
FUJITSU MICROELECTRONICS
CONTROLLER  MANUAL

FR FAMILY
SOFTUNETM WORKBENCH

USER’S MANUAL
for V6

CM71-00329-4E





FUJITSU MICROELECTRONICS LIMITED

FR FAMILY
SOFTUNETM WORKBENCH

USER’S MANUAL
for V6





Preface

■ What is the SOFTUNE Workbench?
SOFTUNE Workbench is support software for developing programs for the FR families of 

microprocessors / microcontrollers.

It is a combination of a development manager, simulator debugger, emulator debugger, monitor debugger,

and an integrated development environment for efficient development.

■ Purpose of this manual and target readers
This manual explains the functions of SOFTUNE Workbench.  This manual is intended for engineers

developing various types of products using SOFTUNE Workbench.  Be sure to read this manual

completely.

■ Trademarks
SOFTUNE is a trademark of FUJITSU MICROELECTRONICS LIMITED.

REALOS (REALtime Operating System) is a trademark of FUJITSU MICROELECTRONICS LIMITED. 

The company names and brand names herein are the trademarks or registered trademarks of their respective

owners.
i



  
■ Organization of Manual
This manual consists of two chapters. 

CHAPTER 1  "Basic Functions"

This chapter describes the basic functions on the SOFTUNE Workbench.

CHAPTER 2  "Dependence Functions"

This chapter describes the functions on each debugger.

 

Copyright ©2002-2008 FUJITSU MICROELECTRONICS LIMITED All rights reserved.

• The contents of this document are subject to change without notice. 
Customers are advised to consult with sales representatives before ordering.

• The information, such as descriptions of function and application circuit examples, in this document are presented solely
for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device;
FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such
information. When you develop equipment incorporating the device based on such information, you must assume any
responsibility arising out of such use of the information. FUJITSU MICROELECTRONICS assumes no liability for any
damages whatsoever arising out of the use of the information.

• Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as
license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of
FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-
infringement of any third-party's intellectual property right or other right by using such information. FUJITSU
MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of
third parties which would result from the use of information contained herein.

• The products described in this document are designed, developed and manufactured as contemplated for general use,
including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not
designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless
extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal
injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air
traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for
use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims
or damages arising in connection with above-mentioned uses of the products.

• Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from
such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire
protection, and prevention of over-current levels and other abnormal operating conditions.

• Exportation/release of any products described in this document may require necessary procedures in accordance with
the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

• The company names and brand names herein are the trademarks or registered trademarks of their respective owners.
ii



CONTENTS

CHAPTER1 Basic Functions ..........................................................................................  1
1.1 Workspace Management Function .....................................................................................................  2
1.2 Project Management Function ............................................................................................................  3
1.3 Project Dependence ...........................................................................................................................  5
1.4 Make/Build Function ...........................................................................................................................  6

1.4.1 Customize Build Function ..............................................................................................................  7
1.5 Include Dependencies Analysis Function ...........................................................................................  9
1.6 Functions of Setting Tool Options .....................................................................................................  10
1.7 Error Jump Function .........................................................................................................................  11
1.8 Editor Functions ................................................................................................................................  13
1.9 Storing External Editors ....................................................................................................................  15
1.10 Storing External Tools ......................................................................................................................  17
1.11 Macro Descriptions Usable in Manager ............................................................................................  18
1.12 Setting Operating Environment .........................................................................................................  22
1.13 Debugger Types ...............................................................................................................................  23
1.14 Memory Operation Functions ...........................................................................................................  24
1.15 Register Operations ..........................................................................................................................  25
1.16 Line Assembly and Disassembly ......................................................................................................  26
1.17 Symbolic Debugging .........................................................................................................................  27

1.17.1 Referring to Local Symbols .........................................................................................................  29
1.17.2 Referring to C/C++ Variables ......................................................................................................  30

CHAPTER2 Dependence Functions ............................................................................  33
2.1 Simulator Debugger ..........................................................................................................................  34

2.1.1 Instruction Simulation ..................................................................................................................  36
2.1.2 Memory Simulation ......................................................................................................................  37
2.1.3 I/O Port Simulation ......................................................................................................................  38
2.1.4 Interrupt Simulation .....................................................................................................................  39
2.1.5 Reset Simulation .........................................................................................................................  40
2.1.6 Power-Save Consumption Mode Simulation ...............................................................................  41
2.1.7 STUB Function ............................................................................................................................  42
2.1.8 Break ...........................................................................................................................................  43

2.1.8.1 Code Break ...............................................................................................................................  44
2.1.8.2 Data Break ................................................................................................................................  45
2.1.8.3 Trace Buffer-full Break ..............................................................................................................  46
2.1.8.4 Guarded Access Break .............................................................................................................  47
2.1.8.5 Forced Break ............................................................................................................................  48

2.1.9 Measuring Execution Cycle Count ..............................................................................................  49
2.1.10 Trace ...........................................................................................................................................  50

2.1.10.1 Trace Sampling ........................................................................................................................  51
2.1.10.2 Setting Trace ............................................................................................................................  52
2.1.10.3 Displaying Trace Data ..............................................................................................................  53
2.1.10.4 Display Format of Trace Data ...................................................................................................  54
iii



  
2.1.10.5 Searching Trace Data ...............................................................................................................  55
2.1.10.6 Saving Trace Data ....................................................................................................................  56
2.1.10.7 Clearing Trace Data .................................................................................................................  57

2.1.11 Measuring Coverage ...................................................................................................................  58
2.1.11.1 Coverage Measurement Procedures ........................................................................................  59

2.2 Emulator Debugger (MB2197) ..........................................................................................................  62
2.2.1 Setting Operating Environment ...................................................................................................  63

2.2.1.1 MCU Operation Mode ...............................................................................................................  64
2.2.1.2 DRAM Refresh Control .............................................................................................................  65
2.2.1.3 Cache Flush Control .................................................................................................................  66
2.2.1.4 Controlling Operating Frequency ..............................................................................................  67

2.2.2 Notes on Executing Program .......................................................................................................  68
2.2.3 On-the-fly Executable Commands ...............................................................................................  69
2.2.4 Break ...........................................................................................................................................  70

2.2.4.1 Code Break ...............................................................................................................................  71
2.2.4.2 Code Event Break ....................................................................................................................  73
2.2.4.3 Data Event Break .....................................................................................................................  74
2.2.4.4 Trace Buffer-full Break ..............................................................................................................  75
2.2.4.5 Alignment Error Break ..............................................................................................................  76
2.2.4.6 External Trigger Break ..............................................................................................................  77
2.2.4.7 Forced Break ............................................................................................................................  78

2.2.5 Measuring Execution Cycle Count ..............................................................................................  79
2.2.6 Trace ...........................................................................................................................................  80

2.2.6.1 Trace Data ................................................................................................................................  81
2.2.6.2 Trace Sampling ........................................................................................................................  82
2.2.6.3 Setting Trace ............................................................................................................................  83
2.2.6.4 Displaying Trace Data ..............................................................................................................  84
2.2.6.5 Display Format of Trace Data ...................................................................................................  85
2.2.6.6 Searching Trace Data ...............................................................................................................  86
2.2.6.7 Saving Trace Data ....................................................................................................................  87
2.2.6.8 Clearing Trace Data .................................................................................................................  88
2.2.6.9 Notes on Use of Tracing Function ............................................................................................  89

2.2.7 Inaccessible Area ........................................................................................................................  91
2.3 Emulator Debugger (MB2198) ..........................................................................................................  92

2.3.1 Setting Operating Environment ...................................................................................................  94
2.3.1.1 Monitoring Program Automatic Loading ...................................................................................  95
2.3.1.2 MCU Operation Mode ...............................................................................................................  96
2.3.1.3 Cache Flush Control .................................................................................................................  97
2.3.1.4 Controlling Operating Frequency ..............................................................................................  98
2.3.1.5 External Memory Emulation .....................................................................................................  99
2.3.1.6 Debug mode ...........................................................................................................................  100

2.3.2 Notes on Executing Program .....................................................................................................  101
2.3.3 On-the-fly Executable Commands .............................................................................................  102
2.3.4 Break .........................................................................................................................................  103

2.3.4.1 Code Break .............................................................................................................................  104
2.3.4.2 Data Break ..............................................................................................................................  106
2.3.4.3 Code Event Break ..................................................................................................................  107
iv



2.3.4.4 Data Event Break ...................................................................................................................  109
2.3.4.5 Trace Buffer-full Break ............................................................................................................  111
2.3.4.6 Alignment Error Break ............................................................................................................  112
2.3.4.7 External Trigger Break ............................................................................................................  113
2.3.4.8 Forced Break ..........................................................................................................................  114
2.3.4.9 Data Monitoring Break ............................................................................................................  115

2.3.5 Control by Sequencer ................................................................................................................  117
2.3.6 Measuring Execution Cycle Count ............................................................................................  119
2.3.7 Trace .........................................................................................................................................  120

2.3.7.1 Saving Trace Data ..................................................................................................................  124
2.3.7.2 Notes on Use of Tracing Function ..........................................................................................  125

2.3.8 Measuring Performance ............................................................................................................  127
2.3.8.1 Performance Measurement Procedures .................................................................................  128
2.3.8.2 Displaying Performance Measurement Data ..........................................................................  130

2.3.9 Real-time Monitoring .................................................................................................................  132
2.3.10 Power-on Debugging .................................................................................................................  133
2.3.11 Inaccessible Area ......................................................................................................................  134
2.3.12 RAM Checker ............................................................................................................................  135

2.4 Monitor Debugger ...........................................................................................................................  139
2.4.1 Resources Used by Monitor Program .......................................................................................  140
2.4.2 Break .........................................................................................................................................  141

2.4.2.1 Software Break .......................................................................................................................  142
2.4.2.2 Forced Break ..........................................................................................................................  143

2.4.3 Measuring Execution Time ........................................................................................................  144
2.4.4 Inaccessible Area ......................................................................................................................  145

INDEX................................................................................................................................... 147
v



  
vi



CHAPTER1
Basic Functions

This chapter describes the basic functions on the 
SOFTUNE Workbench.

1.1  Workspace Management Function

1.2  Project Management Function

1.3  Project Dependence

1.4  Make/Build Function

1.5  Include Dependencies Analysis Function

1.6  Functions of Setting Tool Options

1.7  Error Jump Function

1.8  Editor Functions

1.9  Storing External Editors

1.10  Storing External Tools

1.11  Macro Descriptions Usable in Manager

1.12  Setting Operating Environment

1.13  Debugger Types

1.14  Memory Operation Functions

1.15  Register Operations

1.16  Line Assembly and Disassembly

1.17  Symbolic Debugging
1



CHAPTER1  Basic Functions
1.1 Workspace Management Function

This section explains the workspace management function of SOFTUNE Workbench.

■ Workspace 
SOFTUNE Workbench uses workspace as a container to manage two or more projects including

subprojects.

For example, a project that creates a library and a project that creates a target file using the project can be

stored in one workspace.

■ Workspace Management Function 
To manage two or more projects, workspace manages the following information:

• Project

• Active project

• Subproject

■ Project 
The operation performed in SOFTUNE Workbench is based on the project.  The project is a set of files and

procedures necessary for creation of a target file.  The project file contains all data managed by the project.

■ Active Project 
The active project is basic to workspace and undergoes [Make], [Build], [Compile/Assemble], [Start Debug],

and [Include Dependencies] in the menu.  [Make], [Build], [Compile/Assemble], and [Include Dependencies]

affect the subprojects within the active project.

If workspace contains some project, it always has one active project.

■ Subproject 
The subproject is a project on which other projects depend. The subproject target files are linked together

when creating parent project target files that have dependent relationships. When making/building a parent

project, the subproject which has a dependent relationships is make/build first before executing the make/

build for the parent project. If making and building of the subproject is unsuccessful, the parent project of

the subproject will not be made and built.

The target file in the subproject is however not linked with the parent project when:

• An absolute (ABS)-type project is specified as a subproject.

• A library (LIB)-type project is specified as a subproject.

■ Restrictions on Storage of Two or More Projects 
Only one REALOS-type project can be stored in one workspace.
2



CHAPTER1  Basic Functions
1.2 Project Management Function

This section explains the project management function of SOFTUNE Workbench.

■ Project Management Function 
The project manages all information necessary for development of a microcontroller system.

- Project configuration

- Active project configuration

- Information on source files, include files, other object files, library files

- Information on tools executed before and after executing language tools (customize build function)

■ Project format 
The project file supports two formats: a 'workspace project format,' and an 'old project format.'

The differences between the two formats are as follows:

● Workspace project format

- Supports management of two or more project configurations

- Supports use of all macros usable in manager

- Does not support early Workbench versions *

● Old project format

- Supports management of just one project configuration

- Limited number of macros usable in manager

For details, see Section "1.11  Macro Descriptions Usable in Manager".

- Supports early Workbench versions *

When a new project is made, the workspace project format is used.

When using an existing project, the corresponding project format is used.

If a project made by an early Workbench version* is used, dialog asking whether to convert the file to the

workspace project format is opened. For details, refer to Section "2.13 Reading  SOFTUNE Project Files of

Old Versions" of SOFTUNE Workbench Operation Manual.

To open a project file in the workspace project format with an early Workbench version*, it is necessary to

convert the file to the old project format. For saving the file in other project formats, refer to Section "4.2.7

Save As" of SOFTUNE Workbench Operation Manual.

*:  FR V5: V50L03 or earlier

FR V3: V30L26 or earlier.
3



CHAPTER1  Basic Functions
■ Project Configuration 
The project configuration is a series of settings for specifying the characteristics of a target file, and

making, building, compiling and assembling is performed in project configurations.

Two or more project configurations can be created in a project. The default project configuration name is

Debug.  A new project configuration is created on the setting of the selected existing project configuration.

In the new project configuration, the same files as those in the original project configuration are always

used.

By using the project configuration, the settings of programs of different versions, such as the optimization

level of a compiler and MCU setting, can be created within one project.

In the project configuration, the following information is managed:

• Name and directory of target file

• Information on options of language tools to create target file by compiling, assembling and linking
source files

• Information on whether to build file or not

• Information on setting of debugger to debug target file

■ Active Project Configuration 
The active project configuration at default undergoes [Make], [Build], [Compile/Assemble], [Start Debug],

and [Include Dependencies].

The setting of the active project configuration is used for the file state displayed in the SRC tab of project

window and includes files detected in the [Dependencies] folder.

Note:

If a macro function newly added is used in old project format, the macro description is expanded at
the time of saving in old project format.  For the macro description newly added, refer to Section
"1.11  Macro Descriptions Usable in Manager".
4



CHAPTER1  Basic Functions
1.3 Project Dependence

This section explains the project dependence of SOFTUNE Workbench.

■ Project Dependence 
If target files output by other projects must be linked, a subproject is defined in the project required in the

[Project] - [Project Dependence] command.  The subproject is a project on which other projects depend.

By defining project dependence, a subproject can be made and built to link its target file before making and

building the parent project.

The use of project dependence enables simultaneous making and building of two or more projects

developed in one workspace.

A project configuration in making and building a subproject in the [Project] - [Configuration] - [Set Build

Configuration] command can be specified.
5



CHAPTER1  Basic Functions
1.4 Make/Build Function

This section explains the make/build function of SOFTUNE Workbench.

■ Make Function 
Make function generates a target file by compiling/assembling only updated source files from all source

files registered in a project, and then joining all required object files.

This function allows compiling/assembling only the minimum of required files. The time required for

generating a target file can be sharply reduced, especially, when debugging.

For this function to work fully, the dependence between source files and include files should be accurately

grasped. To do this, SOFTUNE Workbench has a function for analyzing include dependence. To perform

this function, it is necessary to understand the dependence of a source file and include file. SOFTUNE

Workbench has the function of analyzing include  dependence.  For details, see Section "1.5  Include

Dependencies Analysis Function".

■ Build Function 
Build function generates a target file by compiling/assembling all source files registered with a project,

regardless of whether they have been updated or not, and then by joining all required object files.  Using

this function causes all files to be compiled/assembled, resulting in the time required for generating the

target file longer.  Although the correct target file can be generated from the current source files.

The execution of Build function is recommended after completing debugging at the final stage of program

development.

Note:

When executing the Make function using a source file restored from backup, the integrity between an
object file and a source file may be lost.  If this happens, executing the Build function again.
6



CHAPTER1  Basic Functions
1.4.1 Customize Build Function

This section describes the SOFTUNE Workbench function to set the Customize Build 
function.

■ Customize Build Function 
In SOFTUNE Workbench, different tools can be operated automatically before and after executing the

Assembler, Compiler, Linker, Librarian, Converter, or Configurator started at Compile, Assemble, Make,

or Build.

The following operations can be performed automatically during Make or Build using this function: 

• Starting the syntax check before executing the Compiler. 

• After executing the Converter, starting the S-format binary Converter (m2bs.exe) and converting
Motorola S-format files to binary format files.

■ Setting Options 
An option follows the tool name to start a tool from SOFTUNE Workbench.  The options include any file

name and tool-specific options.  SOFTUNE Workbench has the macros indicating that any file name and

tool-specific options are specified as options.

If any character string other than parameters is specified, it is passed directly to the tool.  For details about

the parameters, see Section "1.11  Macro Descriptions Usable in Manager".

■ Macro List 
The Setup Customize Build dialog provides a macro list for macro input. The build file, load module file,

project file submenus indicate their sub-parameters specified.

The environment variable brackets must have any item; otherwise, resulting in an error.

Table 1.4-1  Macro List

Macro List Macro Name 

Build file %(FILE) 

Load module file %(LOADMODULEFILE) 

Project file %(PRJFILE) 

Workspace file %(WSPFILE) 

Project directory %(PRJPATH) 

Target file directory %(ABSPATH) 

Object file directory %(OBJPATH) 

List file directory %(LSTPATH) 

Project construction name %(PRJCONFIG) 

Environment variable %(ENV[]) 

Temporary file %(TEMPFILE) 
7



CHAPTER1  Basic Functions
Note:

When checking [Use the Output window], note the following:

1. Once a tool is activated, Make/Build activated until the tool is terminated.

2. The Output window must not be used with a tool using a wait state for user input while the tool is
executing. The user can not perform input while the Output window is in use, so the tool cannot
be terminated. To forcibly terminate the tool, select the tool on the Task bar and input Control - C,
or Control - Z.
8



CHAPTER1  Basic Functions
1.5 Include Dependencies Analysis Function

This section describes the function of the Include Dependencies Analysis of SOFTUNE 
Workbench.

■ Analyzing Include Dependencies 
A source file usually includes some include files.  When only an include file has been modified leaving a

source file unchanged, SOFTUNE Workbench cannot execute the Make function unless it has accurate and

updated information about which source file includes which include files.

For this reason, SOFTUNE Workbench has a built-in Include Dependencies Analysis function.  This

function can be activated by selecting the [Project] -[Include Dependencies] command.  By using this

function, uses can know the exact dependencies, even if an include file includes another include file.

SOFTUNE Workbench automatically updates the dependencies of the compiled/assembled files.

Note:

When executing the [Project] - [Include Dependencies] command, the Output window is redrawn and
replaced by the dependencies analysis result.

If the contents of the current screen are important (error message, etc.), save the contents to a file
and then execute the Include Dependencies command.
9



CHAPTER1  Basic Functions
1.6 Functions of Setting Tool Options

This section describes the functions to set options for the language tools activated 
from SOFTUNE Workbench.

■ Function of Setting Tool Options 
To create a desired target file, it is necessary to specify options for the language tools such as a compiler,

assembler, and linker. SOFTUNE Workbench stores and manages the options specified for each tool in

project configurations.

Tool options include the options effective for all source files (common options) and the options effective

for specific source files (individual options). For details about the option setting, refer to Section "4.5.5

Setup Project" of SOFTUNE Workbench Operation Manual.

● Common options

These options are effective for all source files (excluding those for which individual options are specified)

stored in the project.

● Individual options

These options are compile/assemble options effective for specific source files.  The common options

specified for source files for which individual options are specified become invalid.

■ Tool Options 
In SOFTUNE Workbench, the macros indicating that any file name and directory name are specified as

options.

If any character string other than parameters is specified, it is passed directly to the tool. For details about

the parameters, see Section "1.11  Macro Descriptions Usable in Manager". For details about the tool

options for each tool, see the manual of each tool.
10



CHAPTER1  Basic Functions
1.7 Error Jump Function

This section describes the error jump function in SOFTUNE Workbench.

■ Error Jump Function 
When an error, such as a compile error occurs, double-clicking the error message displayed in the Output

window, opens the source file where the error occurred, and automatically moves the cursor to the error

line. This function permits efficient removal of compile errors, etc.

The SOFTUNE Workbench Error Jump function analyzes the source file names and line number

information embedded in the error message displayed in the Output window, opens the matching file, and

jumps automatically to the line.

The location where a source file name and line number information are embedded in an error message,

varies with the tool outputting the error.

An error message format can be added to an existing one or modified into a new one.  However, the modify

error message formats for pre-installed Fujitsu language tools are defined as part of the system, these can

not be modified.

A new error message format should be added when working the Error Jump function with user registered

tool. To set Error Jump, execute the [Setup] - [Error] command.

■ Syntax 
An error message format can be described in Syntax.  SOFTUNE Workbench uses macro descriptions as

shown in the Table 1.7-1 to define such formats.

To analyze up to where %f, %h, and %* continue, SOFTUNE Workbench uses the character immediately

after the above characters as a delimiter. Therefore, in Syntax, the description until a character that is used

as a delimiter re-appears, is interpreted as a file name or a keyword for help, or is skipped over. To use %
as a delimiter, describe as %%. The %[char] macro skips over as long as the specified character continues

in parentheses. To specify "]" as a skipped character describes it as "\]". Blank characters in succession can

be specified with a single blank character.

Table 1.7-1  Special Characters for Analyzing Error Messages

Characters Semantics 

%f Interpret as source file name and inform editor. 

%1 Interpret as line number and inform editor. 

%h Become keyword when searching help file. 

%* Skip any desired character. 

%[char] Skip as long as characters in [ ] continues. 
11



CHAPTER1  Basic Functions
[Example]

*** %f(%l) %h: or, %[*] %f(%l) %h:

The first four characters are "*** ", followed by the file name and parenthesized line number, and then

the keyword for help continues after one blank character.

This represents the following message:

*** C:\Sample\sample.c(100) E4062C:  Syntax Error:  near /int.
12



CHAPTER1  Basic Functions
1.8 Editor Functions

This section describes the functions of the SOFTUNE Workbench built-in standard 
editor.

■ Standard Editor 
SOFTUNE Workbench has a built-in editor called the standard editor.  The standard editor is activated as

the Edit window in SOFTUNE Workbench.  As many Edit windows as are required can be opened at one

time.

The standard editor has the following functions in addition to regular editing functions.

● Keyword marking function in C/C++/assembler source file

Displays reserved words, such as if and for, in different color.

● Error line marking function

The error line can be viewed in a different color, when executing Error Jump.

● Bookmark setup function

A bookmark can be set on any line, and instantaneously jumps to the line.  Once a bookmark is set, the line

is displayed in a different color.

● Ruler, line number display function

The Ruler is a measure to find the position on a line; it is displayed at the top of the Edit window.  A line

number is displayed at the left side of the Edit window.

● Automatic indent function

When a line is inserted using the Enter key, the same indent (indentation) as the preceding line is set

automatically at the inserted line.  If the space or tab key is used on the preceding line, the same use is set at

the inserted line as well.

● Function to display Blank, Line Feed code, and Tab code

When a file includes a Blank, a Line Feed code, and Tab code, these codes are displayed with special

symbols.

● Undo function

This function cancels the preceding editing action to restore the previous state.  When more than one

character or line is edited, the whole portion is restored.

● Tab size setup function

Tab stops can be specified by defining how many digits to skip when Tab codes are inserted.  The default is

8.
13



CHAPTER1  Basic Functions
● Font changing function

The font size for character string displayed in the Edit window can be selected.
14



CHAPTER1  Basic Functions
1.9 Storing External Editors

This section describes the function to set an external editor to SOFTUNE Workbench.

■ External Editor 
SOFTUNE Workbench has a built-in standard editor, and use of this standard editor is recommended.

However, another accustomed editor can be used, with setting it, instead of an edit window. There is no

particular limit on which editor can be set, but some precautions (below) may be necessary.  Use the

[Setup] - [Editor] command to set an external editor.

■ Precautions 

● Error jump function

The Error Jump cannot move the cursor to an error line if the external editor does not have a function to

specify the cursor location when activated.

● File save at compiling/assembling

SOFTUNE Workbench cannot control an external editor.  Always save the file you are editing before

compiling/assembling.

■ Setting Options 
When activating an external editor from SOFTUNE Workbench, options must be added immediately after

the editor name.  The names of file to be opened by the editor and the initial location of the cursor (the line

number) can be specified.  SOFTUNE Workbench has a set of special parameters for specifying any file

name and line number, as shown in the Table 1.9-1 .  If any other character string are described by these

parameters, such character string are passed as is to the editor.

%f (File name) is determined as follows:

1.If the focus is on the SRC tab of Project window, and if a valid file name is selected, the selected file
name becomes the file name.

2.When a valid file name cannot be acquired by the above procedure, the file name with a focus in the
built-in editor becomes the file name.

%x (project path) is determined as follows:

1.If a focus is on the SRC tab of project window and a valid file name is selected, the project path is a
path to the project in which the file is stored.

2.If no path is obtained, the project path is a path to the active project.

The specification method of the file name containing a space is different by editors. For details, refer to the

Editor Manual.

Ex.) 

MIFES "%f + %l"

WZ Editor "%f" /j%l
15



CHAPTER1  Basic Functions
■ Example of Optional Settings

Note:

• Regarding execution of error jump in Hidemaru:

To execute error jump in Hidemaru used as an external editor, use the [Others] - [Operating
Environment] - [Exclusive Control] menu, and then set "When opening the same file in Hidemaru"
and "Opening two identical files is inhibited".

Table 1.9-1  List of Special Characters for Analyzing Error Message

Parameter Semantics 

%% Means specifying % itself 

%f Means specifying file name 

%l Means specifying line number 

%x Means specifying project path 

Table 1.9-2  Example of Optional Settings (For External Editors)

Editor name Argument 

WZ Editor V4.0 %f /j%l 

MIFES V1.0 %f + %l 

UltraEdit32 %f/%l/1 

TextPad32 %f(%l) 

PowerEDITOR %f -g%l 

Codewright32 %f -g%l 

Hidemaru for Win3.1/95 /j%l:1 %f 

ViVi /line=%l %f 
16



CHAPTER1  Basic Functions
1.10 Storing External Tools

This section describes the SOFTUNE Workbench function to set an external tool.

■ External Tools 
A non-standard tool not attached to SOFTUNE Workbench can be used by setting it as an external tool and

by calling it from SOFTUNE Workbench.  Use this function to coordinate with a source file version

management tool. 

If a tool set as an external tool is designed to output the execution result to the standard output and the

standard error output through the console application, the result can be specified to the SOFTUNE

Workbench Output window.  In addition, the allow description of additional parameters each time the tool

is activated.

To set an external tool, use the [Setup] - [Tool] command.

To select the title of a set tool, use the [Setup] - [Tool execution] command.

■ Setting Options 
When activating an external tool from SOFTUNE Workbench, options must be added immediately after the

tool name.  Specify the file names, and unique options, etc.

SOFTUNE Workbench has a set of special parameters for specifying any file name and unique tool

options.

If any characters described other than these parameters, such characters are passed as it is to the external

tool.

For details about the parameters, see Section "1.11  Macro Descriptions Usable in Manager".

Note:

When checking [Use the Output window], note the following:

1. Once a tool is activated, neither other tools nor the compiler/assembler can be activated until the
tool is terminated.

2. The Output window must not be used with a tool using a wait state for user input while the tool is
executing. The user can not perform input while the Output window is in use, so the tool cannot
be terminated. To forcibly terminate the tool, select the tool on the Task bar and input Control - C,
or Control - Z.
17



CHAPTER1  Basic Functions
1.11 Macro Descriptions Usable in Manager

This section explains the macro descriptions that can be used in the manager of 
SOFTUNE Workbench.

■ Macros 
SOFTUNE Workbench has special parameters indicating that any file name and tool-specific options are

specified as options.

The use of these parameters as tool options eliminates the need for options specified each time each tool is

started.

The type of macro that can be specified and macro expansion slightly vary depending on where to describe

macros.  The macros usable for each function are detailed below.  For the macros that can be specified for

"Error Jump" and "External Editors", see Sections "1.7  Error Jump Function" and "1.9  Storing External

Editors".

■ Macro List 
The following is a list of macros that can be specified in SOFTUNE Workbench.

The macros usable for each function are listed below.

• External tools : Table 1.11-1 and Table 1.11-2 

• Customize build : Table 1.11-1 and Table 1.11-2 

• Tool options : Table 1.11-2 

The directory symbol \ is added to the option directories in Table 1.11-1 but not to the macro directories in

Table 1.11-2 .

The sub-parameters in Table 1.11-3 can be specified in %(FILE), %(LOADMODULEFILE), %(PRJFILE)

and %(WSPFILE).

The sub-parameter is specified in the form of %(PRJFILE[PATH]).

If the current directory is on the same drive, the relative path is used.  The current directory is the

workspace directory for %(PRJFILE), and %(WSPFILE), and the project directory for other than them.
18



CHAPTER1  Basic Functions
*1: The macros are determined as follows:

• Customize build

1. Source file before and after executing compiler and assembler

2. Target file before and after executing linker, librarian and converter

3. Configuration file before and after executing configuration

Table 1.11-1  List of macros that can be specified 1

Parameter Meaning 

%f Passed as full-path name of file. (*1) 

%F Passed as main file name of file. (*1) 

%d Passed as directory of file. (*1) 

%e Passed as extension of file. (*1) 

%a Passed as full-path name of load module file. 

%A Passed as main file name of load module file. (*2) 

%D Passed as directory of load module file. (*2) 

%E Passed as extension of load module file. (*2) 

%x Passed as directory of project file. (*2) 

%X Passed as main file name of project file. (*2) 

%% Passed as %. 

Table 1.11-2  List of macros that can be specified 2

Parameter  Meaning 

%(FILE) Passed as full-path name of file. (*1) 

%(LOADMODULEFILE) Passed as full-path name of load module file. (*2) 

%(PRJFILE) Passed as full-path name of project file. (*2) 

%(WSPFILE) Passed as full-path name of workspace file.(*3) 

%(PRJPATH) Passed as directory of project file. (*2) 

%(ABSPATH) Passed as directory of target file. (*2) 

%(OBJPATH) Passed as directory of object file. (*2) 

%(LSTPATH) Passed as directory of list file. (*2) 

%(PRJCONFIG) Passed as project configuration name. (*2)(*3) 

%(ENV[Environment variable]) Environment variable specified in environment variable 
brackets is passed. 

%(TEMPFILE) Temporary file is created and its full-path name is 
passed. (*4) 
19



CHAPTER1  Basic Functions
• Tool options

1. Null character

• Others

1. File as focus is on the SRC tab of project window and valid file name is selected

2. File on which focus is in internal editor as no valid file name can be obtained in 1

3. Null character if no valid file name can be obtained

*2: The macros are determined as follows:

• Customize build and tool options

1. Information on configuration of project under building, making, compiling and assembling

• Others

1. Information on configuration of active project in which file is stored as focus is on the SRC tab of
project window and valid file name is selected

2. Information on configuration of active project if no valid file name can be obtained in 1

*3: Only project files in the workspace project format can be used for macros indicated.

*4: Data in the temporary file can be specified only for customize build.

*: The macro can be used only in workspace-compatible Workbench. It is not expanded in workspace-
incompatible Workbench.

Table 1.11-3  Lists of Sub parameters 1

Sub parameter Meaning 

[PATH] Directory of file 

[RELPATH] Directory of file 

[NAME] Main file name of file 

[EXT] Extension of file 

[SHORTFULLNAME] Full path name of short file 

[SHORTPATH] Directory of short file 

[SHORTNAME] Main file name of short file 

[FOLDER] Name of folder in which files are stored in the SRC tab of project 
window (Can be specified only in %(FILE).) (*) 
20



CHAPTER1  Basic Functions
■ Examples of Macro Expansion 
If the following workspace is opened, macro expansion is performed as follows:

Workspace : C:/Wsp/Wsp.wsp
Active project : C:/Wsp/Sample/Sample.prj
Active project configuration - Debug

Object directory : C:/Wsp/Sample/Debug/Obj/

Subproject : C:/Subprj/Subprj.prj
Active project configuration - Release
Object directory : C:/Subprj/Release/Obj/
Target file : C:/Subprj/Release/Abs/Subprj.abs

[Example] Macro expansion in external tools

Focus is on Subprj project in the SRC tab of project window.

%a : C:/Subprj/Release/Abs/Subprj.abs
%A : SUBPRJ.abs
%D : C:/Subprj/Release/Abs/
%E : .abs
%(FILE[FOLDER]) : Source Files/Common
%(PRJFILE) : C:Subprj/Subprj.prj

Focus is not in the SRC tab of project window.

%a : C:/Wsp/Sample/Debug/Abs/Sample.abs
%A : Sample.abs
%D : C:/Wsp/Sample/Debug/Abs/
%(PRJFILE) : C:/Wsp/Sample/Sample.prj

[Example] Macro expansion in customize build

Release configuration of Subprj project is built.

%(FILE) : C:/Subprj/LongNameFile.c
%(FILE[PATH]) : C:/Subprj
%(FILE[RELPATH]) : .
%(FILE[NAME]) : LongNameFile
%(FILE[EXT]) : .c
%(FILE[SHORTFULLNAME]) : C:/Subprj/LongFi~1.
%(FILE[SHORTPATH]) : C:/Subprj
%(FILE[SHORTNAME]) : LongFi~1
%(PRJFILE[RELPATH]) : ../Subprj
%(PRJPATH) : C:/Subprj
%(OBJPATH) : C:/Subprj/Release/Obj
%(PRJCONFIG) : Relase
%(ENV[FETOOL]) : C:/Softune
%(TEMPFILE) : C:/Subprj/Relase/Opt/_fs1056.TMP

[Example] Macro expansion in tool options

Release configuration of Subprj project is build.

%(FILE) :
%(PRJFILE[RELPATH]) : ../Subprj
%(PRJPATH) : C:/Subprj
%(OBJPATH) : C:/Subprj/Release/Obj
%(PRJCONFIG) : Relase
%(ENV[FETOOL]) : C:/Softune
21



CHAPTER1  Basic Functions
1.12 Setting Operating Environment

This section describes the functions for setting the SOFTUNE Workbench operating 
environment.

■ Operating Environment 
Set the environment variables for SOFTUNE Workbench and some basic items for the workspace.

To set the operating environment, use the [Setup]-[Development] command.

● Environment Variables

Environment variables are variables that are referred to mainly using the language tools activated from

SOFTUNE Workbench.  The semantics of an environment variable are displayed in the lower part of the

Setup dialog.  However, the semantics are not displayed for environment variables used by tools added

later to SOFTUNE Workbench.

When SOFTUNE Workbench and the language tools are installed in a same directory, it is not especially

necessary to change the environment variable setups.

● Basic setups for workspace

The following setups are possible.

• Open the previous workspace at start up

- When starting SOFTUNE Workbench, it automatically opens the last opened workspace.

• Display options while compiling/assembling

- Compile options or assemble options can be viewed in the Output window.

• Save dialog before closing workspace

- Before closing the workspace, a dialog asking for confirmation of whether or not to save the

workspace to the file is displayed.  If this setting is not made, SOFTUNE Workbench automatically

saves the Project without any confirmation message.

• Save dialog before compiling/assembling

- Before compiling/assembling, a dialog asking for confirmation of whether or not to save a source file

that has not been saved is displayed.  If this setting is not made, the file is saved automatically before

compile/assemble/make/build.

• Termination message is highlighted at Make/Build

- At Compile, Assemble, Make, or Build, the display color of termination messages (Abort, No Error,

Warning, Error, Fatal error, or Failing During start) can be changed freely by the user.

Note:

Because the environment variables set here are language tools for the SOFTUNE Workbench, the
environment variables set on previous versions of SOFTUNE cannot be used.  In particular, add the
set values of [User Include Directory] and [Library Search Directory] to [Tool Options Settings].
22



CHAPTER1  Basic Functions
1.13 Debugger Types

This section describes the types of SOFTUNE Workbench debuggers.

■ Type of debugger 
SOFTUNE Workbench integrates three types of debugger:  a simulator debugger, emulator debugger, and

monitor debugger.  Any one can be selected depending on the requirement.

■ Simulator Debugger 
The simulator debugger simulates the MCU operations (executing instructions, memory space, I/O ports,

interrupts, reset, etc.) with software to evaluate a program.

It is used for evaluating an uncompleted system and operation of individual units, etc.

■ Emulator Debugger 
The emulator debugger is software to evaluate a program by controlling an Emulator from a host through a

communications line (RS-232C, LAN, USB).

Before using this debugger, the emulator must be initialized.

■ Monitor Debugger 
The monitor debugger evaluates a program by putting it into an evaluation system and by communicating

with a host.  An RS-232C interface and an area for the debug program are required within the evaluation

system.

For further information on the MCU-related items, see Chapter 2 in this manual.
23



CHAPTER1  Basic Functions
1.14 Memory Operation Functions

This section describes the memory operation functions.

■ Functions for Memory Operations 
• Display/Modify memory data

Memory data can be display in the Memory window and modified.

• Fill

The specified memory area can be filled with the specified data.

• Copy

The data in the specified memory area can be copied to another area.

• Compare

The data in the specified source area can be compared with data in the destination area.

• Search

Data in the specified memory area can be searched.

For further details of the above functions, refer to "3.11 Memory Window" in SOFTUNE Workbench

Operation Manual.

• Display/Modify C/C++ variables

The names of variables in a C/C++ source file can be displayed in the Watch window and modified.

• Setting Watch point

By setting a watch point at a specific address, its data can be displayed in the Watch window.

For further details of the above functions, refer to "3.13 Watch Window" in SOFTUNE Workbench

Operation Manual.
24



CHAPTER1  Basic Functions
1.15 Register Operations

This section describes the register operations.

■ Register Operations 
The Register window is opened when the [View] - [Register] menu is selected.  The register and flag values

can be displayed in the Register window.

For further details about modifying the register value and the flag value, refer to "4.4.4 Register" in

SOFTUNE Workbench Operation Manual.

The name of the register and flag displayed in the register window varies depending on each MCU in use.

For the list of register names and flag names for the MCU in use, refer to Appendix A in SOFTUNE

Workbench Operation Manual.
25



CHAPTER1  Basic Functions
1.16 Line Assembly and Disassembly

This section describes line assembly and disassembly.

■ Line Assembly 
To perform line-by-line assembly (line assembly), right-click anywhere in the Disassembly window to

display the short-cut menu, and select [Inline Assembly].  For further details about assembly operation,

refer to "4.4.3 Assembly" in SOFTUNE Workbench Operation Manual.

■ Disassembly 
To display disassembly, use the [View] - [Assembly] command. By default, disassembly can be viewed

starting from the address pointed by the current program counter (PC).  However, the address can be

changed to any desired address at start-up.

Disassembly for an address outside the memory map range cannot be displayed. If this is attempted, "???"

is displayed as the mnemonic.
26



CHAPTER1  Basic Functions
1.17 Symbolic Debugging

The symbols defined in a source program can be used for command parameters 
(address).  There are three types of symbols as follows:
• Global Symbol
• Static Symbol within Module (Local Symbol within Module)
• Local Symbol within Function

■ Types of Symbols 
A symbol means the symbol defined while a program is created, and it usually has a type.  Symbols

become usable by loading the debug information file.

There are three types of symbols as follows:

● Global symbol

A global symbol can be referred to from anywhere within a program.  In C/C++, variables and functions

defined outside a function without a static declaration are in this category.  In assembler, symbols with a

PUBLIC declaration are in this category.

● Static symbol within module (Local symbol within module)

A static symbol can be referred to only within the module where the symbol is defined.

In C/C++, variables and functions defined outside a function with a static declaration are in this category.

In assembler, symbols without a PUBLIC declaration are in this category.

● Local symbol within function

A local symbol within a function exists only in C/C++.  A static symbol within a function and an automatic

variable are in this category.

• Static symbol within function

- Out of the variables defined in function, those with static declaration.

• Automatic variable

- Out of the variables defined in function, those without static declaration and parameters for the

function.

■ Setting Symbol Information 
Symbol information in the file is set with the symbol information table by loading a debug information file.

This symbol information is created for each module.

The module is constructed for each source file to be compiled in C/C++, in assembler for each source file

to be assembled.

The debugger automatically selects the symbol information for the module to which the PC belongs to at

abortion of execution (Called "the current module").  A program in C/C++ also has information about

which function the PC belongs to.
27



CHAPTER1  Basic Functions
■ Line Number Information 
Line number information is set with the line number information table in SOFTUNE Workbench when a

debug information file is loaded.  Once registered, such information can be used at anytime thereafter.

Line number is defined as follows:

[Source File Name] $Line Number
28



CHAPTER1  Basic Functions
1.17.1 Referring to Local Symbols

This section describes referring to local symbols and Scope.

■ Scope 
When a local symbol is referred to, Scope is used to indicate the module and function to which the local

symbol to be referred belongs.

SOFTUNE Workbench automatically scopes the current module and function to refer to local symbols in

the current module with preference.   This is called the Auto-scope function, and the module and function

currently being scoped are called the Current Scope.

When specifying a local variable outside the Current Scope, the variable name should be preceded by the

module and function to which the variable belongs.  This method of specifying a variable is called a symbol

path name or a Search Scope.

■ Moving Scope 
As explained earlier, there are two ways to specify the reference to a variable:  by adding a Search Scope

when specifying the variable name, and by moving the Current Scope to the function with the symbol to be

referred to.  The Current Scope can be changed by displaying the Call Stack dialog and selecting the parent

function.  For further details of this operation, refer to "4.6.7 Stack" in SOFTUNE Workbench Operation

Manual. Changing the Current Scope  as described above does not affect the value of the PC.

By moving the current scope in this way, you can search a local symbol in parent function with precedence.

■ Specifying Symbol and Search Procedure 
A symbol is specified as follows:

C++ symbol can be specified as follows with the scope operator:

When a symbol is specified using the module and function names, the symbol is searched.  However, when

only the symbol name is specified, the search is made as follows:

1.Local symbols in function in Current Scope

2.The class member which can access with the this pointer (when C++)

3.Static symbols within module in Current Scope

4.Global symbols

If a global symbol has the same name as a local symbol in the Current Scope, specify "\" or "::" at the start

of global symbol.  By doing so, you can explicitly show that is a global symbol.

An automatic variable can be referred to only when the variable is in memory.  Otherwise, specifying an

automatic variable causes an error.

[ [Module Name] [\Function Name] \] Symbol Name

[ [Class Name::] [Function Name] \] Symbol Name
29



CHAPTER1  Basic Functions
1.17.2 Referring to C/C++ Variables

C/C++ variables can be specified using the same descriptions as in the source program 
written in C/C++.

■ Specifying C/C++ Variables 
C/C++ variables can be specified using the same descriptions as in the source program.  The address of C/

C++ variables should be preceded by the ampersand symbol "&".  Some examples are shown in the Table

1.17-1 .

Table 1.17-1  Examples of Specifying Variables

Example of Variables
Example of
Specifying
Variables

Semantics

Regular 
Variable

int data; data Value of data

Pointer char *p; *p Value pointed to by p

Array char a[5]; a[1] Value of second element of a

Structure struct stag{
char c;
int ;
struct stag st;
struct stag *stp;

st, c
stp->

Value of member c of st
Value of member c of the
structure to which stp points

Union union utag{
char c;
int i;
}uni;

uni.i Value of member i of uni 

Address of 
variable

int data; &data Address of data

Reference 
type

inti i;
int &ri = i;

ri Same as i

Class class X{
static int i;
}cls;
int X::i;

cls.i
X::i

Value of member i of class X
Same as cls.i

Member 
pointer 
class

class X{
short cs;
}clo;
short X::* ps=&X::cs;
X*clp=&clo;

clo.*ps
clp->*ps

Same as clo.cs
Same as clp->cs
30



CHAPTER1  Basic Functions
■ Notes on C/C++ Symbols 
The C/C++ compiler outputs symbol information with "_" prefixed to global symbols.  For example, the

symbol main outputs symbol information _main.  However, SOFTUNE Workbench permits access using

the symbol name described in the source to make program debugging described in C/C++ easier.

Consequently, a symbol name described in C/C++ and a symbol name described in assembler, which

should both be unique, may be identical.

In such a case, the symbol name in the Current Scope normally is preferred.  To refer to a symbol name

outside the Current Scope, specify the symbol with the module name.

If there are duplicated symbols outside the Current Scope, the symbol name searched first becomes valid.

To refer to another one, specify the symbol with the module name.
31



CHAPTER1  Basic Functions
32



CHAPTER2
Dependence Functions

This chapter describes the functions dependent on each 
Debugger

2.1  Simulator Debugger

2.2  Emulator Debugger (MB2197)

2.3  Emulator Debugger (MB2198)

2.4  Monitor Debugger
33



CHAPTER2  Dependence Functions
2.1 Simulator Debugger

This section describes the functions of the simulator debugger.

■ Simulator Debugger 
The simulator debugger simulates the MCU operations (executing instructions, memory space, I/O ports,

interrupts, reset, etc.) with software to evaluate a program.

It is used to evaluate an uncompleted system, the operation of single units, etc.

There are 2 types of simulator debuggers.

• Normal simulator debugger (normal)

• High-speed simulator debugger (fast)

This high-speed simulator provides substantial reductions in simulation time due to a dramatic review of

normal simulator’s processing methods.

This can be instruction processing performance for 10MIPS when it is operated by PC equipped with

Pentium4 2.0GHz.

External I/F for simulator are equipped to high-speed simulator debugger to create peripheral simulation

modules.

Please refer to an "Appendix G External I/F for Simulator" in "SOFTUNE Workbench Operation Manual".

■ Operating Conditions
The high-speed simulator debugger requires much more RAM space on the host PC than that of normal

simulator debugger.

The required RAM size depends largely on your program size.

For the required available RAM space, see the table below:

Insufficient RAM space will lead to an extreme decrease in simulation speed.

Basic use Fs911s.exe (FR Family) 20MB

CODE size of target program per 64 KB 6MB

DATA size of target program per 64 KB 1.5MB
34



CHAPTER2  Dependence Functions
Target program size

CODE XX(KB)

DATA YY(KB)

Required RAM space (MB) =  20 + (XX / 64) * 6 + (YY / 64) * 1.5

However, RAM space larger than the above may be needed depending on program allocation.  Allocate

memory space consecutive areas should be reserved as much as possible.

Example: Program with 1 MB of CODE and DATA sizes

Required RAM space (MB) = 20 + (1024 / 64) * 6 + (1024 / 64) * 1 / 5 = 140MB

■ Simulation Range 
The simulator debugger simulates the MCU operations (instruction operations, memory space, interrupts,

reset, low power-save mode, etc.) Peripheral I/Os, such as a timer, DMAC and serial I/O, other than the

CPU core of the actual chip are not supported as peripheral resources. I/O space to which peripheral I/Os

are connected is treated as memory space. There is a method for simulating interrupts like timer interrupts,

and data input to memory like I/O ports. For details, see the sections concerning I/O port simulation and

interrupt simulation.

• Instruction simulation

• Memory simulation

• I/O port simulation (Input port)

• I/O port simulation (Output port)

• Interrupt simulation

• Reset simulation

• Power-Save consumption mode simulation
35



CHAPTER2  Dependence Functions
2.1.1 Instruction Simulation

This section describes the instruction simulation executed.

■ Instruction Simulation 
This simulates the operations of all instructions supported by the FR Family.  It also simulates the changes

in memory and register values due to such instructions.
36



CHAPTER2  Dependence Functions
2.1.2 Memory Simulation

This section describes the memory simulation executed.

■ Memory Simulation 
The simulator debugger must first secure memory space to simulate instructions because it simulates the

memory space secured in the host PC memory.

• To secure the memory area, either use the [Setup] - [Memory Map] menu, or the SET MAP command in
the Command window.

• Load the file output by the Linkage Editor (Load Module File) using either the [Debug] - [Load target
file] menu, or the LOAD/OBJECT command in the Command window.

■ Simulation Memory Space 
Memory space access attributes can be specified byte-by-byte using the [Setup] - [Memory Map] menu.

The access attribute of unspecified memory space is Undefined.

■ Memory Area Access Attributes 
Access attributes for memory area can be specified as shown in Table 2.1-1 . A guarded access break

occurs if access is attempted against such access attribute while executing a program.   When access is

made by a program command, such access is allowed regardless of the attribute, CODE, READ or WRITE.

However, access to memory in an undefined area causes an error.

Table 2.1-1  Types of Access Attributes

Attribute Semantics 

CODE Instruction operation enabled 

READ Data read enabled 

WRITE Data write enabled 

undefined Attribute undefined (access prohibited) 
37



CHAPTER2  Dependence Functions
2.1.3 I/O Port Simulation

This section describes I/O port simulation executed.

■ I/O Port Simulation (Input Port) 
There are two types of simulations in I/O port simulation:  input port simulation, and output port

simulation.  Input port simulation has the following types:

• Whenever a program reads the specified port, data is input from the pre-defined data input source.

• Whenever the instruction execution cycle count exceeds the specified cycle count, data is input to the
port.

To set an input port, use the [Setup] - [Debug Environment] - [I/O Port] menu, or the SET  INPORT

command in the Command window.

Up to 4096 port addresses can be specified for the input port.  The data input source can be a file or a

terminal.  After reading the last data from the file, the data is read again from the beginning of the file.  If a

terminal is specified, the input terminal is displayed at read access to the set port.

A text file created by an ordinary text editor, or a binary file containing direct code can be used as the data

input file.  When using a text file, input the input data inside commas (,).  When using a binary file, select

the binary button in the input port dialog.

■ I/O Port Simulation (Output Port) 
At output port simulation, whenever a program writes data to the specified port, writing is executed to the

data output destination.

To set an output port, either use the [Setup] - [Debug Environment] - [I/O Port] menu, or the SET

OUTPORT command in the Command window.

Up to 4096 port addresses can be set as output ports.  Select either a file or terminal (Output Terminal

window) as the data output destination.

A destination file must be either a text file that can be referred to by regular editors, or a binary file.  To

output a binary file, select the Binary radio button in the Output Port dialog.

Note:

The following method is not supported by high-speed simulator debugger.

• Whenever the instruction execution cycle count exceeds the specified cycle count, data is input to
the port.

Furthermore the setting of memory map is necessary to set I/O port.  When deleting memory map, 
I/O port is also deleted.
38



CHAPTER2  Dependence Functions
2.1.4 Interrupt Simulation

This section describes interrupt simulation executed.

■ Interrupt Simulation 
This simulates the MCU operation for an interrupt request.  The following types can be used to allow an

interrupt to occur.

• When the instruction is executed as many cycles as the specified cycle count while executing a program
(executing execution commands), generate an interrupt corresponding to the specified interrupt number
to reset the interrupt generating condition.

• Whenever the instruction executing cycle count exceeds the specified cycle, an interrupt continues to be
generated.

The type of interrupt can be set using either the [Setup] - [Debug Environment] - [Interrupt] menu, or the

SET INTERRUPT command in the Command window.  If an interrupt is masked by an interrupt-enabled

flag when the interrupt generating condition is met, the interrupt is generated after resetting the mask.

When an interrupt is generated while executing a program, an interrupt cause number is displayed on the

Status Bar.

Furthermore, the simulator supports the MCU operation for interrupt requests for the following exception

processing.

• Executing undefined instruction
39



CHAPTER2  Dependence Functions
2.1.5 Reset Simulation

This section describes the reset simulation executed.

■ Reset Simulation 
The simulator simulates the operation when a reset signal is input to the MCU using the [Debug]-[Run]-

[Reset MCU] menu or RESET command, and initializes the registers.  

The function for performing reset processing by operation of MCU instructions (writing to RST bit in

standby control register) is also supported.  

The register with the RST bit is different according to the FR family as follows.

FR :Standby mode Control Register

FR80 :Reset Control Register
40



CHAPTER2  Dependence Functions
2.1.6 Power-Save Consumption Mode Simulation

This section describes the low power-save mode simulation executed.

■ Power-Save Consumption Mode Simulation 
The MCU enters the power-save consumption mode in accordance with the MCU instruction operation

(Write to SLEEP bit or STOP bit of standby control register).  Once in the sleep mode or stop mode, a

message ("sleep" for sleep mode, "stop" for stop mode) is displayed on the Status Bar.  The loop keeps

running until either an interrupt request is generated, or the [Debug] - [Abort] menu is executed.  Each

cycle of the loop increments the count by 1.  During this period, I/O port processing can be operated.

Writing to the standby control register using a command is not prohibited.
41



CHAPTER2  Dependence Functions
2.1.7 STUB Function

This section describes the STUB function which executes commands automatically 
when the breakpoint hit occurs.

■ Outline of STUB Function
The STUB function is supported so that a series of commands in the command list can automatically be

executed when a specified breakpoint is hit. The use of this function enables spot processing, such as

simple I/O simulation, external interrupt generation, and memory reprogramming, without changing the

main program.  This function is effective only when the simulator debugger is used.

■ Setting
The STUB function can be set by the following commands.

-  Dialog

1. Breakpoint Set Dialog - [Code] tab

2. Breakpoint Set Dialog - [Data] tab

- Command

1.SET BREAK

2.SET DATABREAK

 

execution starts 

Breakpoint is hit 

Break (STUB) processing 

execution ends 

P
ro

gr
am

 e
xe

cu
tio

n

Is there a breakpoint 
command list? 

Re-execute (is no-break 
specified)? 

Execution 
restarts  

YES 

YES 

NO 

NO 

Process a breakpoint command lit 
(execute commands). 

Execution stops  
42



CHAPTER2  Dependence Functions
2.1.8 Break

This Simulator Debugger provides five types of break functions.  When by each break 
function aborts program execution, the address where a break occurred and the break 
factor are displayed.

■ Break Functions 
This Simulator Debugger provided the following five types of break functions;

- Code break

- Data break

- Trace buffer-full break

- Guarded access break

- Forced break
43



CHAPTER2  Dependence Functions
2.1.8.1 Code Break

This function causes a break by monitoring a specified address by software.
A break occurs before executing an instruction at the specified address.

■ Code Break 
When the program reaches a break point (immediately before executing the instruction at the memory

location), the simulator debugger executes the following processes:

1. Suspend program execution (before executing instruction).

2. Checks count of arrival time.  If the count of arrival time at the specified break point has not yet been
reached, the simulator resumes the program execution.  If the count of arrival time has been reached, the
simulator proceeds to step 3.

3. Displays memory location where execution suspended on Status Bar.

Up to 65535 break points can be set.

When the code break occurs, the following message appears at the status bar.

Break at address by breakpoint

■ How to set 
Set code break as follows.

• Command 

- SET BREAK

Refer to "3.1 SET BREAK (type 1)" in SOFTUNE Workbench Command Reference Manual.

• Dialog 
"Code" tab in breakpoint setting dialog
Refer to "4.6.4 Breakpoint" in SOFTUNE Workbench Operation Manual.

• Window
Source window/disassemble window

Note:

In order to set breakpoints, it is required to set memory map to high-speed simulator debugger.

When the memory map defined area is changed to an undefined attribute, the breakpoints are
cancelled.
44



CHAPTER2  Dependence Functions
2.1.8.2 Data Break

This function aborts the program execution when a data access (read/write) is made to 
a specified address.

■ Data Break 
When data is written or read to a data break point, the simulator debugger executes the following processes:

1. Suspend program execution after completing instruction execution

2. Checks access count. If the access count has not yet been reached the count for the specified data break
point, the simulator resumes the program execution. If the count has been reached, the simulator
proceeds to step 3.

3. If program execution is suspended by reaching access count, on Status Bar, displays memory location of
data break point and of instruction writing to it.

4. Displays memory location executed next.

Up to 65535 data break points can be set.

When the data break occurs, the following message appears at the status bar.

Break at address by databreak at access address

■ How to set 
Set the data break as follows.

• Command 

- SET DATABREAK

Refer to "3.8 SET DATABREAK (type 1)" in SOFTUNE Workbench Command Reference Manual.

• Dialog 
Data tab in breakpoint setting dialog
Refer to "4.6.4 Breakpoint" in SOFTUNE Workbench Operation Manual.

Note:

There are two points to note when using data break points as follows:

• If an automatic variable within a C/C++ function is specified, a data break is set at the address
where the automatic variable is held.  Therefore, the data break remains valid even after the
specified automatic variable becomes invalid (after exiting function), causing a break due to
unexpected access.

• To allow access to a variable in C/C++ to cause a break, specify the variable address by putting
an ampersand symbol "&" immediately before the variable symbol.

• It is required to set memory map in order to set breakpoint for high-speed simulator debugger.
Once memory map is deleted, setup of breakpoint will also be deleted.
45



CHAPTER2  Dependence Functions
2.1.8.3 Trace Buffer-full Break

This function aborts the program execution when the trace buffer becomes full.

■ Trace Buffer-full Break 
This function aborts the program execution when the trace buffer becomes full.

When the trace buffer-full break occurs, the following message appears at the status bar.

Break at address by trace buffer full

■ How to set 
Set the trace buffer-full break as follows.

• Command 

- SET TRACE/BREAK

Refer to "4.12 SET TRACE(type 2)" in SOFTUNE Workbench Command Reference Manual.

• Dialog 

Trace setting dialog

Refer to "4.4.8 Trace" in SOFTUNE Workbench Operation Manual.
46



CHAPTER2  Dependence Functions
2.1.8.4 Guarded Access Break

A guarded access break suspends a executing program when accessing in violation of 
the access attribute set by using the [Setup]-[Memory Map] command, and accessing a 
guarded area (access-disabled area in undefined area).

■ Guarded Access Breaks 
A guarded access break suspends a executing program when accessing in violation of the access attribute

set by using the [Setup]-[Memory Map] command, and accessing a guarded area (access-disabled area in

undefined area).

Guarded access breaks are as follows:

1. Code Guarded 
An instruction has been executed for an area having no code attribute.

2. Read Guarded
A read has been attempted from the area having no read attribute.

3. Write Guarded
A write has been attempted to an area having no write attribute.

If a guarded access occurs while executing a program, the following message is displayed on the Status Bar

and the program execution suspended.

Break at Address by guarded access {code/read/write} at Access Address
47



CHAPTER2  Dependence Functions
2.1.8.5 Forced Break

This function forcibly aborts the program execution to generate a break.

■ Forced Break 
This function forcibly aborts the program execution to generate a break.

When the forced break occurred, the following message appears at the status bar.

Break at address by command abort request

■ Caution 
The forced break cannot be generated when the MCU in the low power consumption mode or in the hold

state.  If the MCU is in the low power consumption mode or in the hold state when the strong break is

requested by the [Debug]-[Abort] menu during the program execution, the [Debug] - [Abort] menu is

ignored.  To generate a break forcibly, use the [Debug] - [Abort] menu to remove a factor by the user

system or use the [Debug]-[Reset of MCU] menu to remove it.  If the MCU enters the low power

consumption mode or the hold state during the program execution, the condition is displayed at the status

bar.
48



CHAPTER2  Dependence Functions
2.1.9 Measuring Execution Cycle Count

This function measures the program execution cycle count and step count.

■ The measuring item 
Measures program execution cycle count and step counts.

● Execution Cycle Count

The count of the instruction execution cycle is calculated based on the basic cycle count of each instruction

described in the Programming Manual.

Because no simulation was done on pipeline process or cache operation inside the chip, it may differ from

an actual chip for normal simulator debugger and/or high-speed simulator debugger.  A compensation value

(a, b, c, d), which is described in the list of an instruction in Programming Manual, is calculated as 1.

● Execution Step Count

Measures program execution step counts.

The measurement result can be displayed as two step counts values:  the execution step counts of the

preceding program, and the total execution time of the programs (total execution step counts before

preceding program plus execution step counts of preceding program).  Measurement is performed each

time a program is executed.

The counter for the program step count is H'1 to H'FFFFFFFF.

■ View of the measuring result
1. "Measurement time" Dialog

[Debug] - [Time Measurement] menu

2. SHOW TIMER command

■ Clear of the measuring result
1. "Measurement time" Dialog <Clear> Button

[Debug] - [Time Measurement] menu

2. CLEAR TIMER command
49



CHAPTER2  Dependence Functions
2.1.10 Trace

The address and status information can be sampled during program execution to record 
it in a trace buffer.  This function is called a trace.

■ Trace 
Data recorded with the trace function can be used to make a detailed analysis of a program execution

history. 

The trace buffer is in the form of a ring.  When it becomes full, it records the next data by automatically

overwriting the buffered data at the beginning.

• Trace Sampling

• Setting trace

• Displaying trace data

• Display format of trace data

• Searching trace data

• Saving trace data

• Clearing trace data

■ Trace Data 
The simulator debugger can sample 1000 frames of trace data.  Trace data sampling occurs at the address of

the executed instruction.
50



CHAPTER2  Dependence Functions
2.1.10.1 Trace Sampling

Trace measurements are made of a program execution status during the interval 
between the start and stop of program execution.

■ Trace Sampling 
While the trace function is enabled, data is always sampled and recorded in the trace buffer during

execution of an execution command.

The program execution aborts due to a break factor such as a breakpoint, terminating the trace.

Furthermore, when the trace buffer becomes full, a program break can be invoked.  This break is called a

trace buffer full break.

■ Frame Number 
A number is assigned to each frame of sampled trace data.  This number is called a frame number.

The frame number is used to specify the display start position of the trace buffer.

The number 0 is assigned to the last-sampled trace data.  Negative values are assigned to trace data that

have been sampled before the arrival at the triggering position.
51



CHAPTER2  Dependence Functions
2.1.10.2 Setting Trace

You must set the following two items to perform a trace.  After that, trace data will be 
sampled with the execution of the program.  You can set this from the command 
window.

■ Setting Trace 
1. Enable the trace function

- This is done by [Setup] - [Trace] in the trace window shortcut menu.  This program will startup and

will be enabled.

2. Set the trace buffer full break

- When the trace buffer is full, you can make a break.  This is done using the setting dialog boxes of

the trace window shortcut menu [Setup] - [Trace].

- When starting up this program, it is setup for no breaks.
52



CHAPTER2  Dependence Functions
2.1.10.3 Displaying Trace Data

Data recorded in the trace buffer can be displayed.

■ Displaying Trace Data 
The trace window displays how much trace data is stored in the trace buffer.  Also, you can use the SHOW

TRACE command from the command window.
53



CHAPTER2  Dependence Functions
2.1.10.4 Display Format of Trace Data

There are two display formats for displaying trace buffer data.

■ Display Format of Trace Data 
• Display Only Instruction Operation: (Specify Instruction)

• Display by Unit of Source Lines: (Specify Source)

■ Display Only Instruction Operation 
In this mode, the instruction operation is displayed in disassembly units.

■ Display by Unit of Source Lines 
This mode only displays source lines.
54



CHAPTER2  Dependence Functions
2.1.10.5 Searching Trace Data

The trace buffer can be searched to locate target data.

■ Searching Trace Data 
Specify the address information for the search purpose.  This search function can be run by clicking the

Search button in the trace window.
55



CHAPTER2  Dependence Functions
2.1.10.6 Saving Trace Data

The debugger has function of saving trace data.

■ Saving Trace Data 
Save the trace data to the specified file.

For details on operations, refer to Sections 3.14 Trace Window, and 4.4.8 Trace in the SOFTUNE

Workbench Operation Manual; and Section 4.9 Show Trace in the SOFTUNE Workbench Command

Reference Manual.
56



CHAPTER2  Dependence Functions
2.1.10.7 Clearing Trace Data

To clear trace data, use the following command.

■ Clearing Trace Data 
When clearing trace data, the [Clear] command is executed from the short-cut menu in the trace window.
57



CHAPTER2  Dependence Functions
2.1.11 Measuring Coverage

In the high-speed version simulator debugger, the C0 coverage measurement function 
is provided. Use this function to find what percentage of an entire program has been 
executed.

■ Coverage Measurement Function
When testing a program, the program is executed with various test data input and the results are checked

for correctness. When the test is finished, every part of the entire program should have been executed. If

any part has not been executed, there is a possibility that the test is insufficient.

It can know what percentage of the entire program executed when the coverage function for the high-speed

version simulator debugger to have is used.

In addition, details such as which addresses were not accessed can be checked.

In this debugger, the range to measure coverage can be set.

Please set the time base range only to the code area when you do the C0 coverage.

Moreover, the access of the variable can be examined as the variable not used is searched out by setting the

time base range to the data area.

■ Coverage Measurement Procedures
The procedure for coverage measurement is as follows:

- Set range for coverage measurement: SET COVERAGE

- Measuring coverage: GO, STEP, CALL

- Displaying measurement result: SHOW COVERAGE

■ Coverage Measurement Operation
The following operation can be made in coverage measurement:

- Load/Save of coverage data: LOAD/COVERAGE. SAVE/COVERAGE

- Clearing coverage data: CLEAR COVERAGE

- Canceling coverage measurement range: CANCEL COVERAGE
58



CHAPTER2  Dependence Functions
2.1.11.1 Coverage Measurement Procedures

The procedure for coverage measurement is as follows:
-  Set range for coverage measurement :  SET COVERAGE
-  Measure coverage :  GO, STEP, CALL
-  Display measurement result :  SHOW COVERAGE

■ Setting Range for Coverage Measurement 
Use the SET COVERAGE command to set the measurement range.  The measurement range can be set

only within the area defined as the debug area.  Up to 32 ranges can be specified.

By specifying /AUTOMATIC for the command qualifier, the code area for the loaded module is set

automatically.  However, the library code area is not set when the C/C++ compiler library is linked.

[Example]

>SET COVERAGE FF000000 .. FFFFFFFF

■ Measuring Coverage
When preparing for coverage measurement, execute the program.

Measurement starts when the program is executed by using the GO, STEP, or CALL command.

■ Displaying Coverage Measurement Result
To display the measurement result, use the SHOW COVERAGE command. The following can be

displayed:

• Coverage rate of total measurement area

• Displaying coverage rate of load module

• Summary of 16 addresses as one block

• Details indicating access status of each address

• Displaying coverage measurement result per source line

• Displaying coverage measurement result per machine instruction

- Display Coverage Rate of Total Measurement Area (Specify /TOTAL for command qualifier.)

>SHOW COVERAGE/TOTAL

total coverage : 82.3%
59



CHAPTER2  Dependence Functions
- Displaying coverage rate of load module (Specify /MODULE for the command qualifier)

- Summary (Specify /GENERAL for command qualifier.)

- Details (Specify /DETAIL for command qualifier.)

Displays the load modules and the coverage rate of each module. 

>SHOW COVERAGE/MODULE 
sample.abs  ........................ (84.03%) 
 +- startup.asm .................... (90.43%) 
 +- sample.c  ...................... (95.17%) 
 +- samp.c  ....................... (100.00%)

Display the access status of every 16 addresses
.   : No access

1 to F : Display the number accessed in 16 addresses by the hexadecimal number.
*  : Access all of the 16 addresses.

   >SHOW COVERAGE/GENERAL 
        (HEX)0X0       +1X0           +2X0 
         +--------------+--------------+-------          ------ 
 address  0123456789ABCDEF0123456789ABCDEF0123456    ... ABCDEF   C0(%) 
FF000000  **3*F*.......                                           32.0

Display one line of a 
coverage rate

Display the access status of every 1 address
.  :  No access 
-  :  Access

  >SHOW COVERAGE/DETAIL FF000000 

  address  +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F C0(%) 
FF000000   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  100.0 
FF000010   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  100.0 
FF000020   .  .  .  .  -  -  -  .  .  .  .  .  .  .  .  .   18.6 
FF000030   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  100.0 
FF000040   -  .  -  -  -  -  -  -  -  -  -  -  -  -  -  -   93.7 
FF000050   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  100.0 
FF000060   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    0.0 
FF000070   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    0.0 
FF000080   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    0.0
60



CHAPTER2  Dependence Functions
- Displays per source line (Specify /SOURCE for the command qualifier)

- Displays per machine instruction (Specify /INSTRUCTION for the command qualifier)

>SHOW COVERAGE/SOURCE main
sample.c
 * 66: void main()
 * 67: {
 68:  int i;
 69:  struct table *value[16];
 70: 
 * 71:  for (i=0; i<16; i++)
 . 72:   value[i] = &target[i];
 73:
 . 74:  sort_val(value, 16L);
 . 75: }

The execution situation of each source line is displayed.
. :  No execution
* :  Execution
Blank :  Line which the code had not been generated or 
 is outside the scope of the coverage measurement

>SHOW COVERAGE/INSTRUCTION 000803EE
sample.c$66 void main()
 *  000803EE   \main:
 *  000803EE 1781   ST RP,@-R15
 *  000803F0 0F12   ENTER #048
sample.c$71  for (i=0; i<16; i++)
 .  000803F2 C00C    LDI:8 #00,R12
 .  000803F4 3FFC   ST R12,@(R14,-4)
 .  000803F6 2FF0   LD @(R14,-4),R0
 .  000803F8 C10C   LDI:8 #10,R12
 .  000803FA AAC0   CMP R12,R0
 .  000803FC EB15   BGE 00080428
 .  000803FE 9F820003C1E8  LDI:32 #0003C1E8,R2
sample.c$72   value[i] = &target[i];
 .  00080404 2FF0   LD @(R14,-4),R0
 .  00080406 B420   LSL #2,R0
 .  00080408 2FF1   LD @(R14,-4),R1
 .  0008040A C14C   LDI:8 #14,R12
 .  0008040C AFC1   MUL R12,R1
 .  0008040E B75C   MOV MDL,R12

The execution situation at each chance instruction is displayed.
. :  No execution
* :  Execution
Blank :  Instruction outside the scope of the coverage measurement
61



CHAPTER2  Dependence Functions
2.2 Emulator Debugger (MB2197)

This section describes the emulator debugger functions that are available when the 
MB2197 is specified.

■ Emulator Debugger 
When choosing the emulator debugger from the setup wizard, select one of the following emulators.  Select

the MB2197.

• MB2197

• MB2198

The emulator debugger for the MB2197 is software that controls an emulator from a host computer via a

communications line (RS-232C or LAN) to evaluate programs.

• DSU1

• DSU2

• DSU3

Before using the emulator debugger, it is necessary to initialize the emulator.  For details, refer to Appendix

B, Monitoring Program Download, and Appendix C, LAN Interface Setup, in the SOFTUNE Workbench

Operation Manual.
62



CHAPTER2  Dependence Functions
2.2.1 Setting Operating Environment

This section explains the operating environment setup.

■ Setting Operating Environment 
For the emulator debugger for the MB2197, it is necessary to set the following operating environment.

Predefined default settings for all these setup items are enabled at startup.  Therefore, setup is not required

when using the default settings.  Adjusted settings can be used as new default settings from the next time.

• MCU operation mode

• DRAM refresh control

• Cache flush control

• Controlling Operating Frequency
63



CHAPTER2  Dependence Functions
2.2.1.1 MCU Operation Mode

The following four modes are in the MCU Operation Mode.  The Internal Trace Mode and 
External Trace Mode are enabled only with products using the DSU3 chips.  The Full 
Trace Mode and Real-time Mode are not enabled with products using the DSU3 chips.
• Full Trace Mode
• Real Time Mode
• Internal Trace Mode
• External Trace Mode

■ Setting MCU Operation Mode 
Set the MCU operation mode.  There are two modes:  full trace, and real-time.  To set the operation mode,

use either the [Setup] - [Debug Environment] - [Debug Environment] menu, or the SET RUNMODE

command in the Command window.

● Full Trace Mode 

In the full trace mode, all instruction executions can be traced without omission.  However, if branching

occurs more than three times within 11 cycles, operations may not be real-time due to the wait entered to

MCU as acquiring the trace data is preceded.  This mode cannot be specified with DSU3 chips.

● Real-time Mode 

In the real-time mode, a program runs in real-time.  However, if branching occurs more than three times

within 11 cycles, some trace data may be omitted.

This mode cannot be specified with DSU3 chips.

● Internal Trace Mode 

Trace data is stored in the specialized trace memory built-in to the chip.  The program is executed at real

time, but this is possible only with DSU3 chips which include that function.

● External Trace Mode 

Trace data is stored in the specialized trace memory mounted on the adapter board.  The program is

executed at real time.

This mode may not be specified depending on the specification of the adapter board.  Check your adapter

board specification.
64



CHAPTER2  Dependence Functions
2.2.1.2 DRAM Refresh Control

This section explains DRAM refresh setup.

■ DRAM Refresh Control 
The operating frequency of some DSU chips is automatically divided at a break (in emulation mode).

When this happens, the register (RFCR) must be reset if the built-in DRAM refresh function is used on the

user target.

The RFCR register values for On Execution (in user mode) and On Break (in emulation mode) can be set

by [RFCR] tab in debug environment setting dialog.  When the mode is switched, the values set here are

used to set to the RFCR register.

Note:

When using chips with an operating frequency that is not divided automatically at a break (in
emulation mode), or when the built-in DRAM refresh function at the user target is not in use, this
function causes a slowdown in debugger operation due to writing to the RFCR register. 
65



CHAPTER2  Dependence Functions
2.2.1.3 Cache Flush Control

This section explains cache flush setup.

■ Cache Flush Control 
When using a chip with cache memory, rewriting the memory and software break point setup using

commands is not reflected in the cache.   Therefore, cache flushing must be performed when such

commands are executed.  The debugger has a function to flush the cache automatically, monitor memory

rewriting, and set software break points, etc.

This function is controlled using the [Emulation] tab in debug environment setting dialog.

Note:

When the automatic cache flushing option is enabled, it may negatively affect the program speed. 
66



CHAPTER2  Dependence Functions
2.2.1.4 Controlling Operating Frequency

This section explains the setting of operating frequencies.

■ Operating frequencies 
Set the operating frequencies of the MCU. Enable only DSU3.  DSU3 ranges from 1 to 200 MHz. This

setting provides the optimum communication speed between the MCU and emulator.

This function can be controlled by the [Frequency] tab in debug environment setting dialog.

Notes:

1. This setting is used to set maximum operating frequencies.  Actual operating frequencies will not
be changed.

2. Actual operating frequencies exceeding these settings will cause improper communication with
the emulator.
67



CHAPTER2  Dependence Functions
2.2.2 Notes on Executing Program

There are some precautions to observe when using program execution commands.

■ Real-time Functionality in Running Program 
When the MCU is in the full trace mode, there are some cases when a program cannot execute in real-time.

The MCU operation mode can be set up by using either the [Emulation] tab in debug environment setting

dialog, or the SET RUNMODE command in the Command window.

■ Notes on Delayed Branch Instruction when executed using [Debug] - [Run] - [Step In] 
or [Debug] - [Run] - [Step Over] menu

If a delay branch instruction is executed by the [Debug] - [Run] - [Step In] menu or [Debug] - [Run] - [Step

Over] menu, the program runs past the instruction at the delay slot (instruction immediately after delay

branch instruction) and breaks immediately after executing the delay branch instruction.

■ Restrictions when Suspended by Software Break 
When there is a software break at the current PC location, if either the [Debug] - [Run] - [Go] menu or the

Go command is executed, the emulator debugger performs one execution step internally, and then executes

the program in batch processing.  In addition, when a software break is set for the instruction to clear the T-

flag, and when either the [Debug] - [Run] - [Go] menu or the Go command is executed from that address,

all software breaks are disregarded.  When this happens, any interrupt is masked too.

■ Value of TBR Register 
Note a program null-function may occur if you specify such value for the TBR register as the vector table

overlaps to the I/O area.

■ Notes on Instruction to Clear T-Flag when Executed using [Debug] - [Run] - [Step In] or 
[Debug] - [Run] - [Step Over] menu 

If an instruction to clear the T-flag is executed using either the [Debug] - [Run] - [Step In] menu, or

[Debug] - [Run] - [Step Over] menu, the program will be executed in batch processing.  When this

happens, all software breaks are ignored.
68



CHAPTER2  Dependence Functions
2.2.3 On-the-fly Executable Commands

Certain commands can be executed even while executing a program.  This is called "on-
the-fly" execution.

■ On-the-fly Executable Commands
Certain commands can be executed on-the-fly.  If an attempt is made to execute a command that cannot be

executed on-the-fly, an error "MCU is busy" occurs.  Table 2.2-1  lists major on-the-fly executable

functions.  For further details, refer to the SOFTUNE Workbench Command Reference Manual.

Meanwhile, on-the-fly execution is enabled only when executing the MCU from the menu or the tool

button.  On-the-fly commands cannot be executed when executing the GO command, etc., from the

Command window.

Table 2.2-1  Major Functions Executable in On-the-fly Mode

Function Limitations and 
Restrictions

Major Commands

MCU reset - RESET

Displaying MCU execution

status

- SHOW STATUS

Displaying execution time

measurement value (Timer)

- SHOW TIMER

Memory operation (Read/

Write)

- ENTER

EXAMINE

COMPARE

FILL

MOVE

DUMP

SEARCH MEMORY

SHOW MEMORY

SET MEMORY

Line assembly, Disassembly - ASSEMBLEDIS

ASSEMBLE

Displaying event Disabled in performance 

mode

SHOW EVENT
69



CHAPTER2  Dependence Functions
2.2.4 Break

This Emulator Debugger provides seven types of break functions.  When by each break 
function aborts program execution, the address where a break occurred and the break 
factor are displayed.

■ Break Functions 
This Emulator debugger provides the following seven types of break functions;

• Code break

• Code event break

• Date event break

• Trace buffer-full break

• Alignment error break

• External trigger break

• Forced break
70



CHAPTER2  Dependence Functions
2.2.4.1 Code Break

This function aborts the program execution by monitoring a specified address by 
hardware or software.
A break occurs before executing an instruction at the specified address.

■ Code Break  
This function aborts the program execution by monitoring a specified address by hardware or software.

A break occurs before executing an instruction at the specified address.

The maximum number of points that can be set is as follow:

Hardware: 5 points

Software: 4096 points 

When the code break occurs, the following message appears at the status bar.

- Hardware

Break an address by hardware breakpoint

- Software

Break at address by breakpoint

■ How to set 
Set the break as follows.

• Command 

- SET BREAK/HARD (hardware)

- SET BREAK/SOFT (software)

Refer to "3.1 SET BREAK (type 1)" in SOFTUNE Workbench Command Reference Manual.

• Dialog  

"Code" tab in breakpoint setting dialog

Refer to "4.6.4 Breakpoint" in SOFTUNE Workbench Operation Manual

• Window

Source window/disassemble window
71



CHAPTER2  Dependence Functions
Notes:

Hardware

The hardware break requires the following cautions:

1. Do not set any hardware break in instruction placed in a delay slot. When the hardware break is
set in the instruction, a branch does not occur even if the program is reexecuted after break.

2. Be sure to set a breakpoint at the starting address of the instruction.  If not so, a break may not
occur.

3. When the program is executed from the address at which a hardware break is set, a break occurs
without executing the instruction if the immediately preceding program execution is stopped by a
factor other than the instruction break.  To execute the instruction, reexecute the program.

Software

The software break requires the following cautions:

1. A breakpoint cannot be set in any area, such as ROM, where data cannot be written properly.  In
this case, a verify error occurs when program execution is started (continuous execution or
stepwise execution is started).

2. Be sure to set a breakpoint at the starting address of the instruction.  If breakpoint is set during
instruction execution, the program may malfunction.
72



CHAPTER2  Dependence Functions
2.2.4.2 Code Event Break

This function used breakpoints contained in the evaluation chip.  The address mask, 
pass count, and sequential mode can be set.

■ Code Event Break 
This function uses breakpoints contained in an evaluation chip.  The address mask and pass count can be

set.  Up to two breakpoints can be set and used in two modes.

1. OR mode (if a hit is found in either code event 1 or 2, a break occurs)

2. Sequential mode (if a hit is found in code events 1 and 2 in the order, a break occurs)

When the code event break occurs, the following message appears at the status bar.

1. OR mode
Break at address by code event break (No.: Code event number)

2. Sequential mode
Break at address by code event break (sequential)

■ How to set 
Set the code event break as follows.

• Command 

- SET CODEEVENT

- SET SEQUENCE/ON (only in sequential mode)

Refer to "3.19 SET CODEEVENT" in SOFTUNE Workbench Command Reference Manual.

• Dialog

"Code" tab in event setting dialog

Refer to "4.6.5 Event" in SOFTUNE Workbench Operation Manual

Note:

In the DSU3 chip, the code event can be used as a break factor and a trace measurement start
factor.  This mode is called a trace sampling mode.  There are two trace sampling modes.

a. Full mode: The code event is used as a break factor.

b. Trigger mode: The code event is used as a trace measurement start factor.

To use the code event as a break factor, set the full mode.

Set as follows:

Command

- SET TRACE/FULL
Refer to "4.12 SET TRACE (type 2)" in SOFTUNE Workbench Command Reference Manual.

Dialog

- Trace setting dialog
Refer to "4.4.8 Trace" in SOFTUNE Workbench Operation Manual.
73



CHAPTER2  Dependence Functions
2.2.4.3 Data Event Break

This function uses breakpoints contained in the evaluation chip.  The address mask, 
data size, access type, and sequential mode can be set.

■ Data Event Break 
This function uses breakpoints contained in the evaluation chip.  The address mask, data size (byte/half

word/word), and access attributes (read/write) can be set.

Up to two breakpoints can be set and used in two modes.

1. OR mode (if a hit is found in either data event 1 or 2, break occurs)

2. Sequential mode (if a hit is found in data events 1 and 2 in this order, a break occurs)

When the data event break occurs, the following message appears at the status bar.

1. OR mode
Break at address by data event break (No: Data event number)

2. Sequential mode
Break a address by data event break (sequential)

■ How to set 
Set the data event break as follows.

• Command 

- SET DATAEVENT

- SET SEQUENCE/ON (only in sequential mode)

Refer to "3.24 SET DATAEVENT" in SOFTUNE Workbench Command Reference Manual.

• Dialog

"Data" tab in event setting dialog

Refer to "4.6.5 Event" in SOFTUNE Workbench Operation Manual

Note:

In the DSU3 chip, the data event can be used as a break factor and a trace measurement start
factor.  This mode is called a trace sampling mode.  There are two trace sampling modes.

a. Full mode: The data event is used as a break factor.

b. Trigger mode: The data event is used as a trace measurement start factor.

To use the data event as a break factor, set the full mode.

Set as follows:

Command

- SET TRACE/FULL
Refer to "4.12 SET TRACE (type 2)" in SOFTUNE Workbench Command Reference Manual.

Dialog

- Trace setting dialog
Refer to "4.4.8 Trace" in SOFTUNE Workbench Operation Manual.
74



CHAPTER2  Dependence Functions
2.2.4.4 Trace Buffer-full Break

This function aborts the program execution when the trace buffer becomes full.

■ Trace Buffer-full Break
This function aborts the program execution when the trace buffer becomes full.

When the trace buffer-full break occurs, the following message appears at the status bar.

Break at address by trace buffer full

■ How to set
Set the trace buffer-full break as follows.

• Command 

- SET TRACE/BREAK

Refer to "4.12 SET TRACE (type 2)" in SOFTUNE Workbench Command Reference Manual.

• Dialog

Trace setting dialog

Refer to "4.4.8 Trace" in SOFTUNE Workbench Operation Manual.
75



CHAPTER2  Dependence Functions
2.2.4.5 Alignment Error Break

This function aborts the program execution when an instruction access or a word/half 
word access beyond the boundary is made to the odd address.

■ Alignment Error Break 
This function aborts the program execution when an instruction access or a word/half word access beyond

the boundary is made to the odd address.  Whether to enable or disable the alignment error break can be set

for both instruction access and data access.

When the alignment error break occurs, the following message appears at the status bar.

1. Instruction access
Break at address by alignment error break (code)

2. Data access
Break at address by alignment error break (data)

■ How to set 
Set the alignment error break as follows.

• Command

- ENABLE ALIGNMENTBREAK

- DISABLE ALIGNMENTBREAK

Refer to "3.37 ENABLE ALIGNMENTBREAK" in SOFTUNE Workbench Command Reference Manual.

• Dialog

"Emulation" tab in debug environment setting dialog

Refer to "4.7.2.3 Debug Environment" in SOFTUNE Workbench Operation Manual.
76



CHAPTER2  Dependence Functions
2.2.4.6 External Trigger Break

This function aborts the program execution when an external signal is input from the 
TRIG of the Emulator.

■ External Trigger Break 
This function aborts the program execution when an external signal is input from the TRIG of the

Emulator.

When the external trigger break occurs, the following message appears at the status bar.

Break at address by external trigger break

■ How to set 
Set the external trigger break as follows.

• Command 

- SET TRIGGER

Refer to "3.35 SET TRIGGER" in SOFTUNE Workbench Command Reference Manual.

• Dialog

"Emulation" tab in debug environment setting dialog

Refer to "4.7.2.3 Debug Environment" in SOFTUNE Workbench Operation Manual.
77



CHAPTER2  Dependence Functions
2.2.4.7 Forced Break

This function forcibly aborts the program execution to generate a break.

■ Forced Break  
This function forcibly aborts the program execution to generate a break.

When the forced break occurred, the following message appears at the status bar.

Break at address by command abort request

Note:

The forced break cannot be generated when the MCU is in the low power consumption mode or in
the hold state. If the MCU is in the low power consumption mode or in the hold state when the forced
break is requested by the [Debug]-[Abort] menu during the program execution, the [Debug]-[Abort]
menu is ignored. To generate a break forcibly, use the [Debug]-[Abort] menu to remove a factor by
the user system or use the [Debug]-[Reset of MCU] menu to remove it. If the MCU enters the low
power consumption mode or the hold state during the program execution, the condition is displayed
at the status bar.
78



CHAPTER2  Dependence Functions
2.2.5 Measuring Execution Cycle Count

This function measures the program execution cycle count.

■ The measuring item 
Measures program execution cycle counts.

The measurement result can be displayed as two cycle counts values:  the execution cycle counts of the

preceding program, and the total execution time of the programs (total execution cycle counts before

preceding program plus execution cycle counts of preceding program).  Measurement is performed each

time a program is executed.

■ View of the measuring result
1. "Measurement time" Dialog

[Debug] - [Time Measurement] menu

2. SHOW TIMER command

■ Clear of the measuring result
1. "Measurement time" Dialog <Clear> Button

[Debug] - [Time Measurement] menu

2. CLEAR TIMER command

■ error
The number of measurement cycles includes an error of about 20 cycles.  In the Real-time mode or Full

Trace mode, it has additionally an error of about at most (*1) cycles.  For time measurement, use the

Internal Trace mode or External Trace mode, which has less error.

*1: Autowait 1 :   +1250
Autowait 3 :   +2500
Autowait 7 :   +5000
Autowait 15 : +10000

Note:

Execution cycle counts are measured in several tens of cycles at one execution. When measuring
execution cycles, set for consecutive executions of many instructions to decrease the efficacy of
errors.
79



CHAPTER2  Dependence Functions
2.2.6 Trace

The address and status information can be sampled during program execution to record 
it in a trace buffer.  This function is called a trace.

■ Trace 
Data recorded with the trace function can be used to make a detailed analysis of a program execution

history.

The trace buffer is in the form of a ring.  When it becomes full, it records the next data by automatically

overwriting the buffered data at the beginning.

• Trace data

• Trace sampling

• Setting trace

• Displaying trace data

• Display format of trace data

• Searching trace data

• Saving Trace dada

• Clearing trace data

• Notes on Use of Tracing Function
80



CHAPTER2  Dependence Functions
2.2.6.1 Trace Data

Data sampled and recorded by tracing is called trace data.

■ Trace Data 
You can sample the following sizes using the emulation debugger.

• Full Trace Mode:65536 frames

• Real Time Trace Mode:65536 frames

• Internal Trace Mode:128 frames or 64 frames 
(The number of frame is different by an evaluation chip.)

• External Trace Mode:65536 frames

The following data is sampled.

• Address (32 bits)

• Data (32 bits)

• Status Information

- Access Data Size: Word/Halfword/Byte

- Data Types: Data Access/Instruction Execution
81



CHAPTER2  Dependence Functions
2.2.6.2 Trace Sampling

Trace measurements of the program execution status are made during the interval 
between the program start and stop.  The DSU3 chip emulator debugger performs trace 
measurements until the program execution stops, using the first or second code event 
or first data event as a trigger for starting trace measurement.

■ Trace Sampling 
When the trace function is enabled, data is always sampled and recorded in the trace buffer during the

execution of an execution command.

In addition to the above function, the DSU3 chip emulator debugger has functions for starting trace

measurement during the next program execution and making trace measurements of data access with a

specified region.

• When mode switching is effected from the trace sampling mode to the trigger mode, trace
measurements start at the first or second code event hit or the first data event hit.

• When the internal trace mode or external trace mode is selected as the MCU operation mode, data
sampling is conducted only for data accesses to a specified data trace measurement region.

The program execution aborts due to a break factor such as a breakpoint, terminating the trace.

Furthermore, when the trace buffer becomes full, a program break can be invoked.  This break is called a

trace buffer full break.

■ Frame Number 
A number is assigned to each frame of sampled trace data.  This number is called a frame number.

The frame number is used to specify the display start position of the trace buffer.

The value 0 is assigned to the last-sampled trace data.  Negative values are assigned to trace data sampled

before the arrival at the triggering position.
82



CHAPTER2  Dependence Functions
2.2.6.3 Setting Trace

To perform a trace, complete steps 1 through 3 below.  When a program is executed 
after completion of the following steps, trace data is sampled.  Trace setup can also be 
performed from the command window.  The DSU3 chip allows the trace measurement 
region for data access to be specified.

■ Setting Trace 
1. Enable the trace function

- This is done by [Setup] - [Trace] in the trace window shortcut menu.  This program will startup and

will be enabled.

2. Set the MCU operation mode

- This is done by the debug environment setting dialog.

- Real time mode operates while executing, but there is a great possibility of losing trace data.  Full

trace mode does not operate while executing, but there is a very low possibility of losing trace data.

If there are many divisional instructions, we recommend that you use the full trace mode.

- With the DSU3 chip, you can specify internal trace mode or external trace mode.  Using these two

modes, you can measure while operating during execution without losing trace data.

3. Set the trace buffer full break

- When the trace buffer is full, you can make a break.  This is done using the setting dialog boxes of

the trace window shortcut menu [Setup] - [Trace].

- When starting up this program, it is setup for no breaks.

- Also, on emulator debuggers using DSU3 chips, you can specify the data access area for performing

the trace measurements.
83



CHAPTER2  Dependence Functions
2.2.6.4 Displaying Trace Data

Data recorded in the trace buffer can be Displayed.

■ Displaying Trace Data 
The trace window displays how much trace data is stored in the trace buffer.  Also, you can use the SHOW

TRACE command from the command window.

When the emulator debugger uses the DSU3 chip, it displays branch information and data access

information as trace data.  To display instructions executed between branch instructions, it is necessary to

open the trace details dialog box.  The same purpose can also be achieved by executing the SHOW

DETAILTRACE command from the command window.
84



CHAPTER2  Dependence Functions
2.2.6.5 Display Format of Trace Data

There are three formats for displaying trace buffer data.

■ Display Format of Trace Data 
• Display Only Instruction Operation: (Specify Instruction)

• Display Bus Cycles: (Specify Cycle)

• Display by Unit of Source Lines: (Specify Source)

If the DSU3 chip is being used by the emulator debugger, this displays only instruction executions.  Source

line unit displays are performed using the trace details dialog box.

■ Display Only Instruction Operation 
In this mode, the instruction operation is displayed in disassembly units.

■ Display Bus Cycles 
In this mode, detailed information on all sampled instruction fetch cycles and data access cycles is

displayed.

■ Display by Unit of Source Lines 
This mode only displays source lines.
85



CHAPTER2  Dependence Functions
2.2.6.6 Searching Trace Data

The trace buffer can be searched to locate target data.

■ Searching Trace Data 
Specify the address, data, and access information for searching.  The address and data can be masked.  This

search function can be run by clicking the Search button in the trace window.
86



CHAPTER2  Dependence Functions
2.2.6.7 Saving Trace Data

The debugger has function of saving trace data.

■ Saving Trace Data 
Save the trace data to the specified file.

For details on operations, refer to Sections "3.14 Trace Window", and "4.4.8 Trace" in SOFTUNE

Workbench Operation Manual and Section "4.9 Show Trace" in SOFTUNE Workbench Command

Reference Manual.
87



CHAPTER2  Dependence Functions
2.2.6.8 Clearing Trace Data

To clear trace data, use the following command.

■ Clearing Trace Data 
When clearing trace data, the [Clear] command is executed from short-cut menu in the trace window.
88



CHAPTER2  Dependence Functions
2.2.6.9 Notes on Use of Tracing Function

This section describes the precautions to observe when displaying or searching for 
trace data.

■ Notes on Trace Function 
When the emulator debugger is in use, tracing is enabled by the following:

• Output address information at fetching branch instruction

For these reasons, note the following points when displaying and searching trace data

• Since address information is not output immediately after executing a program until the branch

instruction being executed, trace data may not be established on the program executing side.

• When displaying disassembly, data is read from memory and processed.  Therefore, the displayed data

may not be correct if the instruction is rewritten after code fetching.

• When specifying a starting frame number for searching data, an instruction longer than 2 bytes (LDI:

32, LDI:  20 instructions) may not be displayed correctly when the instruction starting address is not

specified.

• In the real-time mode, partial omission of trace data may occur under the following conditions (Output

trace omission information instead) because of the real-time operation.

- When branching occurs more than three times within 11 cycles.

- When data tracing occurs more than three times in succession.

• The address is not displayed until the first branching information is found, because the trace data

immediately before starting execution has been overwritten. 

• If a break occurs under conditions such as the following combination of break points has been set up in

sequence at continuous addresses (code addresses of factors in case of data event), the trace data

immediately before the break is not displayed correctly.

- When break points set in sequence from software break to either one of I-group breaks at continuous

addresses.

- When break points set in sequence from either one of I-group breaks to either one of I-group breaks

at continuous addresses.

Reference:

The I-group breaks here means the following breaks:

• Hardware break

• Code event break

• Data event break

This occurs because the address next to the actual break factor address is detected as a break
cause simply by such next address being pre-fetched.
89



CHAPTER2  Dependence Functions
• When displaying valid pass cycles or instruction, the omitted trace data frame is displayed as follows:

Frame where address at code fetching could not be sampled.

• At step execution by a single instruction, trace data may not be sampled correctly for each single
instruction execution.  If this happens, *** Address Lost Error *** is displayed.

*** Address Lost Error ***
90



CHAPTER2  Dependence Functions
2.2.7 Inaccessible Area

This section explains inaccessible area.

■  Inaccessible area
The inaccessible area is a function that suppresses access to memory when the debugger accesses a

specified memory area (using commands, windows, etc. (*1)).

However, access to memory is not suppressed using program.

The following commands are used to set an inaccessible area.

SET MAP/INACCESSIBLE: Sets an inaccessible region.

SHOW MAP/INACCESSIBLE: Displays an inaccessible region.

CANCEL MAP/INACCESSIBLE: Deletes a specified inaccessible region.

ENABLE MAP/INACCESSIBLE: Enables a specified inaccessible region.

DISABLE MAP/INACCESSIBLE: Disables a specified inaccessible region.

(*1)

Memory operation command

Assemble/disassemble command

Load/save command

Built-in Variables and Functions (%BIT, %B, %H, %W, %L, %S, %D)

Formula

Trace

Vector

Memory window

Source window

Assemble window

Watch window

Local window

Symbol window

■  Access to memory area including inaccessible area
When there are inaccessible regions within those that are accessed, up to memory of inaccessible region is

accessed, an error is output when the inaccessible region is reached, and access to the memory is

suspended.
91



CHAPTER2  Dependence Functions
2.3 Emulator Debugger (MB2198)

This section describes the emulator debugger functions that are available when the 
MB2198 is specified.

■ Emulator Debugger 
When choosing the emulator debugger from the setup wizard, select one of the following emulators.  Select

the MB2198.

• MB2197

• MB2198

The emulator debugger for the MB2198 is software that controls an emulator from a host computer via a

communications line (RS-232C or LAN or USB) to evaluate programs.

Products targeted for debugging must have the following DSUs (debug support units):

• DSU3

• DSU4

Before using the emulator debugger, initialize the emulator.  For details, refer to "Appendix B Monitoring

Program Download", and "Appendix C LAN Interface Setup", in the SOFTUNE Workbench Operation

Manual.

■ Debug Functions with FR80S
When FR80S is used in an environment with the external trace function, the following debug functions

which are equal to those of FR60Lite are available. For details of each function, refer to its descriptions in

this manual.

* Includes the following three types:

• Hardware

• Hardware / Count

• Software

Table 2.3-1  Debug Functions of FR80S

FR80S (external trace function available) FR60Lite

Code break * ❍ ❍

Data break ❍ ❍

Datawatch break ✕ ❍

Sequencer ❍ (write access only) ❍

Trace trigger ❍ (write access only) ❍

Performance ❍ (write access only) ❍

Real-time memory ❍ ❍

Power-on Debugging ✕ ❍

RAM checker ❍(write access only) ❍
92



CHAPTER2  Dependence Functions
Notes:

When FR80S is used, there are some restrictions on the debug functions as follows:

• The debug functions shown in Table 2.3-1  are valid only when set in the internal RAM space.
However, the code break and the data break are excluded.

• The trace buffer stores only the trace data on which a write access is performed to the internal
RAM when the MCU operation mode is set to "external trace mode".
93



CHAPTER2  Dependence Functions
2.3.1 Setting Operating Environment

This section explains the operating environment setup.

■ Setting Operating Environment 
For the emulator debugger for the MB2198, set up the following operating environment.  Predefined

default settings for all these setup items are enabled at startup.  Therefore, setup is not necessary when

using default settings.  The adjusted settings can be used as the new default settings from the next time.

• Monitoring program automatic loading

• MCU operation mode

• Cache flush control

• Controlling Operating Frequency

• External memory emulation

• Debug mode
94



CHAPTER2  Dependence Functions
2.3.1.1 Monitoring Program Automatic Loading

The emulators that are compatible with the MB2198 can update the monitoring program 
automatically at emulator startup.

■ Monitoring Program Automatic Loading 
When the MB2198 is specified, data in the emulator can be checked at the beginning of debugging to

automatically load the appropriate monitoring program and configuration binary data into the emulator.

To specify whether or not to load the monitoring program automatically, choose [Setup] - [Debug

Environment] - [Setup Wizard].
95



CHAPTER2  Dependence Functions
2.3.1.2 MCU Operation Mode

The following four modes are in the MCU Operation Mode.  The Full Trace Mode and 
Real-time Mode are not enabled with products using the DSU3 chips.
• Full Trace Mode
• Real Time Mode
• Internal Trace Mode
• External Trace Mode

■ Setting MCU Operation Mode 
Set the MCU operation mode.  There are two modes:  full trace, and real-time.  To set the operation mode,

use either the done by the debug environment setting dialog, or the SET RUNMODE command in the

Command window.

● Full Trace Mode 

In the full trace mode, all instruction executions can be traced without omission.  However, if branching

occurs more than three times within 11 cycles, operations may not be real-time due to the wait entered to

MCU as acquiring the trace data is preceded.  This mode cannot be specified with DSU3 chips.

● Real-time Mode 

In the real-time mode, a program runs in real-time.  However, if branching occurs more than three times

within 11 cycles, some trace data may be omitted.

This mode cannot be specified with DSU3 chips.

Chips may cause an error at cycle count measurement.  When measuring the cycle count, use the internal or

external trace mode.

● Internal Trace Mode 

Trace data is stored in the specialized trace memory built-in to the chip.  The program is executed at real

time, but this is possible only with DSU3 chips which include that function.

● External Trace Mode 

Trace data is stored in the specialized trace memory mounted on the adapter board.  The program is

executed at real time.

This mode may not be specified depending on the specification of the adapter board.

Check your adapter board specification.
96



CHAPTER2  Dependence Functions
2.3.1.3 Cache Flush Control

This section explains cache flush setup.

■ Cache Flush Control 
When using a chip with cache memory, rewriting the memory and software break point setup using

commands is not reflected in the cache.   Therefore, cache flushing must be performed when such

commands are executed.  The debugger has a function to flush the cache automatically, monitor memory

rewriting, and set software break points, etc.

This function is controlled using the [Emulation] tab in debug environment setting dialog.

Note:

When the automatic cache flushing option is enabled, it may negatively affect the program speed.
97



CHAPTER2  Dependence Functions
2.3.1.4 Controlling Operating Frequency

This section explains the setting of operating frequencies.

■ Operating frequencies 
Set the operating frequencies of the MCU. The most suitable operating frequencies vary depending on the

type of DSU.  DSU3 ranges from 1 to 200 MHz and DSU4 from 1 to 266 MHz. This setting provides the

optimum communication speed between the MCU and emulator.

This function can be controlled by the [Frequency] tab in debug environment setting dialog.

Notes:

1. This setting is used to set maximum operating frequencies.  Actual operating frequencies will not
be changed.

2. Actual operating frequencies exceeding these settings will cause improper communication with
the emulator.
98



CHAPTER2  Dependence Functions
2.3.1.5 External Memory Emulation

This section explains the external memory emulation function.

■ External memory emulation 
Some DSU4 chips can use the RAM in the adapter unit in place of the user system memory.  This function

is called external memory emulation.

For the FR Family, the ‘chip select’ terminal must be specified to access memory outside the chip.

Therefore, when using the external memory emulation function, specify the chip select number.

This function can be controlled using the [External Memory Emulation] tab in debug environment setting

dialog. Select either ROM or RAM as the emulated memory.

For the detailed specifications and setup procedure, refer to the hardware manual for the appropriate

adapter unit.
99



CHAPTER2  Dependence Functions
2.3.1.6 Debug mode

Debug mode includes the following modes.  Selectable debug mode varies with the 
emulator or its connection configuration.  
• RealTimeMemory mode 
• RAM Checker mode

■ Setting of debug mode 
This mode sets debug mode.  Debug mode includes RealTimeMemory mode and RAM Checker mode, and

selectable debug mode varies with the emulator or its connection configuration.  

To set these mode, select [Environment] - [Setup debugging environment] - [Select Debug Function] menu

or by using the SET MODE command on the command window.  

■ RealTimeMemory mode
This mode enables the real-time monitor function.  This mode enables to display data for a "256 bytes X 2"

area in the real-time memory window without breaking the MCU at all during program execution.  

■ RAM Checker mode
This mode enables the RAM Checker function.  This mode allows you to record the access history of the

monitoring address in the log file.

Notes:

1. In an environment where debug mode cannot be selected, RealTimeMemory mode is used. 

2. The real-time monitor function can be used only in an environment where the external trace
function can be used.  The external trace function may not be used depending on the
specification of the adaptor board.  Check the specification of the adaptor board before using it.

3. The RAM Checker function can be used only in an environment where the used core is FR60Lite
or FR80S, and the external trace function can be used.  The external trace function may not be
used depending on the specification of the adaptor board.  Check the specification of the adaptor
board before using it.
100



CHAPTER2  Dependence Functions
2.3.2 Notes on Executing Program

There are some precautions to observe when using program execution commands.

■ Real-time Functionality in Running Program 
When the MCU is in the full trace mode, there are some cases when a program cannot execute in real-time.

The MCU operation mode can be set up by using either the [Emulation] tab in debug environment setting

dialog, or the SET RUNMODE command in the Command window.

■ Notes on Delayed Branch Instruction when executed using [Debug] - [Run] - [Step In] 
or [Debug] - [Run] - [Step Over] menu 

If a delay branch instruction is executed by the [Debug] - [Run] - [Step In] menu or [Debug] - [Run] - [Step

Over] menu, the program runs past the instruction at the delay slot (instruction immediately after delay

branch instruction) and breaks immediately after executing the delay branch instruction.

■ Restrictions when Suspended by Software Break 
When there is a software break at the current PC location, if either the [Debug] - [Run] - [Go] menu or the

Go command is executed, the emulator debugger performs one execution step internally, and then executes

the program in batch processing.  In addition, when a software break is set for the instruction to clear the T-

flag, and when either the [Debug] - [Run] - [Go] menu or the Go command is executed from that address,

all software breaks are disregarded.  When this happens, any interrupt is masked too.

■ Value of TBR Register 
Note a program null-function may occur if you specify such value for the TBR register as the vector table

overlaps to the I/O area.

■ Notes on Instruction to Clear T-Flag when Executed using [Debug] - [Run] - [Step In] or 
[Debug] - [Run] - [Step Over] menu 

If an instruction to clear the T-flag is executed using either the [Debug] - [Run] - [Step In] menu, or

[Debug] - [Run] - [Step Over] menu, the program will be executed in batch processing.  When this

happens, all software breaks are ignored.
101



CHAPTER2  Dependence Functions
2.3.3 On-the-fly Executable Commands

Certain commands can be executed even while executing a program.  This is called "on-
the-fly" execution.

■ On-the-fly Executable Commands
Certain commands can be executed on-the-fly.  If an attempt is made to execute a command that cannot be
executed on-the-fly, an error "MCU is busy" occurs.  Table 2.3-2  lists major on-the-fly executable
functions.  For further details, refer to the SOFTUNE Workbench Command Reference Manual.

Meanwhile, on-the-fly execution is enabled only when executing the MCU from the menu or the tool
button.  On-the-fly commands cannot be executed when executing the GO command, etc., from the
Command window.

Using the real-time monitoring function, it is also possible to display a specified memory region in the real-
time monitoring window and read (update) data even during an MCU execution.

*: For detail, refer to "2.3.4 Break".

Table 2.3-2  Major Functions Executable in On-the-fly Mode

Function Restrictions Major Commands

MCU reset - RESET

Displaying MCU execution

status

- SHOW STATUS

Displaying trace data - SHOW TRACE

Displaying trace trigger - SHOW TRACETRIGGER

Displaying filtering area - SHOW DATATRACEAREA

Displaying execution cycle

measurement value (Timer)

- SHOW TIMER

Memory operation

 (Read/Write)

1. Emulation memory only operable Read
only enabled in real-time monitoring area.

2. When Real-time monitor mode, it is not
possible to read/write it excluding a real-
time area. 

ENTER, EXAMINE, COMPARE,

FILL, MOVE, DUMP,

SEARCH MEMORY,

SHOW MEMORY, 

SET MEMORY

Line assembly, Disassembly Emulation memory only enabled Real-time

monitoring area, Disassembly only enabled

ASSEMBLE 

DISASSEMBLE

Break Point Settings Oprable only when "Breakpoint Settings

during Execution" is enabled in the execution

tab of the debug environment set dialog.( *)

SET BREAK, 

ENABLE BREAK,

DISABLE BREAK,

CANCEL BREAK,

SET DATABREAK,

ENABLE DATABREAK,

DISABLE DATABREAK
102



CHAPTER2  Dependence Functions
2.3.4 Break

This Emulator Debugger provides nine types of break functions.  When by each break 
function aborts program execution, the address where a break occurred and the break 
factor are displayed.

■ Break Functions 
This Emulator debugger provides the following nine types of break functions;

- Code break 

- Data break

- Code event break

- Data event break

- Trace buffer-full break

- Alignment error break

- External trigger break

- Forced break

- Data monitoring break

Available break functions depend on the DSU, adapter board, and chip.

*: FR60Lite does not support these functions because they are enhanced by "Code Break (Hardware/

count)", "Sequencer (31evels+restart)", and "Trace Trigger".

Table 2.3-3  Available Break Functions

DSU Adapter FR60Lite FR80S

Code break (software) ❍ ❍ ❍ ❍

Code break (hardware) ❍ ❍ ❍ ❍

Code break (hardware/count) ✕ ✕ ❍ ❍

Data break ✕ ✕ ❍ ❍

Code event break ❍ ❍ ✕ * ✕

Data event break ❍ ❍ ✕ * ✕

Trace buffer-full break ❍ ❍ ❍ ❍

Alignment error break ❍ ❍ ❍ ❍

External trigger break ❍ ❍ ❍ ❍

Forced break ❍ ❍ ❍ ❍

Datawatch break (hardware) ✕ ✕ ❍ ✕

Datawatch break (software) ❍ ❍ ❍ ❍
103



CHAPTER2  Dependence Functions
2.3.4.1 Code Break

This function aborts the program execution by monitoring a specified address by 
hardware or software.
A break occurs before executing an instruction at the specified address.

■ Code Break 
This function aborts the program execution by monitoring a specified address by hardware or software.

A break occurs before executing an instruction at the specified address.

Hardware has the hardware/count for which a path count can be set.

The maximum number of points that can be set is as follows:

Hardware: 5 points

Hardware/count: 2 points

Software: 4096 points

When the code break occurs, the following message appears at the status bar.

- Hardware, hardware/count

Break at address by hardware breakpoint

- Software

Break at address by breakpoint

■ How to set 
Set the code break as follows.

• Command

- SET BREAK/HARD (hardware)

- SET BREAK/SOFT (software)

- SET BREAK/COUNT (hardware/count)

Refer to "3.1 SET BREAK (type 1)" in SOFTUNE Workbench Command Reference Manual.

• Dialog

"Code" tab in breakpoint setting dialog

Refer to "4.6.4 Breakpoint" in SOFTUNE Workbench Operation Manual

• Window

Source window/disassemble window

If the user sets data monitoring conditions, the hardware and hardware/count can be used as data

monitoring break.

For the data monitoring conditions, see "Data Monitoring Break".
104



CHAPTER2  Dependence Functions
Notes:

Hardware

The hardware break requires the following cautions:

• Do not set any hardware break in a instruction placed in a delay slot.  When the hardware break
is set in the instruction, a branch does not occur even if the program is reexecuted after break.

• Be sure to set a breakpoint at the starting address of the instruction.  If not so, a break may not
occur.

• When the program is executed from the address at which a hardware break is set, a break occurs
without executing the instruction if the immediately preceding program execution is stopped by a
factor other than the instruction break.  To execute the instruction, reexecute the program.

Software

The software break requires the following cautions:

• A breakpoint cannot be set in any area, such as ROM, where data cannot be written properly.
In this case, a verify error occurs when program execution is started (continuous execution or
stepwise execution is started).

• Be sure to set a breakpoint at the starting address of the instruction.  If a breakpoint is set during
instruction execution, the program may malfunction.

Hardware/count

The hardware/count break requires the following caution:

• The hardware/count break can be used only when the FR60Lite or FR80S is used. For details,
see "2.3.4  Break".
105



CHAPTER2  Dependence Functions
2.3.4.2 Data Break

This function aborts the program execution when a data access (read/write) is made to 
a specified address.

■ Data Break 
This function aborts program execution when a data access (read/write) is made to a specified address. Up

to two breakpoints can be set.

When the data break occurs, the following message appears at the status bar.

Break at address by data break at access address

■ How to set 
Set the data break follows:

• Command

- SET DATABREAK

Refer to "3.9 SET DATABREAK (type 2)" in SOFTUNE Workbench Command Reference Manual.

• Dialog

"Data" tab in breakpoint setting dialog

Refer to "4.6.4 Breakpoint" in SOFTUNE Workbench Operation Manual

If the user sets a data monitoring condition, the data break can be used as a data monitoring break.

For the data monitoring condition, see "Data Monitoring Break".

Note:

The data break requires the following caution:

The data break can be used only when the FR60Lite or FR80S is used.  For details, see "2.3.4
Break".
106



CHAPTER2  Dependence Functions
2.3.4.3 Code Event Break

This function uses breakpoints contained in the evaluation chip.  The address mask, 
pass count, and sequential mode can be set.

■ Code Event Break 
This function uses breakpoints contained in an evaluation chip.  The address mask and pass count can be

set.  Up to two breakpoints can be set and used in two modes.

1. OR mode (if a hit is found in either code event 1 or 2, a break occurs)

2. Sequential mode (if a hit is found in code events 1 and 2 in this order, a break occurs)

When the code event break occurs, the following message appears at the status bar.

1. OR mode
Break at address by code event break (No.: Code event number)

2. Sequential mode
Break at address by code event break (sequential)

■ How to set 
Set the code event break as follows.

• Command

- SET CODEEVENT

- SET SEQUENCE/ON (only in sequential mode)

Refer to "3.19 SET CODEEVENT" in SOFTUNE Workbench Command Reference Manual.

• Dialog

"Code" tab in event setting dialog

Refer to "4.6.5 Event" in SOFTUNE Workbench Operation Manual.

Only in the OR mode, if the user sets a data monitoring condition, the code event break can be used as a

data monitoring break.

For the data monitoring condition, see "Data Monitoring Break".
107



CHAPTER2  Dependence Functions
Notes:

• In the DSU3 chip, the code event can be used as a break factor and a trace measurement start
factor.  This mode is called a trace sampling mode.  There are two trace sampling modes.

-  Full mode: The code event is used as a break factor.

-  Trigger mode: The code event is used as a trace measurement start factor.

To use the code event as a break factor, set the full mode.

Set as follows:

Command 

- SET TRACE/FULL
Refer to "4.12 SET TRACE (type 2)" in SOFTUNE Workbench Command Reference Manual.

Dialog

- Trace setting dialog
Refer to “4.4.8 Trace” in SOFTUNE Workbench Operation Manual.

• This function cannot be used when the FR60Lite is used.  For details, see "Break".
108



CHAPTER2  Dependence Functions
2.3.4.4 Data Event Break

This function uses breakpoints contained in the evaluation chip.  The address mask, 
data size, access type, and sequential mode can be set.

■ Data Event Break 
This function uses breakpoints contained in the evaluation chip.  The address mask, data size (byte/half

word/word), and access attributes (read/write) can be set.

Up to two breakpoints can be set and used in two modes.

1. OR mode (if a hit is found in either data event 1 or 2, a break occurs)

2. Sequential mode (if a hit is found in data events 1 and 2 in this order, a break occurs)

When the data event break occurs, the following message appears at the status bar.

1. OR mode
Break at address by data event break (No.: Data event number)

2. Sequential mode
Break at address by data event break (sequential)

■ How to set 
Set the data event break as follows.

• Command 

- SET DATAEVENT

- SET SEQUENCE/ON (only in sequential mode)

Refer to "3.24 SET DATAEVENT" in SOFTUNE Workbench Command Reference Manual.

• Dialog

"Data" tab in event setting dialog

Refer to "4.6.5 Event" in SOFTUNE Workbench Operation Manual

Only in the OR mode, if the user sets a data monitoring condition, the data event break can be used as a

data monitoring break.

For the data monitoring condition, see "Data Monitoring Break".
109



CHAPTER2  Dependence Functions
Notes:

• In the DSU3 chip, the data event can be used as a break factor and a trace measurement start
factor.  This mode is called a trace sampling mode.  There are two trace sampling modes.

-  Full mode: The data event is used as a break factor.

-  Trigger mode: The data event is used as a trace measurement start factor.

To use the data event as a break factor, set the full mode.

Set as follows:

Command

- SET TRACE/FULL
Refer to "4.12 SET TRACE (type 2)" in SOFTUNE Workbench Command Reference Manual.

Dialog

- Trace setting dialog
Refer to "4.4.8 Trace" in SOFTUNE Workbench Operation Manual.

• This function cannot be used when the FR60Lite is used. For details, see “Break”.
110



CHAPTER2  Dependence Functions
2.3.4.5 Trace Buffer-full Break

This function aborts the program execution when the trace buffer becomes full.

■ Trace Buffer-full Break 
This function aborts the program execution when the trace buffer becomes full.

When the trace buffer-full break occurs, the following message appears at the status bar.

Break at address by trace buffer full

■ How to set 
Set the trace buffer-full break as follows.

• Command 

- SET TRACE/BREAK

Refer to "4.12 SET TRACE (type 2)" in SOFTUNE Workbench Command Reference Manual.

• Dialog 

- Trace setting dialog

Refer to "4.4.8 Trace" in SOFTUNE Workbench Operation Manual.
111



CHAPTER2  Dependence Functions
2.3.4.6 Alignment Error Break

This function aborts the program execution when an instruction access or a word/half 
word access beyond the boundary is made to the odd address.

■ Alignment Error Break 
This function aborts the program execution when an instruction access or a word/half word access beyond

the boundary is made to the odd address.  Whether to enable or disable the alignment error break can be set

for both instruction access and data access.

When the alignment error break occurs, the following message appears at the status bar.

1. Instruction access
Break at address by alignment error break (code)

2. Data access
Break at address by alignment error break (data).

■ How to set  
Set the alignment error break as follows.

• Command

- ENABLE ALIGNMENTBREAK

- DISABLE ALIGNMENTBREAK

Refer to "3.37 ENABLE ALIGNMENTBREAK" in SOFTUNE Workbench Command Reference Manual.

• Dialog

"Emulation" tab in debug environment setting dialog

Refer to "4.7.2.3 Debug Environment" in SOFTUNE Workbench Operation Manual.
112



CHAPTER2  Dependence Functions
2.3.4.7 External Trigger Break

This function aborts the program execution when an external signal is input from the 
TRIG of the Emulator.

■ External Trigger Break  
This function aborts the program execution when an external signal is input from the TRIG of the

Emulator.

When the external trigger break occurs, the following message appears at the status bar.

Break at address by external trigger break

■ How to set 
Set the external trigger break as follows.

• Command

- SET TRIGGER

Refer to "3.35 SET TRIGGER" in SOFTUNE Workbench Command Reference Manual.

• Dialog

"Emulation" tab in debug environment setting dialog

Refer to "4.7.2.3 Debug Environment" in SOFTUNE Workbench Operation Manual.
113



CHAPTER2  Dependence Functions
2.3.4.8 Forced Break

This function forcibly aborts the program execution to generate a break.

■ Forced Break  
This function forcibly aborts the program execution to generate a break.

When the forced break occurred, the following message appears at the status bar.

Break at address by command aborts request

Note:

The forced break cannot be generated when the MCU is the low power consumption mode or in the
hold state. If the MCU is in low power consumption mode or in the hold state when the strong break
is requested by the [Debug]-[Abort] menu during the program execution, the [Debug]-[Abort] menu is
ignored. To generate a break forcibly, used the [Debug]-[Abort] menu to remove a factor by the user
system or use the [Debug]-[Reset of MCU] menu to remove it. If the MCU enters the low power
consumption mode or the hold state during the program execution, the condition is displayed at the
status bar.
114



CHAPTER2  Dependence Functions
2.3.4.9 Data Monitoring Break

This is a particular function that aborts the program execution when the program 
reaches a specified address during matching with specified data.  Use conditions vary 
depending on the connection state of the Emulator.

■ Data Monitoring Break  
This is a particular function that aborts the program execution when the program reaches a specified

address during matching with specified data.  There are two patterns of software and hardware.

The figure below shows the conditions of data monitoring break.

■ Setting Number 
The maximum number of data monitoring breaks to be set is calculated as follows.  The number of breaks

set and the break conditions differ between hardware and software.

1. Data monitoring break (hardware)
The break conditions are set by the address and data.  Up to four breakpoints can be set.  The number of
break to be set fluctuates because they are used with "Sequencer" and/or "Trace Trigger".

2. Data monitoring break (software)
The break conditions can be specified by the address register and offset. These are additional conditions
to "Hardware Break", "Code Event Break", and "Data Event Break". All "Data Monitoring Conditions"
to be specified become the same.

Flow of program

Data monitoring

Specified
address

When data match is not found, 
a break does not occers

Specified 
address

When data match is found, a 
break occers

Data match
is found 
115



CHAPTER2  Dependence Functions
■ How to set 
Set the data monitoring break as follows.

1. Data monitoring break (hardware)

• Command

- SET BREAK/DATAWATCH

• Dialog

"Code" tab in breakpoint setting dialog

2. Data monitoring break (software)

• Command

- SET BREAKCONDITION

- SET BREAK/BREAKCONDITION

• Dialog

"Data Watch Conditions" in breakpoint detail setting dialog

Notes:

Data monitoring  break (hardware)

• This function can be used only when the FR60Lite is used.  For details, see "Break".

• This function cannot be used when the performance mode is set as the event mode.  For details,
refer to "1.6 SET MODE" in SOFTUNE Workbench Command Reference Manual.

Data monitoring  break (software)

• When setting data monitoring break (software), the monitoring function cannot be used.
116



CHAPTER2  Dependence Functions
2.3.5 Control by Sequencer

The emulator debugger for the MB2198 have a sequencer that controls events.  By 
using this sequencer it is possible to exercise break control while focusing on a certain 
program flow (sequence).  The break generated by this function is called a sequential 
break.
For event setup, use the SET EVENT command.

■ Control by Sequencer 
The emulator debugger can have two types of sequencers depending on whether the external trace bus

interface is provided for evaluation chips.  The specifications for the two types of sequencers are

summarized in Table 2.3-4 and Table 2.3-5 .

Table 2.3-5 shows the basic sequencer that is incorporated in all the DSU3/DSU4 evaluation chips.  This

type of sequencer is subdivided into a code event sequencer and data event sequencer.  This function

cannot be used only when the FR60Lite is used.

Table 2.3-4 shows a 3-level sequencer based on the real-time monitoring bus interface.  Level changes

occur sequentially from Level 1 through Level 2 to Level 3.  One event can be specified as a sequencer

restart condition.

This function can be used only when the FR60Lite or FR80S is used.

Table 2.3-4  Sequencer Specifications (common)

Function Specifications 

Number of levels 2 levels 

One-level conditions Event-1 conditions (A pass count setting of 1 to 255 
can be specified for each condition.) 

Restart conditions None 

Operation performed when conditions established Branching to next level or terminating sequencer 

Other function The OR conditions can be specified separately for 
code events and data events. 

Table 2.3-5  Sequencer Specifications (Real-time Monitoring Bus Interface Only)

Function Specifications 

Number of levels 3 levels + restart conditions 

One-level conditions Event -1 conditions (A pass count setting of 1 to 
16,777,215 can be specified for each condition.) 

Restart conditions Event -1 conditions (A pass count setting of 1 to 
16,777,215 can be specified.) 

Operation performed when conditions established Branching to any level or terminating sequencer 

Other function Data link function 
117



CHAPTER2  Dependence Functions
The sequencer operates as shown below when it uses the real-time monitoring bus interface:

[Setup Example]

>SET SEQUENCE 1.3.2, r=4

Events 1, 3, and 2 are specified respectively for Levels 1, 2, and 3.  Event 4 is specified as a restart
condition.

Note:

Sequencer (Only Real-time Monitoring Bus Interface)

1. This function can be used only when the evaluation chip is the FR60Lite or FR80S.
When FR80S is used, however, this function is valid only if the internal RAM space is allowed for
write access.

2. There are cases when the actual code execution order and the data hit information order are
switched, depending on the output timing of the external trace data.
For that reason, if a code event and data event are closed, there are cases in which normal
transition is impossible.

3. This function cannot be used when the performance mode is set as the event mode.
For details, refer to "1.6 SET MODE" in SOFTUNE Workbench Command Reference Manual.

Start

Event 1
NO

Level 1

YES

Event 3
NO

Level 2

YES

Event 2
NO

Level 3

YES

Event 4

YES
Event 4

YES

Break

NO

NO
118



CHAPTER2  Dependence Functions
2.3.6 Measuring Execution Cycle Count

This function measures the program execution time.

■ The measuring item
Measures program execution time and cycle count.

The measurement result can be displayed as two time values:  the execution time of the preceding program,

and the total execution time of the programs (total execution time before preceding program plus execution

time of preceding program).  Measurement is performed each time a program is executed.

■ View of the measuring result
1. "Measurement time" Dialog

[Debug] - [Time Measurement] menu

2. SHOW TIMER command

■ Clear of the measuring result
1. "Measurement time" Dialog <Clear> Button

[Debug] - [Time Measurement] menu

2. CLEAR TIMER command

■ Error
The number of measurement cycles includes an error of about 20 cycles.  In the Real-time mode or Full

Trace mode, it has additionally an error of about at most (*1) cycles.  For time measurement, use the

Internal Trace mode or External Trace mode, which has less error.

*1: Autowait 1 :   +1250
Autowait 3 :   +2500
Autowait 7 :   +5000
Autowait 15 : +10000

Note:

Execution cycle counts are measured in several tens of cycles at one execution.  When measuring
execution cycles, set for consecutive executions of many instructions to decrease the efficacy of
errors.

Execution time as well as execution cycle are measured in several tens of cycles.
119



CHAPTER2  Dependence Functions
2.3.7 Trace

This section explains the trace function.

■ Trace Buffer 
One data unit stored in the trace buffer is called a frame.

The trace buffer capacity varies with the operation mode as shown below:

• Full Trace Mode: 65536 frames

• Real Time Trace Mode: 65536 frames

• Internal Trace Mode: 128 frames or 64 frames 
(The number of frame is different by an evaluation chip.)

• External Trace Mode: 65536 frames

The trace buffer is in the form of a ring.  When it becomes full, it records the next data by automatically

overwriting the oldest buffered data.

■ Trace Data 
Data sampled by the trace function is called trace data.

The following data are sampled:

• Address (32 bits)

• Data (32-bit; during data access only)

• Status Information

- Data type: Instruction execution/read/write

- Access data size (during data access only): Word/halfword/byte

• Access status Size: Read/write/code

• Execution time difference from next frame (in 25 ns increments)

- This data is available only when an evaluation chip with the external trace bus interface is used with

the external trace mode.

Notes:

1. The execution time display function is available only when a DSU4 evaluation chip with the
external trace bus interface is used.  Furthermore, since the execution time is stored in the trace
memory on the adapter unit, measurements cannot be made in the external trace mode in which
the memory is used for trace data storage.

2. This function cannot be used when the performance mode in set as the event mode.
Refer to "1.6 SET MODE" in SOFTUNE Workbench command Reference Manual.

3. When FR80S is used, the trace buffer stores only the trace data on which a write access is
performed to the internal RAM space when the MCU operation mode is set to "external trace
mode". No data however is stored unless the MCU operation mode is set to "external trace mode"

However, actually, the trace buffer stores the following data items:

• Code execution: Only address information for time before and after branching

• Data access: Only information for access to address range specified by trace filter function
120



CHAPTER2  Dependence Functions
■ Frame Number 
A number is assigned to each frame of sampled trace data.  This number is called a frame number.

The frame number is used to specify the display start position of the trace buffer.  The value 0 is assigned

to trace data at the triggering position for sequencer termination.  Negative values are assigned to trace data

sampled before the arrival at the triggering position (Figure 2.3-1 ).

If there is no triggering position for sequencer termination, the value 0 is assigned to the last-sampled trace

data.

Figure 2.3-1  Frame Numbering at Tracing

■ Trace filter 
To make effective use of the limited trace buffer capacity, in addition to the code fetch function, a trace

filter function is incorporated to provide a means of acquiring information about data accesses to a specific

region.

The data trace filter function allows the following values to be specified for data access area.

In DSU4, code can be specified as an access attribute.

- Address

- Address mask

- Access attribute (read/write/code)

.

.

.

.

-3 

-2 

-1 

0 (Trigger point)
121



CHAPTER2  Dependence Functions
■ Setting Trace Trigger 
When preselected conditions are met while monitoring the MCU bus operation, a trigger to start a trace can

be generated.  This function is called a trace trigger.

To use the trace trigger function, specify the code (/CODE) and data access (/READ/WRITE).

Up to 4 trace triggers can be preset each for code attribute and data access attribute.  However, actually, the

maximum number of trace triggers is determined as indicated below because common hardware is shared

with events.

Current trace trigger maximum count setting = 4 – 

(current event count setting + current data monitoring break count setting)

Table 2.3-6 shows the trace trigger setup conditions that can be defined:

For trace trigger setup, use the following commands:

• SET TRACETRIGGER : Trace trigger setup

• CANCEL TRACETRIGGER : Trace trigger deletion

• SHOW TRACE/STATUS : Trace setup display

Figure 2.3-2  Trace Sampling Control (Trace Trigger)

Table 2.3-6  Trace Trigger Setup Conditions

Condition Description 

Address Memory location (Address bits can be masked.) 

Data 32-bit data (Data bits can be masked.) Not applicable to codes 

Access size Byte, halfword, or word 

Status Code/data read or data write (selectable) 

Start Suspend

Program flow

Trace buffer

Resume Suspend
Resume

Suspend
122



CHAPTER2  Dependence Functions
Notes:

Trace Trigger

•  This function can be used only when FR60Lite or FR80S is used.
When FR80S is used, however, this function is valid only if the internal RAM space is allowed for
write access.

• If a trace trigger is set, the trace cannot be acquired until the trace starting trigger occurs.
Disassembling and source are displayed in the trace from the jumps destination address of the
branch instruction executed after the trace starting trigger has occurred. Also, the branch
instruction address executed just prior to the trace ending trigger is displayed in the trace.

•  There are cases when the actual code execution order and the data hit information order are
switched, depending on the output timing of the external trace data.
For that reason, if a code event and data event are closed, there are cases in which trace data
can't be got normally.
123



CHAPTER2  Dependence Functions
2.3.7.1 Saving Trace Data

The debugger has function of saving trace data.

■ Saving Trace Data 
Save the trace data to the specified file.

For details on operations, refer to Sections "3.14 Trace Window", and "4.4.8 Trace" in SOFTUNE

Workbench Operation Manual; and Section "4.9 Show Trace" in SOFTUNE Workbench Command

Reference Manual.
124



CHAPTER2  Dependence Functions
2.3.7.2 Notes on Use of Tracing Function

This section describes the precautions to observe when displaying or searching for 
trace data.

■ Notes on Trace Function 
When the emulator debugger is in use, tracing is enabled by the following:

• Output address information at fetching branch instruction

For these reasons, note the following points when displaying and searching trace data

• Since address information is not output immediately after executing a program until the branch
instruction being executed, trace data may not be established on the program executing side.

• When displaying disassembly, data is read from memory and processed.  Therefore, the displayed data
may not be correct if the instruction is rewritten after code fetching.

• When specifying a starting frame number for searching data, an instruction longer than 2 bytes (LDI:
32, LDI:  20 instructions) may not be displayed correctly when the instruction starting address is not
specified.

• In the real-time mode, partial omission of trace data may occur under the following conditions (Output
trace omission information instead) because of the real-time operation.

- When branching occurs more than three times within 11 cycles.

- When data tracing occurs more than three times in succession.

• The address is not displayed until the first branching information is found, because the trace data
immediately before starting execution has been overwritten. 

• If a break occurs under conditions such as the following combination of break points has been set up in
sequence at continuous addresses (code addresses of factors in case of data event), the trace data
immediately before the break is not displayed correctly.

- When break points set in sequence from software break to either one of I-group breaks at continuous

addresses.

- When break points set in sequence from either one of I-group breaks to either one of I-group breaks

at continuous addresses.

Reference:

The I-group breaks here means the following breaks:

• Hardware break

• Code event break

• Data event break

This occurs because the address next to the actual break factor address is detected as a break
cause simply by such next address being pre-fetched.
125



CHAPTER2  Dependence Functions
• When displaying valid pass cycles or instruction, the omitted trace data frame is displayed as follows:

Frame where address at code fetching could not be sampled.

• At step execution by a single instruction, trace data may not be sampled correctly for each single
instruction execution.  If this happens, *** Address Lost Error *** is displayed.

*** Address Lost Error ***
126



CHAPTER2  Dependence Functions
2.3.8 Measuring Performance

It is possible to measure the time and pass count between two events. Repetitive 
measurement can be performed while executing a program in real-time, and when done, 
the data can be totaled and displayed.
Using this function enables the performance of a program to be measured.  To measure 
performance, set the event mode to the performance mode using the SET MODE 
command.

■ Performance Measurement Function 
The performance measurement function allows the time between two event occurrence to be measured and

the number of event occurrences to be counted.  Up to 32767 event occurrences can be measured.

• Measuring Time

Measuring time interval between two events.

Events can be set at 4 points (1 to 4).  However, in the performance measurement mode, the intervals,
starting event number and ending event number are combined as follows.  Two intervals have the
following fixed event number combination:

• Measuring Count

The specified events become performance measurement points automatically, and occurrences of that
particular event are counted.

Notes:

1. This function can be used only when FR60Lite or FR80S is used.
When FR80S is used, however, this function is valid only if the internal RAM space is allowed for
write access.

2. This function cannot be used when the trace mode in set as the event mode.

Refer to “1.6 SET MODE” in SOFTUNE Workbench Command Reference Manual.

3. There are cases when the actual code execution order and the data hit information order are
switched, depending on the output timing of the external trace data.

For that reason, if a code event and data event are closed, the data on measuring performance
can’t be shown normally.

Interval Starting Event Number Ending Even Number

1 1 2

2 3 4
127



CHAPTER2  Dependence Functions
2.3.8.1 Performance Measurement Procedures

Performance can be measured by the following procedure:
• Set event mode.
• Set minimum measurement unit for timer.
• Specify performance-buffer-full break.
• Set events.
• Execute program.
• Display measurement result.
• Clear measurement result.

■ Setting Event Mode 
Set the event mode to performance mode using the SET MODE command.  This enables the performance

measurement function.

[Example]

>SET MODE/PERFORMANCE

>

■ Setting Minimum Measurement Unit for Timer 
Measuring unit of timer to be used for performance measurement is 1ns.  Also, resolution of measurement

data is 25ns.

■ Setting Performance-Buffer-Full Break 
When the buffer for storing performance measurement data becomes full, a execution program can be

broken.  This function is called the performance-buffer-full break.  The performance buffer becomes full

when an event occurs 65535 times.

If the performance-buffer-full break is not specified, the performance measurement ends, but the program

does not break.

[Example]

>SET PERFORMANCE/NOBREAK ←   Specifying Not Break

>

128



CHAPTER2  Dependence Functions
■ Setting Events 
Set events using the SET EVENT command.

The starting/ending point of time measurement and points to measure pass count are specified by events.

Events at 4 points (1 to 4) can be set.  However, in the performance measurement, the intervals, starting

event number and ending event number are fixed in the following combination.

- Measuring Time

Two intervals have the following fixed event number combination.

- Measuring Count

The specified events become performance measurement points automatically.

■ Executing Program 
Start measuring when executing a program by using the GO or CALL command. If a break occurs during

interval time measurement, the data for this specific interval is discarded.

■ Displaying Performance Measurement Data 
Display performance measurement data by using the SHOW PERFORMANCE command.

■ Clearing Performance Measurement Data 
Clear performance measurement data by using the CLEAR PERFORMANCE command.

[Example]

>CLEAR PERFORMANC

>

Interval Starting Event Number Ending Even Number

1 1 2

2 3 4
129



CHAPTER2  Dependence Functions
2.3.8.2 Displaying Performance Measurement Data

Display the measured time and measuring count by using the SHOW PERFORMANCE 
command.

■ Displaying Measured Time 
To display the time measured, specify the starting event number or the ending event number.
130



CHAPTER2  Dependence Functions
>SHOW PERFORMANCE/TIME  1,9000,18999,1000

event    = 1 -> 2

min time = 11637.0

max time = 17745.0

avr time = 14538.0

total

count

0

0

0

2

19

52

283

92

3

1

0

0

452

0.0 -

9000.0 -

10000.0 -

11000.0 -

12000.0 -

13000.0 -

14000.0 -

15000.0 -

16000.0 -

17000.0 -

18000.0 -

19000.0 -

8999.0

9999.0

10999.0

11999.0

12999.0

13999.0

14999.0

15999.0

16999.0

17999.0

18999.0

>SHOW PERFORMANCE/TIME  1,13000,16999,500

event    = 1 -> 2

min time = 11637.0

max time = 17745.0

avr time = 14538.0

Total measuring count

Lower time limit for display

Upper time limit for display

Minimum
execution time

Maximum
execution time

Average
execution time

Event number Count of measuring within given time interval

total

count

21

13

39

121

162

76

16

2

1

1

452

0.0 -

13000.0 -

13500.0 -

14000.0 -

14500.0 -

15000.0 -

15500.0 -

16000.0 -

16500.0 -

17000.0 -

12499.0

13499.0

13999.0

14499.0

14999.0

15499.0

15999.0

16499.0

16999.0

17499.0

The lower time limit, upper time limit and display interval can be specified.  The specified time v
 TIMERSCALE command, and in 100 ns when 

the minimum is set to 100 ns.
131



CHAPTER2  Dependence Functions
2.3.9 Real-time Monitoring

This section explains the real-time monitoring function.

■ Command execution during program execution 
The real-time monitoring function updates the memory content in real time during program execution and

displays it in a window.

This emulator debugger is provided with a real-time memory window that can display two 256-byte areas

for real-time monitoring. The real-time memory window comes with functions to read and display data

from the actual memory before program execution (a copy function) and display overwritten data in red.

■ Setting
The following method is used to set real-time memory areas

● Command

• SET REALTIMEMEMORYAREA

Refer to "1.47 SET REALTIMEMEMORYAREA" in "SOFTUNE WORKBENCH COMMAND

REFERENCE MANUAL". 

● Dialog

• "Realtime memory area" tab in debug environment setup dialog box

Refer to "4.7.2.3 Debug Environment" in "SOFTUNE WORKBENCH OPERATION MANUAL"

Note:

The real-time monitoring function has the following restrictions:

•  It cannot be used unless the external trace function is available.
The external trace function may not be used depending on the specification of the adapter board.
Check your adapter board specification.

• When FR80S is used, it can only be set for the internal RAM space.
If it is set for any space other than the internal RAM space, the data will not be updated.
132



CHAPTER2  Dependence Functions
2.3.10 Power-on Debugging

This section explains power-on debugging.

■ Power-on debugging 
The MB2198 emulator provides power-on debugging function.  This emulator can debug the sequence

performed immediately after target system power-on. 

The power-on debugging procedure is described below:

1. Set the DIP switch on the adapter board mounted in the upper section of the emulator.

2. Power on the target board and emulator main unit.

3. Launch Workbench to start debugging.

- For debugging, set hardware breaks, etc.

4. To start power-on debugging, choose [Debug]-[Run]-[Power On Debug] menu. 
Input the lower volt in the power supply voltage setting dialog.

- The status bar then displays "PON".

5. Run the program.

6. Power the target board off while running and then power on again.

7. Execute debugging.

8. To quit power-on debugging, choose [Debug]-[Run]-[Power On Debug] menu.

Notes:

• The following condition is necessary to turn the target board off for power-on debugging.

- Equal to or less than 25µs while user power supply descends from 0.9VCC to 0.5VCC

- CPU frequency must higher than 1MHz

• This function may not be used depending on the type of evaluation MCU. For details, contact
sales department or support department.
133



CHAPTER2  Dependence Functions
2.3.11 Inaccessible Area

This section explains inaccessible area by the emulator debugger for the MB2198.

■  Inaccessible area
The inaccessible area is a function that suppresses access to memory when the debugger accesses a

specified memory area (using commands, windows, etc. (*1)).

However, access to memory is not suppressed using program.

The following commands are used to set an inaccessible area.

SET MAP/INACCESSIBLE: Sets an inaccessible region.

SHOW MAP/INACCESSIBLE: Displays an inaccessible region.

CANCEL MAP/INACCESSIBLE: Deletes a specified inaccessible region.

ENABLE MAP/INACCESSIBLE: Enables a specified inaccessible region.

DISABLE MAP/INACCESSIBLE: Disables a specified inaccessible region.

(*1)

Memory operation command

Assemble/disassemble command

Load/save command

Built-in Variables and Functions (%BIT, %B, %H, %W, %L, %S, %D)

Formula

Trace

Vector

Memory window

Source window

Assemble window

Watch window

Local window

Symbol window

■  Access to memory area including inaccessible area
When there are inaccessible regions within those that are accessed, up to memory of inaccessible region is

accessed, an error is output when the inaccessible region is reached, and access to the memory is

suspended.
134



CHAPTER2  Dependence Functions
2.3.12 RAM Checker

This section describes the function of the RAM Checker.

■  Overview
The RAM Checker obtains the access history of the monitoring address log in the SOFTUNE 

Workbench, and displays the log file graphically using the attached tool "RAM Checker Viewer".  

The SOFTUNE Workbench has the following functions: 

- Up to eight points monitoring addressed available

- Logs data access history of monitoring address at 1ms intervals 

- Monitors monitoring address at 100ms intervals 

■  RAM Checker window
Newly-added debug window "RAM Checker" in the SOFTUNE Workbench allows logging/monitoring of

the monitoring address. For details on how to operate the RAM Checker window, refer to Section "3.18

RAM Checker Window" in SOFTUNE Workbench Operation Manual.  

■ Operation requirements
The RAM Checker operates under the following conditions: 

- CPU: FR60Lite or FR80S

- Emulator: MB2198 

- Adaptor board: Has the external trace function. 

- Communication device: USB

- Setting of debug mode: RAM Checker mode 

Notes:

• The RAM Checker cannot be used in any of the following conditions:

- When the emulator is MB2197

- When the communications device is RS/LAN

• When FR80S is used, this function is valid only if the internal RAM space is allowed for write
access.
135



CHAPTER2  Dependence Functions
■ Specification list

- SOFTUNE format
When displaying using the RAM Checker Viewer (SOFTUNE format recommended) Default
extension is ".SRL".

- CSV format
When other than the RAM Checker Viewer.  The default extension is ".CSV".  

Note:

The CSV format requires about four times the data size required for the SOFTUNE format.  

■ Using the RAM Checker
To use the RAM Checker, set the monitoring point, log file, and logging state by GUI or 

commands.  

- GUI
On shortcut menu [Setting ...] on the RAM Checker window, set the monitoring point.  
On shortcut menu [File specification ...] on the RAM Checker window, set the log file.  
Check shortcut menu [Logging start ...] on the RAM Checker window, to enable 
the logging status of the RAM Checker.  

- Commands 
Use the SET RAMCHECK command to set the monitoring point.  
Use the SET RAMCHECK command to set the log file. 
Use the ENABLE RAMCHECK command to enable the logging status of the RAM Checker.  

When the program is stopped after executing the program with these items set, a log file is generated.
When the program is executed again, the log file is overwritten.  

Note:

When file overwrite control is enabled by file setting on GUI, the log file is saved using "save as"
every time the program is executed instead of being overwritten.

For details on settings of the RAM Checker, refer to Section "3.18 RAM Checker Window" in  SOFTUNE
Workbench Operation Manual and Sections "4.24 SET RAMCHECK" to "4.28 "DISABLE RAMCHECK"
in SOFTUNE Workbench Command Reference Manual.

Table 2.3-7  RAM Checker Specification List

Numbers for monitoring points 8 points

Size byte/halfword/word

Event function Max 4 points

Sampling rate 1ms (fixed)

Updating interval 100ms (fixed)

Type of log file SOFTUNE style or CSV style
136



CHAPTER2  Dependence Functions
■ Memory access during logging
During program execution, the emulator debugger reads/writes memory after causing MCU break once to
access, and then reexecuting the program.  Therefore, when the emulator debugger accesses memory, it
cannot get a log at the time of the memory access correctly.  

To prevent this, during logging, do not perform operation involving memory access (such as SET
MEMORY/SHOW MEMORY command operation and memory window operation).  

Note:

During  logging, MCU running states of the Stop mode and the Sleep mode, etc. cannot be displayed
in the status bar. 

■ Log file
The following restriction is placed on the creatable log file size due to the file system to which the log file

is stored: 

FAT: Up to 2GB 

FAT32: Up to 4GB 

NTFS: No restriction 

Others: No restriction 

When the file system is FAT or FAT32 and if the file size exceeds its limitation, the file name is changed

and logging continues.

Note:

When the log file exists already at this point, the log file is overwritten.  

Operation example 

If the file size exceeds its limitation, the log file is made as   

filename.srl → filename#1.srl 

If the file size exceeds its limitation again, the log file is made as   

filename#1.srl →   filename#2.srl

•

•

filename#N-1.srl →   filename#N.srl

Notes:

1. Only internal HDD is supported for the log file storage destination.  Network, external HDD and
external disk (such as CD, DVD and MO) are not supported for the log file storage destination.  

2. Storing the log file of the RAM Checker requires free disk space of 500MB or greater.  When free
disk space is less than 500MB, logging stops.  
137



CHAPTER2  Dependence Functions
■ RAM Checker Viewer
The RAM Checker Viewer is a tool to graphically display the data value that changes as time 

goes by.  It displays data value in the following three formats:

- Bit display (image of Logic Analyzer) 

- Data value display (line graph) 

- Bit/data value display (simultaneous display of bit and data value) 

Other display information includes CPU stop, trigger point, and data lost.  

Regarding CPU stop, the STOP mode in a low power consumption mode and the power-off state while

using the power-on debug function are recorded in the log.  

Trigger point uses event hit of the SOFTUNE Workbench.  To use the trigger point, set events in the

SOFTUNE Workbench.  When an event hits, its information is recorded in the log.  

Data is lost due to the following two types of factors: 

- Hardware 

The emulator usually gets the RAM data access history at 1ms intervals. If data access 

occurs to the same address twice or more within 1ms, the emulator gets only the data accessed last.

Data lost due to hardware indicates that data access is performed multiple times.  

- Software 

The SOFTUNE Workbench usually gets data from the emulator at 100ms intervals. However, it may

not get data due to the effect of other applications, etc. at 100ms intervals. In this case, although data

cannot be displayed partially, the disabled time slot is displayed graphically.  

Note:

When logging stops due to break or execution stop, data lost due to software may be displayed for
1ms to 15ms at the end of the log.  This occurs because the log after program execution stops is
obtained until logging stops, and so it is not an actual data lost. For details on the RAM Checker
Viewer, refer to RAM Checker Viewer Manual (FswbRView.pdf) or online help information.  
138



CHAPTER2  Dependence Functions
2.4 Monitor Debugger

This section describes the functions of the monitor debugger.

■ Monitor Debugger 
The monitor debugger performs debugging by putting the target monitor program for debugging into the

target system and by communicating with the host. 

Before using this debugger, the target monitor program must be ported to the target hardware.
139



CHAPTER2  Dependence Functions
2.4.1 Resources Used by Monitor Program

The monitor program of the monitor debugger uses the I/O resources listed below.  The 
target hardware must have these resources available for the monitor program.

■ Required Resources 
The following resources are required to build the monitor program into the target hardware.

Table 2.4-1  Resources Used by Monitor Debugger

1 UART Required For communication with host computer 
4800/9600/19200/38400 baud 

2 Monitor ROM Required About 6 KB required (For further details, see Link 
Map.) 

3 Work RAM Required About 2 KB required (For further details, see Link 
Map.) 

4 NMI Switch Optional Used for suspending program forcibly. If there is no 
built-in NMI switch, only the breakpoint can be 
stopped. 

5 Timer Optional Used by SET TIMER/SHOW TIMER. Requires 32-bit 
timer in 1 µs
140



CHAPTER2  Dependence Functions
2.4.2 Break

The Monitor Debugger provides two types of break functions. When by each break 
function aborts program execution, the address where a break occurred and the break 
factor are displayed.

■ Break Functions 
The Monitor provides the following two types of break function;

- Software break

- Forced break
141



CHAPTER2  Dependence Functions
2.4.2.1 Software Break

A software break is a function to make a break by executing an instruction embedded in 
memory.
The break occurs before executing the instruction at the specified address.

■ Software Break 
A software break is a function to make a break by executing an instruction embedded in memory.  The

break occurs before executing the instruction at the specified address.

Up to 16 break points can be set.

When the software break occurs, the following message appears at the status bar.

Break at address by breakpoint

■ How to set 
Set the software break as follows.

• Command

- SET BREAK/SOFT

Refer to "3.1 SET BREAK  (type 1)" in SOFTUNE Workbench Command Reference Manual.

• Dialog

"Code" tab in breakpoint setting dialog

Refer to "4.6.4 Breakpoint" in SOFTUNE Workbench Operation Manual

• Window

Source window/disassemble window

Note:

There are two points to note when using software break point.

1. Software breaks cannot be set in read only areas, such as ROM.  If an attempt is made to do so,
a verify error occurs at program startup (continuous execution in batch processing, step
execution, etc.).

2. Always set a software break at the instruction start address.  Setting a software break point in the
middle of an instruction, may cause a software error.
142



CHAPTER2  Dependence Functions
2.4.2.2 Forced Break

This function forcibly aborts the program execution to generate a break.

■ Forced Break 
This function forcibly aborts the program execution to generate a break.

When the forced break occurred, the following message appears at the status bar.

Break at address by command abort request

Note:

The forced break cannot be generated when the MCU is in the low power consumption mode or in
the hold state.  If the MCU is in the low power consumption mode or in the hold state when the
strong break is requested by the [Debug]-[Abort] menu during the program execution, the [Debug]-
[Abort] menu is ignored. To generate a break forcibly, use the [Debug]-[Abort] menu to remove a
factor by the user system or use the [Debug]-[Reset of MCU] menu to remove it. If the MCU enters
the low power consumption mode or the hold state during the program execution, the conditions is
displayed at the status bar.
143



CHAPTER2  Dependence Functions
2.4.3 Measuring Execution Time

The program instruction execution time can be displayed by using either the [Debug]-
[Time Measurement] menu, or the SHOW TIMER command in the Command window.

■ Measuring Execution Time 
Measures program execution time.

The measurement result can be displayed as two time values: the execution time of the preceding program,

and the total execution time of the programs (total execution time before preceding program plus execution

time of preceding).  Measurement is performed each time a program is executed.

To display the execution time, use either the [Debug]-[Time Measurement] menu, or the SHOW TIMER

command in the Command window.  Clear the measured values using the CLEAR TIMER command.

Measurement is in 1 µs units.  The maximum measurement time is about 70 minutes.  The measurement

result may have ± 10 µs error.
144



CHAPTER2  Dependence Functions
2.4.4 Inaccessible Area

This section explains inaccessible area by the monitor debugger.

■  Inaccessible area
The inaccessible area is a function that suppresses access to memory when the debugger accesses a

specified memory area (using commands, windows, etc.*).

However, access to memory is not suppressed using program.

The following commands are used to set an inaccessible area.

SET MAP/INACCESSIBLE: Sets an inaccessible region.

SHOW MAP/INACCESSIBLE: Displays an inaccessible region.

CANCEL MAP/INACCESSIBLE: Deletes a specified inaccessible region.

ENABLE MAP/INACCESSIBLE: Enables a specified inaccessible region.

DISABLE MAP/INACCESSIBLE: Disables a specified inaccessible region.

*: Memory operation command

Assemble/disassemble command

Load/save command

Built-in Variables and Functions (%BIT, %B, %H, %W, %L, %S, %D)

Formula

Vector

Memory window

Source window

Assemble window

Watch window

Local window

Symbol window

■  Access to memory area including inaccessible area
When there are inaccessible regions within those that are accessed, up to memory of inaccessible region is

accessed, an error is output when the inaccessible region is reached, and access to the memory is

suspended.
145



CHAPTER2  Dependence Functions
146



INDEX
INDEX

The index follows on the next page.
This is listed in alphabetic order.
147



INDEX
Index

A

Access Attributes
Memory Area Access Attributes ......................37

Active Project
Active Project.....................................................2
Active Project Configuration ..............................4

Alignment Error Break
Alignment Error Break .............................76, 112

Assembly
Line Assembly .................................................26

Automatic Loading
Monitoring Program Automatic Loading ..........95

B

Break
Alignment Error Break .............................76, 112
Break Functions.........................43, 70, 103, 141
Code Break........................................44, 71, 104
Code Event Break....................................73, 107
Data Break...............................................45, 106
Data Event Break.....................................74, 109
Data Monitoring Break ...................................115
External Trigger Break.............................77, 113
Forced Break .............................48, 78, 114, 143
Guarded Access Breaks ..................................47
Restrictions when Suspended by Software Break

....................................................68, 101
Setting Performance-Buffer-Full Break..........128
Software Break ..............................................142
Trace Buffer-full Break.......................46, 75, 111

Build Function
Build Function ....................................................6
Customize Build Function ..................................7

Bus Cycles
Display Bus Cycles ..........................................85

C

C/C++
Notes on C/C++ Symbols ................................31
Specifying C/C++ Variables.............................30

Cache Flush Control
Cache Flush Control ........................................66

Checker
RAM Checker Viewer ....................................138
RAM Checker window ...................................135
Using the RAM Checker ................................136

Clear
Notes on Instruction to Clear T-Flag when 

Executed using 
[Debug] - [Run] - [Step In] or [Debug] - 
[Run] - [Step Over] menu ........... 68, 101

Code Break
Code Break ....................................... 44, 71, 104

Code Event Break
Code Event Break ................................... 73, 107

Command
Command execution during program execution

......................................................... 132
On-the-fly Executable Commands .......... 69, 102

Configuration
Active Project Configuration .............................. 4
Project Configuration......................................... 4

Coverage
Measuring Coverage ....................................... 59

Coverage Measurement
Coverage Measurement Function ................... 58
Coverage Measurement Operation ................. 58
Coverage Measurement Procedures .............. 58
Displaying Coverage Measurement Result ..... 59
Setting Range for Coverage Measurement..... 59

Cycles
Display Bus Cycles.......................................... 85

D

Data Break
Data Break .............................................. 45, 106

Data Event Break
Data Event Break .................................... 74, 109

Data Monitoring Break
Data Monitoring Break................................... 115

Debug
Debug Functions with FR80S.......................... 92
Notes on Delayed Branch Instruction when 

executed using [Debug] - [Run] - [Step In] 
or [Debug] - [Run] - [Step Over] menu
................................................... 68, 101

Notes on Instruction to Clear T-Flag when 
Executed using 
[Debug] - [Run] - [Step In] or [Debug] - 
[Run] - [Step Over] menu ........... 68, 101

debug mode
Setting of debug mode .................................. 100

Debugger
Emulator Debugger ............................. 23, 62, 92
Monitor Debugger.................................... 23, 139
148



INDEX
Simulator Debugger................................... 23, 34
Type of debugger ............................................ 23

debugging
Power-on debugging ..................................... 133

Delayed Branch
Notes on Delayed Branch Instruction when 

executed using [Debug] - [Run] - [Step In] 
or [Debug] - [Run] - [Step Over] menu
.................................................... 68, 101

Dependence
Project Dependence.......................................... 5

Dependencies
Analyzing Include Dependencies ...................... 9

Disassembly
Disassembly .................................................... 26

DRAM
DRAM Refresh Control.................................... 65

E

Editor
External Editor ................................................. 15
Standard Editor................................................ 13

emulation
External memory emulation............................. 99

Emulator
Emulator Debugger ............................. 23, 62, 92

Error
Error............................................................... 119
error ................................................................. 79

Error Jump
Error Jump Function ........................................ 11

Event Mode
Setting Event Mode ....................................... 128

Events
Setting Events ............................................... 129

External Editor
External Editor ................................................. 15

External memory
External memory emulation............................. 99

External Tools
External Tools.................................................. 17

External Trigger Break
External Trigger Break............................. 77, 113

F

filter
Trace filter...................................................... 121

Flush Control
Cache Flush Control.................................. 66, 97

Forced Break
Forced Break ............................. 48, 78, 114, 143

Format
Display Format of Trace Data ....................54, 85
Project format.....................................................3

FR80S
Debug Functions with FR80S ..........................92

Frame
Frame Number ...................................51, 82, 121

frequencies
Operating frequencies......................................98

Functionality
Real-time Functionality in Running Program

..........................................................101

G

Guarded Access Breaks
Guarded Access Breaks ..................................47

I

I/O Port
I/O Port Simulation (Input Port) ........................38
I/O Port Simulation (Output Port) .....................38

Inaccessible area
Access to memory area including inaccessible

area .....................................91, 134, 145
Inaccessible area .............................91, 134, 145

Input Port
I/O Port Simulation (Input Port) ........................38

Instruction
Display Only Instruction Operation.............54, 85
Instruction Simulation.......................................36

Interrupt
Interrupt Simulation ..........................................39

J

Jump
Error Jump Function.........................................11

L

Line Assembly
Line Assembly..................................................26

Line Number
Line Number Information..................................28

Loading
Monitoring Program Automatic Loading...........95

Log file
Log file............................................................137

logging
Memory access during logging ......................137
149



INDEX
M

Macro
Macro List ....................................................7, 18

Macro Expansion
Examples of Macro Expansion ........................21

Macros
Macros .............................................................18

Make Function
Make Function ...................................................6

Management
Project Management Function...........................3
Workspace Management Function ....................2

MCU
Setting MCU Operation Mode....................64, 96

Measurement
Coverage Measurement Function ...................58
Coverage Measurement Operation .................58
Coverage Measurement Procedures...............58
Displaying Coverage Measurement Result .....59
Performance Measurement Function ............127
Setting Range for Coverage Measurement .....59

Measurement Unit
Setting Minimum Measurement Unit for Timer

..........................................................128
measuring

Clear of the measuring result.............49, 79, 119
Measuring Execution Time ............................144
The measuring item .........................................49
View of the measuring result .............49, 79, 119

measuring item
The measuring item .................................79, 119

Memory
Access to memory area including inaccessible

area.....................................91, 134, 145
Functions for Memory Operations ...................24
Memory access during logging ......................137
Memory Area Access Attributes ......................37
Memory Simulation ..........................................37

Memory Space
Simulation Memory Space...............................37

Minimum Measurement Unit
Setting Minimum Measurement Unit for Timer

..........................................................128
Mode

Power-Save Consumption Mode Simulation
............................................................41

RAM Checker mode ......................................100
RealTimeMemory mode ................................100
Setting Event Mode .......................................128
Setting MCU Operation Mode....................64, 96
Setting of debug mode...................................100

Monitor
Monitor Debugger ....................................23, 139

O

On-the-fly
On-the-fly Executable Commands .......... 69, 102

Operating Conditions
Operating Conditions....................................... 34

Operating Environment
Operating Environment ................................... 22
Setting Operating Environment ................. 63, 94

Operating frequencies
Operating frequencies ............................... 67, 98

Operation Mode
Setting MCU Operation Mode ................... 64, 96

Optional Settings
Example of Optional Settings .......................... 16

Options
Function of Setting Tool Options ..................... 10
Setting Options...................................... 7, 15, 17
Tool Options .................................................... 10

Output Port
I/O Port Simulation (Output Port) .................... 38

P

Performance Measurement
Clearing Performance Measurement Data

......................................................... 129
Displaying Performance Measurement Data

......................................................... 129
Performance Measurement Function ............ 127

Performance-Buffer-Full Break
Setting Performance-Buffer-Full Break ......... 128

Power-on debugging
Power-on debugging ..................................... 133

Power-Save Consumption Mode
Power-Save Consumption Mode Simulation

........................................................... 41
Program

Command execution during program execution
......................................................... 132

Executing Program........................................ 129
Monitoring Program Automatic Loading .......... 95
Real-time Functionality in Running Program

................................................... 68, 101
Project

Active Project .................................................... 2
Active Project Configuration .............................. 4
Project ............................................................... 2
Project Configuration......................................... 4
Project Dependence.......................................... 5
Project format .................................................... 3
Project Management Function .......................... 3
Restrictions on Storage of Two or More Projects

............................................................. 2
150



INDEX
Project Configuration
Active Project Configuration .............................. 4
Project Configuration ......................................... 4

Project Dependence
Project Dependence.......................................... 5

Project format
Project format .................................................... 3

Project Management
Project Management Function........................... 3

R

RAM
RAM Checker mode ...................................... 100

RAM Checker
RAM Checker Viewer .................................... 138
RAM Checker window ................................... 135
Using the RAM Checker ................................ 136

RAM Checker mode
RAM Checker mode ...................................... 100

Real-time
Real-time Functionality in Running Program

............................................................ 68
Real-time Functionality

Real-time Functionality in Running Program
.......................................................... 101

RealTimeMemory mode
RealTimeMemory mode ................................ 100

Refresh Control
DRAM Refresh Control.................................... 65

Register
Register Operations......................................... 25
Value of TBR Register............................. 68, 101

Reset
Reset Simulation ............................................. 40

Resources
Required Resources...................................... 140

Run
Notes on Delayed Branch Instruction when 

executed using [Debug] - [Run] - [Step In] 
or [Debug] - [Run] - [Step Over] menu
.................................................... 68, 101

Notes on Instruction to Clear T-Flag when 
Executed using [Debug] - [Run] - 
[Step In] or [Debug] - [Run] - [Step Over]
menu........................................... 68, 101

S

Sampling
Trace Sampling ......................................... 51, 82

Scope
Moving Scope.................................................. 29
Scope .............................................................. 29

Search Procedure
Specifying Symbol and Search Procedure.......29

Sequencer
Control by Sequencer ....................................117

Simulation
I/O Port Simulation (Input Port) ........................38
I/O Port Simulation (Output Port) .....................38
Instruction Simulation.......................................36
Interrupt Simulation ..........................................39
Memory Simulation ..........................................37
Power-Save Consumption Mode Simulation

............................................................41
Reset Simulation ..............................................40
Simulation Memory Space ...............................37
Simulation Range.............................................35

Simulator
Simulator Debugger ...................................23, 34

Software Break
Restrictions when Suspended by Software Break

....................................................68, 101
Software Break...............................................142

Source
Display by Unit of Source Lines .......................54

Source Lines
Display by Unit of Source Lines .......................85

Specification list
Specification list .............................................136

Standard Editor
Standard Editor ................................................13

Step
Notes on Delayed Branch Instruction when 

executed using [Debug] - [Run] - [Step In] 
or [Debug] - [Run] - [Step Over] menu
....................................................68, 101

Notes on Instruction to Clear T-Flag when 
Executed using [Debug] - [Run] - 
[Step In] or [Debug] - [Run] - [Step Over]
menu ...........................................68, 101

Storage
Restrictions on Storage of Two or More Projects

..............................................................2
STUB

Outline of STUB Function ................................42
Subproject

Subproject ..........................................................2
Symbol

Notes on C/C++ Symbols.................................31
Setting Symbol Information ..............................27
Specifying Symbol and Search Procedure

............................................................29
Types of Symbols.............................................27
151



INDEX
Syntax
Syntax..............................................................11

T

TBR Register
Value of TBR Register .............................68, 101

T-Flag
Notes on Instruction to Clear T-Flag when 

Executed using [Debug] - [Run] - 
[Step In] or [Debug] - [Run] - [Step Over]
menu...........................................68, 101

Tool Options
Function of Setting Tool Options .....................10
Tool Options ....................................................10

Tools
External Tools..................................................17

Trace
Clearing Trace Data.........................................57
Display Format of Trace Data..........................54
Displaying Trace Data .....................................53
Notes on Trace Function .........................89, 125
Saving Trace Data ...........................................56
Searching Trace Data......................................55
Setting Trace .............................................52, 83
Trace..........................................................50, 80
Trace Data .......................................................50
Trace Sampling................................................51

Trace Buffer
Trace Buffer ...................................................120

Trace Buffer-full Break
Trace Buffer-full Break ...................... 46, 75, 111

Trace Data
Clearing Trace Data ........................................ 88
Display Format of Trace Data ......................... 85
Displaying Trace Data ..................................... 84
Saving Trace Data................................... 87, 124
Searching Trace Data ..................................... 86
Trace Data............................................... 81, 120

Trace filter
Trace filter ..................................................... 121

Trace Sampling
Trace Sampling ............................................... 82

Trace Trigger
Setting Trace Trigger..................................... 122

V

Variables
Specifying C/C++ Variables ............................ 30

W

Workspace
Workspace ........................................................ 2
Workspace Management Function.................... 2

Workspace Management
Workspace Management Function.................... 2
152



Colophon

CM71-00329-4E

FUJITSU MICROELECTRONICS CONTROLLER MANUAL

FR FAMILY

SOFTUNETM WORKBENCH

USER’S MANUAL

for V6

June 2008 the fourth edition

Published FUJITSU MICROELECTRONICS LIMITED
Edited Business & Media Promotion Dept.




	CHAPTER1 Basic Functions
	1.1 Workspace Management Function
	1.2 Project Management Function
	1.3 Project Dependence
	1.4 Make/Build Function
	1.4.1 Customize Build Function

	1.5 Include Dependencies Analysis Function
	1.6 Functions of Setting Tool Options
	1.7 Error Jump Function
	1.8 Editor Functions
	1.9 Storing External Editors
	1.10 Storing External Tools
	1.11 Macro Descriptions Usable in Manager
	1.12 Setting Operating Environment
	1.13 Debugger Types
	1.14 Memory Operation Functions
	1.15 Register Operations
	1.16 Line Assembly and Disassembly
	1.17 Symbolic Debugging
	1.17.1 Referring to Local Symbols
	1.17.2 Referring to C/C++ Variables


	CHAPTER2 Dependence Functions
	2.1 Simulator Debugger
	2.1.1 Instruction Simulation
	2.1.2 Memory Simulation
	2.1.3 I/O Port Simulation
	2.1.4 Interrupt Simulation
	2.1.5 Reset Simulation
	2.1.6 Power-Save Consumption Mode Simulation
	2.1.7 STUB Function
	2.1.8 Break
	2.1.8.1 Code Break
	2.1.8.2 Data Break
	2.1.8.3 Trace Buffer-full Break
	2.1.8.4 Guarded Access Break
	2.1.8.5 Forced Break

	2.1.9 Measuring Execution Cycle Count
	2.1.10 Trace
	2.1.10.1 Trace Sampling
	2.1.10.2 Setting Trace
	2.1.10.3 Displaying Trace Data
	2.1.10.4 Display Format of Trace Data
	2.1.10.5 Searching Trace Data
	2.1.10.6 Saving Trace Data
	2.1.10.7 Clearing Trace Data

	2.1.11 Measuring Coverage
	2.1.11.1 Coverage Measurement Procedures


	2.2 Emulator Debugger (MB2197)
	2.2.1 Setting Operating Environment
	2.2.1.1 MCU Operation Mode
	2.2.1.2 DRAM Refresh Control
	2.2.1.3 Cache Flush Control
	2.2.1.4 Controlling Operating Frequency

	2.2.2 Notes on Executing Program
	2.2.3 On-the-fly Executable Commands
	2.2.4 Break
	2.2.4.1 Code Break
	2.2.4.2 Code Event Break
	2.2.4.3 Data Event Break
	2.2.4.4 Trace Buffer-full Break
	2.2.4.5 Alignment Error Break
	2.2.4.6 External Trigger Break
	2.2.4.7 Forced Break

	2.2.5 Measuring Execution Cycle Count
	2.2.6 Trace
	2.2.6.1 Trace Data
	2.2.6.2 Trace Sampling
	2.2.6.3 Setting Trace
	2.2.6.4 Displaying Trace Data
	2.2.6.5 Display Format of Trace Data
	2.2.6.6 Searching Trace Data
	2.2.6.7 Saving Trace Data
	2.2.6.8 Clearing Trace Data
	2.2.6.9 Notes on Use of Tracing Function

	2.2.7 Inaccessible Area

	2.3 Emulator Debugger (MB2198)
	2.3.1 Setting Operating Environment
	2.3.1.1 Monitoring Program Automatic Loading
	2.3.1.2 MCU Operation Mode
	2.3.1.3 Cache Flush Control
	2.3.1.4 Controlling Operating Frequency
	2.3.1.5 External Memory Emulation
	2.3.1.6 Debug mode

	2.3.2 Notes on Executing Program
	2.3.3 On-the-fly Executable Commands
	2.3.4 Break
	2.3.4.1 Code Break
	2.3.4.2 Data Break
	2.3.4.3 Code Event Break
	2.3.4.4 Data Event Break
	2.3.4.5 Trace Buffer-full Break
	2.3.4.6 Alignment Error Break
	2.3.4.7 External Trigger Break
	2.3.4.8 Forced Break
	2.3.4.9 Data Monitoring Break

	2.3.5 Control by Sequencer
	2.3.6 Measuring Execution Cycle Count
	2.3.7 Trace
	2.3.7.1 Saving Trace Data
	2.3.7.2 Notes on Use of Tracing Function

	2.3.8 Measuring Performance
	2.3.8.1 Performance Measurement Procedures
	2.3.8.2 Displaying Performance Measurement Data

	2.3.9 Real-time Monitoring
	2.3.10 Power-on Debugging
	2.3.11 Inaccessible Area
	2.3.12 RAM Checker

	2.4 Monitor Debugger
	2.4.1 Resources Used by Monitor Program
	2.4.2 Break
	2.4.2.1 Software Break
	2.4.2.2 Forced Break

	2.4.3 Measuring Execution Time
	2.4.4 Inaccessible Area



