccee.e. 295
m2is (Converting a S Format File

into the HEX8 Format)ccceeee. 294
Memory Used Information List Field List Output

FOrmMatovvvviiiiiiie e 172
Options Related to the Absolute Format Assemble List

OULPUL. ...t 91
Outline of Object Format Converter................... 246
Output HEX Format Option

(-126/-120/-132) c.cooeeeeeiiieieeeeee, 260
Output S Format Option (-S1/-S2/-S3)uunn.. 260
Overview of the Format Adjuster...........cccvvenne. 272

366

Questions and Answers on Using an Object Format

CoNVErtEr ... 301
Restrictions on a Object Format Converter.......... 300
Specification for Absolute Format Assemble List

OULPUL (-81S)... e 149
Specification for Absolute Format Assemble List

Output Directory Format (-alout) 148
Specification for Absolute Format Assemble List

Output Module (-alsf) ..ccooeeviiiiiiiiiiinee. 150
Specification for Inhibiting Absolute Format Assemble

List Output (-XalS)....cceeviiiiiiiiiieeenaaann. 151
Specification of Outputting Absolute Format Load

MOAUIE (-8) ...evveeieeeieeee e 95
Specification of Outputting Relative Format L oad

MOAUIE (-F) e 96
Specifying an Output HEX Format

(-126/-120/-132) ..o 276
Specifying an Output S Format

(-SVU-S2/-S3)..ceeeeiiiiiieeeiieee e 276
Specifying the HEX Format Output

(-126/-120/-132) ..o 281
Specifying the Output Format..............cooeeeuuvvnneee. 55
Specifying the S Format Output

(-SU-S2/-S3)..ceveeiiiiiiie e 279
Specifying to Output HEX Format

(-126/-120/-132) ..o 262

Specifying to Output S Format (-S1/-S2/-S3) 261
FR
Incompatibility of FR and FR80
INSLrUCtiONS.......cvvvieeeeieiie e, 84, 209
Mixing a FR Object and a FR80 Object 84, 209
Function
Function that Sets Automatically Internal ROM/RAM

Areas (-Set_rora).........cccceevevevieieeeeninnns 135
Functions of the Format Adjustercccccc..... 273
G
-9
Output Debug Information Specification (-g) 93
Specifying to Output Debugging Information
(50) ceeee e 227
_gr
Section Group Specification (-gr)ccceveeeeneee 120
H
Header
Header FOrmatooocvvveveiiiiieeee e 179
SO Type (Header Record)cevevieveieeeeeeenenne, 347
Help
Help MESSAgE....cooviieiiiiiiiiieeee e 10
Specifying Display of Help Message (-help) 33
-help
-help OptioN......vveieieeee e 29

Specifying Display of Help Message (-help) 33

HEX
Data Record (HEX8/HEX16/HEX32)................. 340
e2ms (Converting a HEX 16 Format Fileinto the
SFOrMaL) ...eveeeeeiieeeiiiiieee e 297
End Record (HEX8/HEX16/HEX32).................. 341

Extended Linear Address Record (HEX32) 344
Extended Segment Address Record

(HEX16/HEX32) ..ccovvvieiiee e 342
f2es (Converting an Absolute Format Load Module
into the HEX16 Format) 269
f2hs (Converting an Absolute Format Load Module
into the HEX Format)cooeuvuneee. 267
f2is (Converting an Absolute Format Load Module
into the HEX8 Format)c.e...e. 268
i2ms (Converting a HEX8 Format File into the
SFOrMaL) ...eveeeeeiieieeiiiieeeee e 296
m2es (Converting a S Format File
into the HEX16 Format) 295
m2is (Converting a S Format File
into the HEX8 Format)ccee...e. 294
Output HEX Format Option
(-116/-120/-132) ... 260
Specifying an Output HEX Format
(-116/-120/-132) ..o 276
Specifying the HEX Format Output
(-116/-120/-132) ... 281
Specifying to Output HEX Format
(-116/-120/-132) ... 262
Start Linear Address Record (HEX32) 345
Start Segment Address Record
(HEX16/HEX32) ..ccoiviieiieeiiiee e 343
I
-l
Output HEX Format Option (-116/-120/-132)....... 260
Specifying an Output HEX Format
(-126/-120/-132) ..eveeiiiiieeeiee e 276
Specifying the HEX Format Output
(-126/-120/-132) ...eveeiiiiieeeeee e 281
Specifying to Output HEX Format
(-126/-120/-132) ..oeveeiiiiieeeieee e 262
i2ms
i2ms (Converting a HEX8 Format Fileinto the
S 0107 296
Identifier
Displaying Identifier Name when Outputting
LS ettt 11
Indicating Identifiers...........ooccoiiiiies 11
Limiting the Number of Lettersfor Identifiers...... 11
Types of Characters Consisting of Identifiers........ 11
Incompatibility
Incompatibility of FR and FR80
INSrUCLIONS.....covvee e 84, 209
Indicating
Indicating [dentifiers..........ccciiiiciiiiiiiiee e, 11

Index

Inheriting
Inheriting Debugging Information........................ 55
Inhibiting
Inhibiting Check for Presence of Debug Data
(-NCIO302LIB) ..., 134
Inhibiting the Creation of a Backup File
(-XDB) et 224
Inhibiting the Search for aLibrary 57
Input
Input of the Objects Generated with SOFTUNE V3/V5
TOON e 83
Installation Directory
FETOOL (Installation Directory)cceeeeeeeennnn. 13
L
-L
Library Retrieval Path Specification (-L) 125
-l
Retrieval Library File Specification (-I) 124
-len
Specifying the Output Data L ength (-len)............ 277
Specifying the Output Record Data L ength
(len) e 276
Letters

Limiting the Number of Lettersfor Identifiers....... 11
LIB911

LIB911 (Library File Search Directory).......... 13, 17
Librarian Options
List of Librarian Options.............occeuvviiieeenenenn. 358
Library

Checking the Contents of a Library

FIle o 201, 206
Checking the Contents of aLibrary File (-c)........ 225
Control on Searching Libraries..........cccccoveiveeene 54
Creating aNew Library File............cccc..... 201, 202
Displaying the Contents of a Library

FIle o 201, 206
Editing aLibrary File.........cccccoooviiienennnee 201, 202
Example of a Search when there are Multiple Library

FIES (1) o 75
Example of a Search when there are Multiple Library

FIES (2) coeeee e 76
Example of a Search when thereis One Library

FIle (1) oo 72
Example of a Search when thereis One Library

FIle (2) oo 73
Example of a Search when thereis One Library

FIle (3) oo 74
Extracting aModule from a Library

File 201, 204
Inhibiting the Search for aLibrary 57
LIB911 (Library File Search Directory).......... 13,17
Library Control Optioncccceeevvviiicviiiiiienneeenn, 91
Library Made by the SOFTUNE V3/V5 Language

TOON e 208

Index

Library Retrieval Inhibit Specification (-nl) 127
Library Retrieval Path Specification (-L)............ 125
Library Specification for Each Symbol (-d)........ 126
Options for Creating and Editing aLibrary 213
Order of Searching aLibrary File............ccc...ec... 71
Processing when Library Files are Individually
SpeCified...ccvvieeiiiiiee e 77
Questions and Answers on Creating a Library
File. i 241
Retrieval Library File Specification (-I).............. 124
Specification for Inhibiting Default Library Retrieval
(-N) wereeiiiee e 128
Specifying aLibrary Fileto be Searched 57
Specifying a Library File to be Searched for Each
Symbol ... 57
Specifying a Library to be Searched..................... 71
Specifying a Path to Search aLibrary................... 57
Limiting
Limiting the Number of Lettersfor Identifiers...... 11
Link
Allocation/link Options............cceeieiiiiiiiieieeeeeenn, 91
Configuration of Link List File..........ccccccvuvnnnn. 167
Link List FIle....uuiiiiiiieee e 166
Links Of SECLIONSuvvviiiiiieeiiiiiiiiiieeee e 62
Other Link Control Options...........cccouvvviivivineneen. 91
Pack Link Specification (-pK)ccvvveeeeereeennnn. 121
Linkage Kit
Linkage Kit Error Message Classes........ccccce..... 304
Linkage Kit Error Message Display Format 305
Support Range of Linkage Kit...........cccooviiiiiiineee. 4
Linker
Linker Reservation Symbolccccovvvieeeenne 194
Linker RESIHCHIONvvvveiivieeeeeicecciiieiieeee e, 194
List of Linker OptionS........cccceevvvviiiveiiennen. 88, 355
Outline of aLinker.........ccccvvvieieiieee e, 52
List
Absolute Format Assemble List..........ccceevneeee 166
Absolute Format AssembleList File.................. 177
Assemble Source List.........occvvvviiieeeieeeniniiis 182
Cancellation of Omitting Names Displayed in the List
(FOL) e 104
Changing the Format of aList File.............ccc....... 55
Configuration of aList File............covvvviiiiinnnnnn. 234
Configuration of Link List File..........ccccccvvvnnne. 167
Cross-reference Listoooccevvvviiieeiieeee s 185
Displaying Identifier Name when Outputting
LISt eeeee et 11
Enable Output of Demangled Symbol Name
(-demangle)coooeieeeiee, 107
Error Messagesin the AssembleList.................. 178
External Symbol Cross-reference Information
LIS eeeeee it 166
External Symbol Cross-reference Information List
FIle. i 186
Link List File....uiiiiiiiiiiee e 166
List Display Example of the Map List Part 171

368

List of Commands of the Object Format

CoNVErtEr ... 359
List of Common Options..........ccceeeeeeereiiininiinnnen. 28
List of Librarian Options..........ccccceeeiiiiiiniinnnen. 358
List of Linker Options...........ccevveieeeiinininnnns 88, 355
List of Optionsof aLibrarian...............cccuuvueneee. 212
List of Options of the Binary Converter 286
List of Options of the Format Adjuster 275
List of Options of the Load Module

CoNVErtEr ... 259
List Output Format of the Control List Part......... 168
List Output Format of the Map List Part 170
List Output Format of the Symbol List Part......... 175
List Output OVerviewcccceeee.... 235, 236, 237
Local Symbol Information List............cccuvvveneee. 166
Local Symbol Information List File.................... 188
Map List File Name Specification (-m)............... 102
Memory Used Information List Field List Output

FOrmat.......cccvveeeiiiieeeie e 172
Optionsfor Outputting aListcccceeeeeeiinnnee 213
Options Related to the Absolute Format Assemble List

OUEPUL ... 91
Options Related to the Object Content List

OUEPUL ... 91
Options Related to the Output Listceeeeee. 91
Output Specification of the Memory Used Information

List (-MMi) oo 105
ROM/RAM and ARRAY LiSt.....cccovcvveveriiinnnnnn. 180
Section Allocation Detailed Information List

File e 190
Section Detail Map List........ccccuvvveieeeeiiiinenie 166
Section Information List..........occvveeeiiiiiinennnnne. 184
Specification for Absolute Format Assemble List

OUtPUL (-81S)...eeeeeeieeeee e 149
Specification for Absolute Format Assemble List

Output Directory Format (-alout) 148
Specification for Absolute Format Assemble List

Output Module (-alSf)ooeeveiiiiiiiiiinee. 150
Specification for External Symbol Cross-reference

Information List File Name (-xIf) 157
Specification for External Symbol Cross-reference

Information List Output (-xI) 156
Specification for Inhibiting Absolute Format Assemble

List Output (-XalS)....ccevvviiiiiiiiieeeneaennn. 151
Specification for Inhibiting Map List Output

(-XIM) e 103
Specification for Inhibiting ROM/RAM and ARRAY

List Output (-Xalr)....ccoovviiiiiiiiieeeneeenn. 154
Specification for Inhibiting Section Detail Map List

Output (-XMl) ..o 164

Specification for Inhibiting the External Symbol
Cross-reference Information List Output
(XX e 158
Specification for Inhibiting the Local Symbol List
OUtPUL (-X)i 161
Specification for Local Symbol List File Name
(-] e 160

Specification for Local Symbol List Output

(55]) et 159
Specification for Relative Format Assemble List Input
Directory (-alinyccveeeeeiiiiiiiinnnnn. 147
Specification for ROM/RAM and ARRAY List Output
(58I e 152
Specification for ROM/RAM and ARRAY List Output
Module (-alrf)ueueeeiiiiiiiiiee, 153

Specification for ROM/RAM and ARRAY List
Symbol and Address Display Position

(-N3y=81N) .o 155
Specification for Section Detail Map List File Name
(M) e 163
Specification for Section Detail Map List Output
(=M e 162
Specification of the Number of Digitsin the List Line
(FPW) et 108
Specification of the Number of Lineson One List Page
(FP1) e 109
Specifying aList FileName............coooiiiiiiieneen. 55
Specifying not to Create aMap List File
(- XM ettt 287, 292
Specifying not to Output aList File (-Xm) 219
Specifying the Number of Columns Per Line of aList
(FPW) et 222
Specifying the Number of Lines Per Page of aList
(FP1) e 221
Specifying to Create aMap List File
(5M) e 287, 291
Specifying to Output aList File (-m).................. 218
Specifying to Output Detailed Information of a List
File (-at) ..o 220
Load
Specifying an Output Load Module File
NaME.....ooiiiiiiiiii e 55
Local Symbol
Loca Symbol Information List.........ccccceeeeernnnn.. 166
Loca Symbol Information List File................... 188
Specification for Inhibiting the Local Symbol List
Output (-Xg) cooeeeeeiiieeeieeeeeeee 161
Specification for Local Symbol List File Name
(-SIF) e 160
Specification for Local Symbol List Output
(59]) e 159
Location
Determining Location Addresses................... 67, 69
Example of Location when -AL 1 is Specified...... 68
Example of Location when -AL 2 is Specified...... 70
Example of Location when the Order of Combining
Sectionsis not Specified..........ccccceeeennn. 63
Example of Location when the Order of Combining
Sectionsis Specified.........ccoovveeeeiiinnnnn. 64
Example of Location when the Section Group is
SPECITIE ..o 65
Section Location Attribute...........cccoveeeiniiieeennns 59
Section Types and Location Destinations............. 69

Index

Specifying the Order of Locating Sections

and the Location Addresses.................... 56
M
-m
Map List File Name Specification (-m)............... 102
Specifying to Create aMap List File
(M) e 287, 291
Specifying to Output aList File (-m).................. 218
m2es
m2es (Converting a S Format File into the HEX 16
FOrmat)ceeeeeeiiiiiiee e 295
ma2is
m2is (Converting a S Format File into the HEX8
FOrMat) ...eeveeeeieeiiiiiiiiieee e 294
Mangle Name
Mangle Nameccueeeeiiiiiie e 11
Map
Map List File Name Specification (-m)............... 102
Specification for Inhibiting Map List Output
(XM e 103
Memory
Memory Used Information List Field List Output
Format.......coouviiiiiii e 172
Message
Control on Input-output Files and Messages.......... 53
Error Messagesin the Assemble List.................. 178
FELANG (Message Language)...........c.ceeeee... 13, 15
Selecting whether or not to Display a Startup
MESSAGE ...t 55
Selecting whether or not to Display a Termination
MESSAJE ...t 55
Specification Related to Output Messages............. 91
Specifying Display of End Message (-cmsg) 36
Specifying Display of Help Message (-help) 33
Specifying Version Number and Startup M essage of
Program (-V)..ooeeee oo 34
Suppression to Output End Message
(-XCMSY) i 37
Suppression to Output Version Number and Startup
Message of Program (-XV)....cccccceeevvines 35
Warning Message Output Level Specification
(W) e 115
Mixing
Mixing a FR Object and a FR80 Object......... 84, 209
-ml
Specification for Section Detail Map List Output
(M) e 162
-mif
Specification for Section Detail Map List File Name
(M) e 163
-mmi
Output Specification of the Memory Used Information
List (-mMmi) coeeiieeeiei, 105

369

Index

N
-na
Specification for ROM/RAM and ARRAY List
Symbol and Address Display Position
(-NBy=8N) ..t 155
-NCI0302LIB
Inhibiting Check for Presence of Debug Data
(-NCIO302LIB).....oovvverereiceceeeere 134
-nd
Specification for Inhibiting Default Library Retrieval
(-NA) e 128
-nl
Library Retrieval Inhibit Specification (-nl) 127
Notes
Notes and Evaluation When Specified Option....... 24
Number
Number of Charactersfor the File Name.............. 12
Numeric Expression
Numeric Expression of Option Parameters 23
O
-0
Optimizing the Contents of aFile (-O) 226
-0
Changing an Output File Name (-0)uu... 253
Output Load Module File Name Specification
(F0) werreee 92
Object
Object Mix Check Level Specification
(FOMCI) e 133, 231
Objects Generated Using the SOFTUNE V3/V5
Language Tool.........ccuvveeeeeeieeeniniins 207

Object Format Converter
List of Commands of the Object Format

CONVEIES ... 359
-omcl
Object Mix Check Level Specification
(-OMC) e 133, 231
OPT
OPT (Default Option File Storage
DIreCtory) ...ccceeeeeiiiiiiiiiiieeeee e 13,19
OPT911
OPT911 (Default Option File Storage
DiIreCtory)....coocvveeeeiiiiieee e 13,18
Optimizing
Optimizing the Contents of aFile (-O) 226
Option
Adjust Option (-adjust)cceevieiiiiiiiiiiieieeeenn. 260
Allocation/link Options............oooviiiiiiieieieneeaenn. 91
Cautionary Information Concerning the Specification
Of OPLiONS ..., 240
=CMSY OPLION ..eeeeiiieeeiiie e 29

370

Common Options of an Object Format

CONVENtEr ... 252
=CWNO OPLION ...veeiieiieaee et 29
Default Option File........ccccuviiiiiiieiieieii 46
Example of Describing Option File...................... 45

Example of Specifying an Option that has a
Contradictory Relation with Other
OPLIONS....ccoiiiiiiieee e 25

Example of Specifying an Option that has
an Inclusive Relation with Other

OPLIONS.....coiiiiiieeee e 25
Execution by Specifying Option File.................... 42
SF OPLION. .. 29
-help OPLiON. ... 29
Library Control Optionceveeeeeiiiiiiiiiiinene. 91
List of Common Options...........ceeeveeeereiiiiiiniinnnnn. 28
List of Linker Options............ceeeeieiieieiniiiiiiiinnee 88
List of Optionsof aLibrarian...............cccuvvveneee. 212
List of Options of the Binary Converter 286
List of Options of the Format Adjuster 275
List of Options of the Load Module

CoNVErtEr ... 259
Notes and Evaluation When Specified Option....... 24
Numeric Expression of Option Parameters............ 23
OPLION File......uieiiieiieeieee e 42
Optionsfor Creating and Editing aLibrary.......... 213
Optionsfor Outputting aListcccveeieininnnee 213
Options for Searching and Protecting aFile......... 213
Options Related to the Absolute Format Assemble List

OUEPUL ... 91
Options Related to the Object Content List

OUEPUL ... 91
Options Related to the Output Listeeee. 91
Options Related to the Output Module.................. 91
Other Link Control Options..........cceeeeeeeeniieenneen. 91
Other OPLiONS.......eveeiiiaeeeeiiiiiiiieeee e 213
Output HEX Format Option (-116/-120/-132) 260
Output S Format Option (-S1/-S2/-S3)................ 260
Specification to Continue in the Option File.......... 43
Specifying Comment in the Option File................ 44
Specifying Option File Name (-f) ... 31
Specifying Suppression to Read Default Option File

(-XO) et 30
Start Address Output Inhibit Option

(-XENEIY). oo 260
Start Address Output Option (-entry).................. 260
Synopsis of OPtioNoooeeiiiiiiiieeee e 22
SV OPLION et 29
=X CMSY OPLION. ..ceieiiiiaeieiiiiieeeeee e 29
=X CWNO OPLION. ..eeieiiiiaieeiiiiiiieeee e 29
=X dOf OPLION.....eeiieiiiiiiiii e 29
XV OPHON. ..ttt 29

Order
Example of Location when the Order of Combining

Sectionsis not Specified..........ccccveeeenen. 63
Example of Location when the Order of Combining

Sectionsis Specified..........occccvvvveeennnnn. 64

Order of SearchingaLibrary File........................ 71
Section AHlOCELION (-SC) «vvvvvveeeeieeeeeiiiiiiiiiieeeeen 118
Specifying the Order of Locating Sections
and the Location Addresses.................... 56
Other
Other Link Control OptionSccoovvcvvvvieennnn. 91
Other OptioNS.........coccvviiiiiiieeee e 213
Outline
Outline of aLinKer........coveeeveiiiiiiiiieeeeeeeeeeeeees 52
Outline of Load Module Converter 258
Outline of Object Format Converter................... 246
Outline of the Binary Converter.............ccccuvveee. 284
Output
Output HEX Format Option (-116/-120/-132)........ 260
Output Load Module File Name Specification
(FO) ettt 92
Output S Format Option (-S1/-S2/-S3)c....... 260
Output Specification of the Memory Used Information
List (-mMmMi) ..o 105
Specifying to Output HEX Format
(-126/-120/-132) ..ooveeviiieeesiiiee e 262
Specifying to Output S Format (-S1/-S2/-S3)....... 261
Overview
Overview of the Format Adjuster.............coeeee. 272
Overview of the Split Mode..........ccccceeeviiieeenne 285
P
-p
Specifying Padding Data (-p)ccevvvvennes 97, 255
Pack
Pack Link Specification (-pK)cceeveeeeerinnnne 121
Padding
Specifying Padding Data (-p)ccvvveneen. 97, 255
Parameter
Parameter.........coooeeii i 22
-pk
Pack Link Specification (-pK)cceeveeeeeiinnne 121
_p|
Specification of the Number of Lineson One List Page
(P oo 109
Specifying the Number of Lines Per Page of aList
(P oo 221
Precautions
Precautions on the Sections to be Transferred from
ROM tORAM.....ocvvviiiiiiicicieeeceeee e 80
Processing
Processing when Library Files are Individually
SPECIfied . ovviiieiiiiiie e 77
_pW
Specification of the Number of Digitsinthe List Line
[o1 T 108
Specifying the Number of Columns Per Line of aList
[0.1 222

Index

Q
Q&A
Q&A for Usingthe Linker.........cccccooviiiiiiinneen. 195
Questions
Questions and Answers on Creating a Library
File e 241

Questions and Answers
Questions and Answers on Using an Object Format

CONVEIEN ... 301
R
-r
Replacing (Registering) aModule (-r) 215
Specification of Outputting Relative Format L oad
MOAUIE (-F) weeeeeeeeeeiee e 96
-ra
RAM Area Specification (-ra)..........ccccvvveeerenennn. 117
RAM
Function that Sets Automatically Internal ROM/RAM
Areas (-SEt_rora).......cccceeeeeeeiiieieeeeeeeeenn, 135
Precautions on the Sections to be Transferred from
ROM to RAMooviiiiiiiieiiiiee e 80
RAM Area Specification (-ra)..........cccccvvvvvvvnnnns 117
ROM and RAM Areas Setting and Section
ANOCELION. ..o 78
ROM/RAM and ARRAY LisSt ...cccoovvveeiiiiiieeenns 180
ROM/RAM AreasNamesc.oooveuvvvviieeeeeeennn. 82
Sectionsto be Transferred from ROM to
RAM ..ot 79
Specification for Inhibiting ROM/RAM and ARRAY
List Output (-Xalr).....cccvveeeriiiiireeennn 154
Specification for ROM/RAM and ARRAY List Output
(AN e 152
Specification for ROM/RAM and ARRAY List Output
Module (-alrf) cooooeeeeieeee 153
Specification for ROM/RAM and ARRAY List
Symbol and Address Display Position
(G102) RPN 155
Specifiesto Prevent the Internal ROM/RAM Areafrom
being Set Automaticaly.........ccc.eevveeeeee 82
Specifiesto Prevent the Internal ROM/RAM Areas
from being Set Automatically
(-XSEL_rora)ocoeeeeeeeeeeeieeeeeeeeeeeees 136
Specifying ROM and RAM areas.........c.cccceeeeeennnn. 56
Using the Sections to be Transferred from ROM to
RAM L. 79
-ran
Specifying the Output Range
(G- 10) JE 276, 278, 287, 288
Record
S5 Type (Record to Manage the Number of
RECONS) ..vvvvvevieeee et 351
S7 Type (Terminator Record)cccevvvvnnen. 352
S8 Type (Terminator Record)cccevvvvvnneen. 353
S9 Type (Terminator Record)coccevvvvennen. 354

Index

Specifying not to Output Start Address Record

(-XENEFY) e 264
Specifying the Output Record Data Length
(1€N) e, 276
Specifying to Change the Starting Address of Record
(-ST) et 276
Specifying to Output Start Address Record
(FBNETY) e 263
Relative
Specification for Relative Format Assemble List Input
Directory (-alin)cccveeeeiniineneniinn, 147
Specification of Outputting Relative Format Load
ModUIE (=) oo 96
Replacing
Replacing (Registering) aModule (-1)................. 215
Restrictions
Restrictionson aLibrariancccoceeeeevievnnnnnn. 240
Restrictions on a Object Format Converter 300
Retrieval
Retrieval Library File Specification (-I).............. 124
-ro
ROM Area Specification (-ro)cccceevvvevenees 116
Roles
Rolesof aLibrarian........ccccoeeeeeiiiiiiiineeeiieinnnnnn. 200
ROM
Function that Sets Automatically Internal ROM/RAM
Areas (-SEt_rora)c.eeeeeeerveeeeeniniineeenn 135
Precautions on the Sections to be Transferred from
ROMtORAM ...t 80
ROM and RAM Areas Setting and Section
YYo= (o] o NP 78
ROM Area Specification (-r0)ccccevvvveeeennnns 116
ROM/RAM and ARRAY List......ccoveeeveeriivrnnnnn. 180
ROM/RAM Areas NameES.........ccevvveeveerieniiiieeenns 82
Sections to be Transferred from ROM to
RAM ., 79
Specification for Inhibiting ROM/RAM and ARRAY
List Output (-Xar) ...ccvveeeeiiiiiiieeein, 154
Specificationfor ROM/RAM and ARRAY List Output
(A1) e, 152
Specificationfor ROM/RAM and ARRAY List Output
Module (-alrf) ...oeeeeeiiii e, 153

Specification for ROM/RAM and ARRAY List
Symbol and Address Display Position

(-NB,=8N) 1.t 155
Specifiesto Prevent the Internal ROM/RAM Area
from being Set Automaticaly................. 82

Specifiesto Prevent the Internal ROM/RAM Areas
from being Set Automatically

(-XSEL_IOra) .eceeveveeee e 136
Specifying ROM and RAM areas............cccvvveee. 56
Support for Creating aROMccoovvvivvnvinnnnn. 56
Using the Sections to be Transferred from ROM to

RAM L 79

372

S
-S
Output S Format Option (-S1/-S2/-S3)................ 260
Specifying an Output S Format
(-SU/-S2/-S3) et 276
Specifying the S Format Output
(-SU/-S2/-S3) ettt 279
Specifying to Output S Format (-S1/-S2/-S3) 261
S
e2ms (Converting a HEX 16 Format File into the
SFOMAL).....eveieieiiiiiee e 297
f2ms (Converting an Absolute Format Load Module
into the SFOrMat)cocvveeeeiniieeeenns 266
i2ms (Converting a HEX8 Format File into the
SFOMAL).....cveeeeeiiiieie e 296
Output S Format Option (-S1/-S2/-S3)................. 260
Specifying the S Format Output
(-SU-S2/-S3)..eevieiiiiiiieeiiiiee e 279
Specifying to Output S Format (-S1/-S2/-S3) 261
SO Type
SO Type (Header Record)cceeeeieieieeeneeennnnne, 347
S1 Type
S1 Type (Data Record: 2-byte Address).............. 348
S2 Type
S2 Type (Data Record: 3-byte Address).............. 349
S3 Type
S3 Type (Data Record: 4-byte Address).............. 350
S5 Type
S5 Type (Record to Manage the Number of
RECONAS) ... 351
S7 Type
S7 Type (Terminator Record)cooevveeernnne. 352
S8 Type
S8 Type (Terminator Record)ccoeveeeeeeeeennn. 353
S9 Type
S9 Type (Terminator Record)ceeveeeeenninnnee 354
-SC
Section AHlOCELION (=SC)....vvvvveriiiiieee e 118
Search
Example of a Search when there are Multiple Library
FIHES (1) oo 75
Example of a Search when there are Multiple Library
FIHES (2) oo 76
Example of a Search when thereis One Library
FIE (1) oo 72
Example of a Search when thereis One Library
FIE (2) eveiieeeiee e 73
Example of a Search when thereis One Library
FIE (3) e 74
Inhibiting the Search for aLibrary........................ 57
Specifying aPath to Search aLibrary 57
Searched
Specifying a Library Fileto be Searched............... 57

Specifying a Library File to be Searched for Each

SYMBOL ... 57
Specifying a Library to be Searched..................... 71
Searching
Control on Searching Libraries.............ccccvvveeeen.. 54
Section
Automatically Locating Sections............ccccvveeee.. 66
Creating a Group of Sections..............cccccvvvvveennnn. 56
Example of Location when the Order of Combining
Sectionsis not Specified............ccceeeees 63
Example of Location when the Order of Combining
Sectionsis Specified............cccevvvvivieennns 64
Example of Location when the Section Group is
SPECIfied...vevviiiiiiiie 65
Links Of SECHIONSccevveeeiiiiiiiiiieeeceee e 62
Precautions on the Sections to be Transferred from
ROM tO RAM...ccoiiiiiiiiiiiiiiee e 80
ROM and RAM Areas Setting and Section
AlIOCELION ...t 78
Section Allocation (-SC)coevvevvvveveeeeiiiiviiiiiinnnns 118
Section Allocation Detailed Information List
File e 190
Section Combination Attribute..............cccevveeeee. 59
Section Detail Map List.........ccoovvvvveveiviiiiiiinnnn, 166
Section Group Specification (-gr)cevvvvvnnns 120
Section ldentificationccccceeeeiiiiniiiiiiieeeen. 60
Section Information Listccceeevviiiiiiiiineennenn. 184
Section Location Attribute............coooeiiiiiiiieeneen. 59
SeCtioN NaMEcooiiiiieeee e, 59
Section Types and Location Destinations.............. 69
Sectionsto be Transferred from ROM to
RAM Lo 79
Shared Combination of Sections..............cc.eeeeeee. 61
Simple Connection Combination of Sections........ 61
Specification for Inhibiting Section Detail Map List
Output (-Xml)..coeeeiiiieeieeeeeeeeeeeees 164
Specification for Section Detail Map List File Name
(M) e 163
Specification for Section Detail Map List Output
(M) e 162
Specification of Section Arrangement Check for Size 0
(-check_size0 SeC).......cceveveeeeeeeienne, 144
Specifying the Order of Locating Sections and the
Location Addresses.........ccoovvvvevvvneeneen. 56
Suppression Specification of Section Arrangement
Check for Size0
(-Xcheck _sizeQ seC)cceeveeeeeeenennnn. 145
Types of Section Contents............ceeevvvvvvennnnnnnnnn. 59
Using the Sections to be Transferred from ROM to
RAM L 79
Section-placed-area
Section-placed-area Check Specification
(-check_locate)uvveeeeiiieniiiiiins 140
Section-placed-area Check Suppression Specification
(-Xcheck_[0Cate).......uuvveeeiieaaeiiiiiinnee 143

Index

Selecting
Selecting the Warning Check Level...................... 55
Selecting whether or not to Display a Startup
MESSBQEevvviveieieiii it 55
Selecting whether or not to Display a Termination
MESSBQEvvvviieeeiiiiiiiie e 55
-set_rora
Function that Sets Automatically Internal ROM/RAM
ATreas (-Set_rora).......cceeeeerrveeeeenninneenns 135
Setting
Setting an External Symbol Value........................ 58
Setting Entry Addresses and Symbol Values......... 54
Shared
Shared Combination of Sections............c..cvveeenne 61
Simple
Simple Connection Combination of Sections......... 61
-sl
Specification for Local Symbol List Output
(-51) e 159
-slf
Specification for Local Symbol List File Name
(-3 e, 160
SOFTUNE
Input of the Objects Generated with SOFTUNE V3/V5
TOON i 83
Library Made by the SOFTUNE V3/V5 Language
TOON i 208
Objects Generated Using the SOFTUNE V3/V5
Language ToOolcoocvveeeiiiiiieeenee 207
_sp
Specifying the Split Mode (-5p)cvvvvnneee 287, 289
Specification
Automatic Allocation Specification (-AL)........... 122
Cautionary Information Concerning the Specification
Of OPLiONS. ...t 240
Debug Information Delete Specification (-Xg) 94
Entry Address Specification (-€)cceeeeeeeennn. 129
Library Retrieval Inhibit Specification (-nl) 127
Library Retrieval Path Specification (-L) 125
Library Specification for Each Symbol (-€)........ 126
Map List File Name Specification (-m)............... 102
Object Mix Check Level Specification
(OMCl) o 133, 231
Output Debug Information Specification (-g) 93
Output Load Module File Name Specification
(50) et 92
Output Specification of the Memory Used Information
List (-MMi) .ooeeiieiiiiiiiieeeeeeee s 105
Pack Link Specification (-pK)ccccvveveeeeennnn. 121
RAM Area Specification (-ra)..........cccuvveeeeeeeennn. 117
Retrieval Library File Specification (-I) 124
ROM Area Specification (-r0)ccvvvvveeeeenenn. 116
Section AllOCaLION (-SC)....vvvvvvereeiieeaeeiiiiiiiiieeee, 118
Section Group Specification (-gr)..........cccvvevneen. 120

373

Index

374

Section-placed-area Check Specification

(-check_1oCate)coovvuvvviiiiiiieiaeeenn, 140
Section-placed-area Check Suppression Specification
(-Xcheck_locate)........ccccuvvvreeeeienaeannnn. 143
Specification Differences Depending on the
OS e 361
Specification for Absolute Format Assemble List
OULPUL (-81S) .evvvviieeieeeeee e 149
Specification for Absolute Format Assemble List
Output Directory Format (-alout)........... 148
Specification for Absolute Format Assemble List
Output Module (-alsf)cooviiiiiiiienen. 150
Specification for External Symbol Cross-reference
Information List File Name (-xIf).......... 157
Specification for External Symbol Cross-reference
Information List Output (-xI)................ 156
Specification for External Symbol Information Output
(-SyMta) ... 100
Specification for Inhibiting Absolute Format Assemble
List Output (-Xals)vvvveeeeeeeeeaiiniiians 151
Specification for Inhibiting Default Library Retrieval
(-NA) e 128
Specification for Inhibiting Map List Output
(=X ettt 103
Specification for Inhibiting ROM/RAM and ARRAY
List Output (-Xalr)evvveeeieeieaeiiniiins 154
Specification for Inhibiting Section Detail Map List
Output (-XMl) ..oeveiieiiiiaeeeeeiiieeee, 164

Specification for Inhibiting the External Symbol
Cross-reference Information List Output

(XX et 158
Specification for Inhibiting the External Symbol

Information Output (-Xsymtab) 101
Specification for Inhibiting the Local Symbol List

OUtPUL (-XS) e, 161
Specification for Local Symbol List File Name

(-SF) e 160
Specification for Local Symbol List Output

(5) e 159
Specification for Relative Format Assemble List Input

Directory (-alin)ccccuvveeeeeiieeeiiniiins 147
Specification for ROM/RAM and ARRAY List Output

(8I1) e 152
Specification for ROM/RAM and ARRAY List Output

Module (-alrf)oooiiiiiiie 153

Specification for ROM/RAM and ARRAY List
Symbol and Address Display Position

(-NB=81N) ..t 155
Specification for Section Detail Map List File Name
(-MIE) e 163
Specification for Section Detail Map List Output
(=M 162
Specification of Outputting Absolute Format Load
MOdUIE (-8) «.eeeeeeeeiiiiiiiiieeee e 95
Specification of Outputting Relative Format Load
MOAUIE (-1) ceeeeeeeeeiiiiiieeee e 96

Specification of Section Arrangement Check for Size0

(-check_Size0 SEC)....cevvvveeeiiiiiiiiiiiinee 144
Specification of the Number of Digitsin the List Line

(FPW) ettt 108
Specification of the Number of Lineson One List Page

(P e 109
Specification Related to Output Messages.............. 91
Specification to Continue in the Option File.......... 43
Suppression Specification of Section Arrangement

Check for Size0

(-Xcheck_Size0 SEC) ...cevveeeiiiiiiiiiiiinen, 145
Target CPU Specification (-Cpu)eeeeeeeeeennn. 131
User-specified-area Check Specification

(-check_rora)..........eeeeeeeieeeiiiiiiiiiiinee, 137
User-specified-area Check Suppression Specification

(-XCheCk_rora)ceeeeeeeeeneeiiiiiiiiineee, 139
Warning Message Output Level Specification

(FW) et 115

Specifies

Specifiesto Prevent the Internal ROM/RAM Areafrom

being Set Automaticalyccceeeennnee 82
Specifiesto Prevent the Internal ROM/RAM Areas

from being Set Automatically

(085 = H (o) IR 136

Specifying

Specifying aLibrary File to be Searched............... 57
Specifying aLibrary File to be Searched for Each

Symbol ..., 57
Specifying aLibrary to be Searched 71
SpecifyingaList FileNameccccceeeeeeeeeennn, 55
Specifying aPath to Search aLibrary 57
Specifying aTarget CPU (-CpU) ...ccooeveveeeeeeeeennnn. 230
Specifying an Entry Address.........ccccoeveeeeeeeeeeen, 58
Specifying an Output HEX Format

(-126/-120/-132) .o 276
Specifying an Output Load Module File

NamMe ... 55
Specifying an Output

SFormat (-S1/-S2/-S3)......ccevveiiiiienannns 276
Specifying Comment in the Option File................ 44

Specifying CPU Information File (-cif)....... 132, 229
Specifying Display of End Message (-cmsQ) 36
Specifying Display of Help Message (-help) 33

Specifying Input Object Files...........cooeeeeeeeeeenn. 55
Specifying not to Create aMap List File
(-XIM) e 287, 292
Specifying not to Output aList File (-Xm).......... 219
Specifying not to Output Debugging Information
(-X0) cerreereeiiiee e 228
Specifying not to Output Start Address Record
(1117 264
Specifying Option File Name (-f) ... 31
Specifying Padding Data (-p)ccceeeveeennnn. 97, 255
Specifying ROM and RAM areas.............cccee.. 56
Specifying Suppression to Read Default Option File
(-XAOF) vt 30

Specifying the HEX Format Output

(-116/-120/-132) ... 281
Specifying the Inhibition of the Split Mode
(0,6 o) VTP 287, 290
Specifying the Number of Columns Per Line of aList
(FPW) et 222
Specifying the Number of Lines Per Page of aList
(FP1) e 221
Specifying the Order of Locating Sections and the
Location Addresses.......ccoeeevvviiivevieennnn. 56
Specifying the Output Data L ength (-len) 277
Specifying the Output Formatccccvvveeeeeee. 55
Specifying the Output Range
(-ran) weeeeeeee e 276, 278, 287, 288
Specifying the Output Record Data L ength
(1Nt 276
Specifying the S Format Output
(-SU/-S2/-S3) .eeviieeieieieiie e 279
Specifying the Split Mode (-sp) 287, 289
Specifying to Adjust (-adjust)...........cccvvvveeeeennn. 265
Specifying to Change the Starting Address
(5ST) et 282
Specifying to Change the Starting Address of Record
(5ST) et 276
Specifying to Create aMap List File
(5M) e 287, 291
Specifying to Output a List File (-m).................. 218
Specifying to Output Debugging Information
(50) ceeee e 227
Specifying to Output Detailed Information of a List
File (-at) ..o 220
Specifying to Output HEX Format
(-116/-120/-132) .o 262
Specifying to Output S Format (-S1/-S2/-S3)....... 261
Specifying to Output Start Address Record
(1= 01107 FET PP UTURTRR 263
Specifying to Set the End Code to 0 When Warning is
Issued (-XCWNO) ...evveeeeeeieeeeiiiiiiiieeeeen, 39
Specifying to Set the End Codeto 1 When Warning is
ISSUEd (-CWNO) ... 38
Specifying Version Number and Startup Message of
Program (V) ..occeeeeeeeeeeeieeeeieeen 34
-ST
Specifying to Change the Starting Address
(5ST) ettt 282
Specifying to Change the Starting Address of Record
(5ST) ettt 276
Start
Start Address Output Inhibit Option
(=111 260
Start Address Output Option (-entry) 260
Start Linear Address Record
Start Linear Address Record (HEX32) 345

Index

Start Segment Address Record
Start Segment Address Record
(HEX16/HEX32).....ceeiiiieeiiieeiiiee e 343

Startup Message
Selecting whether or not to Display a Startup

MESSAOEevviieiiii e 55
Startup MESSAgE........ooeirreeeeeee e 8
Startup Message and the -V Option...........cccceeeeee... 8
Support
Support for Creating aROMccveveeiiirieeeenns 56
Support Range of Linkage Kitccccovevverennnnn. 4
Suppression
Suppression Specification of Section Arrangement
Check for Size0
(-Xcheck_size0 SeC)......cccvvvveeeeeenenannn, 145
Suppression to Output Version Number and Startup
Message of Program (-XV)......ccccceeinnes 35
Symbol Values
Setting Entry Addresses and Symbol Values......... 54
-symtab
Specification for External Symbol Information Output
(-symtab) ..cooooeeeiiiee 100
Synopsis
Synopsis of OPtioNccceuviviiiiiieiee e 22
T
Target
Target CPU Specification (-Cpu)cvveeeennee. 131

Termination Message
Selecting whether or not to Display a Termination

MESSAQEiviiiiiiiiin e 55

Terminator

S7 Type (Terminator Record)occuvvvenneen. 352

S8 Type (Terminator Record)occvvvvenneen. 353

S9 Type (Terminator Record)ooveueeviennen. 354
TMP

TMP (WOrk DireCtory)coocovveeeeinuneenennnns 13, 14
Types

Types of Characters Consisting of Identifiers........ 11

Types of Load Module Converters..................... 248

Types of Other Convertersccovvvvveieeeeeeeeennn, 248

Types of Section Contents.........cceeeeeveveieeeeeeenennnn. 59
U

User-specified-area
User-specified-area Check Specification
(-check_rora)ccceeeeeieiiiiiiiiiiieeeeeee, 137
User-specified-area Check Suppression Specification
(-XCheCk_rora)......ccceeeeeiiiieiiiiieeeeeeenn, 139
Using
Using the Sections to be Transferred from ROM to
RAM .o 79

375

Index

\Y
-V
Specifying Version Number and Startup Message of
Program (V) ...coooeiiiiiiieeeeeeee e 34
Startup Message and the -V Option.................eeeee. 8
SV OPLION ...ttt 29

Version Number
Specifying Version Number and Startup Message of

Program (-V) ..c.eeeeeeiiiieee e 34
Suppression to Output Version Number and Startup
Message of Program (-XV)ccevvvneeen. 35
w
-w
Warning Message Output Level Specification
(FW) e 115
Warning
Selecting the Warning Check Level 55
Warning Message Output Level Specification
(FW) et 115
Work Directory
TMP (Work DireCtory)cccovvvveeieininnenennn 13,14
X
-X
ExtractingaModule (-X)......ccooeeeeeeiiieiiiiiieieeees 217
-Xalr
Specification for Inhibiting ROM/RAM and ARRAY
List Output (-Xalr)evvveeeeeeieaeiiniiiens 154
-Xals
Specification for Inhibiting Absolute Format Assemble
List Output (-Xals) ...c.cvevvevevererererennnes 151
-Xb
Inhibiting the Creation of a Backup File
(-XDB) e 224

-Xcheck locate
Section-placed-area Check Suppression Specification
(-Xcheck_ocate)........ccocuvvvveeeeiniaeaannn, 143
-Xcheck_rora
User-specified-area Check Suppression Specification
(-Xcheck_rora)ccooceeeeeiniiineeennn, 139
-Xcheck_size0_sec
Suppression Specification of Section Arrangement

Check for Size 0
(-Xcheck_sizeQ seC)ccvvvvvvvvivinnnnns 145
-Xcmsg
Suppression to Output End Message
(-XCMSG) vt 37
=X CMSY OPLION .evveeeeieiiiiiiiee e 29
-Xcwno
Specifying to Set the End Code to 0 When Warning is
Issued (-XCWNO)......cccuvrrrreereeeeeeeeeeeiinenns 39
=X CWNO OPLION ..covveee e 29

376

-Xdemangle
Disable Output of Demangled Symbol Name
(-Xdemangle)cceeeeeeeeiiiiiiiiiiiineee, 106
-Xdof
Specifying Suppression to Read Default Option File
(-XAOF) et 30
=X dOf OPLION.....ciiiiiiieiiiiiiie e 29
-Xentry
Specifying not to Output Start Address Record
(21117 264
Start Address Output Inhibit Option
(1117 T 260
-Xg
Debug Information Delete Specification (-Xg) 94
Specifying not to Output Debugging Information
(=X) ceeereeeree e 228
-l
Specification for External Symbol Cross-reference
Information List Output (-XI) 156
-xIf
Specification for External Symbol Cross-reference
Information List File Name (-xIf)........... 157
-Xm
Specification for Inhibiting Map List Output
(-XM) et 103
Specifying not to Create aMap List File
(-XM) et 287, 292
Specifying not to Output a List File (-Xm).......... 219
-Xml
Specification for Inhibiting Section Detail Map List
Output (-XmMl) .eeeeriiiiiieeiiieee e 164
-XPLNK
Disable Pre-linking (-XPLNK)cccocoeiiiiiiiennnn. 146
-Xset_rora

Specifiesto Prevent the Internal ROM/RAM Areas
from being Set Automatically

(-XSEL_rOra) ..o 136
-Xsl
Specification for Inhibiting the Local Symbol List
OULPUL (=X) eeeeeeeiiiiee e 161
-Xsp
Specifying the Inhibition of the Split Mode
(0,6 o) FE PR 287, 290
-Xsymtab
Specification for Inhibiting the External Symbol
Information Output (-Xsymtab)............. 101
-XV
Suppression to Output Version Number and Startup
Message of Program (-XV).......cccceeennee 35
8 VL@ o 1o o S 29
-XxI

Specification for Inhibiting the External Symbol
Cross-reference Information List Output
(-XXI) e 158

CM71-00327-5E

FUJITSU MICROELECTRONICS « CONTROLLER MANUAL

FR FAMILY
SorFTuNE™ LINKAGE KIT MANUAL
for V6

June 2008 the fifth edition

Published FUJITSU MICROELECTRONICS LIMITED
Edited Business & Media Promotion Dept.

	PART I LINKAGE KIT
	CHAPTER 1 SPECIFICATIONS OF LINKAGE KIT
	1.1 Outline of Linkage Kit
	1.2 Startup Procedure
	1.3 Forced Termination
	1.4 End Code
	1.5 Startup Message
	1.6 End Message
	1.7 Help Message
	1.8 Identifiers
	1.9 File name Rules
	1.10 Environment Variables
	1.10.1 TMP (Work Directory)
	1.10.2 FELANG (Message Language)
	1.10.3 FETOOL (Installation Directory)
	1.10.4 LIB911 (Library File Search Directory)
	1.10.5 OPT911 (Default Option File Storage Directory)
	1.10.6 OPT (Default Option File Storage Directory)

	CHAPTER 2 OPTIONS
	2.1 Option
	2.2 Numeric Expression of Option Parameters
	2.3 Notes and Evaluation When Option is Specified
	2.4 Specifying Options that Have Inclusive or Contradictory Relation Each Other
	2.5 Example of Specifying Command Lines

	CHAPTER 3 COMMON OPTIONS
	3.1 List of Common Options
	3.2 Details of Common Options
	3.2.1 Specifying Suppression to Read Default Option File (-Xdof)
	3.2.2 Specifying Option File Name (-f)
	3.2.3 Specifying Display of Help Message (-help)
	3.2.4 Specifying Version Number and Startup Message of Program (-V)
	3.2.5 Suppression to Output Version Number and Startup Message of Program (-XV)
	3.2.6 Specifying Display of End Message (-cmsg)
	3.2.7 Suppression to Output End Message (-Xcmsg)
	3.2.8 Specifying to Set the End Code to 1 When Warning is Issued (-cwno)
	3.2.9 Specifying to Set the End Code to 0 When Warning is Issued (-Xcwno)

	CHAPTER 4 OPTION FILES
	4.1 Outline of Option File
	4.2 Specification to Continue in the Option File
	4.3 Specifying Comment in the Option File
	4.4 Example of Describing Option File
	4.5 Default Option File

	PART II LINKER
	CHAPTER 5 SPECIFICATIONS OF A LINKER
	5.1 Outline of a Linker
	5.2 Functions of a Linker
	5.2.1 Control on Input-Output Files and Messages
	5.2.2 Control on Combining and Locating Sections
	5.2.3 Control on Searching Libraries
	5.2.4 Setting Entry Addresses and Symbol Values

	5.3 Types of Sections
	5.4 Combining Sections
	5.5 Locating Sections
	5.5.1 Example of Location when the Order of Combining Sections is not Specified
	5.5.2 Example of Location when the Order of Combining Sections is Specified
	5.5.3 Example of Location when the Section Group is Specified

	5.6 Automatically Locating Sections
	5.6.1 Automatically Locating Sections when -AL 1 is Specified
	5.6.2 Automatically Locating Sections when -AL 2 is Specified

	5.7 Searching Libraries
	5.7.1 Example of a Search when there is one Library File (1)
	5.7.2 Example of a Search when there is one Library File (2)
	5.7.3 Example of a Search when there is one Library File (3)
	5.7.4 Example of a Search when there are Multiple Library Files (1)
	5.7.5 Example of a Search when there are Multiple Library Files (2)
	5.7.6 Processing when Library Files are Individually Specified

	5.8 ROM and RAM Areas
	5.9 Sections to be Transferred from ROM to RAM
	5.10 CPU Information File
	5.11 Input of the Objects generated with SOFTUNE V3/V5 Tool
	5.12 Mixing a FR Object and a FR80 Object

	CHAPTER 6 LINKER OPTIONS
	6.1 List of Linker Options
	6.2 Details of Linker Options
	6.2.1 Output Load Module File Name Specification (-o)
	6.2.2 Output Debug Information Specification (-g)
	6.2.3 Debug Information Delete Specification (-Xg)
	6.2.4 Specification of Outputting Absolute Format Load Module (-a)
	6.2.5 Specification of Outputting Relative Format Load Module (-r)
	6.2.6 Specifying Padding Data (-p)
	6.2.7 Specification to fill ROM area (-fill)
	6.2.8 Specification for External Symbol Information Output (-symtab)
	6.2.9 Specification for Inhibiting the External Symbol Information Output (-Xsymtab)
	6.2.10 Map List File Name Specification (-m)
	6.2.11 Specification for Inhibiting Map List Output (-Xm)
	6.2.12 Cancellation of Omitting Names Displayed in the List (-dt)
	6.2.13 Output Specification of the Memory Used Information List (-mmi)
	6.2.14 Disable Output of Demangled Symbol Name (-Xdemangle)
	6.2.15 Enable Output of Demangled Symbol Name (-demangle)
	6.2.16 Specification of the Number of Digits in the List Line (-pw)
	6.2.17 Specification of the Number of Lines on One List Page (-pl)
	6.2.18 Checksum specification of ROM area (-cs)
	6.2.19 Warning Message Output Level Specification (-w)
	6.2.20 ROM Area Specification (-ro)
	6.2.21 RAM Area Specification (-ra)
	6.2.22 Section Allocation (-sc)
	6.2.23 Section Group Specification (-gr)
	6.2.24 Pack Link Specification (-pk)
	6.2.25 Automatic Allocation Specification (-AL)
	6.2.26 Retrieval Library File Specification (-l)
	6.2.27 Library Retrieval Path Specification (-L)
	6.2.28 Library Specification for Each Symbol (-el)
	6.2.29 Library Retrieval Inhibit Specification (-nl)
	6.2.30 Specification for Inhibiting Default Library Retrieval (-nd)
	6.2.31 Entry Address Specification (-e)
	6.2.32 Dummy Setting of External Symbol Values (-df)
	6.2.33 Target CPU Specification (-cpu)
	6.2.34 Specifying CPU Information File (-cif)
	6.2.35 Object Mix Check Level Specification (-omcl)
	6.2.36 Inhibiting Check for Presence of Debug Data (-NCI0302LIB)
	6.2.37 Function that Sets Automatically Internal ROM/RAM Areas (-set_rora)
	6.2.38 Specifies to Prevent the Internal ROM/RAM Areas from being Set Automatically (-Xset_rora)
	6.2.39 User-specified-area Check Specification (-check_rora)
	6.2.40 User-specified-area Check Suppression Specification (-Xcheck_rora)
	6.2.41 Section-placed-area Check Specification (-check_locate)
	6.2.42 Section-placed-area Check Suppression Specification (-Xcheck_locate)
	6.2.43 Specification of Section Arrangement Check for Size 0 (-check_size0_sec)
	6.2.44 Suppression Specification of Section Arrangement Check for Size 0 (-Xcheck_size0_sec)
	6.2.45 Disable Pre-linking (-XPLNK)
	6.2.46 Specification for Relative Format Assemble List Input Directory (-alin)
	6.2.47 Specification for Absolute Format Assemble List Output Directory Format (-alout)
	6.2.48 Specification for Absolute Format Assemble List Output (-als)
	6.2.49 Specification for Absolute Format Assemble List Output Module (-alsf)
	6.2.50 Specification for Inhibiting Absolute Format Assemble List Output (-Xals)
	6.2.51 Specification for ROM/RAM and ARRAY List Output (-alr)
	6.2.52 Specification for ROM/RAM and ARRAY List Output Module (-alrf)
	6.2.53 Specification for Inhibiting ROM/RAM and ARRAY List Output (-Xalr)
	6.2.54 Specification for ROM/RAM and ARRAY List Symbol and Address Display Position (-na,-an)
	6.2.55 Specification for External Symbol Cross-reference Information List Output (-xl)
	6.2.56 Specification for External Symbol Cross-reference Information List File Name (-xlf)
	6.2.57 Specification for Inhibiting the External Symbol Cross- reference Information List Output (-Xxl)
	6.2.58 Specification for Local Symbol List Output (-sl)
	6.2.59 Specification for Local Symbol List File Name (-slf)
	6.2.60 Specification for Inhibiting the Local Symbol List Output (-Xsl)
	6.2.61 Specification for Section Detail Map List Output (-ml)
	6.2.62 Specification for Section Detail Map List File Name (-mlf)
	6.2.63 Specification for Inhibiting Section Detail Map List Output (-Xml)

	CHAPTER 7 OUTPUT LIST FILE OF THE LINKER
	7.1 Types of List Files Output by the Linker
	7.2 Link List File
	7.2.1 Control List
	7.2.2 Map List
	7.2.3 Memory Used Information List
	7.2.4 Symbol List

	7.3 Absolute Format Assemble List File
	7.3.1 Header and Information List
	7.3.2 ROM/RAM and ARRAY Lists
	7.3.3 Assemble Source List
	7.3.4 Section Information List
	7.3.5 Cross-reference List

	7.4 External Symbol Cross-reference Information List File
	7.5 Local Symbol Information List File
	7.6 Section Allocation Detailed Information List File

	CHAPTER 8 LINKER RESTRICTIONS AND Q&A
	8.1 Linker Restrictions
	8.2 Q&A for Using the Linker

	PART III LIBRARIAN
	CHAPTER 9 SPECIFICATIONS OF A LIBRARIAN
	9.1 Functions of a Librarian
	9.2 Function Types of a Librarian
	9.3 Creating and Editing a Library File
	9.4 Extracting a Module from a Library File
	9.5 Deleting Debugging Information of a Library
	9.6 Checking and Displaying the Contents of a Library File
	9.7 Objects Generated Using the SOFTUNE V3/V5 Language Tool
	9.8 Library Made by the SOFTUNE V3/V5 Language Tool
	9.9 Mixing a FR Object and a FR80 Object

	CHAPTER 10 OPTIONS OF A LIBRARIAN
	10.1 List of Options of a Librarian
	10.2 Details of the Options of a Librarian
	10.2.1 Adding (Registering) a Module (-a)
	10.2.2 Replacing (Registering) a Module (-r)
	10.2.3 Deleting a Module (-d)
	10.2.4 Extracting a Module (-x)
	10.2.5 Specifying to Output a List File (-m)
	10.2.6 Specifying not to Output a List File (-Xm)
	10.2.7 Specifying to Output Detailed Information of a List File (-dt)
	10.2.8 Specifying the Number of Lines Per Page of a List (-pl)
	10.2.9 Specifying the Number of Columns Per Line of a List (-pw)
	10.2.10 Creating a Backup File (-b)
	10.2.11 Inhibiting the Creation of a Backup File (-Xb)
	10.2.12 Checking the Contents of a Library File (-c)
	10.2.13 Optimizing the Contents of a File (-O)
	10.2.14 Specifying to Output Debugging Information (-g)
	10.2.15 Specifying not to Output Debugging Information (-Xg)
	10.2.16 Specifying CPU Information File (-cif)
	10.2.17 Specifying a Target CPU (-cpu)
	10.2.18 Object Mix Check Level Specification (-omcl)

	CHAPTER 11 LIST FORMATS OF A LIBRARIAN
	11.1 Contents of Information in a List File
	11.2 List of Module Names
	11.3 Detailed Information of a Module
	11.4 External Defined and Reference Symbol Information in a Library

	CHAPTER 12 RESTRICTIONS AND QUESTIONS AND ANSWERS ON A LIBRARIAN
	12.1 Restrictions on a Librarian
	12.2 Questions and Answers on Using a Librarian

	PART IV OBJECT FORMAT CONVERTERS
	CHAPTER 13 SPECIFICATIONS OF AN OBJECT FORMAT CONVERTER
	13.1 Outline of Object Format Converter
	13.2 Types of Object Format Converters
	13.3 Executing an Object Format Converter

	CHAPTER 14 COMMON OPTIONS OF AN OBJECT FORMAT CONVERTER
	14.1 List of Common Options of an Object Format Converter
	14.2 Changing an Output File Name (-o)
	14.3 Specifying Padding Data (-p)

	CHAPTER 15 LOAD MODULE CONVERTER (f2ms,f2hs,f2is,f2es)
	15.1 Outline of Load Module Converter
	15.2 List of Options of the Load Module Converter
	15.3 Details of Load Module Converter Options
	15.3.1 Specifying to Output S Format (-S1/-S2/-S3)
	15.3.2 Specifying to Output HEX Format (-I16/-I20/-I32)
	15.3.3 Specifying to Output Start Address Record (-entry)
	15.3.4 Specifying not to Output Start Address Record (-Xentry)
	15.3.5 Specifying to Adjust (-adjust)

	15.4 f2ms (Converting an Absolute Format Load Module into the S Format)
	15.5 f2hs (Converting an Absolute Format Load Module into the HEX Format)
	15.6 f2is (Converting an Absolute Format Load Module into the HEX8 Format), f2es (Converting an Absolute Format Load Module into the HEX16 Format)

	CHAPTER 16 FORMAT ADJUSTER (m2ms, h2hs)
	16.1 Outline of the Format Adjuster
	16.2 List of Options of the Format Adjuster
	16.3 Details of Options of the Format Adjuster
	16.3.1 Specifying the Output Data Length (-len)
	16.3.2 Specifying the Output Range (-ran)
	16.3.3 Specifying the S Format Output (-S1/-S2/-S3)
	16.3.4 Specifying the HEX Format Output (-I16/-I20/-I32)
	16.3.5 Specifying to Change the Starting Address (-ST)

	CHAPTER 17 BINARY CONVERTER (m2bs, h2bs)
	17.1 Outline of Binary Converter
	17.2 List of Options of Binary Converter
	17.3 Details on Options of the Binary Converter
	17.3.1 Specifying the Output Range (-ran)
	17.3.2 Specifying the Split Mode (-sp)
	17.3.3 Specifying the Inhibition of the Split Mode (-Xsp)
	17.3.4 Specifying to Create a Map List File (-m)
	17.3.5 Specifying not to Create a Map List File (-Xm)

	CHAPTER 18 OTHER CONVERTERS
	18.1 m2is (Converting a S Format File into the HEX8 Format)
	18.2 m2es (Converting a S Format File into the HEX16 Format)
	18.3 i2ms (Converting a HEX8 Format File into the S Format)
	18.4 e2ms (Converting a HEX16 Format File into the S Format)

	CHAPTER 19 RESTRICTIONS AND QUESTIONS AND ANSWERS ON AN OBJECT FORMAT CONVERTER
	19.1 Restrictions on an Object Format Converter
	19.2 Questions and Answers on Using an Object Format Converter

	APPENDIX
	APPENDIX A ERROR MESSAGES OF THE LINKAGE KIT
	APPENDIX B HEX FORMAT
	B.1 Common Format
	B.2 Data Record (HEX8/HEX16/HEX32) Type: 00
	B.3 End Record (HEX8/HEX16/HEX32) Type: 01
	B.4 Extended Segment Address Record (HEX16/HEX32) Type: 02
	B.5 Start Segment Address Record (HEX16/HEX32) Type: 03
	B.6 Extended Linear Address Record (HEX32) Type: 04
	B.7 Start Linear Address Record (HEX32) Type: 05

	APPENDIX C S RECORD FORMAT
	C.1 S0 Type (Header Record)
	C.2 S1 Type (Data Record: 2-Byte Address)
	C.3 S2 Type (Data Record: 3-Byte Address)
	C.4 S3 Type (Data Record: 4-Byte Address)
	C.5 S5 Type (Record to Manage the Number of Records)
	C.6 S7 Type (Terminator Record)
	C.7 S8 Type (Terminator Record)
	C.8 S9 Type (Terminator Record)

	APPENDIX D LIST OF LINKER OPTIONS
	APPENDIX E LIST OF LIBRARIAN OPTIONS
	APPENDIX F LIST OF COMMANDS AND OPTIONS OF THE OBJECT FORMAT CONVERTER
	APPENDIX G SPECIFICATION DIFFERENCES DEPENDING ON THE OS

