FUJITSU MICROELECTRONICS

CONTROLLER MANUAL CM81-00206-5E

FR FAMILY
SortuNe™ C/C++ COMPILER
MANUAL

for V6

[o®)
FUJITSU

FR FAMILY
Sortune™ C/C++ COMPILER
MANUAL

for V6

FUJITSU MICROELECTRONICS LIMITED

PREFACE

B Objective of This Manual and Target Readers

This manual describes the Softune C/C++ compiler (hereinafter referred to as the C/C++
compiler) usage procedures and libraries.

This manual is prepared for persons who use the above-mentioned compiler and create and
develop application programs in C and C++ language. Read this manual thoroughly before
starting.

This manual is to be read by persons who have a basic knowledge of each MCU (Micro
Controller Unit).

The compiler described in this manual conforms about C language to the American National
Standard for Information Systems Programming Language C, X3.159-1989, which is
abbreviated ANSI standard in this manual. Part of "ISO/IEC 14882:1998 Programming
languages -- C++" is used to explain C++.

FR, the abbreviation of FUJITSU RISC controller, is a line of products of FUJITSU
MICROELECTRONICS Limited.

B Trademarks
SOFTUNE is a trademark of Fujitsu Microelectronics Limited.
Windows is a registered trademark of Microsoft Corporation in the USA and/or other countries.

UNIX is a registered trademark that X/Open Co., Ltd. has licensed in the United States and
other countries.

The company names and brand names herein are the trademarks or registered trademarks of
their respective owners.

B Structure of This Manual
This manual consists of 10 chapters and an Appendix:
CHAPTER 1 SOFTUNE C/C++ COMPILER
This chapter outlines the C/C++ compiler.
CHAPTER 2 SETTING ENVIRONMENT VARIABLES IN SYSTEM BEFORE STARTING

This chapter describes environment variables in the system used to run the C/C++ compiler.
(For information on setting variables, refer to the manual for the respective operating
system.)

CHAPTER 3 C/C++ COMPILER OPERATION

This chapter describes the command function specifications.
CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE

This chapter explains about the information necessary for program execution.
CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

This chapter explains about the extended language specifications supported by the compiler.
The limitations on compiler translation are also described in this chapter.

CHAPTER 6 EXECUTION ENVIRONMENT

This chapter describes the user program execution procedure to be performed in an
environment where no operating system exists.

CHAPTER 7 LIBRARY OVERVIEW

This chapter outlines the C libraries by describing the organization of files furnished by the
libraries and the relationship to the system into which the libraries are incorporated.

CHAPTER 8 LIBRARY INCORPORATION
This chapter describes the processes and functions for preparing for useing library.
CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS

This chapter describes the specifications that vary with the compiler. Descriptions are related
to JIS standard that are created based on ANSI standard.

CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY
This chapter describes how to use the simulator debugger low-level function library.
APPENDIX

The appendix gives a list of types, macros, functions and variables provided by the libraries
and describes the operations specific to the libraries (The APPENDIX A and APPENDIX B).

The list of the error message is described (The APPENDIX C).
The list of the reserved pragma directive is described (The APPENDIX D).

B Grammar Books

For C or C++ language syntax and standard library functions, refer to commercially available
standard compliant reference books.

B Reference Books

THE C PROGRAMMING LANGUAGE
(Brian W.Kernighan & Dennis M.Ritchie)

Japanese edition entitled Programming Language C UNIX Type Programming Method and
Procedure
(Translated by Haruhisa Ishida; Kyoritsu Shuppan)

American National Standard for Information Systems - Programming Language
C, X3.159-1989

UNIX system User's Manual system V
(Western Electric Company, Incorporated)

UNIX system V Programmer Reference Manual
(AT&T Bell Laboratories)

User Reference Manual UTS/5 Release 0.1
(Western Electric Company, Incorporated and Amdahl Corporation)

UTS Command Reference Manual UTS/5 Release 0.1
(Western Electric Company, Incorporated and Amdahl Corporation)

The Annotated Reference Manual
(Addison-Wesley Publishing Company, Inc.)

The Programing Language C++ Third Edition
(Addison-Wesley Publishing Company, Inc.)

ISO/IEC 14882:1998 Programming languages -- C++

« The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.

« Theinformation, such as descriptions of function and application circuit examples, in this document are presented
solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS
device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use
based on such information. When you devel op equipment incorporating the device based on such information, you
must assume any responsibility arising out of such use of the information. FUJTSU MICROELECTRONICS
assumes no liability for any damages whatsoever arising out of the use of the information.

e Any information in this document, including descriptions of function and schematic diagrams, shall not be
construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or
any other right of FUJTSU MICROELECTRONICS or any third party or does FUJTSU MICROELECTRONICS
warrant non-infringement of any third-party's intellectual property right or other right by using such information.
FUJTSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or
other rights of third parties which would result from the use of information contained herein.

« The products described in this document are designed, developed and manufactured as contemplated for general
use, including without limitation, ordinary industrial use, genera office use, persona use, and household use, but
are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers
that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to
death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility,
aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control
in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial
satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any
claims or damages arising in connection with above-mentioned uses of the products.

« Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss
from such failures by incorporating safety design measures into your facility and equipment such as redundancy,
fire protection, and prevention of over-current levels and other abnormal operating conditions.

« Exportation/release of any products described in this document may require necessary procedures in accordance
with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control
laws.

e The company names and brand names herein are the trademarks or registered trademarks of their respective
owners.

Copyright© 2003-2008, FUJITSU MICROELECTRONICS LIMITED All rights reserved.

CONTENTS

CHAPTER 1 SOFTUNE C/C++ COMPILER ..coueiiie et 1
1.1 C/CH++ COMPIIEE FUNCHIONSteiiiiiiiiee ettt et e e e e e e e e st e et e e e e e e e e e e saaannnbbbaneeeeaaaaaeaeas 2
1.2 BasiC Process Of COMMANGSooooiiiiiiiiiiiiie ettt e e e e e e s et e e e e e e e e e e s e s annnbenaeeeeaeaeeeenas 3
1.3 C/C++ Compiler BaSiC FUNCLIONScccoiiiiiieiiieeeeeee s s s s et ee e et a e e e e e eeaaaeas 4

CHAPTER 2 SETTING ENVIRONMENT VARIABLES IN SYSTEM BEFORE STARTING

.. 7

2.1] = 1 1 SRR 8
2.2]2 i USRS 9
2.3 L@] = I 1 I PRSPPI 10
2.4 1\ L 1 PP EPPSPPPO 11
25 17 = PRSPPI 12
2.6 I N T 13
CHAPTER 3 C/C++ COMPILER OPERATION ..cooiiiiiiiiiiiiii et 15
3.1 107] 1011 4= g [0 [I o 1= TP PP TT P T TTPTPPPPPP 16
3.2 (070] 10114 F= o [0 W@ o T=T =T aTo PP TP TSRO 17
3.3 File Names and Dir€CtOry NAIMESccc.uuiiiiiiiiieeeesiesiiiitiee e e e eeeeessssssastrerrerraaeeeeessasnnsnnsanrerereaaeeeesen 18
3.4 L070] 0100 =T g o K@ o] 1 o] 10 19
3.4.1 List Of COMMANA OPLIONS ...oiiiiiiiiiittte ettt e e e e et e e e e e e e e e e e s e bnbbebeeeeaaaaeeaaean 20
3.4.2 List of Command CancCel OPLIONSuuuiiiiiiiieeiie i e e ss e e e e e e e e s e s aereraaaeeeeeean 24
3.5 [1Y = V] 30] o] 1o o =N 26
3.5.1 Translation Control Related OPtIONSccc.uuiiiiiiiiiiee e e e eas 27
3.5.2 Preprocessing Related OPLiONSviviiiiiiiiiee e e e e s r e e e e e e e s s e sar e e eraeaeeeeaean 29
3.5.3 Data Output Related OPLIONSovvviiiiiiiiiieiiii e e s e e e e e e e e e aaaaeaeaeeaeenes 32
354 Language Specification Related OPtiONSoooiiiiiiiiiiiiiiee e 37
355 Optimization Related OPLIONScccoiiiiiiieee e e e e e e e s e e e e aae e e e s s s snnreereeereees 42
3.5.6 Output Object Related OPLIONSiiiiiiii i e e e e e e e e e e e ee e e e e e e eeresanrnaaaa 49
3.5.7 Debug Information Related OPLIONSooiiiiiiiiiiieee e e e e e e e 56
3.5.8 (070 10 g F=Ta o IR =] Fo (=T I @] o] 1o =S 57
3.5.9 Linkage Related OPLIONScooviiiiiiiiiiiiireisss s s e e e e e e e e e e e et et e e e e e et e et e e s e seeeeaeaaaeaaaeeaeannnes 58
3.5.10 Option File Related OPLiONScooiiiiiiiiiiiiet ettt a et e e e e e e e e e e e s aabbesbeeeeaaaaaeeaean 60
3.6 (0]) 1[0 o T 1= S 61
3.7 Messages Generated in Translation PrOCESSooviiiiiiiiiiiiiiiiiiiri i es e e e e e e e e e ae e e e e e e e eeeaeeeeereeeneane 63
CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTUREcceeeveennnees 65
4.1 Section Structure of fCCILLS COMMANTuiiiiiiiiiiiei e e e e e e e e e e e eeeeas 66
4.2 Rules for Name Generation With the fTCCOLLScciiiiiiiiiiiiiiie e 68
4.3 fcc911s Command Boundary AIGNMENTvviiiiiiiiiieee e aeeeeas 69
4.4 fcCO11s CommANd Bit FIeIdeeeiiiiiiiiee et e e e e 70
4.5 fcc911s Command SErUCTUrE/URNIONciiiiiiiiiieiiiiiie ettt e e e e s e e e s snnnneeee s 72
4.6 fcc911ls Command Function Call INTEIfACEeiiiiiiiiiiiii e 74

46.1 fcc911s Command StACK FIameooooiiiiiiiiiiiiiii et e e e e e e e eee e 75
4.6.2 fCCO11S COMMANT AFGUIMENT ...eiiiiiiiiitie ittt ettt ettt e et e e e st e e e st e e e e bbe e e e e eaneeas 77
4.6.3 fcc911s Command Argument EXtENSION FOIMALvuiuieiiiiiieie e 80
4.6.4 fcc911s Command Calling PrOCEAUIEeuiiiiiiiiiiiiiiiiee ettt et e e e e e e e e e eaeeeeees 81
4.6.5 feCO11S COMMANT REGISIET ..eeiiiiiiiiii ettt et e e et e e e nneeas 83
4.6.6 fcc911s Command REtUIN VAIUEcoooiiiiiiiiiee et 84
4.7 fcc911ls Command Interrupt Function Call Interface ... 85
4.7.1 fcc911s Command INterrupt STACK FIrameocovviiiiiiiiie e s 86
4.7.2 fcc911s Command Interrupt Function Calling ProCcedureuevevieiiiiiieiiiiee e 87
CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS ..., 89
5.1 Assembler DesCription FUNCHONSuuiiiiiiiii ettt e e e e e e e e e e e e e e e e aenenes 90
5.2 INterrupt CONLrOl FUNCHIONSooiiiiiiiieiieiee ettt e ettt e e e et e e e e nbeeas 93
5.3 [/O Area ACCESS FUNCLION ..oiiiiiiiiiiiettee ettt e e e e e e et e et e e e e e e e e e s e aabb bbb e e e e e aaaeeesasannnnnnes 96
5.4 In-line Expansion Specifying FUNCHON ... 97
5.5 Section Name Change FUNCHONooiiiiiiiii ettt e e e sbbe e e e e anes 98
5.6 Interrupt Level SEtUP FUNCHIONeveieii e e e e e e e e e e e e e aaeees 101
5.7 INEFANSIC FUNCHION ...ttt ettt e e e e e e s o e bbbttt et e e e e e e e e s e s nbbnbebaeeeeaaaaeeeaaaanns 102
57.1 Integer Operation INtrNSIC FUNCLIONooiiiiiiiiiiic e 103
5.8 PredefiNned IMACIOScooiiieiieiee ettt ettt e e e e e e e e e s bbbttt e e e e e e e e e e e e e annnbberrreeeeeeens 115
5.9 Limitations on Compiler TranSIatioNocooiiii i a e e e 116
5.10 Re-include Prevention FUNCLIONc.uuiiiiiiiiie ettt e et e e e s s b e e e e e nees 118
5.11 Function for Controlling Instantiation of C++ Templatecccooeeiiiiiieeeieee e 119
CHAPTER 6 EXECUTION ENVIRONMENT ..o 121
6.1 EXECULION PrOCESS OVEIVIEW ...ceiiiiiiiiiiiiititte et e e e e e ettt e e e e e e e e e e e et bbbt e eeaaaaeeeesaaannnbbesseeeaaaaens 122
6.2 Startup ROULINE CrEALIONuviiiiiiiieieeeeisieiiteiteteree e s e e e e s s e st e e e e e eeeeeasaassenbenaerereeeeeesaaasnnsrnrrnnneeeees 124
CHAPTER 7 LIBRARY OVERVIEW ..ottt 125
7.1 [1T o = T 4= L1 o] o PRSP 126
7.2 Relationship to Library INCOrporating SYSEIMcooiiiiiiiiiiiieieee e e e e 127
CHAPTER 8 LIBRARY INCORPORATION ... 129
8.1 Library INCOrporation OVEIVIEWcceicuiuiiiiieieiee e e e s s sssettee e e e e e e e e e e s s s s e taeeeeaeaeeesessannnnrnseneneeeees 130
8.2 Initialization/Termination Process Necessary for Using Libraryooovvvviiiiiiiiiiiiiiee e, 131
8.3 LOW-1EVEI FUNCHON TYPES ..eeiiiiiiiiiieae ettt ettt et e e e e e e e sttt e et e e e e e e e e e e s nbanbbebbeeeaaaaens 133
8.4 Standard Library Functions and Required Processes/Low-level Functionscccccccvvvvvenennnn. 134
8.5 Low-level FUNCLION SPECIfICAIONSciiiiiiii i e e e e e e e e e e e e e e e e eaereenenees 135
8.5.1 (o] o= o T ¥ o Tod 1o o OO TT TP T RPPPPPPR 136
8.5.2 (ol [0 113N U od o] o [PPSO 137
8.5.3 (2= o [] Tex 1 o] o U P TR PP PPPPPPPTPPPPPPPN 138
8.5.4 WITEE FUNCHION ..ottt et e e e e e e s ettt e et e e e e e e e e e s nbbabeseeeeeeaaaeeeaaaanns 139
8.5.5 [SEEK FUNCLION ..eiiiiiiiiiiei ittt e e e st e e e s st e e e e e s st be e e e e s snbeeeeeesnbbeeeeeans 140
8.5.6 152 11§V U T 10 o SR 141
8.5.7 L] o] 4 Q) U o[1o o [P P UPT TR 142
8.5.8 I =L T (o T OO PPEERR 143
8.5.9 2 o o1 A 11 o o o SR 144

Vi

8.6 Time FUNCtion SPECIfICALIONSueeiiiiiiiiei ettt e e e e e e e e e e e e aneeeeees 145

8.6.1 (0] 0T 2 T o 1o SRR 146
8.6.2 TIMIE FUNCLION ..ottt e e e e ettt e et e e e e e e e e s s bbb e e et e e eeeeeeeeaaaannnnnnnees 147
CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS ..o, 149
9.1 Compiler-dependent C Language Specification Differentials ..o, 150
9.2 Type of Floating-point Data and Range of Representable Valuescocoocvviiiieiiiieee e, 152
9.3 Floating-point Operation due to the Runtime Library FUNCIONcccoooviiiiiiiiiiiiieeiies 153
9.4 Dissimilarities between C++ Specifications for C/C++ Compiler and ISOoooiciiiiiiiieenannenn. 156
9.5 C++ Specifications for C/C++ Compiler and EC++ Specificationsccccoviivieiiiniiieeeiiniieenens 157
9.6 Limitations on Use Of CH++ TEMPIALEccccoiiiiiiiiiiceceeeeee e e e e e e e e e e e e e e e e e 158
CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY 159
10.1 Low-level FUNCLiON LiDrary OVEIVIEWuuiiiiiiiiiiiiiiiite et ee e e e e 160
10.2 Low-level FUNCLION LIBIary USEocoeiiiiiiiiiiieiiite ettt 161
10.3 LOW-IEVEl FUNC. FUNCLIONiiiiiiiiiiiiiee ettt e e e et e e e e e e e e e st b e b e eeeeeeeas 163
10.4 Low-level Function Library Change ...t e e 165

N = N1 PP 167
APPENDIX A List of Types, Macros, Functions, and Variables Provided by C Librariescccccccceeeennnnn. 168
APPENDIX B Operations SPecifiC t0 C LIDIarESccccoeiiiiiiiii i s e e e e e e e e e e aaaaaeaees 174
APPENDIX C EITOr MESSAGE .. .o i iiiiiiiiiiiiieiee ettt e e e e et e e e e e e e e ettt et et eeeeeeeba b e bbb e e e e e e e e e e e e aaaaaaaaaeeens 179
APPENDIX D Reserved Pragma DIr€CHIVEuuiiiiiiieeoiiiiiiiiiiiieieseee e e s s s s sssiataeen e e e e e ae e e s s s snnnansaenneeneeaeeesnnas 401
APPENDIX E About Reentrancy of C Library FUNCLONSccooiiiiiiiiiieesie e e e e e e ee e eeeens 402
LN 407

Vi

viii

CHAPTER 1
SOFTUNE C/C++ COMPILER

This chapter outlines the C/C++ compiler.

The C/C++ compiler is a language processor program
which translates source programs written in C or C++
language into the assembly language for Fujitsu-
provided various microcontroller units.

1.1 C/C++ Compiler Functions
1.2 Basic Process of Commands

1.3 C/C++ Compiler Basic Functions

PART 1 OPERATION 1

CHAPTER 1 SOFTUNE C/C++ COMPILER

1.1 C/C++ Compiler Functions

When a source file represented in C or C++ language is described, the C/C++ compiler
generates an assembler source file which is expressed in assembly language.

B C/C++ Compiler Functions
The C/C++ compiler generates an assembler source file using the procedures described below.

@ [Compilation]
Compiling is performed by the compiler (cpcoms). The compiler trandates C or C++ source files into
assembler sourcefiles.

To operate the C/C++ compiler, use the fcc9lls command. This command automatically sets the
environment of the C/C++ compiler (such as the setting of an include directory) and controls compiling of
C or C++ sourcefiles. Figure 1.1-1 shows the configuration of the C/C++ compiler.

Figure 1.1-1 Configuration of the C/C++ compiler

Compiler ,
Header file

Assembler file

In the subsequent sections, the C/C++ compiler trandation process is explained using commands. For the
details of the command function specifications, see "CHAPTER 3 C/C++ COMPILER OPERATION".

2 PART 1 OPERATION

1.2 Basic Process of Commands

1.2 Basic Process of Commands

This section describes the basic function of commands used in the C/C++ compiler.
The C/C++ compiler uses the following command:

fcc91ls ----- FR family command

B Command Basic Process

The basic function of the command is to generate an absolute file from a C/C++ source file. The command
recognizes files with the .c extension as C source files, and files with the .cc, .cpp, or .cxx extension as C++
source files.

A command use exampleis given below. > isthe command prompt.
[Examplé]
> fcc9lls -cpu MB91F154 file.c

When the above entry is made, the command assumes that file.c is a C source file. Asfar as no error is
detected, an absolute file (file.abs) is generated in the current directory.

[Example]

> fcc9lls -o outfile -cpu MB91F154 file.c
With the parameters set as indicated in the above example, the command generates an absolute file
"outfile". By specifying options such as -0, the command can control the file generation process.

B Options for Compiling Process Control

@ [-P option]
When the -P option is specified, the command calls up the compiler only and performs preprocessing to
generate a preprocessed C/C++ source file in the current directory. Files to be generated include files with
extensions changed to .i for C and with extensions changed to .ipp for C++.

@ [-S option]
When the -S option is specified, the command calls up the compiler to compile and thus generate an
assembler source filein the current directory. The extension of the generated file is changed to .asm.

@ [-c option]
When the -c option is specified, the command calls up the, compiler, and assembler and performs
compilation, and assembling to generate an object file in the current directory. The extension of the
generated file is changed to .obj.

@ [-0 option]

When the -0 option is specified, the command generates the file specified in the command line as a result of
processing.

PART 1 OPERATION 3

CHAPTER 1 SOFTUNE C/C++ COMPILER

1.3 C/C++ Compiler Basic Functions

The C/C++ compiler three functions are described below.

1) Header file search

2) Coordination with symbolic debugger

3) Optimization

The symbolic debugger is a support tool for analyzing a program created in C language
or C++ language.

B Header File Search
The header file can be acquired using the C or C++ program #include instruction. When the absolute
pathname is specified, the header file enclosed within angular brackets (<>) is searched for in the directory
defined by that pathname. When the absolute pathname is not specified, the compiler standard directory is
searched.
The standard header file is supplied by the C/C++ compiler.
The header file enclosed by double quotation marks (") is searched for in a directory specified by the
absolute pathname. If the absolute pathname is not specified, such a header file is searched for in a
directory having afile containing a#include line. If the header file is not found in a directory having afile
containing a#include line, the standard directory is searched next.

The -1 option makesit possible to add a directory for header file search.

[Example]
> fce91lls -cpu MB91F154 -I ..\include file.c
When the above entry is made, the command searches for the header file enclosed within angular brackets
in the order indicated below.
1. .\include
2. Compiler standard include file directory
The header file enclosed by double quotation marksis searched for in the order indicated below.
1. Current directory having afile containing a#include line
2. .\include
3. Compiler standard includefile directory

The -1 option can be specified a desired number of times. When it is specified two or more times, search
operations are conducted in the specified order.

4 PART 1 OPERATION

1.3 C/C++ Compiler Basic Functions

B Coordination with Symbolic Debugger

When the -g option is specified, the compiler generates the debug information to be used by the symbolic
debugger. When such information is generated, C/C++ language level debugging can be accomplished
within the symbolic debugger. Two types of symbolic debuggers are available; smulator debugger and
emulator debugger.

When the optimization option (-O[1-4]) is specified, debugging should be performed, noting the following
points. When the optimization option is specified, the compiler attempts to ensure good code generation by
changing the computation target position and eliminating computations that are judged to be unnecessary.
To minimize the amount of data exchange with memory, the compiler tries to retain data within a register.
It is therefore conceivable that a break point positioned in a certain line may fail to cause a break or that
currently monitored certain address data may fail to vary with the expected timing. It also well to
remember that the debug data will not be generated for an unused local variable or aloca variable whose
area need not be positioned in a stack as aresult of optimization.

Take the above point into considerations when debugging is conducted.

B Optimization
When the -O option is specified, the compiler generates an object subjected to general-purpose
optimization.

PART 1 OPERATION 5

CHAPTER 1 SOFTUNE C/C++ COMPILER

6 PART 1 OPERATION

CHAPTER 2

SETTING ENVIRONMENT
VARIABLES IN SYSTEM
BEFORE STARTING

This chapter describes environment variables in the
system used to run the C/C++ compiler. (For
information on setting variables, refer to the manual for
the respective operating system.)
All environment variables can be omitted. For
information on the supply style, refer to the C/C++
Compiler Installation Manual.
See Section "3.3 File Names and Directory Names", for
details about the characters that can be used for the
directories to be set up as environment variables in the
Windows version.
[Setup Example]

set FETOOL=c:\Fujitsu MCU tool
For environment variable setup, do not use double
guotation marks ().

2.1 FETOOL
2.2 LIB911
2.3 OPT911
2.4 INC911
2.5 TMP
2.6 FELANG

PART 1 OPERATION 7

CHAPTER 2 SETTING ENVIRONMENT VARIABLES IN SYSTEM BEFORE STARTING

2.1 FETOOL

Specify the directory where the development environment is installed.

B FETOOL
[General Format 1 For UNIX OS]

setenv FETOOL Installation directory
[General Format 2 For Windows]

set FETOOL = Ingtallation directory
The driver accesses the compiler, message file, include file, and other items via the path specified by
FETOOL.

When FETOOL setup is not completed, the parent directory for the directory where the activated driver
exists (the /.. position of the directory where the driver exists) isregarded as the installation directory.

No more than one directory can be specified.
[Example For UNIX OS]

setenv FETOOL /usr/local/softuneé6
[Example For Windows]

set FETOOL=c:\softuneé6

8 PART 1 OPERATION

2.2 LIB911

2.2 LIBO11

Specify the directory for the library as LIB911.

B LIB911
[General Format 1 For UNIX OS]

setenv LIB911 library directory [:directory 2...]
[General Format 2 For Windows]
set LIB911 = library directory [; directory 2...]
Specify the directory for the library to which linking is effected by default.

When LIB911 is not set up, the directory placed at the respective location relative to the FETOOL directory
(YFETOOL%\Iib\911) is regarded as the default library directory.

Two or more directories can be specified, separated by a delimiter. The delimiter is a colon *:” for the
UNIX OS, and asemicolon ;" for Windows.

[Example For UNIX OS]

setenv LIB911 /usr/local/softuneé6/1ib/911
[Example For Windows]

set LIB911l=c:\softune6\1ib\911

PART 1 OPERATION 9

CHAPTER 2 SETTING ENVIRONMENT VARIABLES IN SYSTEM BEFORE STARTING

2.3 OPT911

Specify the directory for the default option file to be used by the fcc911ls command as
OPT911.

B OPT911
[General Format 1 For UNIX OS]

setenv OPT911 Default option file directory
[General Format 2 For Windows]

set OPT911 = Default option file directory
Specify the directory for the default option file to be used by the driver.

When OPT911 is not set up, the directory at the corresponding relative position with respect to the
FETOOL directory (Y%oFETOOL%\Iib\911) is regarded as the default option file directory.

No more than one directory can be specified.
[Example For UNIX OS]

setenv OPT911 /usr/local/softune6/1lib/911
[Example For Windows]|

set OPT91l=c:\softune6\1ib\911

10 PART 1 OPERATION

2.4 INC911

2.4 INC911

Specify the directory for standard header files as INC911.

B INCI11
[General Format 1 For UNIX OS]
setenv INC911 Standard include directory
[General Format 2 For Windows]
set INC911 = Standard include directory
Specify the directory for standard header files. The directory specified as INC911 is regarded as the
standard include-directory. When INC911 is not defined, the directory at the corresponding relative

position with respect to the FETOOL directory (%FETOOL%\lib\911\include) is regarded as the standard
header file directory.

Two or more directories can be specified, separated by a delimiter. The delimiter is a colon '’ for the
UNIX OS, and asemicolon’;’ for Windows.

[Example For UNIX OS]

setenv INC911 /usr/local/softune6/1ib/911/include
[Example For Windows]|

set INC91ll=c:\softuneé6\1lib\911\include

PART 1 OPERATION 11

CHAPTER 2 SETTING ENVIRONMENT VARIABLES IN SYSTEM BEFORE STARTING

2.5 TMP

Specify the directory for the temporary file to be used by the C compiler.

B TMP
[General Format 1 For UNIX OS]

setenv TMP Temporary directory
[General Format 2 For Windows]

set TMP = Temporary directory
Specify the working directory for creating the temporary file to be used by the C compiler.

If TMP setup is not completed, the temporary fileis created in the current directory.
No more than one directory can be specified.
[Example For UNIX OS]

setenv TMP /usr/tmp
[Example For Windows]|

set TMP=c:\tmp

12 PART 1 OPERATION

2.6 FELANG

2.6 FELANG

Specify the code for messages.

B FELANG
[General Format 1 For UNIX OS]
setenv FELANG Message code
[General Format 2 For Windows]
set FELANG = Message code
Specify the message code. The following codes can be specified.
ASCII:

Outputs messages in ASCII code. The generated messages are in English. Select this code for a system
without a Japanese language environment.

EUC:

Outputs messages in EUC code. The generated messages are in Japanese.
SIIS:

Outputs messages in SHIFT JS code. The generated messages are in Japanese. If FELANG setup is not
completed, the ASCII codeis considered to be selected.

[Example For UNIX OS]

setenv FELANG EUC
[Example For Windows]|

set FELANG=SJIS

PART 1 OPERATION 13

CHAPTER 2 SETTING ENVIRONMENT VARIABLES IN SYSTEM BEFORE STARTING

14 PART 1 OPERATION

CHAPTER 3

PART 1 OPERATION

C/C++ COMPILER
OPERATION

This chapter describes the command function
specifications.

3.1 Command Line

3.2 Command Operands

3.3 File Names and Directory Names
3.4 Command Options

3.5 Details of Options

3.6 Option Files

3.7 Messages Generated in Translation Process

15

CHAPTER 3 C/C++ COMPILER OPERATION

3.

1

Command Line

The command line format is shown below.

fcc91ls

[options] operands

B Command Line

Options and operands can be specified in the command line. Options and operands can be specified at any
position within the command line. Two or more options and operands can be specified. Options can be
omitted.

Option and operand entries are to be delimited by a blank character string. The command recognizes the
options and operands in the order indicated below.

1. An entry beginning with a hyphen (-) isfirst recognized as an option. The subsequent character string is
interpreted to determine the option type.
2. Asregards an option having an argument, the subsequent character string is regarded as the argument.
3. Theremaining entries in the command line are recognized as operands.
[Example]
>fcc91lls filel.c -S -I \home\myincs file2.c -cpu MB91F154
At first, -S and -I are regarded as options. Since the -l option has an argument, the subsequent character
string \home\myincs is regarded as the argument. The remaining entries (filel.c and file2.c) are regarded as
operands.
Options:
-S, -I \home\myincs
Operands:

filel.c, file2.c

B Command Process

16

The command calls a compiler, assembler, and linker for each input file in the order they are specified to
compile, assemble, and link. The result of each module is output to a file having the same file name as an
input file name with its extension replaced by .obj.

The linking result, unless changed by the -0 option, is output to files with .abs extensions to which the
extensions of the files first specified are changed.

[Example]
>fcc9lls filel.c file2.c file3.c -cpu MB91F154

Files named filel.c, file2.c, and file3.c are subjected to compiling, assembling, and linking so that files
named filel.abs is generated.

PART 1 OPERATION

3.2 Command Operands

3.2 Command Operands

One or more input files can be specified as operands.

B Command Operands

The command determines the file type according to the input file extension and performs an appropriate
process to suit the file type. The extension cannot be omitted.

File specifying:

C source files, preprocessed C source files, C++ source files, preprocessed C++ source files, assembler
source files, and object files.

File extension:

The relationship between input file extensions and command processes is shown in Table 3.2-1.

Table 3.2-1 Relationship between Extensions and Command Processes

Extension

Command Process

Files having this extension are compiled and subjected to subsequent processes as
C sourcefiles.

Files having this extension are compiled and subjected to subsequent processes as
C source files that have been preprocessed.

.CC

Regard files as the C++ source files to perform processing subsequent to
compiling.

.cpp

Regard files as the C++ source files to perform processing subsequent to
compiling.

.CXX

Regard files as the C++ source files to perform processing subsequent to
compiling.

ipp

Regard files as the preprocessed C++ source files to perform processing
subsequent to compiling.

Files having this extension are assembled and subjected to subsequent processes
as assembler source files that have been compiled.

.obj

Files having this extension are linked and subjected to subsequent processes as
object files that have been assembled.

Thefile having this extension is regarded as a linked absolute file, and an error
output is generated. No absolute file can be specified.

Note, however, that the associated process may be inhibited depending on the option specifying.

[Example]

>fcc9lls filel.c file2.asm -cpu MB91F154
Thefilel.c file is compiled and assembled, and the file2.asm file is assembled. Linking is then performed
to generate the filel.absfile.

PART 1 OPERATION

17

CHAPTER 3 C/C++ COMPILER OPERATION

3.3

File Names and Directory Names

The following characters are applicable to file names and directory names.

B File Names and Directory Names

18

@ Windows

Alphanumeric characters, symbols except \, /, :, *, 2, ", <, >, and |, Shift-JIS kanji codes, and Shift- JIS 1-
byte kana codes. Enclose a long file name in double quotation marks () when the file is specified as an
option or operand. The double quotation marks, however, cannot be used when the file is specified as an
environment variable.

@® UNIX OS

Underbar " " and aphanumeric characters (However, the first character must be the underbar or
alphabetical character).

@® Module name

A module name is generated from afile name. The characters that can be used for a module name are an
underbar "_" and aphanumeric characters. (The first character of the name must be an underbar " _" and an

alphabetic character.) When other characters are used for a file name, a character that cannot be used for a
module name is converted to an underbar "_". A file name that will be identical to a module name after
conversion should not be used.

[Example]

#abc.c and -abc.c will have the same module name (_abc).

PART 1 OPERATION

3.4 Command Options

3.4 Command Options

The command options are explained below.

B Option Syntax
The option consists of a hyphen (-) and one or more characters following the hyphen. Some options have
an argument. A blank character string must be positioned between an option and an argument. The
command options cannot be grouped for purposes of specifying. Grouping is a technique of specifying
which, for instance, uses a-Sg form to specify both the -S option and -g option.

B Multiple Specifying of Same Option
If the same option is specified more than one time, only the last-specified option in the command line is
assumed to be valid.
[Example]

>fcc9lls -o outfile file.c -o outobj -cpu MB91F154

The name of afileto be output is outobj. The options listed below can be specified more than once for the
same command and are different in meaning each time.

@ Options that are significant when specified more than one time
-D, -f, -1, -INF, -K, -L, I, -ra, -ro, -sc, - T, -U, -X, -Y
When the above options are specified more than one time, see details of options.
B Position within Command Line
The option’s position within the command line does not have a special meaning. Options are interpreted in
the same manner no matter where in the command line they are specified.
[Example]
1) >fcc9lls -C -E filel.c file2.c -cpu MB91F154

2) >fcc9lls filel.c -E file2.c -C -cpu MB91F154
The same processing operations are performed for cases 1 and 2.

B Exclusiveness and Dependency
Options may be mutualy exclusive or mutually dependent. For information on the exclusivity and
dependence of options, see option descriptions.

B Case Sensitiveness
As regards the options, their upper-case and lower-case characters are different from each other. For
example, the -O option is different from the -o option. However, the upper- and lower-case characters of
suboptions are not differentiated from each other. For example, the -K eopt option is considered in the

same as the -K EOPT option. The suboptions are the character strings that follow the -K option or -INF
option.

PART 1 OPERATION 19

CHAPTER 3 C/C++ COMPILER OPERATION

3.4.1

List of Command Options

When executed without argument specifying, the command outputs an option list to the
standard output.
Table 3.4-1 and Table 3.4-2 list the command options. Options listed in the tables are
recognized by the command.

B List of Command Options

20

Table 3.4-1 List of Command Options (1/3)

Specifying Format

Function

-align {FUNC4 | FUNC8}

Specifies that branch labels are to be aligned.

-B Allow a C++-style comment //.

-C Leaves a comment in the preprocessing result.

-C Perform processing up to assembling and output the result to .obj.
-cif filename Specifies the CPU information file.

-cmsg Outputs the compiling process end message to the standard output.
-CO Generates the FR80-FR compatible object.

-cpu MB number

Specify the MB number of the CPU used.

-Cwno

Set the end code for warning to 1.

-D name [= [tokeng]]

Defines the macro name.

-E Performs preprocessing only and outputs the result to the standard output.

-e name Specifies the entry of a program.

-f filename Specifies the option file.

-g Adds to the object the information necessary for debugging.

-H Outputs the acquired header file pathname to the standard output.

-HH Outputs the acquired header file pathname to the standard output and
generates the object.

-help Outputs the option list to the standard output.

-1 dir Specifies the directory for head file search.

-INFLIST Generates the assemble list.

-INF LONGMESSAGE Detailsamessage at trandating.

-INF{SRCIN | LINENO}

Insert the associated C source information as a comment into the assembler
source.

PART 1 OPERATION

3.4 Command Options

Table 3.4-1 List of Command Options (2/3)

Specifying Format

Function

-INF STACK [=filename]

Generates the stack use amount data.

-J{alc|€} Specifies the specification level of the language to be interpreted by the
compiler.

-K {A1|A4} Specifies the minimum boundary alignment value for static data.

-K EOPT Effects optimization for changing the arithmetic operation evaluation
procedure.

-K CNC Specifies the method of handling an external symbol at the CONST

section.

-K {DCONST | FCONST}

Specifies the type of areal constant without a suffix.

-K REALOS Performs in-line expansion for the uITRON 3.0 system call function.

-K'LIB Recognizes the standard function operation and implementsin-line
expansion/substitution for other functions.

-K LONGLONG Treats the long long type as 8-byte integer type.

-K NOALIAS Effects optimization on the presumption that differing pointers do not
indicate the same area.

-K NOINTLIB Effects no in-line expansion for interrupt related functions.

-K NOUNROLL Inhibits loop unrolling.

-K NOVOLATILE

Does not consider __io qualifier variables to be volatile.

-K { SIZE | SPEED}

Selects optimization based on the size and execution speed.

-K MERGESTRING

Merges the substance of the same character string literal.

-K {SCHEDULE |
NOSCHEDULE}

Specifies the recall of the scheduler.

-K {SARG | DARG}

Specifies the method for argument area acquisition.

-K {SHORTADDRESS [=
{CODE | DATA}] |
LONGADDRESS[=
{CODE | DATA}] }

Specifies the method for handling external symbols.

-K {UCHAR | SCHAR}

Specifies the mere char sign handling.

-K {UBIT | SBIT}

Specifies the mere int bit field sign handling.

-kanji { SIS | EUC)

Specify the kanji code used in a program.

-L pathl [,path2...]

Specifiesthe library path.

-1ibl [, lib2..] Specifiesthe library file name.
-m Outputs amap file at the time of linking.
-Olevel Givesinstructions for general -purpose optimization.

PART 1 OPERATION

21

CHAPTER 3 C/C++ COMPILER OPERATION

Table 3.4-1 List of Command Options (3/3)

Specifying Format

Function

-0 pathname Outputs the result to the pathname.
-P Performs preprocessing only and outputs the result to .i.

-raname = start/end

Specifiesthe RAM area.

-ro name = start/end

Specifiesthe ROM area.

-S

Performs processes up to compiling and outputs the result to .asm.

-s defname = newname
[, attr [, address]]

Changes the section name.

-SC param

Specifies the section arrangement.

-startup file

Specifies the startup file name.

-T item, argl [arg2...]

Passes arguments to the tool.

-U name Cancels the macro name definition.

-V Outputs the executed compiler tool version information to the standard
output.

-varorder Specify the allocation type of static variables.

{SORT|NORMAL}

-w level Specifies the warning message output level.

-Xdof Inhibits the default option file read operation.

-x func [, func2...]

Specifies the in-line expansion of functions.

-Xauto [size] Specifies the in-line expansion of the functions whose logical line count is
less than the value specified for the size line.
-Y item, dir Changes the item position to dir.

22

PART 1 OPERATION

3.4 Command Options

Table 3.4-2 List of Command Options (for C++ Source)

Specifying Format Function

-t{none|used | al | local} Specify the type of template instantiation.

--alternative_tokens Enable an aternative keyword.

--no_auto_instantiation Suppress automatic instantiation of atemplate.

--old_for_init Usethe ANSI or earlier specifications for the scope of declaration in
the for initialize expression.

--for_init_diff_warning Control awarning on different interpretations between --old_for_init
and --new_for_init.

--suppress_vtbl Suppress definition of avirtual function table.

--force_vtbl Force definition of avirtual function table.

PART 1 OPERATION 23

CHAPTER 3 C/C++ COMPILER OPERATION

3.4.2

List of Command Cancel Options

The listed options are used to cancel command options on an individual basis.

cancel options for the command are listed in Table 3.4-3 and Table 3.4-4.

The

W List of Command Cancel Options

Table 3.4-3 List of Command Cancel Options (1/2)

Specifying Format Function
-Xalign Cancels the -align option.
-XB Cancels the -B option.
-XC Cancels the -C option.
-Xcmsg Cancels the -cmsg option.
-XCO Cancels the -CO option.
-Xcwno Cancels the -cwno option.
-Xe Cancels the -e option.
-Xf Cancels the -f option.
-Xg Cancels the -g option.
-XH Cancels the -H option.
-XHH Cancels the -HH option.
-Xhelp Cancels the -help option.
-XI Cancelsthe -1 option.
-Xm Cancels the -m option.
-INF NOLINENO Cancelsthe LINENO suboption.
-INF NOLIST Cancelsthe LIST suboption.
-INF NOSRCIN Cancels the SRCIN suboption.
-INF NOSTACK Cancels the STACK suboption.
-INF SHORTMESSAGE Cancels the LONGMESSAGE suboption.
-K ALIAS Cancels the NOALIAS suboption.
-K' INTLIB Cancelsthe NOINTLIB suboption.
-K NOCNC Cancels the CNC suboption.
-K NOREALOS Cancels the REAL OS suboption.
-K NOEOPT Cancels the EOPT suboption.

24

PART 1 OPERATION

Table 3.4-3 List of Command Cancel Options (2/2)

3.4 Command Options

Specifying Format Function
-K NOLIB Cancelsthe LIB suboption.
-K NOLONGLONG Cancels the LONGLONG suboption.
-K UNROLL Cancelsthe NOUNROLL suboption.
-K VOLATILE Cancels the NOVOLATILE suboption.
-K NOMERGESTRING Cancels the MERGESTRING suboption.
-XL Cancelsthe -L option.
-Xo Cancels the -0 option.
-Xra Cancels the -ra option.
-Xro Cancels the -ro option.
-Xs Cancels the -s option.
-Xsc Cancels the -sc option.
-Xstartup Cancels the -startup option.
-XT item Cancelsthe -T item specifying.
-XV Cancelsthe -V option.
-XX Cancels the -x option.
-Xxauto Cancels the -xauto option.
-XY item Cancelsthe-Y item specifying.

Table 3.4-4 List of Command Cancel Options (For C++ Source)

Specifying Format

Function

--no_alternative tokens

Cancels the --alternative_tokens option.

--auto_instantiation

Cancelsthe --no_auto_instantiation option.

--new_for_int

Cancelsthe --old_for_init option.

--no_for_int_diff_warning

Cancelsthe --for_init_diff_warning option.

PART 1 OPERATION

25

CHAPTER 3 C/C++ COMPILER OPERATION

3.5 Details of Options

This section details the options.

B Translation control related options

The trandation control related options are related to preprocessing, compiler, assembler, and linker call
control.

B Preprocessor related options
The preprocessor related options are related to preprocessing operations
W Data output related options
The data output related options are related to the command, preprocessing, and compiler data outputs.

B Language specification related options

The language specification related options are related to the specification of the language to be recognized
by the compiler.

B Optimization related options

The optimization related options are related to the optimization to be effected by the compiler.
B Output object related options

The output object related options are related to the output object format.
B Debug information related options

The debug information related options are related to the debug information to be referenced by the
symbolic debugger.

B Command related options

The command related options are related to the other tools recalled by commands.

B Linkage related options

The linkage related options are related to linkage.
B Option file related options

The option file related options are associated with option files.

26 PART 1 OPERATION

3.5 Details of Options

3.5.1 Translation Control Related Options

The translation control related options are related to preprocessor, compiler,
assembler, and linker call control.

B Translation Control Related Options
The priorities of the trandlation control related options are defined as follows. They are not related to the
order of specifying.
-E>-P>-S>-

The translation control related option exclusivenessis shown in Table 3.5-1.

Table 3.5-1 Translation Control Related Option Exclusiveness

Specified Option Option Invalidated
-E -Sand -c
-P -Sand -c
-S -C
-C None

If the -E and -P options are specified simultaneously, see the explanation below.

@ -E Option

-E Option subjects al files to preprocessing and outputs the result to the standard output. The output result
contains the preprocessing instruction generated by the preprocessor, which is necessary for the compiler.
The information targets for the preprocessing instruction generated by the preprocessor are the #line and
#pragmainstructions. If the -P option is specified together with the -E option, the preprocessing instruction
generated by the preprocessor is inhibited.
If theinput fileis not a C source file or C++ source file, the -E option does not process anything.
[Example]

>fcc91lls -E -cpu MB91F154 sample.c
The sample.c preprocessing result is output to the standard output.

@ -P Option

-P option subjects a C source file or C++ source file to preprocessing and outputs the result to the file
whose extension is changed to .i or .ipp. Unlike the cases where the -E option is specified, the output result
does not contain the preprocessing instruction generated by the preprocessing. If the input fileis not a C
source file, the -P option does not process anything.
[Examplé]

>fcc91lls -P -cpu MB91F154 sample.c
The sample.c preprocessing result is output to the sample.i.

PART 1 OPERATION 27

CHAPTER 3 C/C++ COMPILER OPERATION

[Example]
>fcc91lls -P -cpu MB91F154 sample.cpp
Theresult of preprocessing for sample.cpp is output to sample.ipp.

@ -S Option

-S option performs processes up to compiling and outputs the resultant assembler source to file extension
changed to .asm.

If the input file is neither a C source file nor a preprocessed C source file, the -S option does not process
anything.
[Example]
>fcc91lls -S -cpu MB91F154 sample.c
The sample.c preprocessing and compiling process result are output to the sample.asm.

@ -c Option

Performs processes up to assembling and outputs the resultant object to file extension changed to .obj. If
theinput file is an object file, the -c option does not process anything.

[Example]

>fcc91ls -c -cpu MB91F154 sample.c
Theresults of preprocessing, compiling, and assembling to sample.c are output to sample.obj.

The relationship among file types and processes for translation control related options is shown in Table
3.5-2.

Table 3.5-2 Relationship Among File Types and Processes for Translation Control Related Options

Option File Type -E -P -S -C Nothing Specified
C/C++ sourcefile P P Pand C P,Cand A PC,AandL
Preprocessed C/C++ sourcefile - - C Cand A C,AandL
Assembler sourcefile - - - A AandL
Object file - - - - L

P. Preprocessing

C: Compiling
A: Assembling
L: Linking

28

[Example]

>fcc9lls -E filel.c file2.i -cpu MB91F154
Subjects files named filel.c to preprocessing and outputs the result to the standard output. No processing is
performed for file2.i.

>fcc9lls -S filel.c file2.i file3.asm -cpu MB91F154

Subjects a file named filel.c to preprocessing and compiling and a file named file2.i to compiling.
Performs nothing for a file named file3.asm. Asaresult, files named filel.asm and file2.asm are generated
in the current directory.

PART 1 OPERATION

3.5 Details of Options

3.5.2 Preprocessing Related Options

This section deals with the options related to preprocessing operations. If the
preprocessing is not called, the preprocessing related options are invalid.

B Preprocessing Related Options
The preprocessing related options are detailed below.

@ -B option and -XB option

The -B option regards items following // in the C source as comments.

The -XB option cancelsthe -B option. Thisoption isignored even if it is specified in the C++ source.
When the -Jc option is specified, -B option is disabled.

[Examplé]

Input: void func ()

{

//empty function

}

Operation: fcc9lls -S -B -cpu MB91F154 sample.c

@ -C option and -XC option

-C options are al comments except those which are in the preprocessing instruction line and will be
retained as the preprocessing result. If the option is not specified, the comments are replaced by one blank
character.

The -XC option cancels the -C option.
[Example]

Input /* Comment */

void func(void) { }
Operation: fcc9lls -C -E -cpu MB91F154 sample.c
Output # 1 "test5.c"

/* Comment */

void func(void) { }

@ -D name [=[tokens]] Option
Defines the macro name with the tokens used as the macro definition. This option is equal to the following
#define instruction.
#define name tokens

If =tokens entry is omitted, the value "1" is given as the tokens value. If the tokens entry is omitted, the
specified lexis is deleted from the source file. The error related to the -D option is the same as the error
related to the #define instruction.

PART 1 OPERATION 29

CHAPTER 3 C/C++ COMPILER OPERATION

This option can be specified more than one time.
[Example]
>fcc91lls -D os=m -D sys file.c -cpu MB91F154

In afile named file.c, processing is conducted on the assumption that the macro definitions for os and sys
arem and 1, respectively.

@ -H option and -XH option

-H option outputs the header file pathnames acquired during preprocessing to the standard output. The
pathnames are sequentially output, one for each line, in the order of acquisition. If there are any two
exactly the same pathnames, only the first one will be output. When this option is specified, the command
internally sets up the -E option to subjects all files to preprocessing only. However, the preprocessing
result will not be output. The -XH option cancels the -H option.

[Example]

Input #include <stdio.h>
#include "head.h"
Operation: fcc9lls -H -cpu MB91F154 sample.c
Output /usr/softune5/1ib/911/include/stdio.h
./head.h

@ -HH option and -XHH option

-HH option outputs the header file pathnames acquired during preprocessing to the standard output. The
pathnames are sequentially output, one for each line, in the order of acquisition. If there are any two exactly
the same pathnames, only the first one will be output. The -HH option differs from -H option, and generates
the object file according to the specification of trandation control option (-E, -P, -S, -c). The -XHH option
cancels the -HH option.

[Example]

Input: #include <stdio.h>
#include "head.h"
Operation: fcc91lls -HH -S -cpu MB91F154 sample.c
Output : /usr/softune6/1ib/911/include/stdio.h
./head.h

30 PART 1 OPERATION

3.5 Details of Options

@ -| dir option and -XI option
Changes the manner of header file search so that the directory specified by dir will be searched prior to the
standard directory.
The standard directory is ${INC911} for the fcc911s command.

This option can be specified more than one time. The search will be conducted in the order of specifying.
When this option is specified, the header file search will be conducted in the following directories in the
order indicated below.

[Header file enclosed within angular brackets (< >)]
1. Directory specified by the -1 option

2. Standard directory

[Header file enclosed by double quotation marks ()]

1. Directory having afile containing the #include line

2. Directory specified by the -1 option

3. Standard directory

If a header file is specified by specifying its absolute path name, only the directory specified by the
specified absolute path name will be searched. If any nonexistent directory is specified, this option is
invalid.

The -X1 option cancels the -1 option.

@ -U name option
Cancels the macro name definition formulated by -D. This option is equivalent to the following #undef
instruction.
#undef name

If the same name is specified by the -D and -U options, the name definition will be canceled without regard
to the order of option specifying. This option can be specified more than one time.

The error related to the -U option is the same as the error related to the #undef instruction.
[Example]

>fcc91lls -Um -Dn -Dm file.c -cpu MB91F154
Thiswill cancel the macro m definition formulated by the -D option.

PART 1 OPERATION 31

CHAPTER 3 C/C++ COMPILER OPERATION

3.5.3

Data Output Related Options

This section deals with the options related to the command, preprocessor, and compiler
data outputs.

B Data Output Related Options

32

@ -cmsg Option

Outputs the compiling process completion message.
[Example]

Operation: fcc9lls -cmsg -S -cpu MB91F154 sample.c
Output: COMPLETED C Compile, FOUND NO ERROR : sample.c

@ -cwno Option

Set the end code to 1 when awarning-level error occurs. When this option is not given, the end codeisO.

@ -help option and -Xhelp option

Outputs the option list to the standard output.
The -Xhelp option cancels the -help option.
[Examplé]
>fcc91lls -help
Various command option lists are output to the standard output.

@ -INF LINENO option and -INF NOLINENO option

-INF LINENO option inserts C or C++ source file line numbers into the assembler source file as comments.
The LINENO suboption cannot be specified simultaneously with the SRCIN suboption.

The NOLINENO suboption cancels the LINENO suboption.

PART 1 OPERATION

3.5 Details of Options

[Example]
Input: void func (void) {)

Operation: fcc9lls -INF lineno -S -cpu MB91F154 sample.c

Output _func:

ST RP, @-SP
ENTER #4

HE sample.c, line 1

L func:
LEAVE
LD @-SP+, RP
RET

@ -INF LIST option and -INF NOLIST option
-INF LIST option outputs the assemble list. Generates a file in the current directory. The name of the
generated file is determined by changing the source file name extension to .Ist.
Since the assemble list is generated at assembling, it is not generated when assembling is not conducted.
For the details of the assemble list, refer to the Assembler Manual.
The NOLIST suboption cancelsthe LIST suboption.
[Example]

>fcc91lls -INF list -c -cpu MB91F154 sample.c
The sample.c preprocessing, compiling, and assembling process result are output to the sample.obj, and the
resulting assemble list is output to the sample.lst.

@ -INF SRCIN option and -INF NOSRCIN option
-INF SRCIN option inserts a C or C++ source file into the assembler source file as a comment. The
NOSRCIN suboption cancels the SRCIN suboption.
The SRCIN suboption cannot be specified simultaneously with the LINENO suboption.
[Example]
Input: void func(void) { }

Operation: fcc91lls -INF srcin -S -cpu MB91F154 sample.c

Output: _func:

ST RP, @-SP
ENTER #4

i void func(void) { }

L func:
LEAVE
LD @-SP+, RP
RET

PART 1 OPERATION 33

CHAPTER 3 C/C++ COMPILER OPERATION

34

@ -INF STACK [=file] option and -INF NOSTACK option

-INF STACK [=file] option outputs the stack use amount data. Generates the specified file in the current
directory and outputs the stack use amount data. If no file is specified, the information in al the
simultaneously compiled files is output into files whose names are determined by changing the source file
extensionsto .stk.

For stack use amount data utilization procedures and data file specifications, refer to the SOFTUNE C/C++
analyzer Manual.

The NOSTACK suboption cancels the STACK suboption.
[Example]

Input: extern void sub (void) ;

void func (void) {sub() ;}

Operation: fcc9lls -INF stack -S -cpu MB91F154 sample.c

Output: @sample.c
E=Extern S=Static I=Interrupt
{stack} {E|s|1} {function name} [A]
-> {E|s} {call function}
#
#
8 E _func
-> E sub

@ -o pathname option and -Xo option
-0 pathname option uses the pathname as the output file name. If this option is not specified, the default for
the employed file format is complied with.
The -Xo option cancels the -0 option.
[Example]
>fcc91lls -o output.asm -S -cpu MB91F154 sample.c
The sample.c preprocessing and compiling process result are output to the output.asm.

@ -V option and -XV option
-V option outputs the version information about each executed compiler tool to the standard output. The -
XV option cancelsthe -V option.
[Examplé]
FR Family SOFTUNE C/C++ Compiler V60LO1

ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998
LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

PART 1 OPERATION

3.5 Details of Options

@ -w [level] option

-w [level] option specifies the output level of warning-type diagnostic messages. The level can be specified
between 0 and 8 but there is no difference between levels 1 and 8. This level specification is provided to
ensure compatibility between the SOFTUNE C compiler and option.

When level 0 is specified, no warning messages will be generated. If the level description is omitted, level
Oisassumed. When the -w [level] option itself is omitted, -w 1 is applied.

For the details of diagnostic messages, see section "3.7 Messages Generated in Trandation Process'.
[Example]

Input: const unsigned int a=-1;

Operation: fcc91lls -INF srcin -S -cpu MB91F154 sample.c

Output: **x* gample.c(l) W1068B: warning: integer conversion resulted in a change of sign
Operation: fcc91lls -w -S -cpu MB91F154 sample.c

Output: (none)

@ --for_init_diff_warning option and --no_for_init_diff_warning option

The --for_init_diff_warning option is valid only when the input file is a C++ source file. This option is
ignored when the --old_for_init option is specified. The --for_init_diff_warning option specifies that a
warning message is output if the initialize statement in the for statement is interpreted differently between
the old and new C++ specifications.

The --no_for_init_diff_warning option cancels the --for_init_diff_warning option.
[Example]

Input:
void func (int) ;
int i;
main ()
{
for (int i=0; 1<10; i++)
func (i) ;
func (1) ;
}
Operation: fcc 911s -S -cpu MB91F154 --for_ init diff warning sample.cpp
Output: *** sample. cpp(7) W1780B: warning: reference is to variable "i"(declared at line 2)
-- under old for-init scoping rules it would have been variable "i"(declared at line 5)

PART 1 OPERATION 35

CHAPTER 3 C/C++ COMPILER OPERATION

@ -INF LONGMESSAGE option and -INF SHORTMESSAGE option

The -INF LONGMESSAGE option details the diagnostic message of the compiler. The '~ mark indicates
where an error occurs. Note that an incorrect location may be indicated depending the error type. 1t should
also be noted that if the diagnostic message is displayed in a proportional font, the indicated location seems
displaced.
The -INF SHORTMESSAGE option cancels the -INF LONGMESSAGE option.
[Examplé]

Input:

int a b;

void func()

{

}
Operation: fcc91lls -S -cpu MB91F154 -INF LONGMESSAGE sample.c
Output: *** gample.c(l) E4065B: expected a ";"

int a b;

A

36 PART 1 OPERATION

3.5 Details of Options

3.54 Language Specification Related Options

This section deals with the options related to the specifications of the language to be
recognized by the compiler.

B Language Specification Related Options

@® -J{a|c|e} Option

Specifies the language specification level to be interpreted by the compiler (preprocessor included).
When -Jais specified, interpretation is conducted in compliance with the ANSI standard including expansion
specifications.
When -Jc is specified, interpretation is conducted in strict compliance with the ANSI standard. In response
to the expansion specifications, a warning message is output.
Moreover, the following functions was disabled.

-B option (Allow a C++-style comment //)
When the -Je option is specified, the C++ source file is interpreted as being based on the EC++ language
specifications. In addition to a norma warning, a warning message is output at description of
specifications outside the range of the EC++ language specifications. The C source file has exactly the
same meaning as that when the -Ja option is specified.
If this option is not specified, -Je applies.

@® -K {DCONST|FCONST}Option

When the FCONST suboption is specified, a floating-point constant whose suffix is not specified will be
handled as a float type. When the DCONST suboption is specified, a floating-point constant whose suffix
is not specified will be handled as a double type. If neither of the above two suboptions is specified, -K
DCONST applies.
[Example]
Input: extern float f1,f2;
void func(void) { £1=£2+1.0;}
Operation: fcc91ls -K fconst -cpu MB91F154 -S sample.c
Output: _func:
ST RP, @-SP
ENTER #4
LDI:32 # f2, R12
LD @R12, R4
LDI #H'3F800000, RS
CALL32 _ _addf, R12
LDI:32 # f1, R12
ST R4,@R12

L func:

PART 1 OPERATION 37

CHAPTER 3 C/C++ COMPILER OPERATION

LEAVE
LD @SP+, RP
RET

@ -K NOINTLIB option and -K INTLIB option

The NOINTLIB suboption calls a normal function without effecting in-line expansion of an interrupt
related function (__DI(), __EI(), __set il()). The INTLIB suboption cancelsthe NOINTLIB suboption.

[Example]
Input: void func(void){ _ DI();}
Operation: fcc9lls -K nointlib -cpu MB91F154 -S sample.c
Output: _func:
ST RP, @-SP
ENTER #4
CALL32 _ _ DI, R12
L func:
LEAVE
LD @SP+, RP
RET

@ -K NOVOLATILE option and -K VOLATILE option

The NOVOLATILE suboption does not recognize a __io qualifier attached variable as a volatile type.
Therefore, __io qudifier attached variables will be optimized. The VOLATILE suboption cancels the
NOVOLATILE suboption.
[Example]

>fcc91lls -K novolatile -S -O -cpu MB91F154 sample.c

When an __io qualifier attached variable is processed in sample.c, it is not handled as a volatile qualifier
attached variable, but istreated as the optimization target.

38 PART 1 OPERATION

3.5 Details of Options

@® -K {UCHAR|SCHAR}option

-K {UCHAR|SCHAR} option specifies whether or not to treat the char type most significant bit as a sign
bit. When the UCHAR suboption is specified, the most significant bit will not be treated as a sign bit.
When the SCHAR suboption is specified, the most significant bit will be treated as a sign bit.

If neither of the above two suboptionsis specified, -K UCHAR applies.

[Example]

Input: extern int data;
char c= -1;
void func (void) {data=c;}

Operation: fcc9lls -K schar -cpu MB91F154 -S sample.c

Output: ILDI:32 # c,R12
LDUB @R12,RO
EXTSB RO ;Code-extended
ILDI:32 # data,R12
ST RO,@R12

@ -K REALOS option and -K NOREALOS option

The REALOS suboption effects in-line expansion of the ul TRON 3.0 system call function.

It can be used in cases where a program running under REALOS is to be prepared. For the uITRON 3.0
system call function, refer to the REALOS/FR Kernel Manual.

When specifying the REALOS suboption, be sure to include the system call declaration header file
furnished by the REALOS.
If the REALOS suboption is specified without including the system call declaration header file and system
call inline expansion is initiated, the operation is not guaranteed, because it is possible that an adequate
argument-type check has not been compl eted.
The NOREAL OS suboption cancels the REAL OS suboption.
[Example]
Input: #include "itron.h
#include "realos.h"
void func(void) { ext tsk(); }

Operation: fcc91lls -K realos -cpu MB91F154 -S sample.c

Output: LDI:8 #-21, R12
EXTSB R12
INT #64

PART 1 OPERATION 39

CHAPTER 3 C/C++ COMPILER OPERATION

@ -K {UBIT|SBIT} option

Specifies whether or not to treat the most significant bit as a sign bit in situations where the char, short int,
or long int type is selected as the bit field. When the UBIT suboption is specified, the most significant bit
will not be treated as a sign bit. When the SBIT suboption is specified, the most significant bit will be

treated as asign bit.
If neither of the above two suboptions is specified, -K UBIT applies.
[Examplé]
Input extern int data;
struct tag{ int bf:1;} st = {-1};
void func(void) { data = st.bf;}

Operation: fcc9lls -K sbit -cpu MB91F154 -S sample.c

Output: LDI32 # st, R12
LDUB @R12, RO
EXTSB RO
ASR #7, RO
LDI:32 # data, R12
ST RO, @R12

@ -kanji {SJIS|EUC} option

; Code-extended

If Japanese are entered in a program, the code system for the used Japanese is specified.

Japanese including 1-byte kana can be entered in program comments and character strings. The compiler
identifies the code system for Japanese description based on this option. SJIS means that the Shift JIS code
system is used, and EUC means that the EUC code system is used. When this option is omitted, -kanji

EUC isused for Solaris, and -kanji SJISisused for HP-UX and Windows.

@ -K LONGLONG option and -K NOLONGLONG option

The LONGLONG suboption treats the following type as 8-byte integer type.

long long int
signed long long int
unsigned long long int
Moreover, the following specification is effective.
e Pre-defined macro LONGLONG __ isdefined as 1.

e In lib/91Vinclude/limits.h, the macro of LONG _LONG_MIN,

ULONG_LONG_MAX is effective.

LONG_LONG_MAX, and

e Inlib/911/include/builtin.h, intrinsic function __ muls() and __mulu() is effective.

The following limitation isin 8-byte integer type.

* __iotypequaifier cannot be specified for the variable of 8-byte integer type.
« 8-byteinteger type cannot be specified for bit field member's type.
The NOLONGLONG suboption cancels the LONGLONG suboption.

PART 1 OPERATION

3.5 Details of Options

@ --alternative_tokens option and --no_alternative_tokens option
The --alternative_tokens option enables alternative representation. For the specifications for aternative
representation, refer to 1SO/ICE 14882:1998.

The --no_alternative_tokens option cancels the --alternative_tokens option.

@ --old_for_init option and --new_for_init option
The --old_for_init option makes a change so that the scope of variables declared in the initialize statement
in the for statement is interpreted as being within the old specifications.
The --new_for_init option cancelsthe --old_for_init option.
[Example]
Input:
extern void func(int);

int main()

{
for(int i=0; 1<10; i++)
func (i) ;

func (i) ; // Possible only for old specifications
return 0;

}

Operation: fcc91lls -S --old for init sample.cpp -cpu MB91F154

PART 1 OPERATION 41

CHAPTER 3 C/C++ COMPILER OPERATION

3.5.5

Optimization Related Options

This section deals with the options related to optimization by the compiler.

B Optimization Related Options

42

@ -K SIZE option

Selects an appropriate optimization combination with emphasis placed upon the object size. The selected
optionsin the fcc911s command are indicated below.

+ -03

+ -KEOPT

¢ -K NOUNROLL

* -K SHORTADDRESS

To change the above combination, specify, for example, the -O1 option following the -SIZE sub-option.
The -K SIZE option not only offers the optimization combination selection function, but also makes it
possible to issue a generation instruction for object size minimization and effect object pattern switching.

@ -K SPEED option

Selects an appropriate optimization combination with emphasis placed upon the generated object execution
speed. The selected optionsin the fcc911s command are indicated below.

e -0O4

e -K SHORTADDRESS

e -dign FUNC4

To change the above combination, specify, for example, the -K LONGADDRESS option following the
SPEED sub-option.

The -K SPEED option not only offers the optimization combination selection function, but also makes it
possible to issue a generation instruction for execution speed maximization and effect object pattern
switching.

The following features operate when the -K SPEED option is specified, and neither the -K DARG option
nor the -K REALOS option are specified.

* Improvement of register allocation

« Improvement of assembler level optimization

 Inlining expansion of LI TRON4.0 service call

e Merging the area of the same character string literal(-K MERGESTRING option)

» Supplementary comment output to assembler file

PART 1 OPERATION

3.5 Details of Options

@ -O [level]option

-0 [level] specifies the optimization level. Levels 0, 1, 2, 3, and 4 can be specified. The higher the

optimization level, the shorter the generated object execution time but the longer the compilation time.

Note that each optimization level containslower optimization level functions.

One of the following levelsisto be specified. When no level is specified, -O2 applies.

* O(Optimization level 0): No optimization will be effected. Thislevel is equivaent to cases where the -
O isnot specified.

e 1(Optimization level 1); Optimization will be effected in accordance with detailed analyses of a
program flow. In addition, the instruction scheduling will be conducted.

e 2(Optimization level 2): The following optimization feature is exercised in addition to the feature
provided by optimization level 1.

e Loop unralling: Loop unralling is performed to increase the execution speed by decreasing the loop
count when loop- count detection is possible. However, it tends to increase object size. Therefore, this
optimization should not be used in situations where object sizeisimportant.

[Example]
(Before unrolling)
for(i=0;i<3;i++) { alil=0;}

(After unrolling)

al[0]=0;
all]l=0;
al2]1=0;

* 3(Optimization level 3): The following optimization features are exercised in addition to the features
provided by optimization level 2.

» Loop unrolling (extended): Loops, including branch instructions, that have not been the
target of optimization level-2 loop unrolling, are the target of this extended loop unrolling.

» Optimization function repeated execution: In optimization function repeated execution, the
optimization features except the loop unrolling feature will be repeatedly executed until no
more optimization is needed. However, the translation time will increase.

* 4(Optimization level 4): The following optimization features are exercised in addition to the features
provided by optimization level 3.

 Arithmetic operation evaluation type change (same as effected by -K EOPT specifying):
Performs optimization to change arithmetic operation evaluation type at compilation stage.
When this option is specified, there may be side effects on the execution results.

» Standard function expansion/change (same as effected by -K LIB specifying): Switches to
a higher-speed standard function that recognizes standard function operations, performs
standard function inline expansion, and performs identical operations. When this option is
specified, there may be side effects on the execution results. Since standard function inline
expansion is implemented, the code size may increase.

PART 1 OPERATION 43

CHAPTER 3 C/C++ COMPILER OPERATION

@ -K EOPT option and -K NOEOPT option

The EOPT suboption effects optimization by changing the arithmetic operation evaluation type at the
compilation stage. When this option is specified, side effects may occasionally be produced on the
execution results. This option takes effect only when an optimization level of 1 or higher is specified by the
-O option. The NOEOPT suboption cancels the EOPT suboption.

[Example]

Input; extern int 1i;
void func (int a, int b){
i=a-100+b+100;

}

Operation: fcc9lls -K eopt -0 - cpu MB91F154 -S sample.c

Output: ADD R5, R4 ; Order of arithmetic operation replaced
LDI;32 # i, R12
ST R4, @R12

@ -K LIB option and -K NOLIB option

The LIB suboption recognizes the standard function operation and replaces the standard function with a
higher-speed standard function which effects standard function in-line expansion and performs the same
operation as the original standard function. When this option is specified, side effects may be produced on
the execution results. Since standard function inline expansion isimplemented, the code size may increase.

This option takes effect only when an optimization level of 1 or higher is specified by the -O option.
The NOLIB suboption cancels the LIB suboption.
[Examplé]

Input: extern int i;
void func (void)
i=strlen ("ABC") ;

}

Operation: fcc9lls -K lib -O -cpu MB91F154 -S sample.c

Output : LDI #3,R0O ; Processing equivalent to strlen expanded
LDI:32 # i, R12
ST RO, @R12

44 PART 1 OPERATION

3.5 Details of Options

@ -K {LONGADDRESS [= {CODE|DATA}] | SHORTADDRESS [= {CODE|DATA}]}option

The SHORTADDRESS suboption generates code on the presumption that the (address) of a symbol to be
loaded within the program is within the 20-hit expression range.
When CODE or DATA is specified, only the symbols of the section alocated in the ROM (CODE or
CONST) or the symbols of the section allocated in the RAM (DATA or INIT) are to be processed. If the
address exceeds the range that can be expressed by 20 bits, an error occurs during linking. Operation is
normal even if symbols other than those loaded in the program are positioned outside the range of the
addresses that can be expressed by 20 bits. The LONGADDRESS suboption enables handling symbol
addresses as 32-bit addresses. If the SHORTADDRESS suboption or LONGADDRESS suboption is
omitted, -K LONGADDRESS is applied.
[Example]
Input: extern int 1i;
extern void sub (void) ;
void func(void) {
i=10;
sub();

}

Operation: fcc91lls -K shortaddress -O -S -cpu MB91F154 sample.c

Output: LDI:20 # 1, R12 ; 20-bit symbol used
LDT #10, RO
ST RO, @R12
CALL20 _sub, R12 ; 20-bit symbol used

@ -K CNC option and -K NOCNC option

CNC suboption specifies the symbol (address) of CONST section to contrary of CODE section specified by
-K LONGADDRESS option or -K SHORTADDRESS option. As a result, the symbol size of the CODE
section, the CONST section, and the DATA section (included INIT section) can beindividually set. Table
3.5-3 shows the symbol size when options are specified.

The NOCNC suboption cancels the CNC suboption.

Table 3.5-3 The symbol bit size when options are specified

-K longaddress=CODE -K shortaddress=CODE

Specified Option
-KCNC | -K NOCNC -K CNC -K NOCNC

The symbol size for the

CODE section 32 bits 32 bits 20 bits 20 bits

The symbol size for the

CONST section 20 bits 20 bits 32 bits 20 bits

PART 1 OPERATION 45

CHAPTER 3 C/C++ COMPILER OPERATION

@ -K NOALIAS option and -K ALIAS option

The NOALIAS suboption optimizes the data specified by the pointer on the assumption that the pointer
does not specify the same area of different pointers.
These options are enabled only when level 1 or more optimization is specified in the -O option. The
language specification permits different pointers to include the same area. Therefore, when using this
option, check the program carefully.
The ALIAS suboption cancels the NOALIAS suboption.
[Example]
Input extern int i;
extern int j;
void func9 (int *p)
*p=1i+1;
j=1+1;
}

Operation: fcc9lls -K noalias -0 -cpu MB91F154 -S sample.c

Output: LDI:32 # i, R12
LD @R12, RO
LDI:32 # j, R12
ADD #1, RO
ST RO, @4
ST RO, @12 ; Value of *p=i+1 reused

@ K {SCHEDULE|NOSCHEDULE} option

-K {SCHEDULE|NOSCHEDULE} option specifies whether or not to implement instruction scheduling.
When the SCHEDULE suboption is specified for the fcc911ls command, instruction scheduling will be
conducted. When the NOSCHEDULE suboption is specified, the command will not conduct instruction
scheduling. If this option is omitted, the operation conforms to the contents specified in the -O option.
When an optimization level of 1 or higher is specified by the -O option, -K SCHEDULE is assumed to be
specified.

The SCHEDUL E suboption cancels the NOSCHEDULE suboption.

@ -K NOUNROLL option and -K UNROLL option

The NOUNROLL suboption inhibits loop unrolling optimization. Use this option when loop unrolling
optimization is to be inhibited with the -O2 to -O4 options specified. The UNROLL suboption cancels the
NOUNROLL suboption. When -O0 or Ol is specified, these options are invalid because loop unrolling is
not optimized.

46 PART 1 OPERATION

3.5 Details of Options

@ -x function name 1 [, function name 2,...]Joption and -Xx option

The -x option effects in-line expansion, instead of function calling, of functions defined by a C source.
However, recursively called functions will not be subjected to in-line expansion. It should also be noted
that functions may not be subjected to in-line expansion depending on asm statement use, structure/union
type argument presence, setjmp function calling, and other conditions. The -x option takes effect only
when level 1 or more optimization is specified simultaneously with the -O option.

The -Xx option cancels the -x option.
[Exampl€]
Input: extern int a;
static void sub(void) { a=1; }
void func(void) { sub(); }

Operation: fcc91lls -cpu MB91F154 -0 -x sub -S sample.c

Output : _func:
LDT #1, RO
LDI:32 # a, R12
RET:D
ST RO, @R12

@ -xauto [size]option and -Xxauto option

The -xauto option effects in-line expansion, instead of function calling, of functions whose logical line
count is not less than size. However, recursively called functions will not be subjected to in-line expansion.
It should also be noted that functions may not be subjected to in-line expansion depending on asm
statement use, structure/union type argument presence, setjmp function calling, and other conditions. If the
size entry is omitted, the value "30" is assumed to be specified. The values from 1 to 127 are valid for size.
The -xauto option takes effect only when level 1 or more optimization is specified simultaneously with the

-O option.
The -Xxauto option cancels the -xauto option.
[Example]

Input: extern int a;

static void sub(void){ a=1; }
void func(void) { sub(); }

Operation: fcc9lls -cpu MB91F154 -0 -xauto -S sample.c

Output _func:
LDT #1, RO
LDI:32 #_a, RI2
RET:D
ST RO,@R12

PART 1 OPERATION 47

CHAPTER 3 C/C++ COMPILER OPERATION

48

@® -K MERGESTRING option and -K NOMERGESTRING option

The MERGESTRING suboption merges the substance of the same character string literal. The
MERGESTRING suboption takes effect only when the -K SPEED option is specified and -K REALOS and
-K DARG options are not specified.

The NOMERGESTRING suboption cancels MERGESTRING suboption.
[Examplé]
Input: char *a = "abcdef";
char *b = "abcdef";
Operation: fcc9lls -cpu MB91101 -S sample.c -K SPEED -K MERGESTRING
Output: .section INIT, DATA, align=4
.global b
.align 4

.word LS 0
.global _a

.word LS 0
.section CONST, CONST, align=4
.align 4
LS O:
.ascii "abcdef\000"
.datab.b 1,0

PART 1 OPERATION

3.5 Details of Options

3.5.6 Output Object Related Options

This section describes the options related to output object formats.

B Output Object Related Options

@ -align {FUNC4|FUNCS} option and -Xalign option

The -align option aligns branch labels.

When the FUNC4 suboption is specified, the compiler suffixes CODE section names with _4, and selects 4
as the section boundary value. When the FUNC8 suboption is specified, the compiler suffixes CODE
section names with _8, and selects 8 as the section boundary vaue.

When the -s option or #pragma section is used to specify a section arrangement address, it overrides the -
aign option.

The FUNC4 suboption aligns the beginnings of functions on 4-byte boundaries, while the FUNC8
suboption aligns them on 8-byte boundaries.

The -Xalign option disables the align value specified for labels. When both -align and -Xalign options are
omitted, the -Xalign option is used.

[Remarks]

With some CPU of the FR, instructions are fetched on 8-byte boundaries, in units of 4/8 bytes. If the
branch destination address is not 4/8-byte boundaries when a branch occurs, extra fetch cyclesfor 1 to 3
cycles are generated.

The -align option can be used to avoid this extra fetch cycle.
Note that branch |abels aligned on boundaries increase the code size.

[Examplé]

Input: void foo(void) {}

Operation: fcc9lls -cpu MB91F154 -0 -S sample.c -align funcs

Output: .SECTION CODE 8, CODE, ALIGN=8 ;The section name is changed.
.ALIGN 8 ; i8-byte boundary alignment.
.GLOBAL _foo

_foo:

RET

@ -cpu MB number option

Specifies MB number of CPU to be used. This option cannot be omitted.
[Example]
>fcc91lls -S -cpu MB91F154 sample.c

PART 1 OPERATION 49

CHAPTER 3 C/C++ COMPILER OPERATION

@ -cif filename option
The -cif option specifies the CPU information file name for filename. The CPU information describes the
information about the CPU that has the MB number specified in the -cpu option.
[Example]
>fcc91lls -S -cpu MB91F154 -cif 1ib\911\911l.csv sample.c

@ -s defname = newname [, attr [, address]] option and -Xs option
Changes the compiler output section name from defname to newname, and changes section type to attr. An
arrangement address can be specified in the address option.

For compiler output section names, see section "4.1 Section Structure of fcc91ls Command”. For
selectabl e section types, refer to the Assembler Manual.

If the arrangement address is specified, the arrangement address cannot be specified relative to the
associated section at linking.

The -Xs option cancels the -s option.

[Example]
Input: void func (void) { }
Operation: fcc9lls -s CODE=PROGRAM, CODE, 0x1000 -S -cpu MB91F154 sample.c
Output .SECTION PROGRAM, CODE, LOCATE=H'00001000

e begin of function
.GLOBAL _func

_func:
ST RP, @-SP
ENTER #4

L main:
LEAVE
LD @SP+, RP
RET

50 PART 1 OPERATION

3.5 Details of Options

@ -K {A1]|A4} option

Specifies the minimum allocation boundary for external and static variables. The A4 suboption selects the
4-byte minimum allocation boundary.

When the 4-byte minimum allocation boundary is used, more efficient code may be generated through
inline expansion of a character string manipulation function when -K lib is specified. This code
malfunctions if boundary alignment is incorrect. Therefore, objects for which different alocation
boundaries are specified must not be linked. If such objects are linked, unnecessary areas are generated as
aresult of consistent boundary alignment, causing an increase in the number of objects. The A1 suboption
selects the 1-byte minimum allocation boundary.

When this option is omitted, -K Al isused.

[Example]
Input: char cl, c2;
Operation: fcc91lls -K A4 -S -cpu MB91F154 sample.c
Output: .SECTION DATA, DATA, ALIGN=4
.GLOBAL _c2
_c2: .RES.B 4 ; Positioned at 4-byte boundary
.GLOBAL cl1
_cl: .RES.B 4 ; Positioned at 4-byte boundary

PART 1 OPERATION 51

CHAPTER 3 C/C++ COMPILER OPERATION

@ -K {SARG|DARG} option

Specifies type of acquisition of arearequired for argument delivery to function.

When the DARG suboption is specified, dynamic allocation is achieved at function calling. This
effectively decreases the stack consumption.
On the other hand, when the SARG suboption is specified, allocation is performed at the beginning of the
caller function. In this case, the code size generally decreases with an increase in execution speed.
However, stack use tends to increase.
If this option is not specified, -K SARG is applied.
[Example]

Input: extern void sub(int, int, int, int, int);

void func(void) {sub(1, 2, 3, 4, 5);}
Operation: fcc91lls -K darg -S -cpu MB91F154 sample.c

Output : LDI #1, R4
LDI #2, R5
LDI #3, R6
LDI #4, R7
LDI #5, RO
ST RO, @-SP ; The argument area is allocated dynamically.
CALL32 _sub, R12
ADDSP #4 ; The argument area is allocated dynamically.

52 PART 1 OPERATION

3.5 Details of Options

@ -varorder {sort|normal} option

The -varorder normal option causes static variables to be stored in memory in the order in which they are
described in the source. Variables with an initial value and those without initial value are stored in
different sections, so description with these sections mixed prevents the variables from being arranged in
the order in which they are described in the source.

The -varorder sort option sorts the order of storing static variables in memory according to the order of
variable alignment. Specifying this option reduces the size of unused static variable areas.

[Example]
Input: long a;
char b;
long c;
char d;

Operation: fcc91lls -S -varorder normal -cpu MB91F154 sample.c
Output:

.ALIGN 4

.GLOBAL _a

.RES.B 4
.ALIGN 1
.GLOBAL b

.RES.B 1
.ALIGN 4
.GLOBAL c

.RES.B 4
.ALIGN 1
.GLOBAL d

.RES.B 1

@ -CO option and -XCO option

The -CO option generates the object that can be used for both FR and FR80 executable format. When the -
CO option is not specified, the object of the executable format for the architecture specified by the -cpu
option is generated.

The -XCO option cancels the -CO option.

PART 1 OPERATION 53

CHAPTER 3 C/C++ COMPILER OPERATION

54

@ -t {nonejusedl|all|local} option

Thisoption isvalid only for the C++ source. It specifies the type of template instantiation.

When the -t none option is specified with the --no-auto_instantiation option, any template instantiation is
not generated. When this option is specified with the --auto_instantiation option, al instantiation is
automatically generated.

The -t used option instantiates only the parameter-type template functions and template member functions
used in the module.

The -t al option instantiates even unused member functions if they are of parameter type and template class
used in the module.

The -t local option generates template functions and template member functions used in the module as the
in-module local functions when the -t local is specified, --auto_instantiation option isinvalid.

Note that overlapping instantiation by the used and al options is not alowed when more than one module
islinked.

For information on the template, see section "9.6 Limitations on Use of C++ Template".
The default is -t none.

@ --no_auto_instantiation option and --auto_instantiation option

These options are valid only for the C++ source.
When the --auto_instantiation option is specified, the template instantiation is automatically done.

The--no_auto_instantiation option provides manual template instantiation. Instantiation must be controlled
by the -t {used |all| local} option, #pragma, or declaration explicitly.

For information on using #pragma to control instantiation, see section "5.11 Function for Controlling
Instantiation of C++ Template".

PART 1 OPERATION

3.5 Details of Options

@ --suppress_vthl option and --force_vtbl option

These options are valid only for the C++ source. They change the generation type of a virtua function
table.

The --suppress_vtbl option causes the virtual function table to be referenced from other modules without
being generated in a module.

The --force_vtbl option causes the virtual function table to be generated in a module for reference from
other modules.

These options are valid only when the member functions specified as being virtual are in the classand all of
them are defined inline. If these options are not given under this condition, a virtual function table is
generated locally for each module.

[Example] Casesfor option
class FOO {
int a;
public:
FOO() {a=0;}
virtual void memfunc (int x) {a=x;}
}:; //All the member functions are defined inline.

The --force_vtbl option must be specified for at least one module. Note that overlapping table definition is
not allowed when specifying the option for more than one module.

PART 1 OPERATION 55

CHAPTER 3 C/C++ COMPILER OPERATION

3.5.7 Debug Information Related Options

This section describes the options related to the debug information to be referenced by
the symbolic debugger.

B Debug Information Related Options

@ -g option and -Xg option

-g option adds debugging information to the object file. The -Xg option cancels -g option.

When optimization options are specified, please note the following issues.

56

The breakpoint might not be able to be set.
Because the line might be moved or deleted, the breakpoint might not be able to be set.

Plural breakpoints might be set at once.

Because the lines from which the instructions are deleted might be consecutive, plural breakpoints might
be set at once.

It might not stop at the breakpoint.
Because the line might be moved or deleted, it might not stop at the breakpoint.

The value of the variable displayed in the watch window might not be correct.

Because the instruction that stores the value of the variable might be moved, the timing to be updated
might not correspond to the order of the C source.

Because one register might be assigned to two or more variables, the timing to be updated might not
correspond to the order of the C source.

The local variable and the parameter might not be able to be referred to by the debugger.
The optimized local variable and parameter might not be able to be referred to by the debugger.

The CALL STACK function and the STEP OUT function might not be able to be used by the debugger.

When the prologue/epilogue code of the function is optimized, the CALL STACK function (SHOW
CALLS command) and the STEP OUT function (GO /RETURN command) cannot be used by the
debugger.

When the function inlining (-x func or -xauto option) is specified, the C source displayed in the source
window might not be correct.

PART 1 OPERATION

3.5 Details of Options

3.5.8 Command Related Options

This section describes the options related to the other tools called by the command.

B Command Related Options

@ -Y item, dir option and -XY option
Changes the item position to the dir directory. The -XY option cancels the -Y option. The item is one of
the following.
» p: Left for compatibility with the previous version but does not provide anything.
» c: Changes the compiler pathname to dir.
« a: Changes the assembler pathname to dir.
« |: Changes the linker pathname to dir.
[Example]
>fcc91lls file.c -Y ¢, \home\newlib -cpu MB91F154
Calls the compiler as \home\newlib\cpcoms.

@ -Titem, argl [, arg2...]Joption and -XT option

Passes arg to item as an individual compiler tool argument. The -XT option cancelsthe -T option.

Use a comma to separate arguments. To describe a comma as an argument, position a backslash (\)
immediately before the comma. The comma positioned after the backslash will not be interpreted as a
delimiter. To write ablank as an argument, describe acommain place of a blank.

For the options for various commands, refer to the associated manuals. The following can be specified as
theitem.

» a: Assembler
* I Linker
[Example]
>fcc91lls -T a, -1f, asmlist file.c -cpu MB91F154

Sequentially passes arguments "-If " and "asmlist" to the assembler. Therefore, the assemble list asmlist
will be generated as aresult of command execution.

PART 1 OPERATION 57

CHAPTER 3 C/C++ COMPILER OPERATION

3.5.9 Linkage Related Options

The linkage related options are related to linkage.

B Linkage Related Options

58

@ -e name option and -Xe option

The -e option sets the entry symbol to name at linking. The -Xe option cancels the -e option. Since the
option definition is usually provided in the startup routine, this option does not have to be specified.

For details of the option, refer to the Linkage Kit Manual.

@ -L pathl [, path2...] option and -XL option

The -L option adds path to the library path used at linking to search for alibrary to be linked. If the option
isnot specified, ${ LIB911} is selected in the fcc911ls command automatically.

The -XL option cancelsthe -L option.
For details of the option, refer to the Linkage Kit Manual.

@ -llib 1 lib2...] option and -XI option

The -| option specifies the name (lib) of the library to be linked at linking.
If the extension entry is omitted, the .lib extension is added automatically.

The -XI option cancels the -1 option.

For the objects output by the compiler, by default, in fcc911ls command 1ib911.1ib is set as the names of the
libraries to be linked.

For the details of the option, refer to the Linkage Kit Manual.
@ -m option and -Xm option
The -m option generates amap file at linking.
A map file output with afile name with the .map extension is generated in the current directory.
The -Xm option cancels the -m option.
@ -ra name = start/end option and -Xra option

The -ra option specifies the RAM area at linking. The -Xra option cancels the -ra option. For details of the
option, refer to the Linkage Kit Manual.

@ -ro name = start/end option and -Xro option

The -ro option specifies the ROM area at linking. The -Xro option cancels the -ro option. For details of the
option, refer to the Linkage Kit Manual.

PART 1 OPERATION

3.5 Details of Options

@ -sc param option and -Xsc option

The -sc option specifies the section arrangement at linking.
The -Xsc option cancels the -sc option.

If the option is not specified, -sc IOPORT=0,*=0x1000 is sel ected automatically.
For details of the option, refer to the Linkage Kit Manual.

@ -startup filename option and -Xstartup option

The -startup option selects filename as the object file name of the startup routine to be linked at linking.

If this -startup option is not specified, %FETOOL %\lib\911\startup.obj is selected in the fcc911s command
automatically.

The -Xstartup option cancels the -startup option.
For details of the startup routine, see "CHAPTER 6 EXECUTION ENVIRONMENT".

PART 1 OPERATION 59

CHAPTER 3 C/C++ COMPILER OPERATION

3.5.10 Option File Related Options

This section describes the option file related options.

B Option File Related Options

@ -f filename option and -Xf option

-f option used to read the specified option file (filename). If the option file name does not have an
extension, an .opt extension will be added.

The command options can be written in an option file. For the details of an option file, see section "3.6
Option Files".
The -Xf option cancels the -f option.

@ -Xdof option

-Xdof option specifies that the default option file will not be read.
For the default option file, see section "3.6 Option Files".

60 PART 1 OPERATION

3.6 Option Files

3.6 Option Files

This section explains option files for commands. By writing options in a file, a group of
options can be specified. This feature also permits you to put startup options to be
specified in afile.

B Option File

Option file reading takes place when an associated option is specified. This assures that the same result is
obtained as when an option is specified at the -f specifying position in the command line.

If the option file name is without an extension, an .opt extension will be added.

@ Option File General Format

All entries that can be made in acommand line can be written in an option file.
A linefeed in an option file is replaced by a blank.

A comment in an option file is replaced by ablank.

[Example]

-1 /usr/include # Include specifying

-D FR # Macro specifying
-g # Debug data generation specifying
-S # Execution of processes up to compiling

B Option File Limitations

The -f option can be written in an option file. However, nesting is limited to 8 levels.
B Acceptable Comment Entry in Option File

A comment can be started from any column.

A comment isto begin with asharp (#). The entire remaining portion of the line serves as the comment.
In addition, the following comments can aso be used.

e /* Comment */

e /I Comment

e ; Comment
[Example]

-1 /usr/include # Include specifying

-D FR /* Macro specifying */
-g // Debug data generation specifying
-S ; Execution of processes up to compiling

PART 1 OPERATION 61

CHAPTER 3 C/C++ COMPILER OPERATION

B Default Option File

A preselected option file can be read to initiate command execution. The obtained result will be the same
aswhen an option is specified prior to another option specified in the command line.

The default option file name is predetermined as follows.
[For UNIX OS]

${OPT911}/fcc9ll.opt
[For Windows]

%0OPT911%\fcc911.opt
The fcc911s command default option file nameis fcc911.opt.

If the default option file does not exist in the specified directory, such a specifying isignored.
To inhibit the default option file feature, specify the -Xdof option in the command line.

62 PART 1 OPERATION

3.7 Messages Generated in Translation Process

3.7 Messages Generated in Translation Process

When an error is found in a source program or a condition which does not constitute a
substantial error but requires attention is encountered, diaghostic messages may be
generated at the time of translation. For message outputs generated by tools other than
the compiler, refer to the respective manuals for the tool.

B Messages Generated in Translation Process
A diagnostic message output exampleis shown in Figure 3.7-1.

Figure 3.7-1 Diagnostic Message Example

*** test. ¢ (4) E4020B: identifier "a" is undefined

T E4020B:

Source logical line number T t Tool identifier

Source file name
Error number (4-digit)

Error level

B Tool Identifier

Thetool identifier indicates the tool that has detected the error.

e D: Command

e B: Compiler

* S Scheduler (Internal tool for compiler)
e A: Assembler

e L: Linker

PART 1 OPERATION 63

CHAPTER 3 C/C++ COMPILER OPERATION

M Error Level

The error level represents the diagnostic check result type.
Table 3.7-1 describes the relationship between various error levels and return codes and their meanings.

Table 3.7-1 Relationship between Error Levels and Return Codes

Error Level Return Code Meaning
| 0 Indicates a condition which does not constitute an error but
requires attention.
Indicates aminor error. Process execution continues without
w 0 being interrupted. The return code can be changed by the -cwno
option.
E 2 Indicates a serious error. Process execution stops.
= 3 Indicates afatal error which is related to quantitative limitations
or system failure. Process execution stops.

64

PART 1 OPERATION

CHAPTER 4

fcc911ls COMMAND OBJECT
PROGRAM STRUCTURE

PART 1 OPERATION

This chapter explains about the information necessary

for program execution.

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Section Structure of fcc911s Command
Rules for Name Generation with the fcc911s
fcc911s Command Boundary Alignment
fcc911ls Command Bit Field

fcc911s Command Structure/Union

fcc911s Command Function Call Interface

fcc911s Command Interrupt Function Call Interface

65

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE

4.1

Section Structure of fcc911s Command

The fcc911ls command has the following seven sections:
» Code section

* Initialized section

» Constant section

» Data section

* 1/O section

* Vector section

* C++ Init section

Bl fcc911ls Command Section Structure

Table 4.1-1 shows the sections to be generated by the compiler and their meanings.

Table 4.1-1 fcc911ls Command Section List

Boundary
No. Section Type Section Name Type Alignment Write Initial Value
[Byte]
1 Code section CODE CODE 2 Disabled Provided
2 Initialized section INIT DATA 4 Enabled Provided
3 Constant section CONST CONST 4 Disabled Provided
4 Data section DATA DATA 4 Enabled Not provided
5 1/O section 10 [0] 4 Enabled Not provided
6 Vector section INTVECT CONST 4 Disabled Provided
7 C++lnit section EXT_CTOR_DTOR CONST 4 Disabled Provided

66

The purpose of each section use and the relationship to the C/C++ language are explained below.

@ Code section

Code section stores machine codes. This section corresponds to the procedure section for the C language.

@ |Initialized section

Initialized section stores the initial value attached variable area. For the C language, this section
corresponds to the area for external variables without the const attribute, static external variables, and static
internal variables.

PART 1 OPERATION

4.1 Section Structure of fcc911s Command

@ Constant section

Constant section stores the write-protected initial value attached variable area. For the C language, this
section corresponds to the area for const attribute attached external variables, static external variables, and
static internal variables.

@ Data section

Data section stores the area for variables without the initial value. For the C language, this section
corresponds to the area for external variables (including those which are with the const attribute), static
external variables, and static internal variables.

@ 1/O section

1/0 section stores the area for the __io-qualified variables. For the C language, this section corresponds to
the areafor __io-qualified external variables (including those which are provided with the const attribute),
static external variables, and static internal variables.

The default section nameis [O.
@ Vector section

This section stores the interrupt vector tables. In the C language, a vector table is generated only when its
generation is specified in #pragmaintvect. The default section nameis INTVECT.

@ C++ Init section

This section stores tables for indicating the entry of functions constituting and destroying static class
objects. It must be used at start-up. For information on specifying the startup program, see section "6.2
Startup Routine Creation”.

PART 1 OPERATION 67

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE

4.2

Rules for Name Generation with the fcc911s

The rules for the names used by the fcc911s are explained below.

B Rules for Name Generation with the fcc911s

68

Table 4.2-1 shows the relationship between the names generated by the compiler and the C language.

Table 4.2-1 Label Generation Rules

C Language Counterpart

Label Generated by Compiler

Function name

-function name

External variable name

-external variable name

Static variable name LI no
Local variable name -
Virtual argument name -
Character string, derived type LS no
Automatic variableinitia value LS no
Target location label L_no

Note: The compiler internal generation number is placed at the no position.

PART 1 OPERATION

4.3

4.3 fcc911s Command Boundary Alignment

fcc91lls Command Boundary Alignment

The standard data type and boundary alignment are explained below. Table 4.3-1 shows
the assignment rules.

B fcc91ls Command Boundary Alignment

Table 4.3-1 fcc911ls Command Variable Assignment Rules

Variable Type Assignment Size [Byte] Bounda[gy,gi]gnment
char 1 1
signed char 1 1
unsigned char 1 1
short 2 2
unsigned short 2 2
int 4 4
unsigned int 4 4
long 4 4
unsigned long 4 4
float 4 4
double 8 4
long double 8 4
pointer/address 4 4
Structure/union/class Explained later Explained later

Note: Some variables are aligned on 4-byte boundaries when the -K A4 option is specified. The-K A4

option does not affect structure/union member boundary alignment.

PART 1 OPERATION

69

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE

4.4 fcc911ls Command Bit Field

The fcc911ls command bit field data size and boundary alignment are explained below.
The bit field data is assigned to a storage unit that has an adequate size for bit field data
retention and is located at the smallest address.

Bl fcc911ls Command Bit Field

Consecutive bit field data are packed at consecutive bits having the same storage unit, without regard to the
type, beginning with the LSB and continuing toward the MSB. An exampleisshownin Figure 4.4-1.

Figure 4.4-1 fcc911ls Command Bit Field Data Size and Boundary Alignment Example 1

struct tag1{
int A:10;
short B:3;
char C:2;
5
31(MSB) 21 18 16 0(LSB)

A B |C Unoccupied

If afield to be assigned lies over a bit field type boundary, its assignment is completed by aligning it with a
boundary suitable for the type. An exampleisshown in Figure 4.4-2.

Figure 4.4-2 fcc911s Command Bit Field Data Size and Boundary Alignment Example 2

struct tag2{
int A:12; [* 4-byte boundary data */
short B:5; /* 2-byte boundary data */
char C:5; /* 1-byte boundary data */
I
31(MSB) 19 15 10 7 2 0(LSB)

A Unoccupied B Unoccupied C Unoccupied

When a bit field having a bit length of O is declared, it is forcibly assigned to the next storage unit. An
example is shown in Figure 4.4-3.

70 PART 1 OPERATION

4.4 fcc911ls Command Bit Field

Figure 4.4-3 fcc911s Command Bit Field Data Size and Boundary Alignment Example 3

struct tag3{
int A:10;
int B:5;
int :0;
int C:6;
|3
31(MSB) 25 21

16

0(LSB)

Unoccupied

Unoccupied

PART 1 OPERATION

71

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE

4.5 fcc911ls Command Structure/Union

The structure/union of fcc911ls command data size and boundary alignment are
explained below. The structure/union data size is a multiple of the maximum boundary
alignment size of the members. Boundary alignment for the area itself is accomplished
by means of member maximum boundary alignment. The individual members are
subjected to boundary alignment in accordance with the member type.

B fcc91ls Command Structure/Union
Figure 4.5-1 to Figure 4.5-3 show examples concerning structure/union data size and boundary alignment.

Figure 4.5-1 fcc911ls Command Structure/Union Data Size and Boundary Alignment Example 1

struct st1{ char A;} - sizeof(st1) =1 BYTE
struct st2{ short A;} = sizeof(st2) =2 BYTE
struct st3{ char A; short B;} = sizeof(st3) =4 BYTE
struct st4{ char A;int B;} = sizeof(st4) = 8 BYTE
struct st3{
char A;
short B;
I
31(MSB) 23 15 0(LSB)
A Unoccupied B

Figure 4.5-2 fcc911ls Command Structure/Union Data Size and Boundary Alignment Example 2

struct tag4{
char A;
int B;
5
31(MSB) 23 0(LSB)

A Unoccupied

72 PART 1 OPERATION

Figure 4.5-3 fcc911ls Command Structure/Union Data Size and Boundary Alignment Example 3

4.5 fcc911ls Command Structure/Union

0(LSB)

struct tag5{
char A;
struct tag6{
short A;
char B;
1S6;
I8
sizeof(tag5) = 6 BYTES
sizeof(tag6) = 4 BYTES
31(MSB) 23 15
A Unoccupied S6.A
S6.B Unoccupied

PART 1 OPERATION

73

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE

4.6 fcc911ls Command Function Call Interface

The general rules for control transfer between functions are established as standard
regulations for individual architectures and are called standard linkage regulations. A
module written in C language can be combined with a module written using a different
method (e.g., assembler language) when the standard linkage regulations are complied
with.

B fcc911ls Command Function Call Interface

@ Stack frame

The stack frame construction is stipulated by the standard linkage regulations.

@ Argument

Argument transfer relative to the callee function is effected via a stack or register.

@ Argument extension format

When an argument is to be stored in a stack, the argument type is converted to an extended format in
accordance with the argument type.

@ Calling procedure

The caller function initiates branching to the callee function after argument storage.

@ Register

The register guarantee stated in the standard linkage regulations and the register setup regulations are
explained later.

@® Return value

Thereturn value interface stated in the standard linkage regulations is explained later.

74 PART 1 OPERATION

4.6 fcc911ls Command Function Call Interface

46.1 fcc911ls Command Stack Frame

The standard linkage regulations prescribe the stack frame construction.

B fcc911ls Command Stack Frame

The stack pointer (SP) always indicates the lowest order of the stack frame. Its address value always
represents the word boundary. Figure 4.6-1 and Figure 4.6-2 show the standard function stack frame status.

Figure 4.6-1 fcc91ls Command Stack Frame (when the -K SPEED option is not specified)

(Low)
SP
Argument area
Local variable area
FP

Old FP

Return address storage area

Register save area

Hidden parameter save area

Argument register save area

Parameter area

(High)

Figure 4.6-2 fcc911ls Command Stack Frame (when the -K SPEED option is specified)

(Low)
SP
Argument area
Register area
Local variable area
FP

Old FP

Return address storage area

Hidden parameter save area

Argument register save area

Parameter area

(High)

PART 1 OPERATION 75

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE

@ Argument area/Parameter area

When afunction is called, this areais used for argument transfer. This areais referred to an argument area
when the caller function is used to set up an argument and to a parameter area when the argument is
referenced by the callee function. This area is created when al arguments cannot be contained in an
argument register during the transfer of an argument.

For details, see section "4.6.2 fcc911ls Command Argument”.
@ Local variable area

Thisisthe areafor local variables and temporary variables.

® OId FP

This area stores the frame pointer (FP) value of the caller function.

@ Return address storage area

This area saves the RP. The RP stores the address of a return to the caller function for the purpose of
function calling.

@ Register save area

Thisis a register save area that must be guaranteed for the caller function. This area is not secured when
the register save operation is not needed.

@ Hidden parameter save area

This area stores the start address of the return value storage area for a structure/union return function.

When a structure/union is used as the return value, the caller function stores the return value storage area
start address in register R4 and passes it to the callee function.

The callee function interprets the address stored in the R4 as the return value storage area start address.

When register R4 needs to be saved into memory, the callee function saves it in the hidden parameter save
area. Thisareais not secured when the save operation is not needed.

@ Argument register save area

This area saves the argument register. Thisareais not secured when the save operation is not needed.
For details, see section "4.6.2 fcc911s Command Argument”.

76 PART 1 OPERATION

4.6 fcc911ls Command Function Call Interface

4.6.2 fcc91ls Command Argument

Arguments, the count of which equals the count of argument registers (4 words), are
positioned in registers R4 to R7 and delivered to the callee function. When a structure/
union return function is called, three argument registers (R5 to R7) are used because
the return value area address is stored in register R4. Arguments not placed in the
argument registers will be stored in the stack actual argument area for transfer
purposes. When an 8-byte type argument is to be delivered using registers, it is divided
into two and placed in two registers for transfer.

B fcc91lls Command Argument
When argument registers must be saved to memory, the callee function secures an argument register save
area in the stack. In this case, a continuous argument register save area must be established in the
parameter area. The argument register save area must be allocated as needed to cover the size of the
argument register to be saved.

If the function has a variable count of arguments, it saves al argument registers in the argument register
save area.

Caution

In a C++ program, arguments that do not appear in the source program may be passed. The order
and location in which arguments are stacked may or may not be as desired.

[Example 1]

double d;
sub(d) ; — The high-order words of d are delivered by R4,
and the low-order words of d are delivered by R5.
[Example 2]

int a, b, c;
double d;
sub(a, b, ¢, d); > a is delivered by R4, b by R5, and c by R6.
The high-order words of d are delivered by R7,
and the low-order words of d are delivered by
the stack.
When a structure/union is to be delivered as an argument, the caller copies the structure to the local variable
area and passes the address of that area to the callee. In this case, if the structure/union size is less than 4
bytes or is not divisible by 4, the |ess-than-4-byte fraction is handled as one 4-byte unit.

PART 1 OPERATION 77

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE

78

[Example 3]
struct A st; (Low)
sub(st); R4
st
FP
(High)
[Example 4]
struct A{ char a; }st; (Low)
-4 -
-3 _
Unoccupied
-2
-1 -~
st
FP
(High)

When a function receiving a variable count of arguments is to be called, the arguments are placed in
registers in the same manner as for transfer. The called function stores all the register-delivered arguments
in the argument register save area in the stack.

The argument area is allocated/deallocated by the caller function, whereas the argument register save area
is alocated/deallocated by the callee function.

Figure 4.6-3 and Figure 4.6-4 show the argument formats prescribed in the standard linkage regulations.

PART 1 OPERATION

Figure 4.6-3 fcc911s Command Argument Format Stated in Standard Linkage Regulations

Figure 4.6-4 Argument Format for fcc911s Command Structure/Union Return Function Calling

PART 1 OPERATION

First argument — R4
Second argument — R5
Third argument — R6
Fourth argument — R7

(Low)

Fifth argument

1]
1]
1]

nth argument

(High)

Note: Two argument registers are
required for 8-byte type arguments.

Return value area address — R4

First argument
Second argument
Third argument

(Low)

Fourth argument

1]
]
]

nth argument

(High)

Note: Two argument registers are required
for 8-byte type arguments.

4.6 fcc911ls Command Function Call Interface

79

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE

4.6.3 fcc91ls Command Argument Extension Format

When an argument is to be stored in the stack, its type is converted to an extended type
in accordance with the individual argument type. The argument is freed by the caller
function after the return from the callee function is made.

B fcc91lls Command Argument Extension Format
Table 4.6-1 shows the argument extension format.

Table 4.6-1 fcc911s Command Argument Extension Format

Actual Argument Type Extended Type *1 Stack Storage Size [Byte]
char int 4
signed char int 4
unsigned char int 4
short int 4
unsigned short int 4
int No extension 4
unsigned int No extension 4
long No extension 4
unsigned long No extension 4
float double 8
double No extension 8
long double No extension 8
pointer/address No extension 4
Structure/union - 4 *2
Class - 4 *3

*1: The extended type represents an extended type that is provided when no argument type is given. When
aprototype declaration is made, it is complied with.

*2: When a structure/union is to be delivered as an argument, the caller copiesit to the local variable area
and delivers the address of that area.

*3:Passing of a class as an argument depends on the availability and contents of a copy constructor.
Without the copy constructor, the class is passed in the same manner as the structure.

80 PART 1 OPERATION

4.6 fcc911ls Command Function Call Interface

4.6.4 fcc91ls Command Calling Procedure

The caller function initiates branching to the callee function after argument storage.

B fcc911ls Command Calling Procedure

Figure 4.6-5 and Figure 4.6-6 show the stack frame prevailing at calling in compliance with the standard
linkage regulations.

Figure 4.6-5 Stack Frame Prevailing at Calling in Compliance with fcc911s Command Standard
Linkage Regulations (when the -K SPEED option is not specified)

(Low)
(Caller function)SP —

Argument area

Local variable area
(Caller function) FP —

(High)

Figure 4.6-6 Stack Frame Prevailing at Calling in Compliance with fcc911s Command Standard
Linkage Regulations (when the -K SPEED option is specified)

(Low)
(Caller function)SP —

Argument area

Register save area

Local variable area
(Caller function) FP —

(High)

The callee function saves the caller function frame pointer (FP) in the stack and then stores the prevailing
stack pointer value in the stack as the new frame pointer value. Subsequently, the local variable area and
caller function register save area are acquired from the stack to save the caller register.

Figure 4.6-7 and Figure 4.6-8 show the stack frame that is created by the callee function in compliance with
the standard linkage regulations.

PART 1 OPERATION 81

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE

Figure 4.6-7 Stack Frame Created by Callee Function in Compliance with fcc911s Command
Standard Linkage Regulations (when the -K SPEED option is not specified)

(Low)
(Callee function) SP —

Argument area

Local variable area
(Callee function) FP —

Old FP

Return address storage area

Register save area

Hidden parameter save area

Argument register save area
(Caller function) SP —

Parameter area

Local variable area

(Caller function) FP —

(High)

Figure 4.6-8 Stack Frame Created by Callee Function in Compliance with fcc911s Command
Standard Linkage Regulations (when the -K SPEED option is specified)

(Low)
(Callee function) SP —

Argument area

Register save area

Local variable area

(Callee function) FP —»
Old FP

Return address storage area

Hidden parameter save area

Argument register save area
(Caller function) SP —

Parameter area

Local variable area

(Caller function) FP —

(High)

82 PART 1 OPERATION

4.6 fcc911ls Command Function Call Interface

4.6.5 fcc91ls Command Register

This section states the register guarantee and register setup regulations in the standard
linkage regulations.

B fcc911ls Command Register Guarantee
The callee function guarantees the following registers of the caller function.
» Genera-purpose registers R8 to R11, R14, and R15
The register guarantee is provided when the callee function acquires a hew area from the stack and saves
the register value in that area. Note, however, that registers remaining unchanged within the function are
not saved. If such registers are atered using the ASM statement, etc., no subsequent operations will be
guaranteed.

B fcc91lls Command Register Setup

Theregister regulations for function call and return periods areindicated in Table 4.6-2.

Table 4.6-2 Register Regulations for fcc911ls Command Function Call and Return Periods

Register Call Period Return period
R4 Argument/return value area address* 1 Return value*2
R5 Argument register*1 Return value* 3
R6 and R7 Argument register*1 Not stipul ated
ROto R3 Not stipul ated Not stipulated
R12 and R13 Not stipul ated Not stipulated
R8to R11 Not stipul ated Call period value guaranteed
R14 Frame pointer (FP) Call period value guaranteed
R15 Stack pointer (SP) Call period value guaranteed

*1: There are no stipulations for unused registers in situations where the argument is less than 4 words.

*2: There are no stipulations for situations where a function without the return value is called or a function
with a structure/union type return value is called.

*3: There are no stipulations for situations where the function to be called has a return value other than a
double or long double type.

PART 1 OPERATION 83

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE

4.6.6 fcc911ls Command Return Value

The return value interface stated in the standard linkage regulations is indicated in
Table 4.6-3.

B fcc911ls Command Return Value

Table 4.6-3 fcc911ls Command Return Value Interface Stated in Standard Linkage Regulations

Return Value Type Return Value Interface
void None
char R4
signed char R4
unsigned char R4
short R4
unsigned short R4
int R4
unsigned int R4
long R4
unsigned long R4
float R4
double R4and R5 "1
long double R4 and R5 *1
Pointer/address R4
Structure/union R4 *2
Class R4 3

*1: The 4 high-order bytes of atotal of 8 bytes are stored in R4 and the remaining 4 low-order bytes are stored in R5.

*2: When a structure/union is used as the return value, the caller function stores the start address of the return value storage
area into R4 and then passes it to the callee function. The callee function interprets R4 as the start address of the return
value storage area. When this address needs to be saved in memory, the callee function secures the hidden parameter
save area and saves the address in that area.

*3: Passing of a class as a return value depends on the availability and contents of a copy constructor. Without the copy
constructor, the classis passed in the same manner as the structure.

84 PART 1 OPERATION

4.7 fcc9lls Command Interrupt Function Call Interface

4.7 fcc911ls Command Interrupt Function Call Interface

The interrupt function can be written using the __interrupt type qualifier. If the
interrupt function is called by a method other than an interrupt, no subsequent
operations will be guaranteed. The function call interface within the interrupt function
is the same as stated in the standard linkage regulations.

B fcc91ls Command Interrupt Function Call Interface

@ Interrupt stack frame

When an interrupt occurs, the stack is changed to the interrupt stack.

@ Argument

No argument can be specified for the interrupt function. If any argument is specified for the interrupt
function, no subsequent operations will be guaranteed.

@ Interrupt function calling procedure

The interrupt function is called by an interrupt via the interrupt vector table. If the interrupt function is
called by any other method, no subsequent operations will be guaranteed.

@ Register

Asregards the interrupt function, all registers are guaranteed.

@ Return value

Interrupt function does not usually have areturn value.

PART 1 OPERATION 85

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE

4.7.1 fcc911ls Command Interrupt Stack Frame

When an interrupt occurs, the stack is changed to the interrupt stack.

B Interrupt Stack Frame

When an interrupt occurs, the stack pointer (SP) is replaced by the interrupt stack pointer (SSP). Within
the interrupt function, the interrupt stack pointer is used as the normal stack pointer.

Figure 4.7-1 shows the interrupt stack frame status prevailing immediately after interrupt generation.

Figure 4.7-1 fcc911ls Command Interrupt Stack Frame

(Low)

SP(SSP)

PC prevailing at interrupt generation

PS prevailing at interrupt generation

(High)

86 PART 1 OPERATION

4.7 fcc9lls Command Interrupt Function Call Interface

4.7.2 fcc911ls Command Interrupt Function Calling Procedure

The interrupt function is called by an interrupt via the interrupt vector table. If the
interrupt function is called by any other method, no subsequent operations will be
guaranteed.

B Interrupt Function Calling Procedure
Figure 4.7-2 shows an example of interrupt vector table.

Figure 4.7-2 fcc911ls Command Interrupt Vector Table

(Low)
TBR
Interrupt function address 255 Vector No.255
1
v
1
Interrupt function address 1 Vector No.1
Interrupt function address 0 Vector No.0
(High)

When an interrupt is generated, the vector table corresponding to the interrupt vector number is referenced
according to the following calculation.

TBR + Ox3FC - (4 X vector number)

PART 1 OPERATION 87

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE

88 PART 1 OPERATION

CHAPTER 5
EXTENDED LANGUAGE
SPECIFICATIONS

This chapter explains about the extended language
specifications supported by the compiler. The
limitations on compiler translation are also described in
this chapter.

5.1 Assembler Description Functions

5.2 Interrupt Control Functions

5.3 1/0O Area Access Function

5.4 In-line Expansion Specifying Function
5.5 Section Name Change Function

5.6 Interrupt Level Setup Function

5.7 Intrinsic Function

5.8 Predefined Macros

5.9 Limitations on Compiler Translation
5.10 Re-include Prevention Function

5.11 Function for Controlling Instantiation of C++ Template

PART 1 OPERATION 89

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

5.1

Assembler Description Functions

There are the following two assembler description functions.

1 asm statement
2 Pragma instruction

B Description by asm Statement

When the asm statement is written, the character string literal is expanded as the assembler instruction.
This function makes it possible to write the asm statement inside and outside the function.

90

[General format]

_asm (Character string literal);
[Explanation]

When the asm statement is written inside the function, the assembler is expanded at the written position.

When the statement is written outside the function, it is expanded as an independent section. Therefore,
if the statement is to be written outside the function, be sure to write the section definition pseudo
instruction to define the section. If the section is not defined, no subsequent operations will be

guaranteed.

When using a general -purpose register within the asm statement in the function during fcc911s command
execution, the user is responsible for register saving and restoration. However, the user need not do the
register saving and restoretion to general-purpose registers RO to R3, R12, and R13.

If the asm statement existsin a C/C++ source program, a part of optimization is stopped even when the -

O optimization option is specified.

[Example]
Input: /* When written inside the function */
extern int temp;
sample () {
__asm(" LDI #1,
__asm(" LDI:32 # temp,
__asm(" ST RO,
}
/* When written outside the function */
__asm (" .SECTION DATA, DATA, ALIGN=4");
__asm(" .GLOBAL _a");
__asm("_a:");
__asm(" .RES.B 4");
Output: .SECTION CODE, ALIGN=2
jmmmm e begin of function
.GLOBAL _sample
sample
ST RP, @-SP
ENTER #4
LDT #1, RO

LDI:32 #_temp, RI12

PART 1 OPERATION

5.1 Assembler Description Functions

ST RO, @R12
L_sample:
LEAVE
LD @SP+, RP
RET
.SECTION DATA, DATA, ALIGN=4
.GLOBAL _a
_a:
.RES.B 4

B Description by Pragma Instruction

The descriptions between "#pragma asm” and "#pragma endasm” are expanded directly as the assembler
instruction. This function makesit possible to write the statement inside and outside the function.

[General format]

#pragma asm
Assembler description
#pragma endasm

[Explanation]

When the statement is written inside the function, the assembler is expanded at the written position.

When the statement is written outside the function, it is expanded as an independent section. Therefore,
if the statement is to be written outside the function, be sure to write the section definition pseudo
instruction to define the section. If the section is not defined, no subsequent operations will be
guaranteed.

When using a general -purpose register within the asm statement in the function during fcc911s command
execution, the user is responsible for register saving and restoration. However, the user need not do the
register saving and restoretion to general-purpose registers RO to R3, R12, and R13.

If the assembler provided by #pragma asm/endasm exists in the C source program, a part of optimization
is stopped even when the -O optimization option is specified.

PART 1 OPERATION 91

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

92

[Example]
Input:

/* When written inside the function */

extern int temp;
sample () {

#pragma asm

LDT #1, RO
LDI:32 # temp, R12
ST RO, @R12

#pragma endasm

}

/* When written outside the function */

#pragma asm
.SECTION DATA,
.GLOBAL _a

.RES.B 4
#pragma endasm
.SECTION CODE,
PR —— begin of function
.GLOBAL _sample

_sample:
ST RP, @-SP
ENTER #4
LDT #1, RO
LDI:32 # temp, R12
ST RO, @R12

L _sample:
LEAVE
LD @SP+, RP
RET
.SECTION DATA,
.GLOBAL _a

_a:
.RES.B 4

DATA, ALIGN=4

CODE, ALIGN=2

DATA, ALIGN=4

PART 1 OPERATION

5.2 Interrupt Control Functions

5.2 Interrupt Control Functions

There are the following five interrupt control functions.

1 Interrupt mask setup function

2 Interrupt mask disable function

3 Interrupt level setup function

4 Interrupt function description function

5 Interrupt vector table generation function

B Interrupt Mask Setup Function
[General format]
void __Dl(void);
[Explanation]
Expands the interrupt masking code.
[Example]
Input: _ DI();
Output:
ANDCCR #0xef
B Interrupt Mask Disable Function

[General format]
void __El(void);
[Explanation]
Expands the interrupt masking disable code.
[Example]
Input: _ EI();
Output:
ORCCR #0x10

PART 1 OPERATION

93

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

B Interrupt Level Setup Function
[General format]
void __set il(int level);
[Explanation]
Expands the code for changing the interrupt level to the specified level.
[Example]
Input: set 11(2);
Output:
STILM #2
B Interrupt Function Description Function

[General format1]

__interrupt void Interrupt function (void){ ...}
[General format2]

extern __interrupt void Interrupt function (void);
[Explanation]

The interrupt function can be written by specifying the __interrupt type quaifier. Since the interrupt
function is called by an interrupt, it is impossible to set up an argument or obtain a return value. If a
function declared or defined by the __interrupt type qualifier is called by performing the normal function
calling procedure, no subsequent operations will be guaranteed.

[Example]
Input: _ _interrupt void sample(void){ ... }
Output:
_func:
STM (R12, R13)
ST MDH, @-SP
ST MDL, @-SP
ST RP, @-SP
ENTER #4
L func:
LEAVE
LD @SP+, RP
LD @SP+, MDL
LD @SP+, MDH
LDM (R12, R13)
RETI

94 PART 1 OPERATION

5.2 Interrupt Control Functions

B Interrupt Vector Table Generation Function

[General format]

#pragmaintvect [Interrupt function name |32-bit unsigned constant] Vector number
#pragma defvect Interrupt function name

[Explanation]
#pragma intvect generates an interrupt vector table for which the interrupt function is set.

For product that can set the reset mode, the reset mode can be specified by setting the mode value to
vector 1. Please see the LS| specification Manual for details of the reset mode.

#pragma defvect specifies the default interrupt function to be set for interrupt vectors not specified by
#pragmaintvect.

Theinterrupt vector table is generated in an independent section named INTVECT.

All interrupt vector tables must be defined using the same trandlation unit (file). If #pragma intvect or
#pragma defvect is specified using two or more trandation units, no subsequent operations will be
guaranteed.

The definition cannot be formulated two or more times for the same vector number. However, no error
occursif the definitions are identical.

No value other than an integer constant may be specified as the vector number. Specify a vector number
between 0 and 255.

The reset vectors must aways be assigned to OxFFFFC. For this reason, to set TBR to other than
OxFFCO00, use the asm statement to define reset vectors separately.

The mode value for the reset vector must always be assigned to OXFFFF8. The vector number
corresponding to OXFFFF8 is vector 1.

<Caution>

Please set the reset mode to the most significant byte of 32-bit constant value set to vector 1. The value
set to three subordinate position bytesis disregarded.

[Example]

Please describe the reset mode as follows when the reset mode is 5.

Input:
extern _ interrupt void startup();
#pragma intvect startup 0 // The reset vector
#pragma intvect 0x05000000 1 // The reset mode
Output:
.SECTION INTVECT, CONST, ALIGN=4
.ALIGN 4
.DATAB.W 254, 0
.DATA.W 0x5000000 ;; The reset mode is 5
.DATA.W _startup ;; The reset vector

PART 1 OPERATION 95

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

5.3

/O Area Access Function

The I/O area operation variable can be defined by specifying the __io type qualifier.

B 1/O Area Access Function

96

[General format]

__ioVariable definition;

[Explanation]

The fcc91lls command enables the definition of variables operating the 1/0 area defined between
addresses 0x00 and Oxff by specifying the __io type qualifier. The fcc911ls command makes variables
available up to address 0x3ff, depending on their type. Since a highly efficient dedicated instruction is
provided for 1/O area access, a higher-speed, more-compact object can be generated. This instruction
cannot be used for variables operating an 1/O area positioned at addresses higher than Oxff. To define a
variable that accesses such an area, use the volatile type qualifier.

Theinitial value cannot be specified for variables for which the __io type qualifier is specified.

When the specified variable is for a structure or union, it is assumed that all members are positioned in
the 1/O area. The variable cannot be specified for structure or union members. For the variable for which
the __io type qualifier is specified, compilation is conducted on the assumption that the volatile type
qualifier is specified.

When the -K NOVOLATILE option is specified, the volatile type qualifier is not assumed to be specified
for the variable for which the __io type qualifier is specified.

When the __io type qudifier is specified for an automatic variable, the variable is not treated as a
variable positioned in the 1/O area but an automatic variable for which the volatile type qualifier is
specified.

[Example]
Input: #pragma section IO=IOA ,attr=I0 ,locate=0x10
_ _io int a;
void func(void){ a=1;}
Output:
.SECTION IOA ,IO ,LOCATE=H'00000010
.GLOBAL _a
_a:
.RES.B 4
.SECTION CODE, CODE, ALIGN=2
o - begin of function
.GLOBAL _func
_func:
ST RP, @-SP
ENTER #4
LDT #1, RO
MOV RO, R13
DMOV R13, @ a
L func:
LEAVE
LD @SP+, RP
RET

PART 1 OPERATION

5.4 In-line Expansion Specifying Function

54 In-line Expansion Specifying Function

This function specifies the user definition function for in-line expansion. In-line
expansion can be specified with the -x option.

B In-line Expansion Specifying Function
[General format]
#pragma inline Function name [, Function name...]
[Explanation]

Recursively called functions cannot be subjected to in-line expansion. It should also be noted that
functions may not be subjected to in-line expansion depending on asm statement use, structure/union type
argument presence, setjmp function calling, and other conditions.

When there are two or more descriptions for the same trandation unit or in-line expansion is specified by
an option, all the specified function names are valid.

Thein-line expansion specifying isinvalid if the -O option is not specified.

PART 1 OPERATION 97

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

5.5

Section Name Change Function

This function is used to change the section name or section attribute and sets the
section arrangement address.

B Section Name Change Function(#pragma section)

98

[General format]

#pragma section DEFSECT[=NEWNAME][,attr=SECTATTR][,locate=ADDR]
[Explanation]
Change the section name to be output by the compiler from DEFSECT to NEWNAME and the section
typeto SECTATTR.
The locate address may al so be specified as ADDR.

When "=NEWNAME" is omitted, the section name is not changed. Depending on DEFSECT, some
section typeisinvalid. Please do not put any blanks before and behind =.

For the section name to be output by the compiler, see section "4.1 Section Structure of fcc91lls
Command"; for the section type that can be output, refer to the Assembler Manual .

When the locate address is given, it cannot be specified for the section at linking.
<Caution>
The #pragma section affects the entire source, regardless of the location. If DEFSECT is specified many
times, the last oneisvalid. If DEFSECT is specified by the -s option, it takes priority over the others.
The EXT_CTOR_DTOR section cannot be specified and its output is fixed.

[Examplé]
Input: #pragma section CODE=program,attr=CODE, locate=0xff
void main(void) {}
Output:

.SECTION program, CODE, LOCATE=H'OO0OOOOFF,
jommm--- begin of function
.GLOBAL _main

_main:
ST RP, @-SP
ENTER #4

L main:
LEAVE
LD @SP+, RP
RET

PART 1 OPERATION

5.5 Section Name Change Function

B Section Name Change Function(#pragma segment)
[General format]

#pragma segment DEFSECT[=NEWNAME][,attr=SECTATTR][,locate=ADDR]

[Explanation]
The section name output by the compiler is changed from DEFSECT to NEWNAME and the section
typeis changed to SECTATTR.

When "=NEWNAME" is omitted, the section name is not changed. Depending on DEFSECT, some
section typeisinvalid. Please do not put any blanks before and behind =.

For the section name to be output by the compiler, see section "4.1 Section Structure of fcc91lls
Command"; for the section type that can be output, refer to the Assembler Manual .

The #pragma segment acts on the function definition, the variable definition and the variable declaration
since the described line. This specification is effective until the #pragma segment of same next
DEFSECT is described. (The description of the #pragma segment that DEFSECT is different does not
influence mutually.)

When #pragma segment without NEWNAME is described, the section name of DEFSECT since the line
becomes the section name of default.

When neither the function definition, the variable definition nor the variable declaration on which it acts
since the line where the #pragma segment is described are defined, the #pragma segment is disregarded.

The #pragma section and -s option of the section alone not specified by the #pragma segment act when
the #pragma segment, the #pragma section or -s option is specified at the same time.

The INTVECT section cannot specify.

PART 1 OPERATION 99

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

[Example]

Input:
#pragma segment CODE=programl
void funcl (void) {}
#pragma segment DATA=raml
int al;
#pragma segment CODE=program2
void func2 (void) {}
#pragma segment DATA=ram2

int a2;
Output:

.SECTION ram2, DATA, ALIGN=4
.GLOBAL _a2

_a2:
.RES.B 4
.SECTION raml, DATA, ALIGN=4
.GLOBAL _al

_al:
.RES.B 4
.SECTION programl, CODE, ALIGN=2
.GLOBAL _funcl

_funcl:
RET
.SECTION program2, CODE, ALIGN=2
.GLOBAL _func2

_func2:

RET
<Caution>

#pragma segment works on the position of the first variable definition/variable declaration in the file.

Please direct the variable declaration the change in the section name if there is a variable declaration
before the variable definition.

[Example]
Input:
#pragma segment CONST=constl,attr=CONST, locate=0xf£f00
extern const int var; //Variable declaration
#pragma segment CONST=const2,attr=CONST, locate=0xff10

const int var=10; //Variable definition

#pragma segment CODE=programl,attr=CODE, locate=0xf£20
extern void func(void); //Function declaration
#pragma segment CODE=program2,attr=CODE, locate=0xf£30
void func (void) {} //Function definition

Output section of variable/function

Variable/function name Output section hame

_var constl

_func program?2

100 PART 1 OPERATION

5.6 Interrupt Level Setup Function

5.6 Interrupt Level Setup Function

This function is used to set the function interrupt level.

B Interrupt Level Setup Function
[General format]
#pragmailm(NUM)
#pragma noilm
[Explanation]
#pragmailm specifies the interrupt level for the subsequently defined function.
#pragma noilm clears the interrupt level specifying.

When #progma ilm is described in the function, the interrupt level of the function is set. When #progma
noilm is described in the function, the interrupt level of the function is not set.

At fcc911ls command, an integer constant between 0 and 31 can be specified in the NUM position. A
hexadecimal, octal, or decimal number can be described.

Although the interrupt level is changed at the beginning of the specified function, remember that the new
interrupt level does not revert to the previous level at completion of function execution.

Always specify #pragmailm and #pragmanoilm as aset. Nesting is not possible.
[Example]
Input: #pragma ilm(1)
void func (void) {}

#pragma noilm

Output:

_func:
STILM #1
ST RP, @-SP
ENTER #4

L func:
LEAVE
LD @SP+, RP
RET

PART 1 OPERATION 101

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

57 Intrinsic Function

The following intrinsic functions are available.
e __wait_nop
* Integer operation intrinsic function

B __ wait_nop Intrinsic Function
[General format]
void __ wait_nop(void);
[Explanation]

To properly time I/O access and interrupt generation, formerly, the NOP instruction was inserted using
the asm statement. However, when such a method is used, the asm statement may occasionally inhibit

various forms of optimization and greatly degrade the file object efficiency.

When the __wait_nop() intrinsic function is written, the compiler outputs one NOP instruction to the
function call entry position. If the function call entry is performed a count of times until all the issued
NOP instructions are covered, timing control is exercised to minimize the effect on optimization.

[Example]
Input: void sample(void){ wait nop() ;}
Output:
_sample:
ST RP, @-SP
ENTER #4
NOP
L sample:
LEAVE
LD @SP+, RP
RET

102

PART 1 OPERATION

5.7 Intrinsic Function

5.7.1 Integer Operation Intrinsic Function

This function is used to the integer operation instructions supported by the FR family
CPU.

To use the integer operation intrinsic function, always include the header file (builtin.h)
for integer operation intrinsic function. When the header file is not included, the
function cannot be recognized as the intrinsic function.

 __mulsh (Signed 16-bit Multiply)
__muluh (Unsigned 16-bit Multiply)
__muls (Signed 32-bit Multiply)
__mulu (Unsigned 32-bit Multiply)
__divsb (Signed 8-bit Division)
__divub (Unsigned 8-bit Division)
__divsh (Signed 16-bit Division)
__divuh (Unsigned 16-bit Division)
__modsb (Signed 8-bit Modulo)
__modub (Unsigned 8-bit Modulo)
__modsh (Signed 16-bit Modulo)
__moduh (Unsigned 16-bit Modulo)

B mulsh Intrinsic Function
[General Format]
long __mulsh(signed short &, signed short b);
[Explanation]
Thisintrinsic function multiplies signed 16-bit data by signed 16-bit data to return a signed 32-hit result.
It is possible to multiply it by CPU MULH instruction by the use of thisintrinsic function.
[Example]
Input: #include <builtin.hs>
extern signed short argl, arg2;
extern long ans;
void sample (void)
ans = _ mulsh(argl, arg2);
}
Output: LDI:32 # argl,R4
LDI:32 #_arg2,R3
LDUH @R4,R2 ; _argl
LDUH @R3,R1 ; _arg2

PART 1 OPERATION 103

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

EXTSH R2

EXTSH R1

MULH R1,R2
LDI:32 # ans,R2
MOV MDL,R12
ST R12,@R2

B __ muluh Intrinsic Function

104

[General Format]
unsigned long __muluh(unsigned short a, unsigned short b);
[Explanation]

This intrinsic function multiplies unsigned 16-bit data by unsigned 16-bit data to return an unsigned 32-

bit result.

It is possible to multiply it by CPU MULUH instruction by the use of thisintrinsic function.

[Example]
Input: #include <builtin.hs>

extern unsigned short argl, arg2;

extern unsigned long ans;

void sample (void)

ans = _ muluh(argl, arg2);

}

Output: LDI:32 # argl,R2
LDI:32 # arg2,R1l
LDUH @R2,R5 ; _argl
LDUH @R1,R4 ;j _arg2
LDI:32 #_ans,RO
MULUH R4 ,R5
MOV MDL,R12
ST R12,@R0O

PART 1 OPERATION

B _ muls Intrinsic Function
[General Format]

signed long long __muls(signed long &, signed long b);
[Explanation]
Thisintrinsic function multiplies signed 32-bit data by signed 32-bit data to return a signed 64-bit result.
It is possible to multiply it by CPU MUL instruction by the use of thisintrinsic function.

Thisintrinsic function is expanded by specifying the -K LONGLONG option.

[Exam

PART 1 OPERATION

ple]

Input: #include <builtin.hs>
extern signed long argl,

extern signed long long ans;

void sample (void)

ans = _ muls(argl, arg2);

}

Output: LDI:32
LD
LDI:32
LD
MUL
MOV
MOV
LDI:32
ST
LDT
ST

argl,R12
@R12,R0

arg2,R12
@R12,R12
R12,RO0
MDL, RO
MDH, R12

ans,R1
R12,@R1
#4,R13
RO,@(R13,R1)

arg2;

I

7

!

_argl

; _arg2

ans

ans

5.7 Intrinsic Function

105

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

B __ mulu Intrinsic Function

106

[General Format]
unsigned long long __mulu(unsigned long a, unsigned long b);

[Explanation]

This intrinsic function multiplies unsigned 32-bit data by unsigned 32-hit data to return a unsigned 64-hit

result.

It ispossible to multiply it by CPU MUL instruction by the use of thisintrinsic function.

Thisintrinsic function is expanded by specifying the -K LONGLONG option.

[Example]

Input:

Output:

#include <builtin.h>

extern unsigned long argl,

extern unsigned long long ans;

void sample (void)

ans = _ mulu(argl,

}

LDI:32 # argl,R12

LD @R12,R0
LDI:32 # arg2,R12
LD @R12,R12
MUL R12,R0
MOV MDL, RO

MOV MDH, R12
LDI:32 # ans,R1

ST R12,@R1

LDI #4 ,R13

ST RO,@(R13,R1)

PART 1 OPERATION

5.7 Intrinsic Function

B _ divsb Intrinsic Function
[General Format]
signed short __divsb(signed char a, signed char b);
[Explanation]
This intrinsic function performs a division between signed 8-bit data and signed 8-bit data to return a
signed 16-bit result.
It is possible to divide by the step DIV instruction of CPU by the using this intrinsic function.
[Example]
Input: #include <builtin.h>
extern signed char argl, arg2;
extern short ans;
void sample (void)
ans = _ divsb(argl, arg2);
}

Output: LDI:32 # argl,R4

LDUB @R4 ,R1 ; _argl
LDI:32 # arg2,R3
EXTSB R1

LDUB @R3,R2 ; _arg2
LSL #24,R1
MOV R1,MDL
EXTSB R2

DIVOS R2

DIV1 R2

DIVl R2

DIV1 R2

DIVl R2

DIV1 R2

DIVl R2

DIV1 R2

DIV1 R2

DIV2 R2

DIV3

LDI:32 # ans,R3
DIV4sS

MOV MDL, RO
STH RO, @R3

PART 1 OPERATION 107

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

B _ divub Intrinsic Function
[General Format]

unsigned char __divub(unsigned char a, unsigned char b);
[Explanation]
Thisintrinsic function performs a division between unsigned 8-bit data and unsigned 8-bit data to return
an unsigned 8-bit result.
It is possible to divide by the step DIV instruction of CPU by the using this intrinsic function.
[Example]
Input: #include <builtin.h>
extern unsigned char argl, arg2;
extern unsigned char ans;
void sample (void)
ans = _ divub(argl, arg2);
}

Output: LDI:32 # argl,R3

LDUB @R3,R1 ; argl
LDI:32 #_arg2,R2

LSL #24,R1

LDUB @R2,R5 ; _arg2
MOV R1,MDL

DIVOU R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

LDI:32 # ans,R2

MOV MDL, RO

STB RO, @R2

108 PART 1 OPERATION

5.7 Intrinsic Function

B _ divsh Intrinsic Function
[General Format]
signed long __divsh(signed short a, signed short b);
[Explanation]
This intrinsic function performs a division between signed 16-bit data and signed 16-bit data to return a
signed 32-bit result.
Itis possibleto divide by the step DIV instruction of CPU by the using thisintrinsic function.
[Example]
Input: #include <builtin.hs>
extern signed short argl, arg2;
extern long ans;
void sample (void)
ans = _ divsh(argl, arg2);

}

Output: LDI:32 # argl,R4

LDUH @R4,R1 ; _argl
LDI:32 # arg2,R3
EXTSH R1

LDUH @R3,R2 ; _arg2
LSL #16,R1
MOV R1,MDL
EXTSH R2

DIVOS R2

DIV1 R2

DIVl R2

DIV1 R2

DIVl R2

DIV1 R2

DIVl R2

DIV1 R2

DIV1 R2

DIV1 R2

DIVl R2

DIV1 R2

DIV1 R2

DIV1 R2

DIVl R2

DIV1 R2

DIVl R2

DIV2 R2

DIV3

LDI:32 # ans,R2
DIV4S

MOV MDL,R12

PART 1 OPERATION 109

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

ST R12,@R2

B _ divuh Intrinsic Function
[General Format]

unsigned short __divuh(unsigned short a, unsigned short b);
[Explanation]
This intrinsic function performs a division between unsigned 16-bit data and unsigned 16-bit data to
return an unsigned 16-bit result.
It is possible to divide by the step DIV instruction of CPU by the using this intrinsic function.
[Example]
Input: #include <builtin.h>
extern unsigned short argl, arg2;
extern unsigned short ans;
void sample (void)
ans = _ divuh(argl, arg2);
}

Output: LDI:32 # argl,R3

LDUH @R3,R1 ; argl
LDI:32 #_arg2,R2
LSL #16,R1
LDUH @R2,R5 ; _arg2
MOV R1,MDL
DIVOU RS

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

LDI:32 # ans,R2
MOV MDL, RO
STH RO, @R2

110 PART 1 OPERATION

5.7 Intrinsic Function

B _ modsb Intrinsic Function
[General Format]
signed char __modsb(signed char a, signed char b);
[Explanation]
This intrinsic function performs a modulo operation between signed 8-bit data and signed 8-bit data to
return a signed 8-bit result.
Itis possibleto divide by the step DIV instruction of CPU by the using thisintrinsic function.
[Example]
Input: #include <builtin.hs>
extern signed char argl, arg2;
extern signed char ans;
void sample (void)
ans = __ modsb(argl, arg2);

}

Output: LDI:32 # argl,R4

LDUB @R4,R1 ; _argl
LDI:32 # arg2,R3
EXTSB R1

LDUB @R3,R2 ; _arg2
LSL #24,R1
MOV R1,MDL
EXTSB R2

DIVOS R2

DIV1 R2

DIVl R2

DIV1 R2

DIVl R2

DIV1 R2

DIVl R2

DIV1 R2

DIV1 R2

DIV2 R2

DIV3

LDI:32 # ans,R3
DIV4S

MOV MDH, RO
STB RO, @R3

PART 1 OPERATION 111

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

B _ modub Intrinsic Function
[General Format]

unsigned char __modub(unsigned char a, unsigned char b);
[Explanation]
This intrinsic function performs a modulo operation between unsigned 8-bit data and unsigned 8-bit data
to return an unsigned 8-bit result.
It is possible to divide by the step DIV instruction of CPU by the using thisintrinsic function.
[Example]
Input: #include <builtin.h>
extern unsigned char argl, arg2;
extern unsigned char ans;
void sample (void)
ans = _ modub(argl, arg2);

}

Output: LDI:32 # argl,R3

LDUB @R3,R1 ; _argl
LDI:32 #_arg2,R2

LSL #24,R1

LDUB @R2,R5 ; _arg2
MOV R1,MDL

DIVOU RS

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

LDI:32 # ans,R2

MOV MDH, RO

STB RO, @R2

112 PART 1 OPERATION

5.7 Intrinsic Function

B __ modsh Intrinsic Function
[General Format]

signed short __modsh(signed short a, signed short b);
[Explanation]
This intrinsic function performs a modulo operation between signed 16-bit data and signed 16-bit data to
return a signed 16-bit result.
It is possible to divide by the step DIV instruction of CPU by the using this intrinsic function.
[Example]
Input: #include <builtin.h>
extern signed short argl, arg2;
extern signed short ans;
void sample (void)
ans = _ modsh(argl, arg2);

}

Output: LDI:32 #_argl,R4

LDUH @R4 ,R1 ; _argl
LDI:32 # arg2,R3
EXTSH R1

LDUH @R3,R2 ; _arg2
LSL #16,R1
MOV R1,MDL
EXTSH R2

DIVOS R2

DIV1 R2

DIVl R2

DIV1 R2

DIVl R2

DIV1 R2

DIVl R2

DIV1 R2

DIVl R2

DIV1 R2

DIVl R2

DIV1 R2

DIV1 R2

DIV1 R2

DIVl R2

DIV1 R2

DIV1 R2

DIV2 R2

DIV3

LDI:32 # ans,R3
DIV4sS

MOV MDH, RO

PART 1 OPERATION 113

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

STH RO, @R3

B __ moduh Intrinsic Function
[General Format]

unsigned short __moduh(unsigned short a, unsigned short b);
[Explanation]
This intrinsic function performs a modulo operation between unsigned 16-bit data and unsigned 16-hit
data to return an unsigned 16-bit result.
It is possible to divide by the step DIV instruction of CPU by the using thisintrinsic function.
[Example]
Input: #include <builtin.h>
extern unsigned short argl, arg2;
extern unsigned short ans;
void sample (void)
ans = _ moduh(argl, arg2);

}

Output: LDI:32 # argl,R3

LDUH @R3,R1 ; _argl
LDI:32 #_arg2,R2
LSL #16,R1
LDUH @R2,R5 ; _arg2
MOV R1,MDL
DIVOU R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

LDI:32 # ans,R2
MOV MDH, RO
STH RO, @R2

114 PART 1 OPERATION

5.8 Predefined Macros

5.8 Predefined Macros

Macro names predefined by the compiler are explained below.

B Macros Stipulated by ANSI Standard
The ANSI standard stipulates the macros listed in Table 5.8-1.

Table 5.8-1 Macros stipulated by the ANSI standard

Macro Description

__LINE__ Defines line number of current source line.

__FILE__ Defines source file name.

__ DATE _ Defines source file translation date.

__TIME__ Defines source file translation time.

__SIDC__ Macro indicating that the processing system meets requirements. When the -Ja
option is specified, 0 is selected as the definition. When the -Jc option is specified,
1 is selected asthe definition.

In addition to the macros listed in Table 5.8-1, C++ has the macroslisted in Table 5.8-2.

Table 5.8-2 C++ macros (in addition to the macros stipulated by the ANSI standard)

Macro Description
__cplusplus 1 is defined.
c_plusplus lisdefined. Nothing is defined when the -Jc option is specified.
__embedded_cplusplus 1 isdefined only when the default -Je option is specified.

B Macros Predefined by fcc911s Command

The fcc911s command predefines the following macros.

Table 5.8-3 Macros predefined by fcc911ls command

Macro Description
__COMPILER_FCC911 1isdefined.
___CPU_MB number___ 1isdefined. "MB number" of macro nameis actually the MB
number specified by the -cpu option.
__CPU FR__ Either of them is defined as 1, depending on the MB number
__CPU_FR80__ specified by the -cpu option.

PART 1 OPERATION 115

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

5.9 Limitations on Compiler Translation

Table 5.9-1 shows the translation limitations to be imposed when the compiler is used.
The table also indicates the minimum ANSI standard to be met.

B Limitations on Compiler Translation

Table 5.9-1 List of Translation Limitations (1/2)

. ANSI .
No. Function Standard Compiler

1 Count of nesting levels for a compound statement, repetition 15 infinit
control structure, and selection control structure y

2 | Count of nesting levels for condition incorporation 8 infinity
Count of pointers, arrays, and function declarators (any

3 | combinations of these) for qualifying one arithmetic type, 12 infinity
structure type, union type, or incomplete type in a declaration

4 Count of nests provided by parentheses for one complete 31 infinity
declarator

5 Count of nest expressions provided by parentheses for one 2 infinity
complete expression

6 Count of valid leading characters of internal identifier or macro 31 1024
name

7 | Count of valid leading characters of external identifier 6 1024

8 | Count of external identifiers of one trandation unit 511 infinity

9 | Count of identifiers having the block valid range in one block 127 infinity

10 Count qf macro names that can be simultaneously defined by one 1004 infinity
tranglation unit

11 | Count of virtual arguments in one function definition 31 infinity

12 | Count of actual arguments for one function call 31 infinity

13 | Count of virtual arguments in one macro definition 31 infinity

14 | Count of actual argumentsin one macro call 31 infinity

15 | Maximum count of charactersin onelogica source line 509 infinity

16 Count of charactersin a (linked) byte character string literal or 509 infinit
wide-angle character string literal (terminal character included) y

17 | Count of bytes of one arithmetic unit 32767 infinity

18 | Count of nesting levels for #includefile 8 infinity

116 PART 1 OPERATION

5.9 Limitations on Compiler Translation

Table 5.9-1 List of Translation Limitations (2/2)

. ANSI .
No. Function Standard Compiler
Count of case name cards in one switch statement (excluding o
19 nested switch statements) 251 infinity
20 | Count of members of one structure or union 127 infinity
21 | Count of enumerated type constants in one enumerated type 127 infinity
29 Count o_f structure or union nesting levels for one structure 15 infinity
declaration array

The"infinity" in the above table indicates the dependence on the memory size available for the system.

PART 1 OPERATION

117

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

5.10 Re-include Prevention Function

The file can have #pragma once to prevent the header file from being re-included.

B Re-include Prevention Function
The file can have #pragma once to prevent the header file from being re-included. The include file specified
by #include directive described after #progma once becomes the target of the re-include prevention.
[Example]
filel.h:
#pragma once
#include "file2.h"
file2.h:
#pragma once
#include "filel.h"
file3.c:
#include "filel.h" /* filel.h file2. h are included one each. */

118 PART 1 OPERATION

5.11 Function for Controlling Instantiation of C++ Template

5.11 Function for Controlling Instantiation of C++ Template

#pragma instantiate forces instantiation.
#pragma do_not_instantiate does not provide instantiation.

B Function for Controlling Instantiation of C++ Template
Instantiation of a C++ template can be controlled depending on the following settings:
1 #pragmainstantiate template name
2 #pragmado_not_instantiate template name
The types that can be specified as template names are given below:
Template class name: A<int>
Template class declaration: class A<int>
Member function name: A<int>: : f
Static data member name: A<int>: : i
Static data member declaration: int A<int>: :i
Member function declaration: void A<int> : : f (int, char)
Template function declaration: char *f(int, float)

~N O 0o~ W NP

@ #pragma instantiate

The specified template is forcibly instantiated in the module.

Instantiation requires a complete template definition.

@ #pragma do_not_instantiate

The specified template is not instantiated in the module.

Caution

When executing modules, #pragma instantiate is specified only for one template in one module. In
other modules, #pragma do_not_instantiate must be specified.

PART 1 OPERATION 119

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

120 PART 1 OPERATION

CHAPTER 6
EXECUTION ENVIRONMENT

User programs are executed with or without the
existence of an operating system.

In an environment in which the operating system exists,
it is necessary to prepare the setup process suitable for
the environment.

This chapter describes the user program execution
procedure to be performed in an environment where no
operating system exists.

6.1 Execution Process Overview

6.2 Startup Routine Creation

PART 1 OPERATION 121

CHAPTER 6 EXECUTION ENVIRONMENT

6.1 Execution Process Overview

In an environment where no operating system exists, it is necessary to prepare the
startup routine which initiates user program execution.

B Execution Process Overview
The main functions to be incorporated into the startup routine are as follows.

@ Environment initialization necessary for program operation

Thisinitialization must be described by the assembler and completed before user program execution.

@ User program calling

The main function, which is normally used as the function that the startup routine calls in the program start
process, isto be called.

@ Shutdown process

After a return from the user program is made, the shutdown process necessary for the system is to be
performed to accomplish program termination.

The relationship between the startup routine and user function calling is shown in Figure 6.1-1.

Figure 6.1-1 Relationship between Startup Routine and User Function Calling

Startup routine Main function

Environment initial setup

User program
User program calling

Shutdown process Library

The precautions to be observed in startup routine preparation are described below.

@ Stack

When the user program is executed, the stack is used for return address, argument storage area, automatic
variable area, and register saving, etc. The stack must therefore be provided with an adequate space.

122 PART 1 OPERATION

6.1 Execution Process Overview

@ Register

When the startup routine calls the user program, it is essential that stack pointer setup be completed. The
user program operates on the presumption that the stack top is set as the stack pointer. Further, when the
startup routine returns from the user program, the register statusis as shown in Table 6.1-1. Thisis because
the employed interface is the same as for register guarantee at the time of function calling.

For register guarantee, see section "4.6.5 fcc91lls Command Register”. If the guarantee of a register is
caled for by the system while the value of that register is not guaranteed by the user program, it is
necessary to guarantee the value by the startup routine to initiate calling.

Table 6.1-1 fcc911ls Command Register Status Prevailing at Return from User Program

Register Value Guarantee at Return
RO to R7 Not provided
R12to R13 Not provided
R8 and R11 Provided
R14 (FP) Provided
R15 (SP) Provided

PART 1 OPERATION 123

CHAPTER 6 EXECUTION ENVIRONMENT

6.2 Startup Routine Creation

The processes necessary for startup routine creation are described below.

B Startup Routine Creation
1. Register initial setup:
Set the stack pointer (SP) to the top of the stack (stack top).
2. Dataareainitialization:

124

The C and C++ language specification guarantees the initialization of externa variables without the
initial value and static variablesto 0. Therefore, initialize the DATA section to 0.

3. Initialization data area duplication:

When incorporating constant data or program into ROM, the data positioned in the ROM area needs to be
copied to the RAM area. However, this duplication step is unnecessary if such a data rewrite operation
will not performed within the user program. The area to be incorporated into ROM is usually positioned
in the INIT section. When incorporation into ROM is specified, the linker automatically generates the
following symbols for the specified section name.

ROM _specified section name

RAM _specified section name

The above symbols indicate the ROM and RAM area start addresses, respectively. An example
specifying of incorporation into ROM for the INIT section is shown below.

> fcc911s -ro ROM=ROM address range -ra RAM=RAM address range
-sC @INIT=ROM ,INIT=RAM

For the details of incorporation into ROM, refer to the Linkage Kit Manual

4. Library initial setup:

When using the libraries, open afile for standard input/output. For details, see section "8.2 Initialization/
Termination Process Necessary for Using Library”, Initiaization/Termination Process Necessary for
Library Use.

5. Initiaization unique to C++:

In the C++ specifications, when external or static objects are used, a constructor must be called followed
by the man function. Because four-byte pointers to the main function are stored in the
EXT_CTOR_DTOR section, call a constructor sequentially from the lower address of the four addresses
in that section.

In a program requiring normal termination, use the atexit function to register the address of __call_dtors
function as the function to be called from the exit function. Then, call the exit function after the end of
the main function.

6. User program calling:

Call the user program.

7. Program shutdown process:

The close process must be performed for opened files. The normal end and abnormal end processes must
be prepared in accordance with the system.

PART 1 OPERATION

CHAPTER 7
LIBRARY OVERVIEW

This chapter outlines the C libraries by describing the
organization of files furnished by the libraries and the
relationship to the system into which the libraries are
incorporated.

7.1 File Organization

7.2 Relationship to Library Incorporating System

PART 1 OPERATION 125

CHAPTER 7 LIBRARY OVERVIEW

7.1 File Organization

This section describes the files furnished by the libraries.

B File Organization
Thefollowing library files are provided:

@ fcc91ls command library files

The four fcc911s command library files below are provided.

* lib911.lib: Standard C library

« 1ib911if.lib: Simulator/debugger low-level function library

* lib911elib: EC++ library

¢ 1ib911p.lib: C++ library (having the same contents aslib911e.lib)
W fcc91ls Command Library Section Names

Table 7.1-1 shows the section names used by the fcc911s command libraries.

Table 7.1-1 fcc911ls Command Library Section Names

Section Type Section name
Code section CODE
Data section DATA
Initialized section INIT
Constant section CONST

126

PART 1 OPERATION

7.2 Relationship to Library Incorporating System

7.2 Relationship to Library Incorporating System

This section describes the relationship between the libraries and library incorporating
system.

B System-dependent Processes

File input/output, memory management, and program termination procedures are dependent on the system.
When such system-dependent processes are needed, the libraries call low-level functions (For the details of
low-level functions, see"CHAPTER 8 LIBRARY INCORPORATION").

When using the libraries, prepare such low-level functions in accordance with the system.

B Low-level Function (System-dependent Process) Types

The low-level function types and their roles are summarized below. For the detailed feature descriptions of
low-level functions, see section "8.5 Low-level Function Specifications'.
« open: Function for opening afilein the system
« close: Function for closing afilein the system
« read: Function for reading characters from afile
« write: Function for writing charactersinto afile
* Iseek: Function for changing the file position
« isatty: Function for checking whether afileisatermina file
« sbrk: Function for dynamically acquiring/changing the memory
e _exit: Function for normal program ending
« _abort: Function for abnormal program ending
B Time Function (System-dependent Process) Types
The time function types and their roles are summarized below. For the detailed
descriptions of time functions, see section "8.6 Time Function Specifications".

* clock : Function for getting the processor time consumed
« time: Function for getting the current calendar time

PART 1 OPERATION 127

CHAPTER 7 LIBRARY OVERVIEW

128 PART 1 OPERATION

CHAPTER 8

LIBRARY INCORPORATION

PART 1 OPERATION

This chapter describes the processes and functions for

preparing for useing library.

8.1 Library Incorporation Overview
8.2 Initialization/Termination Process Necessary for Using Library
8.3 Low-level Function Types

8.4 Standard Library Functions and Required Processes/Low-level
Functions

8.5 Low-level Function Specifications

8.6 Time Function Specifications

129

CHAPTER 8 LIBRARY INCORPORATION

8.1 Library Incorporation Overview

This section outlines library incorporation.

B Processes and Functions must be prepared for Using Library
File input/output, memory management, and program termination procedures are the processes dependent
on the system. Therefore, such processes are separated from the standard library, and whenever such
processes are needed, they will be called as alow-level function. Further, the stream area initialization and
other processes are necessary for using library.
The following processes and functions must be prepared for using library.
 Initialization of stream area
« The open and close processes of the standard input/output and standard error output file
» Definition of Low-level functions
« Definition of time functions
At the time of library incorporation, the above processes and functions must be prepared in accordance with
the system.

130 PART 1 OPERATION

8.2 Initialization/Termination Process Necessary for Using Library

8.2 Initialization/Termination Process Necessary for Using
Library

This section describes the initialization/termination process required for Using Library.

B Initialization/Termination Process
Some standard library functions require the following processes.
e Initialization of stream area
« The open and close processes of the standard input/output and standard error output file
Detailed in this section (For required functions, see section "8.4 Standard Library Functions and Required
Processes/L ow-level Functions'.

M Initialization of Stream Area

The _stream_init function initializes the stream area. This function must be called by the startup routine to
initialize the stream area.

void _stream_init(void);
B The Open and Close Processes of the Standard Input/Output and Standard Error
Output File

Because the standard input/output and standard error output do not open or close files during the execution
of programs, files must be opened before the main function is called and must be closed when the main
function is completed.

Use the startup routine to perform the opening process before main function calling and the closing process
after main function execution.

However, the _stream init function correlates the file numbers 0, 1, and 2 to the stdin, stdout, and stderr
streams. Therefore, the opening process need not be performed when the system’s standard input, standard
output, and standard error output are opened as the file numbers 0, 1, and 2.

If the system’s standard input/output and standard error output are not opened or the file numbers do not
match, perform the following process to open the system’ sfiles.

 freopen("Standard input name", "r", stdin);

» freopen("Standard output name”, "w", stdout);

 freopen("Standard error output name", "w", stderr);

Error detection concerning the above process should be conducted as needed.

Further, the file names specified by the open function must be written as the standard input/output and
standard error output names.

For the closing process, use the fclose function.

PART 1 OPERATION 131

CHAPTER 8 LIBRARY INCORPORATION

B Time zone setting
Please set the time zone to global variable _TZ.

Please set 9*3600 for JST (Japan Standard Time) because the unit of thevalue set to_TZ is"second”.
Toset _TZ, pleaseinclude time.h.
Please initialize _TZ when you use the mktime function, the ctime function and the localtime function.

In the mktime function, the ctime function and the localtime function, it is not considered that the value of
_TZ ismodified while executing these functions. When _TZ is modified, the result is not guaranteed.

132 PART 1 OPERATION

8.3 Low-level Function Types

8.3 Low-level Function Types

This section outlines the standard library functions and necessary low-level functions.
The standard library functions require the following six types of low-level functions:

File opening and closing (open, close)

Input and output relative to file (read, write)

File position change (Iseek)

File inspection (isatty)

Memory area dynamic acquisition (sbrk)

Program abnormal end and normal end (_abort, _exit)

The above processes are called from the associated standard libraries to manipulate
the system’s actual files or exercise program execution control.

B Low-level Function Types

@ File Opening and Closing
All functions that open the fopen function and other files call the open function to open an actual file on the
system. Similarly, al functions that close the fclose function and other files call the close function to close
an actual file on the system.

@ Input and Output Relative to File
The scanf, printf, and other input/output functions perform input/output operations relative to the system’s
actual files when the read and write functions are called.

@ File Position Change
The fseek and other file position manipulation functions acquire or change the system’ s actual file positions
when the Iseek function is called.

@ File Inspection

The opened file is to be checked to see whether it isatermina file.

@® Memory Area Dynamic Acquisition
The malloc and other memory area dynamic acquisition functions acquire or free specific memory areas
when the sbrk function is called.

@ Program Abnormal End and Normal End

The abort function and exit function call the _abort function and _exit function, respectively, as the
termination process.

PART 1 OPERATION 133

CHAPTER 8 LIBRARY INCORPORATION

8.4 Standard Library Functions and Required Processes/Low-
level Functions

This section describes the standard library functions and associated initialization/
termination processes and low-level functions.

B Standard Library Functions and Required Processes/Low-level Functions

Table 8.4-1 lists the standard libraries that use low-level functions, related initialization and termination
processes, and low-level functions.

Table 8.4-1 Standard Library Functions and Required Processes/Low-level Functions

Standard Library Function Low-level Function Initialization/Termination Process

assert () open () close ()

abort () * read () write () Stream area initialization process standard input/
Iseek () isatty () output and standard error output opening and closing
sbrk () _abort ()

All stdio.h file operation open () dlose ()

functions read () write () Stream area initialization process standard input/
Iseek () . output and standard error output opening and closing
sbrk () Isatty)

caloc () sbrk ()

malloc ()

realloc ()

free ()

exit () * open () close ()
read () write () Stream area initialization process standard input/
seek () isatty () output and standard error output opening and closing
sbrk () _exit()

* : Then the abort function and exit function are called, they perform the closing process for open files. Therefore, the file
manipulation related low-level functions (open, close, read, write, Iseek, and sbrk) and stream area initialization and like
processes are required.

In aprogram that is not using afile, the _abort function can be directly called instead of the abort function.

In aprogram for which function registration is not completed using the atexit function, the _exit function can be directly
called instead of the exit function while no file is being used.

In the above instances, file manipulation related low-level function use and stream area initialization are not required.

134 PART 1 OPERATION

8.5 Low-level Function Specifications

8.5 Low-level Function Specifications

There are various low-level functions. The open, close, read, write, Iseek, and isatty
functions provide file processing. The sbrk function provides memory area dynamic
allocation. The _exit or _abort function is used to terminate a program by calling the
exit or abort function. These low-level functions must be created to suit the system.

B Low-level Function Specifications
Create the low-level functions in compliance with the specifications stated in this section.

PART 1 OPERATION

135

CHAPTER 8 LIBRARY INCORPORATION

8.5.1 open Function

The open function should be generated according to the specifications in this section.
#include <fcntl.h>
int open(char *fname, int fmode, int p);

B open Function
[Explanation]

In the mode specified by fmode, open the file having the name specified by fname. For fmode
specifying, a combination of the following flags (logica OR) is used. The value "0777" is always
delivered asp.

« O_RDONLY: Opens a read-only file.
e O_WRONLY: Opens a write-only file.
« O_RDWR: Opens a read/write file.

The above three flags are to be exclusively specified.
« O_CREAT: Create this flag when the specified file does not exist. If the specified file
already exists, ignore this flag.

« O_TRUNC: If any data remains in the file, discard such data to empty the file.

* O_APPEND: Selects the append mode for file opening. The file position prevailing at the
time of opening must be set so as to indicate the end of the file. When writing into a file
placed in this mode, start writing at the end of the file without regard to the current file
position.

« O_BINARY: Specifies a binary file. Therefore, the file opened must be treated as a binary
file. Files for which this is not specified must be treated as text files.

When the name for standard input/output and standard error output, which is determined for system
environment setup, is specified as the file name for the first argument, allocate the standard input/output
and standard error output to the file to be opened.

[Return value]

When file opening is successfully done, the file number must be returned. If file opening is not
successfully done, on the other hand, the value "-1" must be returned.

136 PART 1 OPERATION

8.5 Low-level Function Specifications

85.2 close Function

The close function should be generated according to the specifications in this section.
int close(int fileno);

B close Function
[Explanation]
The closing process must be performed for the file specified by fileno.
[Return value]

When file closing is successfully done, the value "0" must be returned. If file closing is not successfully
done, the value "-1" must be returned.

PART 1 OPERATION 137

CHAPTER 8 LIBRARY INCORPORATION

85.3 read Function

The read function should be generated according to the specifications in this section.
int read(int fileno, char *buf, int size);

B read Function
[Explanation]
From the file specified by fileno, size-byte data must be input into the area specified by buf.

If the text file new line character is other than \n in the system environment at this time, perform setup
with the new line character converted to \n by the read function.

[Return value]

When the input from the file is successfully done, the input character count must be returned. If the input
from the file is not successfully done, the value -1 must be returned. If the file ends in the middle of the
input sequence, a value smaller than size can be returned as the input character count.

138 PART 1 OPERATION

8.5 Low-level Function Specifications

854 write Function

The write function should be generated according to the specifications in this section.
int write (int fileno, char *buf, int size);

B write Function
[Explanation]

To the file specified by fileno, size-byte data in the area specified by buf must be outputted. If thefileis
opened in the append mode, the output must always be appended to the end of the file. If the text file
new line character is other than \n in the system environment at this time, the output must be generated
with the system environment new line character converted to \n by the write function.

[Return value]

When the output to the file is successfully done, the output character count must be returned. If it isnot
successfully done, the value "-1" must be returned.

PART 1 OPERATION 139

CHAPTER 8 LIBRARY INCORPORATION

855 Iseek Function

The Iseek function should be generated according to the specifications in this section.
#include <unistd.h>
long int Iseek(int fileno, off_t offset, int whence);

M Iseek Function
[Explanation]

The file specified by fileno must be moved to a position that is offset bytes away from the position
specified by whence. The file position is determined according to the byte count from the beginning of
thefile. The following three positions are to be specified by whence.

* SEEK_CUR: Adds the offset value to the current file position.
« SEEK_END: Adds the offset value to the end of the file.
« SEEK_SET: Adds the offset value to the beginning of the file.

[Return value]

When the file position is successfully changed, the new file position must be returned. If it is not
successfully changed, -1L must be returned.

140 PART 1 OPERATION

8.5 Low-level Function Specifications

8.5.6 isatty Function

The isatty function should be generated according to the specifications in this section.
int isatty(int fileno);

W isatty Function
[Explanation]

The file specified by fileno is to be checked to see whether it is a terminal file. When the file is a
terminal file, true must be returned. If not, false must be returned.

[Return value]
When the specified file isaterminal file, true must be returned. If not, false must be returned.

PART 1 OPERATION 141

CHAPTER 8 LIBRARY INCORPORATION

85.7 sbrk Function

The sbrk function should be generated according to the specifications in this section.
char *sbrk(int size);

B sbrk Function
[Explanation]

The existing area must be enlarged by size bytes. If sizeis anegative quantity, the area must be reduced.
If the sbrk function has not been called, furnish asize-byte area.
The areavaries as shown in Figure 8.5-1 by calling the sbrk function.

Figure 8.5-1 Area Change Brought About by sbrk Function Calling

After a change After a change
effected by a effected by a
Before change plus size value minus size value
Low
Using area
size byte
*1
size byte
High
Return value = *1 (the end address of the area prevailing before the area change) + 1

[Return value]

When the area change is successfully made, the value to be returned must be determined by adding the
value "1" to the end address of the area prevailing before the area change. If the sbrk function has not
been called, the start address of the acquired area must be returned. If the area change is not successfully
made, the value (char)-1 must be returned.

142 PART 1 OPERATION

8.5 Low-level Function Specifications

8.5.8 _exit Function

The _exit function should be generated according to the specifications in this section.
#include <stdlib.h>
void _exit (int status);

B _exit Function
[Explanation]

The _exit function must bring the program to a normal end. When the status value is 0 or in the case of
EXIT_SUCCESS, the successful end state must be returned to the system environment. In the case of
EXIT_FAILURE, the unsuccessful end state must be returned to the system environment.

[Return valug]
The _exit function does not return to the caller.

PART 1 OPERATION 143

CHAPTER 8 LIBRARY INCORPORATION

8.5.9 __abort Function

The _abort function should be generated according to the specifications in this section.
void _abort(void);

B abort Function
[Explanation]

The _abort function must bring the program to an abnormal end.
[Return value]

The _abort function does not return to the caller.

144 PART 1 OPERATION

8.6 Time Function Specifications

8.6 Time Function Specifications

In the time functions, there are clock function to get the processor time used and time
function to get current calendar time.
The clock function and the time function must be created to suit the system.

B Time Function
Create the time functions in compliance with the specifications stated in this section.

PART 1 OPERATION 145

CHAPTER 8 LIBRARY INCORPORATION

8.6.1 clock Function

Create the clock function in compliance with the specifications stated in this section.
#include <time.h>
clock_t clock (void);

B clock Function
[Explanation]
Please return the processor time used by the program.

Please adjust the return value to become seconds if it is divided by the value of macro
CLOCKS PER_SEC.

[Return value]

When the processor time used is not available or its value cannot be represented, the function returns the
value (clock_t)-1.

146 PART 1 OPERATION

8.6 Time Function Specifications

8.6.2 time Function

Create the time function in compliance with the specifications stated in this section.
#include <time.h>
time_t time (timet *timer);

B time Function
[Explanation]
Please return the seconds of the current calendar time from "January 1, 1970 00:00:00(UTC)".
[Return valug]

When the current calendar time is not available, the return value (time_t)-1.
If timer is not null pointer, the return value is also assigned to the object it points to.

PART 1 OPERATION 147

CHAPTER 8 LIBRARY INCORPORATION

148 PART 1 OPERATION

CHAPTER 9
COMPILER-DEPENDENT
SPECIFICATIONS

This chapter describes the specifications that vary with
the compiler. Descriptions are related to JIS standard
that are created based on ANSI standard.

9.1 Compiler-dependent C Language Specification Differentials
9.2 Type of Floating-point Data and Range of Representable Values
9.3 Floating-point Operation due to the Runtime Library Function

9.4 Dissimilarities between C++ Specifications for C/C++ Compiler and
ISO

9.5 C++ Specifications for C/C++ Compiler and EC++ Specifications

9.6 Limitations on Use of C++ Template

PART 1 OPERATION 149

CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS

9.1
Differentials

Compiler-dependent C Language Specification

Table 9.1-1 lists the compiler-dependent C language specification differentials.

B Compiler-dependent Language Specification Differentials

Table 9.1-1 Compiler-dependent Language Specification Differentials (1/2)

Specification Differentials

Related Section in
the JIS Standard

This Compiler

Japanese language process support and code

5.2.1 "Character sets'

No support

system 6.1.2 "ldentifiers" EUC or SIS entries can be made in the
comment and string literal's (cannot be mixed)
Recognized character count of an identifier | 6.1.2 "Identifiers’ 1024
with an external binding
Differentiation between upper- and lower- 6.1.2 "Identifiers’ Treated as different characters
case alphabetical characters of an identifier
with an external binding
Character set element expression code 6.1.3 "Numerical ASCII code
system constants'
char type treatment and expressible value 6.2.1.1 "Character type | Unsigned (*1)
range and integer type" 0to 255
Floating-point data formats and sizes 6.1.2.5 "Datatypes’ |EEE type (*2)
float type 4 bytes
double/long double type 8 bytes
Whether or not to treat the start bit assigned | 6.5.2.1, "Structure Not treated asasign (* 1)
bit when following types specified as bit specifier and union
field specifier”
char, short, int, and long type
Types that can be specified as bit field 6.5.2.1, "Structure char type
specifier and union signed char type
specifier” unsigned char type
short type
unsigned short type
int type
unsigned int type
long type

unsigned long type

150

PART 1 OPERATION

Table 9.1-1 Compiler-dependent Language Specification Differentials (2/2)

9.1 Compiler-dependent C Language Specification Differentials

Specification Differentials

Related Section in
the JIS Standard

This Compiler

Structure or union member boundary
aignment value

6.5.2.1, "Structure
specifier and union

char type specifier” 1 byte
signed char type 1 byte
unsigned char type 1 byte
short int type 2 bytes
unsigned short int type 2 bytes
int type 4 bytes
unsigned int type 4 bytes
long int type 4 bytes
unsigned long int type 4 bytes
float type 4 bytes
double type 8 bytes
long double type 8 bytes
pointer type 4 bytes
Character constant expression code system | 6.8.1 Conditional ASCII code
for preprocessor Include

statement

Registers that can be specified within asm

RO, R1, R2, R3, R12, R13 (*3)

support

ANSI-compliant standard library function

Refer to the APPENDIX A.

*1: Alterable through option use.

*2: See section Type of Floating-point Data and Range of Representable Values.
*3: The other registers can be used when they are saved and recovered by the user.

PART 1 OPERATION

151

CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS

9.2 Type of Floating-point Data and Range of Representable

Values

Table 9.2-1 lists the floating-point data types and the range of values that can be

expressed for each type.

B Type of Floating-point Data and Range of Representable Values

Table 9.2-1 Type of Floating-point Data and Range of Representable Values

Type of floating-point data

Range of Representable Values

float type

The exponent part is avalue between 126 and + 127. (Base 2)
The fractional portion of the mantissa (the integer portionis
normalized to 1) is binary and has 24-digit accuracy.

double type

The exponent part isavalue between 1022 and + 1023. (Base
2)

The fractional part of the mantissa (the integer part is
normalized to 1) is binary and has 53-digit accuracy.

long double type

The exponent part isvalue between 1022 and + 1023. (Base 2)
The fractional part of the mantissa (the integer part is
normalized to 1) is binary and has 53-digit accuracy.

152

PART 1 OPERATION

9.3 Floating-point Operation due to the Runtime Library Function

9.3 Floating-point Operation due to the Runtime Library
Function

All floating-point operations, except for ones calculated in the compilation time, are
done by the runtime library functions. Although those functions are designed referring
to ANSI/IEEE Std754-1985, they do not completely conform to it.

This section describes the differences between the specification of the floating-point
runtime library functions and ANSI/IEEE Std754-1985.

B Arithmetic operation (addition, subtraction, multiplication, and division)

@ Rounding of the resultant mantissa part

Round-to-nearest mode, only.

@ Denormalized number
If the left operand is a denormalized number, it is assumed to be zero with the same sign. If the right
operand is a denormalized number, it is assumed to be zero with the same sign, too. In some cases, the
denormalized number with the correct sign is returned rather than the strict zero.

@ Resultant value under the underflow exception
It is assumed that the underflow exception occurs when the exponent value of true operation result is too
small to be represented as the normalized number. In that case, zero with the correct sign is returned.

@ Resultant value under the overflow exception

Infinity with the correct sign is returned.

@ Resultant value under the invalid operation exception
NaN (Not a number) is returned. In the floating-point runtime library, any routines do not distinguish
SNaN (Signaling NaN) and QNaN (Quiet NaN).

@ Interrupt at operation exception.

No interrupt occur.

@ Status flag

Not supported.
B Comparison

@® Denormalized number

The denormalized number is treated as zero with the same sign.

PART 1 OPERATION 153

CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS

@ Comparison result under the invalid operation exception

Thelibrary function returns uncertain result.

@ Interrupt at operation exception

No interrupt occur.

@ Status flag

Not supported.
B Type conversion (integer -> floating-point number)

@ Rounding of the resultant mantissa part

Round-to-nearest mode, only.

@ Interrupt at operation exception

No interrupt occur.

@ Status flag

Not supported.
B Type conversion (floating-point number -> integer)

@ Resultant value under the invalid operation exception

Uncertain value is returned.

@ Interrupt at operation exception

No interrupt occur.

@ Status flag

Not supported.
B Type conversion (floating-point number -> floating-point number)

@ Rounding of the resultant mantissa part

Round-to-nearest mode, only.

@ Denormalized number
If the converting value is a denormalized number, it is treated as zero with the same sign. In some cases,
the denormalized number is returned rather than the strict zero.

@ Resultant value under the underflow exception

It is assumed that the underflow exception occurs when the exponent value of true operation result is too
small to be represented as the normalized number. In that case, zero with the correct sign is returned.

154 PART 1 OPERATION

9.3 Floating-point Operation due to the Runtime Library Function

@ Resultant value under the overflow exception

Infinity with the correct sign is returned.

@ Resultant value under the invalid operation exception

NaN (Not a Number) is returned. In the floating-point runtime library, any routines do not distinguish
SNaN (Signaling NaN) and QNaN (Quiet NaN).

@ Interrupt at operation exception

No interrupt occur.

@ Status flag

Not supported.

PART 1 OPERATION 155

CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS

9.4

Dissimilarities between C++ Specifications for C/C++
Compiler and 1SO

This section explains the dissimilarities between the C++ specifications for the C/C++
compiler and ISO/IEC 14882:1998.

B Modifications to C++ Specifications for C/C++ Compiler from ISO

Differences between the C++ specifications for the C/C++ compiler and ISO/IEC 14882:1998 are
explained below.

156

Datain enumerated type cannot take the values exceeding the int type. The values exceeding the int type
values, if specified, would cause the diagnosis as warning and the data would be converted into the int
type data.

There is no support for the name-solving function in [temp.res] (Section 14.6) and [temp.dep] (Section
14.6.2) mentioned in the | SO/IEC 14882:1998 Specification.

There is no support for the template argument function in [temp.arg.template] (Section 14.3.3)
mentioned in the |SO/IEC 14882:1998 Specification.

There is no support for the international character set function such as \uabcd.
There is no support for the export keyword and export function.

There is no support for the runtime type identification function including dynamic cast and typeid
operators.

There is no support for the exception handling function including try-catch and throw.

Only the C standard and EC++ libraries are provided. Libraries containing templates such as STL are
not available.

PART 1 OPERATION

9.5 C++ Specifications for C/C++ Compiler and EC++ Specifications

9.5 C++ Specifications for C/C++ Compiler and EC++
Specifications

This section describes the C++ specifications for the C/C++ compiler and the EC++
specifications.

B C++ Specifications for C/C++ Compiler and EC++ Specifications

At default, the C/C++ compiler operates to the EC++ specifications. A warning message is output at
description of specifications outside the EC++ range. To delete just this warning, specify the -Ja option
(including extended specifications) or the -Jc option (stringent specifications).

For details of the EC++ specifications, refer to http://www.caravan.net/ec2plus/.

PART 1 OPERATION 157

CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS

9.6

Limitations on Use of C++ Template

This section deals with the limitations on use of the C++ template.

B Limitations on Use of C++ Template

@ Options specified when using template

Specify the -Ja option or the -Jc option. If this option is not given, description of specifications is outside
the range of the EC++ specifications and the warning message is output.

@® Limitations

When instantiation is not controlled by #pragma, or anything other than "local" (default: "none") is
selected in the -t option, the following limitations apply:

Linking is impossible just with the generated object file. The source files and simultaneously generated
fileswith .ii extensions are needed in pairs.

Do not move, delete or rewrite the generated files with .ii extensions.

Do not change the directories and names of the generated object and source files and do not link object
files after deletion. In this case, aways perform recompiling. Recompiling is needed for changes alone
between the UNIX and Windows environments.

When the -S option is specified, always generate object files with .obj extensions with the same module
name in the same directories as those of the generated assembler files.

Datain the assembler files generated by the -S option is not rewritten.
Do not generate libraries with alibrarian.

For development by more than one operator, carry out tasks from compiling to linking at a single point.
Compiling at multiple points requires conformity in the positions of directories of source and object files
(including the name of a network drive when used), the environment variables related to the C/C++
compiler, and the directory where the C/C++ compiler isinstalled.

When compiling at multiple points in the UNIX environment, the true directory name not including a
symbolic link must be the same.

Linking is delayed depending on how to use atemplate.
A warning of errorsin the template syntax isissued at linking.

B Circumventing limitations on the use of the C++ template

To circumvent the above problems, simply specify the -t local option for al the modules to perform
compilation. This specification causes template data in each module, resulting in an increased code size for
the runtime object.

158

To solve the code size problem, specify the --no_auto_instantiation option to embed #pragma in the source
program, thereby controlling template instantiation.

For information on using #pragma to control instantiation, see section "5.11 Function for Controlling
Instantiation of C++ Template".

PART 1 OPERATION

CHAPTER 10
SIMULATOR DEBUGGER
LOW-LEVEL FUNCTION
LIBRARY

The simulator debugger low-level function library is a
library of the low-level functions which are necessary
when the standard library is used with the simulator
debugger.

This chapter describes how to use the simulator
debugger low-level function library.

10.1 Low-level Function Library Overview
10.2 Low-level Function Library Use
10.3 Low-level Func. Function

10.4 Lowe-level Function Library Change

PART 1 OPERATION 159

CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY

10.1

Low-level Function Library Overview

The low-level function library is outlined below.

B Low-level Function Library Overview

The low-level function library offers the functions that are necessary when the standard library is used with
the simulator debugger. The main functions are as follows.

 File manipulation functions based on 1/0O port simulation (open, close, read, write, Iseek, isatty)

« Dynamic memory alocation function (sbrk)

In the simulator debugger, the program executed cannot terminate its own execution. Therefore, prepare
the abort and _exit functions.

B File System Overview

The low-level function library uses the 1/O port simulation function of the simulator debugger to carry out
standard input/output operations and input/output operations relative to files. These operations are
completed by performing input/output operations relative to one 1/O port areawhich is regarded as onefile.

When the open function is called, it alocates a 1-byte area of the I/O port simulation area (1/O section)
defined by the low-level function library, and returns as the file number the offset from the beginning of the
allocated area.

The read function and write function perform input/output operations relative to the 1-byte area allocated
by the open function.

Input/output operations can be performed relative to the standard input/output and files when such standard
input/output and files are allocated to the above-mentioned area prior to program execution using simulator
debugger commands set inport and set outport.

The close function frees an aready alocated area to render it reusable. Since the file position cannot be
changed in the simulator debugger, the value "-1" is always returned for the Iseek function.

B Area Management

160

An already acquired external variable areais used as the area returned by the sbrk function.
When the sbrk function is called, area allocation begins with the lowest address of the area.

PART 1 OPERATION

10.2 Low-level Function Library Use

10.2 Low-level Function Library Use

This section describes the load module creation and simulator debugger setup
procedures to be performed for low-level function library use.

W Initialization
No initialization is required except for _stream_init function calling.
When creating the startup routine in accordance with the system, call the _stream_init function prior to
main function calling.
B Load Module Creation
After completing creating of the necessary program, compile and link all the necessary modules. No
specia option specifying is needed.
Thefollowing libraries and startup routine are linked.
e startup.obj
+ Standard library (1ib911.lib, lib911e.lib, lib911p.lib)
e Low-level function library (lib911lie.lib)
The sections are arranged at the following addresses.
¢ |OPORT: Address0
e STACK: Address 0x100000
e Other: Address 0x1000

To change the IOPORT section arrangement, specify the -sc IOPORT=address option at compiling.
Describe the section arrangement address at the address position.

PART 1 OPERATION 161

CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY

B Simulator Debugger Setup

[Setup for Standard I nput/Output Use]
set inport/ascii IOPORT, Oxff, S$TERMINAL
set outport/ascii IOPORT+1, Oxff, S$TERMINAL
Enter the address where the IOPORT section was positioned at linking in the above IOPORT position. If
the -sc option is not specified at linking, the following results.
set inport/ascii 0, Oxff, STERMINAL
set outport/ascii 1, Oxff, S$TERMINAL
Since the first three areas of the IOPORT section are used for standard input, standard output, and standard
error output, the other files are allocated to the fourth and subsequent areas (The offset from the beginning
of the IOPORT section is 3).
In other words, allocation is performed sequentialy in the order of file opening (offset 3, offset 4, etc.).
Therefore, perform setup accordingly using the set inport and set outport commands.
To open a.doc as the input file and then open b.doc as the output file, setup asindicated below.
set inport/ascii IOPORT+3, Oxff, "a.doc"
set outport/ascii IOPORT+4, 0xff, "b.doc"
<Example>
Create a program that displays the character string "Hello!!" and initiate execution with the simulator
debugger.

main()

{

printf ("Hello!!\n") ;

}

Create a C-source file named test.c as indicated above.
Compile using the following command.

> fcc9lls test.c -cpu MB91F154 -1 1ib911if.1lib
At completion of the preceding step, test.abs is created. Execute the created file with the simulator
debugger.
After startup, input following commands.
> set inport/ascii 0x0, Oxff, STERMINAL
> set outport/ascii 0x1l, 0xff, STERMINAL
> go, end
Since standard input is not involved in the above example, the set inport command can be omitted.

162 PART 1 OPERATION

10.3 Low-level Func. Function

10.3 Low-level Func. Function

This section describes the function specific to the simulator debugger low-level
functions.

B Special I1/0 Port

As far as the low-level functions are concerned, the first three bytes of the I/O section are specified to
function as the standard input, standard output, and standard error output, respectively. For such bytes,
filesNo. 0, 1, and 2 are dlocated. They are initialized to the opened state.

Table 10.3-1 shows the predefined 1/O port.

Table 10.3-1 Predefined 1/0O Port

Address File Number File Type
|OPORT 0 Standard input
IOPORT+1 1 Standard output
|IOPORT+2 2 Standard error output

The input from the standard input (file No. 0) is output to the standard output (file No. 1). The input to the
standard input (file No. 0) is discontinued if the new line character \n is entered. However, when the input
isfed from some other port, the input continues until the required number of characters are read.

B open Function

The open function finds an unused 1/0 port area and then returns as the file number the area’s offset from
the beginning of the 1/0 section. In such an instance, the file name and open mode are not to be specified.
Even if files are opened using the same file name, differing file numbers are assigned to them. Files No. 0,
1, and 2 are initialized to the opened state. Therefore, the open function begins alocation with file No. 3
unlessfiles 0, 1, and 2 are subjected to the close process.

B read Function

The read function reads data from the 1/O port area specified by the address which is determined by adding
the specified file number to the 1/0 section start address. The input from file No. O istreated as alineinput.
When the new line character \n is entered, the read function terminates even if the required character count
is not reached. Further, this input is output to the standard output (file No. 1). The input from a file
numbered other than O is treated as a block input. Reading continues until the required character count is
reached.

B write Function

The write function writes data to the 1/O port area specified by the address which is determined by adding
the specified file number to the I/O section start address. Unlike the input, the operation does not vary with
the 1/O port area address

B Iseek Function

The file position cannot be specified in the simulator debugger. Therefore, the value -1, which indicates an
unsuccessful file position change, is always returned.

PART 1 OPERATION 163

CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY

W isatty Function

Inthe case of fileNo. 0, 1, or 2, trueisreturned. In the other cases, falseis returned.
M close Function

The close function rel eases the port related to the specified file number.

B sbrk Function
The simulator debugger does not provide a means of dynamic memory alocation. Therefore, the sbrk
function acquires a fixed area and uses it. To change the area or its size, create an alternative function and

substitute it for the sbrk function with a librarian. For details, see section "10.4 Low-level Function
Library Change".

164 PART 1 OPERATION

10.4 Low-level Function Library Change

10.4 Low-level Function Library Change

This section shows how to change the dynamic allocation area.

B fcc91ls Command Source Program List of sbrk Function
The source program required for changing the dynamic area is shown below. The file name must be

__STD_LIB_sbrk.c.
#define HEEP_SIZE 16*1024
static long brk siz = 0;
#if HEEP SIZE
typedef int _heep t;
#define ROUNDUP (s) (((s)+sizeocf (_heep t)-1)&~(sizeof(heep t)-1))
static _heep t _heep [ROUNDUP (HEEP_SIZE) /sizeof (_heep t)];
#define _heep size ROUNDUP (HEEP_SIZE)
#telse
extern char * heep;
extern long _heep size;
#endif
extern char *sbrk (int size)
{
if (brk siz + size > heep size || brk siz + size < 0)

return((char*)-1) ;
brk siz += size;
return((char *) heep + brk siz - size);
}
B Dynamic Allocation Area Change
Locate the following line in the source program list of sbrk function. Change the value in this line to the
dynamic alocation area size (in bytes).
#define HEEP SIZE 16%1024
Use the following commands to compile and update the library.

#define HEEP SIZE 16*1024
> fcc91lls -0 -c¢ _ STD LIB sbrk.c -cpu MB91F154
> flibs -r STD LIB sbrk.obj 1ib911if.lib -cpu MB91F154

When the above change is made, the dynamic allocation area is secured asthe __ STD_LIB_shrk.c static
external variable without being positioned at the beginning of the stack.

PART 1 OPERATION 165

CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY

166 PART 1 OPERATION

APPENDIX

The appendix gives a list of types, macros, functions
and variables provided by the libraries and describes
the operations specific to the libraries (The APPENDIX A
and APPENDIX B).

The list of the error message is described (The
APPENDIX C).

The list of the reserved pragma directive is described
(The APPENDIX D).

Reentrancy of C library function is described (The
APPENDIX E).

APPENDIX A List of Types, Macros, Functions, and Variables Provided
by C Libraries

APPENDIX B Operations Specific to C Libraries
APPENDIX C Error Message

APPENDIX D Reserved Pragma Directive

APPENDIX E About Reentrancy of C Library Functions

PART 1 OPERATION 167

APPENDIX A List of Types, Macros, Functions, and Variables Provided by C Libraries

APPENDIX A List of Types, Macros, Functions, and Variables
Provided by C Libraries

The types, macros, functions, and variables provided by the C libraries are listed below.

B assert.h
@ Function
assert
W ctype.h
@ Macros
isalnum isalpha iscntrl isdigit isgraph
islower isprint ispunct isspace isupper
isxdigit tolower toupper
W errno.h
@ Macros
EDOM ERANGE
@ Variable
errno

168 PART 1 OPERATION

APPENDIX A List of Types, Macros, Functions, and Variables Provided by C Libraries

M float.h
@® Macros
FLT RADIX FLT _ROUNDS FLT MANT DIG DBL_MANT DIG
LDBL_NANT DIG FLT DIG DBL_DIG LDBL_DIG
FLT MIN_EXP DBL_MIN_EXP LDBL_MIN_EXP FLT MIN_10 EXP
DBL_MIN_10 EXP LDBL_MIN_10 EXP FLT_MAX_EXP DBL_MAX_EXP
LDBL_MAX_EXP FLT_MAX_10 EXP DBL_MAX_10 EXP LDBL_MAX_10 EXP
FLT_MAX DBL_MAX LDBL_MAX FLT_EPSILON
DBL_EPSILON LDBL_EPSILON FLT_MIN DBL_MIN
LDBL_MIN
M limits.h
@ Macros
MB_LEN_MAX CHAR BIT SCHAR_MIN SCHAR MAX UCHAR _MAX
CHAR_MIN CHAR_MAX INT_MIN INT_MAX UINT_MAX
SHRT_MIN SHRT_MAX USHRT_MAX LONG_MIN LONG_MAX
ULONG MAX LONG _LONG MIN LONG LONG MAX ULONG LONG MAX LLONG MIN
LLONG_MAX ULLONG_MAX

PART 1 OPERATION 169

APPENDIX A List of Types, Macros, Functions, and Variables Provided by C Libraries

H math.h
@® Macros
HUGE_VAL EDOM
@ Function
acos asin
sin tan
exp frexp
modf pow
floor fmod
B setimp.h
@ Type
jmp_buf
@ Macros
setjmp
@ Function
longimp
W stdarg.h
@® Type
va list
@® Macros
va stat va arg va end
W stddef.h
@® Type
ptrdiff t size t

170

atan
cosh
Idexp

sort

ERANGE

atan2
sinh
log

cell

cos
tanh
logl10
fabs

PART 1 OPERATION

APPENDIX A List of Types, Macros, Functions, and Variables Provided by C Libraries

@® Macros

NULL offsetof
W stdio.h

@® Type

ptrdiff t

@ Macros

NULL
_IONBF
stdout

getc

@® Function

putchar
fflush
fprintf
sscanf
fgets
ungetc
fsetpos

ferror

M stdlib.h

@® Type

ptrdiff t

@ Macros

NULL

PART 1 OPERATION

size t

EOF

_IOLBF

stderr
offsetof

putc
fopen
fscanf
vfprintf
fputc
fread
ftell

size t

offsetof

FILE

SEEK_SET
_|OFBF

putchar

getchar
freopen
printf
vprintf
fputs
fwrite

rewind

div_t

EXIT_FAILURE

fpos t

SEEK_CUR
BUFSIZ

putc

getc
setbuf
scanf
vsprintf
gets
fgetpos

clearerr

Idiv_t

EXIT_SUCCESS RAND_MAX

SEEK_END
stdin

getchar

fclose
setvbuf
sprintf
fgetc
puts
fseek

feof

171

APPENDIX A List of Types, Macros, Functions, and Variables Provided by C Libraries

@ Function
atof atoi atol strtod strtol
strtoul rand srand calloc free
malloc realloc abort atexit exit
bsearch gsort abs div labs
Idiv
B string.h
@® Type
ptrdiff_t size t
@ Macros
NULL offsetof
@ Function
memcpy memmove strepy strncpy strcat
strncat memcmp strcmp strncmp memchr
strchr strespn strpbrk strrchr strspn
strstr strtok memset strlen
W fcntl.h
@ Macros
O_RDONLY O_WRONLY O_RDWR O_APPEND O_CREAT
O_TRUNC O_BINARY
M unistd.h
@ Macros

SEEK_SET SEEK_CUR SEEK_END

172 PART 1 OPERATION

APPENDIX A List of Types, Macros, Functions, and Variables Provided by C Libraries

B sys/types.h

@ Type
off t
M time.h
@® Type
clock t time t struct tm
@® Macros
CLOCKS PER _SEC
@ Variable
Tz
@ Function
asctime() ctime() difftime() gmtime()
mktime() stritime()

PART 1 OPERATION

localtime()

173

APPENDIX B Operations Specific to C Libraries

APPENDIX B Operations Specific to C Libraries

The operations specific to the C libraries are described below.

B Operations Specific to C Libraries

174

@ Diagnostic information printed out by the assert function and assert function termination operation

[Diagnostic information]

Diagnostic information is output to stdout in the following form.
< Program Diagnosis *** information of fail expression >
file : File name expanded by __ FILE
line : Line number expanded by __ LINE
expression: Expression

[Termination operation]

Same as the abort function calling.

@ Inspection character sets for isalnum, isalpha, iscntrl, islower, isprint, and isupper functions
e isdnum: '0'to’'9,’a to’z,or’'A’ to’'Z’
e isdpha '@ to’'z or’A’to’Z’
e iscntrl: '\100' to '\037’, or '\177’
e idower: '@ to’Z
e isprint: '\040' to'\176’
e isupper: A’ to’'Z’
@ Mathematical function return value upon domain error occurrence
« gNaN
@ Whether the mathematical function sets up the macro ERANGE value for errno upon underflow
condition occurrence

« ERANGE
e The detectable result value must be +0 or -0.
« The undetectable result value is undefined. 1t depends on the function.

@ When the second argument for the fmod function is 0, the domain error must occur or the value 0 must
be returned

¢ Thedomain error must occur.

@ File buffering characteristics

[Input file buffering char acteristics]

e |OLBF, IOFBF: Full buffering
* |IONBF: No buffering

PART 1 OPERATION

APPENDIX B Operations Specific to C Libraries

[Output file buffering characteristics]

* |OFBF: Full buffering
* |OLBF: Linebuffering
* |IONBF: No buffering

[Full buffering]

Buffering is conducted using al the preset buffer areas. When the input function is called at the time of
input from afile, any data remaining in the buffer is returned as the input from the file. If the buffer is
emptied of data or does not have sufficient data, the input from the fileis received until the buffer isfilled
up and then only the necessary amount is returned as the input. At the time of output to afile, the output
function writesinto the buffer instead of outputting into the file. When the buffer isfilled up by the write
operation, the buffer outputs its entire contents to the file.

[Line buffering]

Buffering is conducted for each output line.
[No buffering]

File input/output is implemented in compliance with the input/output request made by input/output
function calling. Unlike the other buffering operations, no data will be saved into the memory.

@ %p format conversion output format for fprintf function

e The number of digitsislessthan 8 at 8-digit hexadecimal notation, preceding Os are padded. Uppercase
alphabetical characters are used.

@ %p format conversion input format for fscanf function
If less then 8 digits in hexadecimal notation are used (in upper- or lower-case aphabetic characters), the

leading Os are padded. If the specified number of digitsis exceeded, only the low-order part isvalid.

@ Length of string literal that can be treated by %s format conversion in printf function, fprintf function,
vprintf function and vprintf function

512 characters (value of BUFSIZ macro defined in stdio.h)
@ Interpretation of a single "-" character appearing at a position other than the start and end of the scan-
list relative to %[format conversion]

A string of consecutive characters beginning with the character placed to the left of "-" and ending with the
character placed to theright of "-" is handled.

[Example]
%[a-c] isequal to [abc].
@ abort function operation relative to an open file
Closing takes place after flushing of all streams.
@ Status returned by the exit function when the argument value is other than 0, EXIT_SUCCESS, and
EXIT_FAILURE
The status to be returned is the same as for EXIT_FAILURE.

PART 1 OPERATION 175

APPENDIX B Operations Specific to C Libraries

@ Floating-point number limit values

FLT MAX 7F7F FFFF
DBL_ MAX 7FEF FFFF FFFF FFFF
FLT EPSILON 3400 0000
DBL _EPSILON 3CBO 0000 0000 0000
FLT MIN 0080 0000
DBL MIN 0010 0000 0000 0O0OO

@ Limitations on setjmp function and longjmp function
The interrupt environment is not supported by the libraries. Therefore, the interrupt handler cannot achieve
environment saving and the return to the interrupt handler cannot be made.

@ Limitations on va_start macro
Do not use the following variable definitions for va_start macro second argument.

« char type, unsigned char type, short type, or unsigned short type (however, the pointer type for these
types can be used)

« Type having the register storage area class

* Function type

e Array type

« Typedifferent from the type derived from existing argument extension

@ File types

Files that can be handled by the libraries are divided into two types; text files and binary files. Thelibraries
treat the text files and binary files in the same manner except for the difference in the second argument of
the open function called upon file opening. When a binary file is specified, O _BINARY is added to the
second argument of the open function. For the open function argument, see section "8.5.1 open Function”.

@ div_ttype and Idiv_t type

It is equivaent to an undermentioned structural body.

div t: struct {
int quot;
int rem;
1div_t: struct {

long int quot;
long int rem;
}i
@ abort function operations

When the abort function is called, al the open output streams are flushed and then all the open streams are
closed. Finally, the abort function is called.

176 PART 1 OPERATION

APPENDIX B Operations Specific to C Libraries

@ Maximum count of functions that can be registered by the atexit function

Up to 32 functions can be registered.

@ exit function operations

When the exit function is called, al the functions registered by the atexit function are called in the reverse
order of registration, all the open output streams are flushed, and then all the open streams are closed.
Finally, the _exit function is called with the status value, which is delivered as the argument, retained.
When the status value is 0 or EXIT_SUCCESS, it indicates successful termination. When the status value
is EXIT_FAILURE, it indicates the unsuccessful termination.

@ about accuracy of mathematical functions

The following 16 functions of mathematical functions declared in standard header file math.h calculate the
return value by the approximate calculation. Therefor, enough accuracy might not be obtained.

acos asin atan atan2 cos
sin tan cosh sinh tanh
exp log loglo0 pow sqgrt
fmod

@ The Date and Time library

When the Date and Time library is used, specify the -K LONGLONG option.

@ clock_t type

The clock_t typeis defined as long long int type.
Please adjust the value to become secondsiif it is divided by the value of macro CLOCKS PER_SEC.

@ time_ttype
The clock_t type and the time_t type are defined aslong long int type.

The range of the date that can be used in the library is as follows.

The starting point January 1, 1970 00:00:00(UTC)
Minimum unit 1 second
Maximum years About 292.4 hillion years.

Because the long long int typeis used, it is not possible to connect directly with |O.
When a negative value is used to indicate before 1970, the result of the library function is not guaranteed.

PART 1 OPERATION 177

APPENDIX B Operations Specific to C Libraries

178

@ About clock function and time function

Because the clock() and the time() are functions that depend on the system, it is not included in the standard
library. Please make these functions referring to "8.6 Time Function Specifications'.

@ About time zone

Please set the time zone to global variable _TZ.

Please set 9*3600 for JST (Japan Standard Time) because the unit of thevalue set to _TZ is"second”.
Toset _TZ, pleaseinclude time.h.

Please initialize _TZ when you use the mktime function, the ctime function and the localtime function.

Please do not change the value of _TZ while executing the mktime function, the ctime function, and the
localtime function. The result when _TZ is changed is not guaranteed. Please change after executing these
functions when you change _TZ.

@ About the Daylight Saving Time

There is no means to obtain information on whether the Daylight Saving Time is used. Therefore, when
using functions which use the value of the Daylight Saving Time flag, it is necessary to correct tm_isdst
which isamember of the struct tm type.

The operation of the function that uses the tm_isdst is shown asfollows.
- Thelocaltime function sets -1 to the value of tm_isdst.
- The ctime function returns the string literal that does not use the Daylight Saving Time.
- The operation of the mktime function is assumed that tm_isdst is a correct value.
- When the value of tm_isdst is -1, the mktime function doesn't use the Daylight Saving Time.

- The mktime function doesn't modify the value of tm_isdst.

@ Locale that can be used by strftime function

Only "C" locale.

PART 1 OPERATION

APPENDIX C Error Message

APPENDIX C Error Message

The compiler displays the error messages below.

B Format of error messages

E4001D option -cpu is not defined

| |

Error ID
Error message
E4001D
Tool identifier D : Driver

B : Compiler

Error number (4 digits)

Error Level | : Information message
W : Warning message
E : Error message
F : Fatal error message

PART 1 OPERATION

179

APPENDIX C Error Message

180

W1001D

Not support this option on this version

[Explanation]
Not support this option on this version.

W1002D

Not specified OPT911

[Explanation]
Not specified OPT911.

E4001D

option -cpu is not defined

[Explanation]
Option -cpu is not defined.

E4002D

Not support C++ sourcefile

[Explanation]
Not support C++ source file.

E4003D

illegal cpu name

[Explanation]
Illegal cpu name.

E4004D

CPU information file not found

[Explanation]
CPU information file not found.

E4005D

CPU information not found

[Explanation]
CPU information not found.

PART 1 OPERATION

APPENDIX C Error Message

E4006D

Not exist file

[Explanation]
Not exist file.

Fo001D

source filename not specified

[Explanation]
Source filename not specified.

F9002D

illegal option-name

[Explanation]

Illegal option-name.

FO003D

illegal value

[Explanation]
Illegal value.

Fo004D

illegal sub-option

[Explanation]
I1legal sub-option.

F9005D

illegal parameter description

[Explanation]
Illegal parameter description.

FO006D

cannot open option-file

PART 1 OPERATION

[Explanation]
Cannot open option-file.

181

APPENDIX C Error Message

182

Fo007D

nested option-file exceeds 8

[Explanation]
Nested option-file exceeds 8.

FO008D

insufficient memory

[Explanation]
Insufficient memory.

F9009D

cannot open file

[Explanation]
Cannot open file.

Fo010D

illegal section specification

[Explanation]
Illegal section specification.

F9011D

illegal tool-item

[Explanation]
Illegal tool-item.

F9012D

tool executeisfailed

[Explanation]
Tool executeisfailed.

Fo013D

illegal source file name

[Explanation]
Illegal source file name.

PART 1 OPERATION

APPENDIX C Error Message

Fo014D

internal error

[Explanation]
Internal error.

Fo015D

SIGHUP

[Explanation]
Receive SIGHUP signal.

F9016D

SIGINT

[Explanation]
Receive SIGINT signal.

Fo017D

SIGBUS

[Explanation]
Receive SIGBUS signal.

Fo018D

SIGSEGV

[Explanation]
Receive SIGSEGV signal.

F9019D

SIGTERM

[Explanation]
Receive SIGTERM signal.

F9020D

mismatch CPU information file version

PART 1 OPERATION

[Explanation]
Mismatch CPU information file version.

183

APPENDIX C Error Message

184

F9021D

internal error

[Explanation]
Internal error.

Fo022D

insufficient memory

[Explanation]
Insufficient memory.

F9023D

illegal CPU information file format

[Explanation]
Illegal CPU information file format.

10008B

missing closing quote

[Explanation]
Missing closing quote.

10010B

"#' not expected here

[Explanation]

"#' not expected here.

10018B

expected a™)"

[Explanation]
Expecteda")".

10083B

type qualifier specified more than once

[Explanation]
Type qualifier specified more than once.

PART 1 OPERATION

APPENDIX C Error Message

10117B

non-void function "entity" should return avalue

[Explanation]
Non-void function "entity" should return avalue.

10142B

expression must have pointer-to-object type

[Explanation]
Expression must have pointer-to-object type.

10172B

external/internal linkage conflict with previous declaration

[Explanation]
External/internal linkage conflict with previous declaration.

101778

entity-kind "entity" was declared but never referenced

[Explanation]
Entity-kind "entity" was declared but never referenced.

10180B

argument is incompatible with formal parameter

[Explanation]

Argument is incompatible with formal parameter.

10181B

argument is incompatible with corresponding format string conversion

[Explanation]
Argument is incompatible with corresponding format string conversion.

10193B

zero used for undefined preprocessing identifier

PART 1 OPERATION

[Explanation]
Zero used for undefined preprocessing identifier.

185

APPENDIX C Error Message

186

10223B

function declared implicitly

[Explanation]
Function declared implicitly.

10228B

trailing commais nonstandard

[Explanation]
Trailing commais nonstandard.

10236B

controlling expression is constant

[Explanation]
Controlling expression is constant.

102378

selector expression is constant

[Explanation]
Selector expression is constant.

10260B

explicit typeis missing ("int" assumed)

[Explanation]
Explicit typeismissing ("int" assumed).

10261B

access control not specified ("xxxx" by default)

[Explanation]

Access control not specified ("xxxx" by default).

10324B

duplicate friend declaration

[Explanation]
Duplicate friend declaration.

PART 1 OPERATION

APPENDIX C Error Message

10340B value copied to temporary, reference to temporary used

[Explanation]
Vaue copied to temporary, reference to temporary used.

10381B extra™;" ignored
[Explanation]
Extra";" ignored.

103998 entity-kind "entity" has an operator new xxxx() but no default operator delete xxxx()
[Explanation]

Entity-kind "entity" has an operator new xxxx() but no default operator delete xxxx().

10400B entity-kind "entity" has a default operator delete xxxx() but no operator new xxxx()

[Explanation]
Entity-kind "entity" has a default operator delete xxxx() but no operator new xxxx().

10401B destructor for base class "type" is not virtual

[Explanation]

Destructor for base class "type" is not virtual.

10445B entity-kind "entity" is not used in declaring the parameter types of entity-kind
"entity"

[Explanation]
Entity-kind "entity" is not used in declaring the parameter types of entity-kind "entity".

PART 1 OPERATION 187

APPENDIX C Error Message

188

10451B

omission of "xxxx" is nonstandard

[Explanation]
Omission of "xxxx" is nonstandard.

104798

entity-kind "entity" redeclared "inline" after being called

[Explanation]
Entity-kind "entity" redeclared "inline" after being called.

10487B

inline entity-kind "entity" cannot be explicitly instantiated

[Explanation]
Inline entity-kind "entity" cannot be explicitly instantiated.

10534B

use of alocal type to specify an exception

[Explanation]
Use of alocal type to specify an exception.

105358

redundant type in exception specification

[Explanation]
Redundant type in exception specification.

105508

entity-kind "entity" was set but never used

[Explanation]
Entity-kind "entity" was set but never used.

105608

"entity" isreserved for future use as a keyword

[Explanation]
"entity" isreserved for future use as a keyword.

PART 1 OPERATION

APPENDIX C Error Message

106508

calling convention specified here isignored

[Explanation]
Calling convention specified here isignored.

10652B

calling convention isignored for thistype

[Explanation]
Cdling convention isignored for thistype.

10678B

call of entity-kind "entity" (declared at line xxxx) cannot be inlined

[Explanation]
Call of entity-kind "entity" (declared at line xxxx) cannot be inlined.

106798

entity-kind "entity" cannot be inlined

[Explanation]
Entity-kind "entity" cannot be inlined.

10815B

type qualifier on return type is meaningless

[Explanation]

Type qualifier on return type is meaningless.

10826B

entity-kind "entity" was never referenced

[Explanation]
Entity-kind "entity" was never referenced.

10831B

support for placement delete is disabled

PART 1 OPERATION

[Explanation]
Support for placement delete is disabled.

189

APPENDIX C Error Message

10837B omission of explicit typeis nonstandard ("int" assumed)

[Explanation]
Omission of explicit typeis nonstandard ("int" assumed).

10863B effect of this"#pragma pack” directiveislocal to entity-kind "entity"

[Explanation]
Effect of this "#pragma pack” directiveislocal to entity-kind "entity".

10866B exception specification ignored

[Explanation]
Exception specification ignored.

10925B atype qualifier cannot be applied to a function type

[Explanation]
A type qualifier cannot be applied to a function type.

10938B return type "int" omitted in declaration of function "main”

[Explanation]

Return type "int" omitted in declaration of function "main".

10940B missing return statement at end of non-void "entity"

[Explanation]
Missing return statement at end of non-void "entity".

10997B affinity has shared type (not pointer to shared)

[Explanation]
Affinity has shared type, not pointer to shared.

190 PART 1 OPERATION

APPENDIX C Error Message

10998B affinity expression ignored in nested upc_forall

[Explanation]
Affinity expression ignored in nested upc_forall.

109998 bracketed expression is assumed to be a block size specification rather than an array
dimension
[Explanation]
Bracketed expression is assumed to be a block size specification rather than an array
dimension.
W1001B last line of file ends without a newline
[Explanation]

Last line of file ends without a newline.

W1002B last line of file ends with a backslash

[Explanation]
Last line of file ends with a backslash.

W1007B unrecognized token

[Explanation]
Unrecognized token.

W1009B nested comment is not allowed

[Explanation]
Nested comment is not allowed.

W1011B unrecognized preprocessing directive

[Explanation]

Unrecognized preprocessing directive.

PART 1 OPERATION 191

APPENDIX C Error Message

192

w1012B parsing restarts here after previous syntax error
[Explanation]
Parsing restarts here after previous syntax error.
W1014B extratext after expected end of preprocessing directive
[Explanation]
Extratext after expected end of preprocessing directive.
wW1021B type qualifiers are meaninglessin this declaration
[Explanation]
Type qualifiers are meaninglessin this declaration.
W1022B invalid hexadecimal number
[Explanation]
Invalid hexadecimal number.
W1023B integer constant istoo large
[Explanation]
Integer constant istoo large.
W1024B invalid octal digit
[Explanation]
Invalid octa digit.
W1026B too many characters in character constant

[Explanation]
Too many characters in character constant.

PART 1 OPERATION

APPENDIX C Error Message

W1027B

character valueis out of range

[Explanation]
Character valueis out of range.

W1030B

floating constant is out of range

[Explanation]
Floating constant is out of range.

W1032B

expression must have arithmetic type

[Explanation]
Expression must have arithmetic type.

W1038B

directiveis not allowed - an #€else has already appeared

[Explanation]
Directive is not allowed. An #else has already appeared.

W1040B

expected an identifier

[Explanation]
Expected an identifier.

W1042B

operand types are incompatible ("type" and "type")

[Explanation]
Operand types are incompatible ("type" and "type").

W1045B

#undef may not be used on this predefined name

PART 1 OPERATION

[Explanation]
#undef may not be used on this predefined name.

193

APPENDIX C Error Message

W1046B this predefined name may not be redefined

[Explanation]
This predefined name may not be redefined.

W1047B incompatible redefinition of macro "entity" (declared at line xxxx)

[Explanation]
Incompatible redefinition of macro "entity” (declared at line xxxx).

W1054B too few argumentsin macro invocation

[Explanation]

Too few arguments in macro invocation.

W1055B too many arguments in macro invocation

[Explanation]
Too many arguments in macro invocation.

W1061B integer operation result is out of range

[Explanation]

Integer operation result is out of range.

W1062B shift count is negative

[Explanation]
Shift count is negative.

W1063B shift count istoo large

[Explanation]
Shift count istoo large.

194 PART 1 OPERATION

APPENDIX C Error Message

W1064B declaration does not declare anything
[Explanation]
Declaration does not declare anything.
W1065B expected a";"
[Explanation]
Expected a";".
W1066B enumeration value is out of "int" range
[Explanation]
Enumeration value is out of "int" range.
W1068B integer conversion resulted in a change of sign
[Explanation]
Integer conversion resulted in a change of sign.
W1069B integer conversion resulted in truncation
[Explanation]
Integer conversion resulted in truncation.
W1070B incomplete typeis not allowed
[Explanation]
Incomplete typeis not allowed.
W1076B argument to macro is empty

PART 1 OPERATION

[Explanation]

Argument to macro is empty.

195

APPENDIX C Error Message

196

W1077B

this declaration has no storage class or type specifier

[Explanation]
This declaration has no storage class or type specifier.

W1080B

a storage class may not be specified here

[Explanation]
A storage class may not be specified here.

W1082B

storage classis not first

[Explanation]
Storage classis not first.

W1083B

type qualifier specified more than once

[Explanation]
Type qualifier specified more than once.

W1084B

invalid combination of type specifiers

[Explanation]

Invalid combination of type specifiers.

W1085B

invalid storage class for a parameter

[Explanation]
Invalid storage class for a parameter.

W1086B

invalid storage class for afunction

[Explanation]
Invalid storage class for a function.

PART 1 OPERATION

APPENDIX C Error Message

W1096B

atrandation unit must contain at least one declaration

[Explanation]
A trandlation unit must contain at |east one declaration.

W1099B

a declaration here must declare a parameter

[Explanation]
A declaration here must declare a parameter.

W1101B

"xxxX" has already been declared in the current scope

[Explanation]

"xxxX" has aready been declared in the current scope.

W1102B

forward declaration of enum type is honstandard

[Explanation]
Forward declaration of enum type is nonstandard.

W1107B

zero-length bit field must be unnamed

[Explanation]
Zero-length bit field must be unnamed.

W1108B

signed hit field of length 1

[Explanation]
Signed bit field of length 1.

W1111B

statement is unreachable

PART 1 OPERATION

[Explanation]
Statement is unreachable.

197

APPENDIX C Error Message

198

W1114B

entity-kind "entity" was referenced but not defined

[Explanation]
Entity-kind "entity" was referenced but not defined.

W1117B

non-void function "entity" should return avalue

[Explanation]
Non-void function "entity" should return avalue.

W1118B

avoid function may not return avalue

[Explanation]
A void function may not return avalue.

W1120B

return value type does not match the function type

[Explanation]
Return value type does not match the function type.

W1127B

expected a statement

[Explanation]
Expected a statement.

W1128B

loop is not reachable from preceding code

[Explanation]
Loop is not reachable from preceding code.

W1129B

a block-scope function may only have extern storage class

[Explanation]
A block-scope function may only have extern storage class.

PART 1 OPERATION

APPENDIX C Error Message

W1137B

expression must be a modifiable Ivalue

[Explanation]
Expression must be a modifiable lvalue.

W1138B

taking the address of aregister variableis not alowed

[Explanation]

Taking the address of aregister variable is not allowed.

W1139B

taking the address of a bit field is not allowed

[Explanation]
Taking the address of a bit field is not allowed.

W1140B

too many argumentsin function call

[Explanation]
Too many argumentsin function call.

W1142B

expression must have pointer-to-object type

[Explanation]

Expression must have pointer-to-object type.

W1144B

avalue of type "type" cannot be used to initialize an entity of type "type"

[Explanation]

A value of type "type" cannot be used to initialize an entity of type "type".

W1147B

declaration isincompatible with entity-kind "entity" (declared at line xxxx)

PART 1 OPERATION

[Explanation]

Declaration isincompatible with entity-kind "entity" (declared at line xxxx).

199

APPENDIX C Error Message

W1152B conversion of nonzero integer to pointer

[Explanation]

Conversion of nonzero integer to pointer.

W1155B ol d-fashioned assignment operator

[Explanation]
Old-fashioned assignment operator.

W1156B old-fashioned initializer

[Explanation]
Old-fashioned initializer.

W11598B declaration isincompatible with previous "entity” (declared at line xxxx)

[Explanation]

Declaration isincompatible with previous "entity" (declared at line xxxx).

W1161B unrecognized #pragma
[Explanation]
Unrecognized #pragma.

W1165B too few argumentsin function call
[Explanation]

Too few argumentsin function call.

W1166B invalid floating constant

[Explanation]
Invalid floating constant.

200 PART 1 OPERATION

APPENDIX C Error Message

W1167B

argument of type "type" isincompatible with parameter of type "type"

[Explanation]

Argument of type "type" isincompatible with parameter of type "type".

W1170B

pointer points outside of underlying object

[Explanation]
Pointer points outside of underlying object.

W1171B

invalid type conversion

[Explanation]
Invalid type conversion.

W1172B

external/internal linkage conflict with previous declaration

[Explanation]
External/internal linkage conflict with previous declaration.

W1173B

floating-point value does not fit in required integral type

[Explanation]
Floating-point value does not fit in required integral type

W1174B

expression has no effect

[Explanation]
Expression has no effect.

W1175B

subscript out of range

PART 1 OPERATION

[Explanation]
Subscript out of range.

201

APPENDIX C Error Message

W1177B entity-kind "entity" was declared but never referenced

[Explanation]
Entity-kind "entity" was declared but never referenced.

W1178B "&" applied to an array has no effect

[Explanation]
"&" applied to an array has no effect.

W1179B right operand of "%" is zero

[Explanation]
Right operand of "%" is zero.

W1180B argument is incompatible with formal parameter

[Explanation]
Argument is incompatible with formal parameter.

W1181B argument is incompatible with corresponding format string conversion

[Explanation]

Argument is incompatible with corresponding format string conversion.

W1183B type of cast must be integral

[Explanation]
Type of cast must be integral.

W1185B dynamic initialization in unreachable code

[Explanation]
Dynamic initialization in unreachable code.

202 PART 1 OPERATION

APPENDIX C Error Message

W1186B

pointless comparison of unsigned integer with zero

[Explanation]
Pointless comparison of unsigned integer with zero.

W1187B

use of "=" where "==" may have been intended

[Explanation]
Use of "=" where "==" may have been intended.

W1188B

enumerated type mixed with another type

[Explanation]
Enumerated type mixed with another type.

W1191B

type qualifier is meaningless on cast type

[Explanation]
Type qualifier is meaningless on cast type.

W1192B

unrecognized character escape seguence

[Explanation]

Unrecognized character escape sequence.

W1224B

the format string requires additional arguments

[Explanation]
The format string requires additiona arguments.

W1225B

the format string ends before this argument

PART 1 OPERATION

[Explanation]
The format string ends before this argument.

203

APPENDIX C Error Message

204

W1226B

invalid format string conversion

[Explanation]
Invalid format string conversion.

W1228B

trailing commais nonstandard

[Explanation]
Trailing commais nonstandard.

W1229B

bit field cannot contain all values of the enumerated type

[Explanation]
Bit field cannot contain al values of the enumerated type.

W1230B

nonstandard type for a bit field

[Explanation]
Nonstandard type for a bit field.

W1231B

declaration is not visible outside of function

[Explanation]

Declaration is not visible outside of function.

W1232B

old-fashioned typedef of "void" ignored

[Explanation]
Old-fashioned typedef of "void" ignored.

W1233B

left operand is not a struct or union containing this field

[Explanation]
Left operand is not a struct or union containing this field.

PART 1 OPERATION

APPENDIX C Error Message

W1234B

pointer does not point to struct or union containing this field

[Explanation]
Pointer does not point to struct or union containing thisfield.

W1236B

controlling expression is constant

[Explanation]
Controlling expression is constant.

W1240B

duplicate specifier in declaration

[Explanation]
Duplicate specifier in declaration.

W1257B

const entity-kind "entity” requires an initializer

[Explanation]
Const entity-kind "entity" requires an initializer.

W1260B

explicit typeis missing ("int" assumed)

[Explanation]
Explicit typeismissing ("int" assumed).

W1267B

old-style parameter list (anachronism)

[Explanation]
Old-style parameter list (anachronism).

W1284B

NULL referenceis not allowed

PART 1 OPERATION

[Explanation]
NULL referenceis not allowed.

205

APPENDIX C Error Message

206

W1290B copy constructor for class "type" is ambiguous
[Explanation]
Copy constructor for class "type" is ambiguous.
W1294B invalid union member -- class "type" has a disallowed member function
[Explanation]
Invalid union member -- class "type" has a disallowed member function.
W1296B invalid use of non-lvalue array
[Explanation]
Invalid use of non-lvalue array.
W1301B typedef name has aready been declared (with same type)
[Explanation]
Typedef name has already been declared (with same type).
W1310B default argument of type "type" isincompatible with parameter of type "type"
[Explanation]
Default argument of type "type" isincompatible with parameter of type "type".
W1313B type qualifier is not allowed on this function
[Explanation]
Type qudlifier is not allowed on this function.
W1326B "inline" is not alowed

[Explanation]
"inline" is not allowed.

PART 1 OPERATION

APPENDIX C Error Message

W1330B

entity-kind "entity" isinaccessible

[Explanation]
Entity-kind "entity" isinaccessible.

W1334B

class "type" has no suitable copy constructor

[Explanation]
Class "type" has no suitable copy constructor.

W1335B

linkage specification is not allowed

[Explanation]
Linkage specification is not allowed.

W1337B

linkage specification isincompatible with previous "entity” (declared at line xxxx)

[Explanation]
Linkage specification isincompatible with previous "entity" (declared at line xxxx).

W1341B

"operator" xxxx must be a member function

[Explanation]

"operator xxxx" must be amember function.

W1354B

first parameter of deallocation function must be of type "void *"

[Explanation]
First parameter of deallocation function must be of type "void *".

W1358B

base class name required -- "type" assumed (anachronism)

PART 1 OPERATION

[Explanation]
Base class name required -- "type" assumed (anachronism).

207

APPENDIX C Error Message

W1361B assignment to "this" (anachronism)

[Explanation]
Assignment to "this" (anachronism).

W1362B "overload" keyword used (anachronism)

[Explanation]
"overload" keyword used (anachronism).

W1368B entity-kind "entity" defines no constructor to initialize the following:

[Explanation]
Entity-kind "entity" defines no constructor to initialize the following.

W1370B entity-kind "entity" has an uninitialized const field

[Explanation]
Entity-kind "entity" has an uninitialized const field.

W1375B declaration requires a typedef name

[Explanation]

Declaration requires a typedef name.

W1379B cast of bound function to normal function pointer (anachronism)

[Explanation]
Cast of bound function to normal function pointer (anachronism).

WwW1381B extra";" ignored
[Explanation]
Extra";" ignored.

208 PART 1 OPERATION

APPENDIX C Error Message

W1382B

nonstandard member constant declaration (standard form is a static const integral
member)

[Explanation]

Nonstandard member constant declaration (standard form is a static const integral
member).

W1387B

delete array size expression used (anachronism)

[Explanation]
Delete array size expression used (anachronism).

W1395B

single-argument function used for postfix "xxxx" (anachronism)

[Explanation]
Single-argument function used for postfix "xxxx" (anachronism).

W1398B

cast to array typeis nonstandard (treated as cast to "type")

[Explanation]
Cast to array type is nonstandard (treated as cast to "type").

W1403B

entity-kind "entity" has aready been declared

[Explanation]
Entity-kind "entity" has already been declared.

W1406B

using nested entity-kind "entity" (anachronism)

[Explanation]
Using nested entity-kind "entity" (anachronism).

W1414B

delete of pointer to incomplete class

PART 1 OPERATION

[Explanation]

Delete of pointer to incomplete class.

209

APPENDIX C Error Message

210

W1425B

dollar sign ("$") used inidentifier

[Explanation]
Dollar sign ("$") used in identifier.

W1426B

temporary used for initial value of reference to non-const (anachronism)

[Explanation]
Temporary used for initial value of reference to non-const (anachronism).

W1427B

qualified name is not allowed in member declaration

[Explanation]
Qualified nameis not allowed in member declaration.

W1428B

enumerated type mixed with another type (anachronism)

[Explanation]
Enumerated type mixed with another type (anachronism).

W1430B

returning reference to local temporary

[Explanation]

Returning reference to local temporary.

W1445B

entity-kind "entity" is not used in declaring the parameter types of entity-kind
"entity"

[Explanation]
Entity-kind "entity" is not used in declaring the parameter types of entity-kind "entity".

W1450B

the type "long long" is nonstandard

[Explanation]
Thetype "long long" is nonstandard.

PART 1 OPERATION

APPENDIX C Error Message

W1451B

omission of "xxxx" is nonstandard

[Explanation]
Omission of "xxxx" is nonstandard.

W1458B

argument of type "type" isincompatible with template parameter of type "type"

[Explanation]
Argument of type "type" isincompatible with template parameter of type "type".

W1460B

declaration of "xxxx" hides function parameter

[Explanation]
Declaration of "xxxx" hides function parameter.

W1461B

initial value of reference to non-const must be an lvalue

[Explanation]
Initial value of reference to non-const must be an [value.

W1469B

tag kind of xxxx isincompatible with declaration of entity-kind "entity" (declared at
line xxxx)

[Explanation]
Tag kind of xxxx isincompatible with declaration of entity-kind "entity" (declared at line
XXXX).

W1472B

member function typedef (allowed for cfront compatibility)

[Explanation]
Member function typedef (allowed for cfront compatibility).

W1482B

entity-kind "entity" is an inaccessible type (allowed for cfront compatibility)

PART 1 OPERATION

[Explanation]
Entity-kind "entity" is an inaccessible type (allowed for cfront compatibility).

211

APPENDIX C Error Message

212

W1494B declaring avoid parameter list with atypedef is nonstandard
[Explanation]
Declaring avoid parameter list with atypedef is nonstandard.
W1495B global entity-kind "entity" used instead of entity-kind "entity" (cfront compatibility)
[Explanation]
Global entity-kind "entity" used instead of entity-kind "entity” (cfront compatibility).
W1497B declaration of "xxxx" hides template parameter
[Explanation]
Declaration of "xxxx" hides template parameter.
W1504B nonstandard form for taking the address of a member function
[Explanation]
Nonstandard form for taking the address of a member function.
W1512B type qualifier on areference typeis not alowed
[Explanation]
Type qualifier on areference typeis not allowed.
W1513B avalue of type "type" cannot be assigned to an entity of type "type"
[Explanation]
A value of type "type" cannot be assigned to an entity of type "type".
w1514B pointless comparison of unsigned integer with a negative constant

[Explanation]
Pointless comparison of unsigned integer with a negative constant.

PART 1 OPERATION

APPENDIX C Error Message

W1516B

const object requires an initializer

[Explanation]
Const object requires an initializer.

W1518B

nonstandard preprocessing directive

[Explanation]
Nonstandard preprocessing directive.

W1520B

initialization with "{...}" expected for aggregate object

[Explanation]
Initialization with "{...}" expected for aggregate object.

W1522B

pointless friend declaration

[Explanation]
Pointless friend declaration.

W1523B

" used in place of "::" to form a qualified name (cfront anachronism)

[Explanation]

M used in place of "::" to form a qualified name (cfront anachronism).

W1524B

non-const function called for const object (anachronism)

[Explanation]
Non-const function called for const object (anachronism).

W1533B

handler is potentially masked by previous handler for type "type"

PART 1 OPERATION

[Explanation]
Handler is potentially masked by previous handler for type "type".

213

APPENDIX C Error Message

214

W1541B

omission of exception specification isincompatible with previous entity-kind "entity"

(declared at line xxxx)

[Explanation]

Omission of exception specification is incompatible with previous entity-kind "entity"

(declared at line xxxx).

W1544B

use of alocal typeto declare anonlocal variable

[Explanation]
Use of alocal type to declare anonlocal variable.

W1545B

use of alocal type to declare afunction

[Explanation]
Use of alocal type to declare afunction.

W1546B

transfer of control bypasses initialization of:

[Explanation]

Transfer of control bypassesinitialization of.

W1549B

entity-kind "entity" is used beforeitsvalueis set

[Explanation]
Entity-kind "entity" is used beforeitsvalueis set.

W1550B

entity-kind "entity" was set but never used

[Explanation]
Entity-kind "entity" was set but never used.

W1552B

exception specification is not allowed

[Explanation]
Exception specification is not allowed.

PART 1 OPERATION

APPENDIX C Error Message

W1553B

external/internal linkage conflict for entity-kind "entity” (declared at line xxxx)

[Explanation]
External/internal linkage conflict for entity-kind "entity" (declared at line xxxx).

W1554B

entity-kind "entity" will not be called for implicit or explicit conversions

[Explanation]
Entity-kind "entity" will not be called for implicit or explicit conversions.

W1560B

"entity" is reserved for future use as a keyword

[Explanation]
"entity" is reserved for future use as a keyword.

W1605B

floating-point template parameter is nonstandard

[Explanation]
Floating-point template parameter is nonstandard.

W1606B

this pragma must immediately precede a declaration

[Explanation]
This pragma must immediately precede a declaration.

W1607B

this pragma must immediately precede a statement

[Explanation]
This pragma must immediately precede a statement.

W1608B

this pragma must immediately precede a declaration or statement

PART 1 OPERATION

[Explanation]
This pragma must immediately precede a declaration or statement.

215

APPENDIX C Error Message

216

W1609B

thiskind of pragmamay not be used here

[Explanation]
Thiskind of pragma may not be used here.

W1610B

entity-kind "entity" does not match "entity" -- virtual function override intended?

[Explanation]

Entity-kind "entity" does not match "entity". --virtual function override intended.

W1611B

overloaded virtual function "entity" isonly partially overridden in entity-kind "entity'

[Explanation]

Overloaded virtual function "entity" isonly partially overridden in entity-kind "entity".

W1617B

pointer-to-member-function cast to pointer to function

[Explanation]
Pointer-to-member-function cast to pointer to function.

W1618B

struct or union declare no named members

[Explanation]

Struct or union declare no named members.

W1619B

nonstandard unnamed field

[Explanation]
Nonstandard unnamed field.

W1620B

nonstandard unnamed member

[Explanation]
Nonstandard unnamed member.

PART 1 OPERATION

APPENDIX C Error Message

W1626B

precompiled header file "xxxx" is either invalid or not generated by this version of
the compiler

[Explanation]

Precompiled header file "xxxx" is either invalid or not generated by this version of the
compiler.

W1627B

precompiled header file "xxxx" was not generated in this directory

[Explanation]
Precompiled header file "xxxx" was not generated in this directory.

W1628B

header files used to generate precompiled header file "xxxx" have changed

[Explanation]
Header files used to generate precompiled header file "xxxx" have changed.

W1629B

the command line options do not match those used when precompiled header file
"XxxX" was created

[Explanation]
The command line options do not match those used when precompiled header file "xxxx"
was created.

W1630B

theinitial sequence of preprocessing directives is not compatible with those of
precompiled header file "xxxx"

[Explanation]

The initial sequence of preprocessing directives is not compatible with those of
precompiled header file "xxxx".

W1634B

memory usage conflict with precompiled header file "xxxx"

PART 1 OPERATION

[Explanation]
Memory usage conflict with precompiled header file "xxxx".

217

APPENDIX C Error Message

W1639B insufficient preallocated memory for generation of precompiled header file (xxxx
bytes required)

[Explanation]
Insufficient preallocated memory for generation of precompiled header file (xxxx bytes
required).

W1640B very large entity in program prevents generation of precompiled header file
[Explanation]

Very large entity in program prevents generation of precompiled header file.

W1645B "xxxX" is an unrecognized __declspec attribute

[Explanation]
"xxxx" isan unrecognized __ declspec attribute.

W1650B calling convention specified here isignored

[Explanation]

Calling convention specified here isignored.

W1655B the modifier "xxxx" is not allowed on this declaration

[Explanation]
The modifier "xxxx" is not allowed on this declaration.

W1656B transfer of control into atry block

[Explanation]
Transfer of control into atry block.

W1657B inline specification is incompatible with previous "entity" (declared at line xxxx)

[Explanation]

Inline specification isincompatible with previous "entity" (declared at line xxxx).

218 PART 1 OPERATION

APPENDIX C Error Message

W1662B

call of purevirtual function

[Explanation]
Call of pure virtua function.

W1667B

"asm" function is nonstandard

[Explanation]
"asm" function is nonstandard.

W1668B

ellipsis with no explicit parameters is nonstandard

[Explanation]
Ellipsis with no explicit parameters is nonstandard.

W1669B

"&..." isnonstandard

[Explanation]
"&..." is nonstandard.

W1672B

temporary used for initial value of reference to const volatile (anachronism)

[Explanation]

Temporary used for initial value of reference to const volatile (anachronism).

W1674B

initial value of reference to const volatile must be an lvalue

[Explanation]
Initial value of reference to const volatile must be an Ivalue.

W1676B

using out-of-scope declaration of entity-kind "entity” (declared at line xxxx)

PART 1 OPERATION

[Explanation]
Using out-of-scope declaration of entity-kind "entity" (declared at line xxxx).

219

APPENDIX C Error Message

W1688B "xxxx" not found on pack alignment stack

[Explanation]
"xxxx" not found on pack alignment stack.

W1689B empty pack alignment stack

[Explanation]
Empty pack alignment stack.

W1691B entity-kind "entity", required for copy that was eliminated, isinaccessible

[Explanation]
Entity-kind "entity", required for copy that was eliminated, isinaccessible.

W1692B entity-kind "entity", required for copy that was eliminated, isnot callable because
reference parameter cannot be bound to rvalue

[Explanation]

Entity-kind "entity", required for copy that was eliminated, is not callable because
reference parameter cannot be bound to rvalue.

W1708B incrementing a bool value is deprecated

[Explanation]
Incrementing a bool value is deprecated.

W1711B expression must have bool type (or be convertible to bool)

[Explanation]
Expression must have bool type (or be convertible to boal).

W1715B __based does not precede a pointer operator, __ based ignored.

[Explanation]
__based does not precede a pointer operator, __based ignored.

220 PART 1 OPERATION

APPENDIX C Error Message

W1719B

mutable is not allowed

[Explanation]
Mutableis not allowed.

W1720B

redeclaration of entity-kind "entity" is not allowed to alter its access

[Explanation]
Redeclaration of entity-kind "entity" is not allowed to alter its access.

W1721B

nonstandard format string conversion

[Explanation]
Nonstandard format string conversion.

W1723B

use of alternative token "%:" appears to be unintended

[Explanation]
Use of alternative token "%:" appears to be unintended.

W1729B

invalid combination of DLL attributes

[Explanation]
Invalid combination of DLL attributes.

W1731B

array with incomplete element type is nonstandard

[Explanation]
Array with incomplete element type is nonstandard.

W1737B

using-declaration ignored -- it refers to the current namespace

PART 1 OPERATION

[Explanation]
Using-declaration ignored -- it refers to the current namespace.

221

APPENDIX C Error Message

222

W1741B

using-declaration of entity-kind "entity" ignored

[Explanation]
Using-declaration of entity-kind "entity" ignored.

W1745B

memory attribute ignored

[Explanation]
Memory attribute ignored.

W1747B

memory attribute specified more than once

[Explanation]
Memory attribute specified more than once.

W1748B

calling convention specified more than once

[Explanation]
Calling convention specified more than once.

W1767B

conversion from pointer to smaller integer

[Explanation]

Conversion from pointer to smaller integer.

W1768B

exception specification for implicitly declared virtual entity-kind "entity" is
incompatible with that of overridden entity-kind "entity"

[Explanation]
Exception specification for implicitly declared virtual entity-kind "entity" is incompatible
with that of overridden entity-kind "entity".

W1772B

use of alternative token "<:" appearsto be unintended

[Explanation]

Use of alternative token "<:" appears to be unintended.

PART 1 OPERATION

APPENDIX C Error Message

W1780B

referenceisto entity-kind "entity” (declared at line xxxx) -- under old for-init scoping
rulesit would have been entity-kind "entity" (declared at line xxxx)

[Explanation]
Reference is to entity-kind "entity" (declared at line xxxx) -- under old for-init scoping
rulesit would have been entity-kind "entity” (declared at line xxxx).

W1783B

empty comment interpreted as token-pasting operator "##"

[Explanation]
Empty comment interpreted as token-pasting operator "##".

W1802B

specifying a default argument when redeclaring an unreferenced function templateis
nonstandard

[Explanation]
Specifying a default argument when redeclaring an unreferenced function template is
nonstandard.

W1806B

omission of exception specification is incompatible with entity-kind "entity"
(declared at line xxxx)

[Explanation]
Omission of exception specification is incompatible with entity-kind "entity" (declared at
line xxxx).

W1811B

const entity-kind "entity" requires an initializer -- class "type" has no explicitly
declared default constructor

PART 1 OPERATION

[Explanation]
Const entity-kind "entity" requires an initializer -- class "type" has no explicitly declared
default constructor.

223

APPENDIX C Error Message

224

wW1812B const object requires an initializer -- class "type" has no explicitly declared default
constructor
[Explanation]
Const object requires an initializer -- class "type" has no explicitly declared default
constructor.
W1815B type qualifier on return type is meaningless
[Explanation]
Type qualifier on return type is meaningless.
W1817B static data member declaration is not alowed in this class
[Explanation]
Static data member declaration is not alowed in this class.
W1819B "..." isnot allowed
[Explanation]
"..." isnot allowed.
W1825B virtual inline entity-kind "entity" was never defined
[Explanation]
Virtua inline entity-kind "entity" was never defined.
W1826B entity-kind "entity" was never referenced

[Explanation]
Entity-kind "entity" was never referenced.

PART 1 OPERATION

APPENDIX C Error Message

W1829B

double used for "long doubl€" in generated C code

[Explanation]
Double used for "long double" in generated C code.

W1830B

entity-kind "entity" has no corresponding operator deletexxxx (to be called if an
exception is thrown during initialization of an alocated object)

[Explanation]

Entity-kind "entity" has no corresponding operator deletexxxx (to be called if an
exception isthrown during initialization of an allocated object).

W1831B

support for placement delete is disabled

[Explanation]
Support for placement delete is disabled.

W1833B

pointer or reference to incomplete type is not allowed

[Explanation]
Pointer or reference to incomplete typeis not allowed.

W1836B

returning reference to local variable

[Explanation]

Returning reference to local variable.

W1837B

omission of explicit type is nonstandard ("int" assumed)

PART 1 OPERATION

[Explanation]
Omission of explicit typeis nonstandard ("int" assumed).

225

APPENDIX C Error Message

226

W1848B

expression must have arithmetic or enum type

[Explanation]
Expression must have arithmetic or enum type.

W1850B

type of cast must be integral or enum

[Explanation]
Type of cast must beintegral or enum.

W1860B

__declspec attributesignored

[Explanation]
__declspec attributes ignored.

W1867B

declaration of "size t" does not match the expected type "type"

[Explanation]
Declaration of "size t" does not match the expected type "type".

W1870B

invalid multibyte character sequence

[Explanation]
Invalid multibyte character sequence.

W1902B

type qualifier ignored

[Explanation]
Type qualifier ignored.

PART 1 OPERATION

APPENDIX C Error Message

W1912B

ambiguous class member reference -- entity-kind "entity" (declared at line xxxx) used
in preference to entity-kind "entity" (declared at line xxxx)

[Explanation]
Ambiguous class member reference -- entity-kind "entity” (declared at line xxxx) used in
preference to entity-kind "entity” (declared at line xxxx).

W1934B

amember with reference typeisnot alowed in aunion

[Explanation]

A member with reference type is not allowed in aunion.

W1936B

redeclaration of "entity" altersits access

[Explanation]
Redeclaration of "entity" altersits access.

W1938B

return type "int" omitted in declaration of function "main”

[Explanation]
Return type "int" omitted in declaration of function "main".

W1940B

missing return statement at end of non-void "entity"

[Explanation]

Missing return statement at end of non-void "entity".

W1941B

duplicate using-declaration of "entity" ignored

PART 1 OPERATION

[Explanation]
Duplicate using-declaration of "entity" ignored.

227

APPENDIX C Error Message

W1942B

enum bit-fields are always unsigned, but enum type includes negative enumerator

[Explanation]
Enum bit-fields are always unsigned, but enum type includes negative enumerator.

W1946B

name following "template” must be a member template

[Explanation]
Name following "template" must be a member template.

W1947B

name following "template" must have atemplate argument list

[Explanation]

Name following "template" must have atemplate argument list.

W1948B

nonstandard local-class friend declaration. -- no prior declaration in the enclosing
scope

[Explanation]

Nonstandard local-class friend declaration. -- no prior declaration in the enclosing
scope.

W1949B

specifying a default argument when redeclaring an unreferenced function template is
nonstandard

[Explanation]
Specifying a default argument when redeclaring an unreferenced function template is
nonstandard.

W1951B

return type of function "main" must be "int"

228

[Explanation]
Return type of function "main” must be "int".

PART 1 OPERATION

APPENDIX C Error Message

W1959B

declared size for hit-field islarger than the size of the bit-field-type.

[Explanation]
Declared sizefor bit-field islarger than the size of the bit-field-type.

W1961B

use of atype with no linkage to declare a variable with linkage

[Explanation]
Use of atype with no linkage to declare a variable with linkage.

W1962B

use of atype with no linkage to declare afunction

[Explanation]

Use of atype with no linkage to declare a function.

W1966B

universal character name specifies an invalid character

[Explanation]
Universal character name specifies an invalid character.

W1967B

auniversal character name cannot designate a character in the basic character set

[Explanation]
A universal character name cannot designate a character in the basic character set.

W1968B

this universal character is not allowed in an identifier

[Explanation]

This universal character is not allowed in an identifier.

W1970B

the qualifier on this friend declaration isignored

PART 1 OPERATION

[Explanation]
The qualifier on this friend declaration isignored.

229

APPENDIX C Error Message

W1973B "inline" used as afunction qualifier isignored

[Explanation]
"inline" used as a function qualifier isignored.

W1984B typedef name has already been declared (with similar type)

[Explanation]
typedef name has already been declared (with similar type).

W1985B operator new and operator delete cannot be given internal linkage

[Explanation]
operator new and operator delete cannot be given internal linkage.

W1992B extra braces are nonstandard
[Explanation]
extra braces are nonstandard.

W1994B subtraction of pointer types %t1 and %t2 is nonstandard
[Explanation]

subtraction of pointer types %t1 and %t2 is nonstandard.

W1998B %np2 is hidden by %no1l -- virtual function override intended?

[Explanation]
%np2 is hidden by %nol. --virtual function override intended.

W2001B a storage class may not be specified here

[Explanation]
A storage class may not be specified here.

230 PART 1 OPERATION

APPENDIX C Error Message

W2013B

a using-declaration may not name a constructor or destructor

[Explanation]
A using-declaration may not name a constructor or destructor.

W2028B

invalid redeclaration of nested class

[Explanation]
Invalid redeclaration of nested class.

W2030B

avariable with static storage duration cannot be defined within an inline function

[Explanation]
A variable with static storage duration cannot be defined within an inline function.

W2031B

an entity with internal linkage cannot be referenced within an inline function with

external linkage

[Explanation]

An entity with interna linkage cannot be referenced within an inline function with

externa linkage.

W20398

unrecognized STDC pragma

[Explanation]
Unrecognized STDC pragma.

W2040B

expected "ON", "OFF", or "DEFAULT"

PART 1 OPERATION

[Explanation]
expected "ON", "OFF", or "DEFAULT".

231

APPENDIX C Error Message

232

W2041B

a STDC pragmamay only appear between declarationsin the global scope or before
any statements or declarations in a block scope

[Explanation]
A STDC pragma may only appear between declarations in the global scope or before any
statements or declarations in a block scope.

W2046B

floating-point value cannot be represented exactly

[Explanation]

Floating-point value cannot be represented exactly.

W2048B

conversion between real and imaginary yields zero

[Explanation]
Conversion between real and imaginary yields zero.

W2050B

imaginary *= imaginary sets the |left-hand operand to zero

[Explanation]
"imaginary *=imaginary" sets the left-hand operand to zero.

W2051B

standard requires that %n be given atype by a subsequent declaration ("int" assumed)

[Explanation]
Standard requires that %n be given atype by a subsequent declaration ("int" assumed).

W2052B

adefinition is required for inline %n

[Explanation]
A definition is required for inline %n.

PART 1 OPERATION

APPENDIX C Error Message

W2053B

conversion from integer to smaller pointer

[Explanation]
Conversion from integer to smaller pointer.

W2055B

types cannot be declared in anonymous unions

[Explanation]
Types cannot be declared in anonymous unions.

W2056B

returning pointer to local variable

[Explanation]

Returning pointer to local variable.

W2057B

returning pointer to local temporary

[Explanation]
Returning pointer to local temporary.

W2072B

adeclaration cannot have alabel

[Explanation]
A declaration cannot have alabel.

W2073B

support for exported templatesis disabled

[Explanation]
Support for exported templatesis disabled.

W2093B

invalid attribute for parameter

PART 1 OPERATION

[Explanation]
Invalid attribute for parameter.

233

APPENDIX C Error Message

234

W2097B

there is no attribute %sq

[Explanation]
Thereis no attribute %sg.

W2100B

the "packed" attribute isignored in a typedef

[Explanation]
The "packed" attribute isignored in atypedef.

W2102B

"goto *expr" is nonstandard

[Explanation]
"goto *expr" is nonstandard.

W2105B

#warning directive: %s

[Explanation]
#warning directive; %s.

W2108B

the "transparent_union" attribute isignored on incomplete types

[Explanation]

The "transparent_union” attribute isignored on incomplete types.

W2109B

%t cannot be transparent because %n does not have the same size as the union

[Explanation]
%t cannot be transparent because %n does not have the same size as the union.

W2110B

%t cannot be transparent because it has afield of type %t which is not the same size
asthe union

[Explanation]
%t cannot be transparent because it has a field of type %t which is not the same size as
the union.

PART 1 OPERATION

APPENDIX C Error Message

w2114B declarations of local |abels should only appear at the start of statement expressions

[Explanation]
Declarations of local labels should only appear at the start of statement expressions.

W2117B an asm name isignored in a typedef

[Explanation]
An asm nameisignored in atypedef.

W2119B modifier letter '%s ignored in asm operand

[Explanation]
Modifier letter '%s ignored in asm operand.

W2139B the "template” keyword used for syntactic disambiguation may only be used within a
template

[Explanation]
The "template" keyword used for syntactic disambiguation may only be used within a
template.

W2142B attribute does not apply to non-function type %t

[Explanation]
Attribute does not apply to non-function type %t.

W2143B arithmetic on pointer to void or function type

[Explanation]
Arithmetic on pointer to void or function type.

PART 1 OPERATION 235

APPENDIX C Error Message

236

W2145B

%t1 would have been promoted to %t2 when passed through the ellipsis parameter;
use the latter type instead

[Explanation]

%t1 would have been promoted to %t2 when passed through the ellipsis parameter; use
the latter type instead.

W2152B

declaration aliased to unknown entity %sq

[Explanation]
Declaration aliased to unknown entity %sq.

W2153B

declaration does not match its alias %n

[Explanation]
Declaration does not match its alias %n.

W2155B

variable-length array field type will be treated as zero-length array field type

[Explanation]
Variable-length array field type will be treated as zero-length array field type.

W2156B

nonstandard cast on Ivalue ignored

[Explanation]
Nonstandard cast on lvalue ignored.

W2159B

the auto specifier isignored here (invalid in standard C/C++)

[Explanation]
The auto specifier isignored here (invalid in standard C/C++).

W2160B

areduction in alignment without the "packed" attribute is ignored

[Explanation]
A reduction in alignment without the "packed" attribute isignored.

PART 1 OPERATION

APPENDIX C Error Message

wW2162B excessinitiaizers are ignored
[Explanation]
Excessinitializers are ignored.
W2163B va_start should only appear in afunction with an ellipsis parameter
[Explanation]
Va_start should only appear in afunction with an ellipsis parameter.
W2168B an asm name isignored on a non-register automatic variable
[Explanation]
An asm nameisignored on a non-register automatic variable.
W2169B inline function also declared as an aias; definition ignored
[Explanation]
Inline function also declared as an alias; definition ignored.
W2170B unrecognized UPC pragma
[Explanation]
Unrecognized UPC pragma.
W2178B function returning shared is not allowed
[Explanation]
Function returning shared is not allowed.
W2185B argument of upc_blocksizeof is a pointer to a shared type (not shared type itself)

PART 1 OPERATION

[Explanation]
Argument of upc_blocksizeof isa pointer to a shared type (not shared type itself).

237

APPENDIX C Error Message

W2192B null (zero) character in input line ignored

[Explanation]
Null (zero) character in input line ignored.

W2193B null (zero) character in string or character constant

[Explanation]
Null (zero) character in string or character constant.

W2194B null (zero) character in header name

[Explanation]
Null (zero) character in header name.

W2195B declaration in for-initializer hides a declaration in the surrounding scope

[Explanation]
Declaration in for-initializer hides a declaration in the surrounding scope.

W2196B the hidden declaration is %p

[Explanation]
The hidden declaration is %op.

W2197B the prototype declaration of %nfd isignored after this unprototyped redeclaration

[Explanation]
The prototype declaration of %nfd isignored after this unprototyped redeclaration.

wW2198B attribute ignored on typedef of class or enum types

[Explanation]
Attribute ignored on typedef of class or enum types.

238 PART 1 OPERATION

APPENDIX C Error Message

W2199B variable declaration hides declaration in for-initializer

[Explanation]
Variable declaration hides declaration in for-initializer.

W2202B call of zero constant ignored

[Explanation]
Call of zero constant ignored.

W2203B parameter %sq may not be redeclared in a catch clause of function try block

[Explanation]
Parameter %sq may not be redeclared in a catch clause of function try block.

wW2204B theinitia explicit specialization of %n must be declared in the namespace containing
the template

[Explanation]

Theinitia explicit specialization of %n must be declared in the namespace containing the
template.

W2205B "cc" clobber ignored

[Explanation]
"cc" clobber ignored.

W2206B "template” must be followed by an identifier

[Explanation]
"template" must be followed by an identifier.

W2210B declaration of %sq hides handler parameter

[Explanation]

Declaration of %sq hides handler parameter.

PART 1 OPERATION 239

APPENDIX C Error Message

240

W2211B

nonstandard cast to array type ignored

[Explanation]
Nonstandard cast to array type ignored.

W2213B

field usestail padding of abase class

[Explanation]
Field usestail padding of abase class.

W2214B

GNU C++ compilers may use hit field padding

[Explanation]
GNU C++ compilers may use bit field padding.

W2215B

use of "symbol" is deprecated

[Explanation]
Use of "symbol" is deprecated.

W2217B

unrecognized format function type "xxxx" ignored

[Explanation]
Unrecognized format function type "xxxx" ignored.

W2218B

base class "symbol" uses tail padding of base class "symbol”

[Explanation]

Base class "symbol" usestail padding of base class"symbol".

W2220B

requested initialization priority isreserved for internal use

[Explanation]
Requested initialization priority is reserved for internal use.

PART 1 OPERATION

APPENDIX C Error Message

W2221B this anonymous union/struct field is hidden by "symbol”
[Explanation]
This anonymous union/struct field is hidden by "symbol".
W2222B invalid error number
[Explanation]
Invalid error number.
W2223B invalid error tag
[Explanation]
Invalid error tag.
W2224B expected an error number or error tag
[Explanation]
Expected an error number or error tag.
W2225B size of classis affected by tail padding
[Explanation]
Size of classis affected by tail padding.
W2235B nonstandard conversion between pointer to function and pointer to data
[Explanation]
Nonstandard conversion between pointer to function and pointer to data.
W2257B potentially narrowing conversion when compiled in an environment where int, long,

or pointer types are 64 bits wide

PART 1 OPERATION

[Explanation]

Potentially narrowing conversion when compiled in an environment where int, long, or

pointer types are 64 bits wide.

241

APPENDIX C Error Message

242

W2258B

current value of pragma pack is Xxxx

[Explanation]
Current value of pragma pack is XXxx.

W2259B

arguments for pragma pack(show) are ignored

[Explanation]
Arguments for pragma pack(show) are ignored.

W2262B

earlier __declspec(align(...)) ignored

[Explanation]
Earlier __declspec(align(...)) ignored.

W2272B

athrow expression may not have pointer-to-incomplete type

[Explanation]
A throw expression may not have pointer-to-incomplete type.

W2273B

alignment-of operator applied to incomplete type

[Explanation]
Alignment-of operator applied to incomplete type.

W2276B

unrecognized attribute "xxxx"

[Explanation]
Unrecognized attribute "xxxx".

W3007B

__interrupt is specified

[Explanation]
__interrupt is specified.

PART 1 OPERATION

APPENDIX C Error Message

W3008B

__interrupt do not operate on function declarator

[Explanation]
__interrupt do not operate on function declarator.

W3009B

__interrupt operate class member function

[Explanation]
__interrupt operate class member function.

W3010B

__ioisspecified

[Explanation]
__ioisspecified.

W3011B

__io operate on function declarator

[Explanation]
__io operate on function declarator.

W3012B

__io operate member

[Explanation]

__io operate member.

W3016B

#pragma xxxx: too long identifier is specified

[Explanation]
#pragma xxxx: too long identifier is specified.

W3032B

#pragmailm: aready exist

PART 1 OPERATION

[Explanation]
#pragmailm:; already exist.

243

APPENDIX C Error Message

W3038B The specification ‘'mutable’ cannot be used in EC++.

[Explanation]
The specification 'mutable’ cannot be used in EC++.

W3039B The function of the exceptional transaction cannot be used in EC++.

[Explanation]
The function of the exceptional transaction cannot be used in EC++.

W3040B The namespace cannot be used in EC++.

[Explanation]
The namespace cannot be used in EC++.

Ww3041B The template cannot be used in EC++.

[Explanation]
The template cannot be used in EC++.

W3042B The multiple inheritance cannot be used in EC++.

[Explanation]

The multiple inheritance cannot be used in EC++.

W3043B The virtua inheritance cannot be used in EC++.

[Explanation]
The virtual inheritance cannot be used in EC++.

wW3044B The operator ‘const_cast' cannot be used in EC++.

[Explanation]
The operator ‘const_cast' cannot be used in EC++.

244 PART 1 OPERATION

APPENDIX C Error Message

W3045B

The operator 'dynamic_cast' cannot be used in EC++.

[Explanation]
The operator ‘dynamic_cast' cannot be used in EC++.

W3046B

The operator 'static_cast' cannot be used in EC++.

[Explanation]
The operator 'static_cast' cannot be used in EC++.

W3047B

The operator 'reinterpret_cast' cannot be used in EC++.

[Explanation]
The operator 'reinterpret_cast' cannot be used in EC++.

W3048B

The operator 'typeid' cannot be used in EC++.

[Explanation]
The operator 'typeid' cannot be used in EC++.

W3054B

XXXX is not recognized a builtin function for the mediainstruction

[Explanation]

XXXX is not recognized a builtin function for the media instruction.

W3056B

value isimmediately outside the range of the argument xxxx of XXXx (XXXX)

[Explanation]
Valueisimmediately outside the range of the argument xxxx of XXXX (XXXX).

W3057B

argument xxxx of xxxx should be an accumulator number defined by xxxx

PART 1 OPERATION

[Explanation]
Argument xxxx of xxxx should be an accumulator number defined by xxxx.

245

APPENDIX C Error Message

W3058B accumulator number of the argument xxxx of xxxx should be an even number

[Explanation]
Accumulator number of the argument xxxx of xxxx should be an even number.

W3059B accumulator number of the argument xxxx of xxxx should be a multiple of four

[Explanation]
Accumulator number of the argument xxxx of xxxx should be a multiple of four.

E4001B last line of file ends without a newline

[Explanation]
Last line of file ends without a newline.

E4002B last line of file ends with abackslash

[Explanation]
Last line of file ends with a backslash.

E4006B comment unclosed at end of file

[Explanation]

Comment unclosed at end of file.

E4007B unrecognized token

[Explanation]
Unrecognized token.

E4008B missing closing quote

[Explanation]
Missing closing quote.

246 PART 1 OPERATION

APPENDIX C Error Message

E4010B

"#" not expected here

[Explanation]
"#' not expected here.

E4011B

unrecognized preprocessing directive

[Explanation]
Unrecognized preprocessing directive.

E4012B

parsing restarts here after previous syntax error

[Explanation]
Parsing restarts here after previous syntax error.

E4014B

extratext after expected end of preprocessing directive

[Explanation]
Extratext after expected end of preprocessing directive.

E4017B

expected a"]"

[Explanation]
Expecteda"]".

E4018B

expected a™)"

[Explanation]
Expecteda")".

E4019B

extratext after expected end of number

PART 1 OPERATION

[Explanation]
Extratext after expected end of number.

247

APPENDIX C Error Message

248

E4020B identifier "xxxx" is undefined
[Explanation]
Identifier "xxxx" is undefined.
E4021B type qualifiers are meaningless in this declaration
[Explanation]
Type quaifiers are meaninglessin this declaration.
E4022B invalid octal digit
[Explanation]
Invalid octa digit.
E4023B integer constant istoo large
[Explanation]
Integer constant istoo large.
E4024B Invalid octal digit
[Explanation]
Invalid octal digit.
E4025B quoted string should contain at least one character
[Explanation]
Quoted string should contain at least one character.
E4026B too many charactersin character constant

[Explanation]
Too many characters in character constant.

PART 1 OPERATION

APPENDIX C Error Message

E4027B

character valueis out of range

[Explanation]
Character valueis out of range.

E4028B

expression must have a constant value

[Explanation]
Expression must have a constant value.

E4029B

expected an expression

[Explanation]
Expected an expression.

E4030B

floating constant is out of range

[Explanation]
Floating constant is out of range.

E4031B

expression must have integral type

[Explanation]
Expression must have integral type.

E4032B

expression must have arithmetic type

[Explanation]
Expression must have arithmetic type.

E4033B

expected a line number

PART 1 OPERATION

[Explanation]
Expected aline number.

249

APPENDIX C Error Message

250

E4034B

invalid line number

[Explanation]
Invalid line number.

E4036B

the #if for this directive ismissing

[Explanation]
The #if for thisdirective is missing.

E4037B

the #endif for this directive is missing

[Explanation]
The #endif for thisdirectiveis missing.

E4038B

directiveis not allowed -- an #else has already appeared

[Explanation]
Directive is not allowed -- an #else has already appeared.

E4039B

division by zero

[Explanation]

Division by zero.

E4040B

expected an identifier

[Explanation]
Expected an identifier.

E4041B

expression must have arithmetic or pointer type

[Explanation]
Expression must have arithmetic or pointer type.

PART 1 OPERATION

APPENDIX C Error Message

E4042B

operand types are incompatible ("type" and "type")

[Explanation]
Operand types are incompatible ("type" and "type").

E4044B

expression must have pointer type

[Explanation]
Expression must have pointer type.

E4045B

#undef may not be used on this predefined name

[Explanation]
#undef may not be used on this predefined name.

E4046B

this predefined name may not be redefined

[Explanation]
This predefined name may not be redefined.

E4047B

incompatible redefinition of macro "entity" (declared at line xxxx)

[Explanation]

Incompatible redefinition of macro "entity" (declared at line xxxx).

E4049B

duplicate macro parameter name

[Explanation]
Duplicate macro parameter name.

E4050B

"##" may not befirst in amacro definition

PART 1 OPERATION

[Explanation]
"##' may not be first in amacro definition.

251

APPENDIX C Error Message

252

E4051B "##" may not be last in amacro definition
[Explanation]
"##' may not be last in amacro definition.
E4052B expected a macro parameter name
[Explanation]
Expected a macro parameter name.
E4053B expected a":"
[Explanation]
Expected a":".
E4054B too few arguments in macro invocation
[Explanation]
Too few arguments in macro invocation.
E4055B too many arguments in macro invocation
[Explanation]
Too many arguments in macro invocation.
E4056B operand of sizeof may not be afunction
[Explanation]
Operand of sizeof may not be afunction.
E4057B this operator is not allowed in a constant expression

[Explanation]

This operator is not allowed in a constant expression.

PART 1 OPERATION

APPENDIX C Error Message

E4058B

this operator is not allowed in a preprocessing expression

[Explanation]

This operator is not allowed in a preprocessing expression.

E40598B

function call is not alowed in a constant expression

[Explanation]

Function call is not allowed in a constant expression.

E4060B

this operator is not allowed in an integral constant expression

[Explanation]

This operator is not allowed in an integral constant expression.

E4061B

integer operation result is out of range

[Explanation]
Integer operation result is out of range.

E4062B

shift count is negative

[Explanation]
Shift count is negative.

E4063B

shift count istoo large

[Explanation]
Shift count istoo large.

E4064B

declaration does not declare anything

PART 1 OPERATION

[Explanation]
Declaration does not declare anything.

253

APPENDIX C Error Message

254

E4065B

expected a™;"

[Explanation]
Expecteda";".

E4066B

enumeration value is out of "int" range

[Explanation]
Enumeration value is out of "int" range.

E4067B

expected a"}"

[Explanation]
Expected a"}".

E4069B

integer conversion resulted in truncation

[Explanation]
Integer conversion resulted in truncation.

E4070B

incomplete typeis not allowed

[Explanation]
Incomplete type is not allowed.

E4071B

operand of sizeof may not be a bit field

[Explanation]
Operand of sizeof may not be a bit field.

E4075B

operand of "*" must be a pointer

[Explanation]
Operand of "*" must be a pointer.

PART 1 OPERATION

APPENDIX C Error Message

E4077B

this declaration has no storage class or type specifier

[Explanation]
This declaration has no storage class or type specifier.

E4078B

a parameter declaration may not have an initializer

[Explanation]
A parameter declaration may not have an initializer.

E4079B

expected atype specifier

[Explanation]
Expected atype specifier.

E4080B

a storage class may not be specified here

[Explanation]
A storage class may not be specified here.

E4081B

more than one storage class may not be specified

[Explanation]

More than one storage class may not be specified.

E4082B

storage classis not first

[Explanation]
Storage classis not first.

E4083B

type qualifier specified more than once

PART 1 OPERATION

[Explanation]
Type qualifier specified more than once.

255

APPENDIX C Error Message

256

E4084B

invalid combination of type specifiers

[Explanation]
Invalid combination of type specifiers.

E4085B

invalid storage class for a parameter

[Explanation]
Invalid storage class for a parameter.

E4086B

invalid storage class for afunction

[Explanation]
Invalid storage class for afunction.

E4087B

atype specifier may not be used here

[Explanation]
A type specifier may not be used here.

E4088B

array of functionsis not allowed

[Explanation]

Array of functionsis not allowed.

E4089B

array of void is not allowed

[Explanation]
Array of void is not allowed.

E4090B

function returning function is not alowed

[Explanation]
Function returning function is not allowed.

PART 1 OPERATION

APPENDIX C Error Message

E4091B

function returning array is not alowed

[Explanation]
Function returning array is not allowed.

E4092B

identifier-list parameters may only be used in afunction definition

[Explanation]
Identifier-list parameters may only be used in a function definition.

E4093B

function type may not come from atypedef

[Explanation]
Function type may not come from atypedef.

E4094B

the size of an array must be greater than zero

[Explanation]
The size of an array must be greater than zero.

E4095B

array istoo large

[Explanation]
Array istoo large.

E4096B

atrandation unit must contain at least one declaration

[Explanation]
A trandation unit must contain at least one declaration.

E4097B

afunction may not return a value of thistype

PART 1 OPERATION

[Explanation]
A function may not return avalue of thistype.

257

APPENDIX C Error Message

258

E4098B

an array may not have elements of thistype

[Explanation]
An array may not have elements of thistype.

E4099B

a declaration here must declare a parameter

[Explanation]
A declaration here must declare a parameter.

E4100B

duplicate parameter name

[Explanation]
Duplicate parameter name.

E4101B

"xxxX" has aready been declared in the current scope

[Explanation]
"xxxx" has already been declared in the current scope.

E4102B

forward declaration of enum type is nonstandard

[Explanation]

Forward declaration of enum type is nonstandard.

E4103B

classistoo large

[Explanation]
Classistoo large.

E4104B

struct or union istoo large

[Explanation]
Struct or unionistoo large.

PART 1 OPERATION

APPENDIX C Error Message

E4105B

invalid size for bit field

[Explanation]
Invalid size for bit field.

E4106B

invalid type for a bit field

[Explanation]
Invalid type for abit field.

E4107B

zero-length bit field must be unnamed

[Explanation]
Zero-length bit field must be unnamed.

E41098B

expression must have (pointer-to-) function type

[Explanation]
Expression must have (pointer-to-) function type.

E4110B

expected either a definition or atag name

[Explanation]
Expected either a definition or atag name.

E4112B

expected "while"

[Explanation]
Expected "while".

E4114B

entity-kind "entity" was referenced but not defined

PART 1 OPERATION

[Explanation]
Entity-kind "entity" was referenced but not defined.

259

APPENDIX C Error Message

260

E4115B

a continue statement may only be used within aloop

[Explanation]
A continue statement may only be used within aloop.

E4116B

abreak statement may only be used within aloop or switch

[Explanation]
A break statement may only be used within aloop or switch.

E4117B

non-void function "entity" should return avalue

[Explanation]
Non-void function "entity" should return avalue.

E4118B

avoid function may not return avalue

[Explanation]
A void function may not return avalue.

E4119B

cast to type "type" is not alowed

[Explanation]
Cast to type "type" is not allowed.

E4120B

return value type does not match the function type

[Explanation]
Return value type does not match the function type.

E4121B

acase label may only be used within aswitch

[Explanation]
A case label may only be used within a switch.

PART 1 OPERATION

APPENDIX C Error Message

E4122B adefault label may only be used within a switch
[Explanation]
A default label may only be used within a switch.
E4123B case |abel value has aready appeared in this switch
[Explanation]
Case label value has already appeared in this switch.
E4124B default 1abel has already appeared in this switch
[Explanation]
default 1abel has already appeared in this switch.
E4125B expected a" ("
[Explanation]
Expecteda"(".
E4126B expression must be an Ivalue
[Explanation]
Expression must be an lvalue.
E4127B expected a statement
[Explanation]
Expected a statement.
E4129B a block-scope function may only have extern storage class

PART 1 OPERATION

[Explanation]
A block-scope function may only have extern storage class.

261

APPENDIX C Error Message

262

E4130B

expected a"{"

[Explanation]
Expected a"{".

E4131B

expression must have pointer-to-class type

[Explanation]
Expression must have pointer-to-class type.

E4132B

expression must have pointer-to-struct-or-union type

[Explanation]
Expression must have pointer-to-struct-or-union type.

E4133B

expected a member name

[Explanation]
Expected a member name.

E4134B

expected afield name

[Explanation]
Expected afield name.

E4135B

entity-kind "entity" has no member "Xxxxx"

[Explanation]
Entity-kind "entity" has no member "xxxx".

E4136B

entity-kind "entity" hasno field "xxxx"

[Explanation]
Entity-kind "entity" has no field "xxxx".

PART 1 OPERATION

APPENDIX C Error Message

E4137B

expression must be a modifiable Ivalue

[Explanation]
Expression must be a modifiable lvalue.

E4138B

taking the address of aregister variable is not allowed

[Explanation]
Taking the address of aregister variable is not allowed.

E4139B

taking the address of a bit field is not allowed

[Explanation]
Taking the address of a bit field is not allowed.

E4140B

too many argumentsin function call

[Explanation]
Too many argumentsin function call.

E4141B

unnamed prototyped parameters not allowed when body is present

[Explanation]
Unnamed prototyped parameters not allowed when body is present.

E4142B

expression must have pointer-to-object type

[Explanation]
Expression must have pointer-to-object type.

E4144B

avalue of type "type" cannot be used to initialize an entity of type "type"

PART 1 OPERATION

[Explanation]
A value of type "type" cannot be used to initialize an entity of type "type".

263

APPENDIX C Error Message

264

E4145B entity-kind "entity" may not be initialized
[Explanation]
Entity-kind "entity" may not be initialized.
E4146B too many initializer values
[Explanation]
Too many initializer values.
E4147B declaration isincompatible with entity-kind "entity" (declared at line xxxx)
[Explanation]
Declaration isincompatible with entity-kind "entity" (declared at line xxxx).
E4148B entity-kind "entity" has already been initialized
[Explanation]
Entity-kind "entity" has already been initialized.
E4149B a global-scope declaration may not have this storage class
[Explanation]
A global-scope declaration may not have this storage class.
E4150B atype name may not be redeclared as a parameter
[Explanation]
A type name may not be redeclared as a parameter.
E4151B atypedef name may not be redeclared as a parameter

[Explanation]
A typedef name may not be redeclared as a parameter.

PART 1 OPERATION

APPENDIX C Error Message

E4153B

expression must have class type

[Explanation]
Expression must have class type.

E4154B

expression must have struct or union type

[Explanation]
Expression must have struct or union type.

E4157B

expression must be an integral constant expression

[Explanation]
Expression must be an integral constant expression.

E4158B

expression must be an Ivalue or afunction designator

[Explanation]
Expression must be an lvalue or afunction designator.

E41598B

declaration isincompatible with previous "entity" (declared at line xxxx)

[Explanation]

Declaration isincompatible with previous "entity" (declared at line xxxx).

E4160B

name conflicts with previously used external name "xxxx"

[Explanation]

Name conflicts with previously used external name "xxxx".

E4161B

unrecognized #pragma

PART 1 OPERATION

[Explanation]
Unrecognized #pragma.

265

APPENDIX C Error Message

266

E4165B

too few argumentsin function call

[Explanation]
Too few argumentsin function call.

E4166B

invalid floating constant

[Explanation]
Invalid floating constant.

E4167B

argument of type "type" isincompatible with parameter of type "type"

[Explanation]

Argument of type "type" isincompatible with parameter of type "type".

E4168B

afunction typeis not alowed here

[Explanation]
A function typeis not allowed here.

E4169B

expected a declaration

[Explanation]
Expected a declaration.

E4171B

invalid type conversion

[Explanation]
Invalid type conversion.

E4172B

external/internal linkage conflict with previous declaration

[Explanation]
External/internal linkage conflict with previous declaration.

PART 1 OPERATION

APPENDIX C Error Message

E4173B

floating-point value does not fit in required integral type

[Explanation]
Floating-point value does not fit in required integral type.

E4179B

right operand of "%" is zero

[Explanation]
Right operand of "%" is zero.

E4183B

type of cast must be integral

[Explanation]
Type of cast must be integral.

E4184B

type of cast must be arithmetic or pointer

[Explanation]
Type of cast must be arithmetic or pointer.

E4194B

expected an asm string

[Explanation]
Expected an asm string.

E4195B

an asm function must be prototyped

[Explanation]
An asm function must be prototyped.

E4196B

an asm function may not have an éllipsis

PART 1 OPERATION

[Explanation]
An asm function may not have an ellipsis.

267

APPENDIX C Error Message

268

E4220B

integral value does not fit in required floating-point type

[Explanation]
Integral value does not fit in required floating-point type.

E4221B

floating-point value does not fit in required floating-point type

[Explanation]
Floating-point value does not fit in required floating-point type.

E4222B

floating-point operation result is out of range

[Explanation]
Floating-point operation result is out of range.

E4227B

Macro recursion

[Explanation]
Macro recursion.

E4228B

trailing commais nonstandard

[Explanation]

Trailing commais nonstandard.

E4230B

nonstandard type for a bit field

[Explanation]
Nonstandard type for a bit field.

E4235B

variable "xxxx" was declared with a never-completed type

[Explanation]
Variable "xxxx" was declared with a never-completed type.

PART 1 OPERATION

APPENDIX C Error Message

E4238B

invalid specifier on a parameter

[Explanation]
Invalid specifier on a parameter.

E4239B

invalid specifier outside a class declaration

[Explanation]
Invalid specifier outside a class declaration.

E4240B

duplicate specifier in declaration

[Explanation]
Duplicate specifier in declaration.

E4241B

aunion is not allowed to have a base class

[Explanation]
A union is not allowed to have a base class.

E4242B

multiple access control specifiers are not allowed

[Explanation]

Multiple access control specifiers are not allowed.

E4243B

class or struct definition is missing

[Explanation]
Class or struct definition is missing.

E4244B

qualified nameis not a member of class "type" or its base classes

PART 1 OPERATION

[Explanation]
Qualified nameis not a member of class "type" or its base classes.

269

APPENDIX C Error Message

E4245B a nonstatic member reference must be relative to a specific object

[Explanation]
A nonstatic member reference must be relative to a specific object.

E4246B a nonstatic data member may not be defined outside its class

[Explanation]
A nonstatic data member may not be defined outside its class.

E4247B entity-kind "entity" has aready been defined

[Explanation]
Entity-kind "entity" has already been defined.

E4248B pointer to referenceis not allowed

[Explanation]
Pointer to reference is not allowed.

E4249B reference to reference is not alowed

[Explanation]

Reference to reference is not alowed.

E4250B reference to void is not allowed

[Explanation]
Reference to void is not allowed.

E4251B array of referenceisnot alowed

[Explanation]
Array of referenceis not allowed.

270 PART 1 OPERATION

APPENDIX C Error Message

E4252B reference entity-kind "entity” requires an initializer
[Explanation]
Reference entity-kind "entity" requires an initializer.
E4253B expecteda”,"
[Explanation]
Expecteda”,".
E4254B type nameis not allowed
[Explanation]
Type nameis not allowed.
E4255B type definition is not allowed
[Explanation]
Type definition is not allowed.
E4256B invalid redeclaration of type name "entity" (declared at line xxxx)
[Explanation]
Invalid redeclaration of type name "entity" (declared at line xxxx).
E4257B const entity-kind "entity" requires an initializer
[Explanation]
Const entity-kind "entity" requires an initializer.
E4258B "this" may only be used inside a nonstatic member function

PART 1 OPERATION

[Explanation]

"this" may only be used inside a nonstatic member function.

271

APPENDIX C Error Message

272

E42598B

constant value is not known

[Explanation]
Constant value is not known.

E4262B

not a class or struct name

[Explanation]
Not aclass or struct name.

E4263B

duplicate base class name

[Explanation]
Duplicate base class name.

E4264B

invalid base class

[Explanation]
Invalid base class.

E4265B

entity-kind "entity" isinaccessible

[Explanation]

Entity-kind "entity" isinaccessible.

E4266B

"entity" is ambiguous

[Explanation]
"entity" is ambiguous.

E4267B

old-style parameter list (anachronism)

[Explanation]
Old-style parameter list (anachronism).

PART 1 OPERATION

APPENDIX C Error Message

E4268B

declaration may not appear after executable statement in block

[Explanation]
Declaration may not appear after executable statement in block.

E4269B

conversion to inaccessible base class "type" is not allowed

[Explanation]
Conversion to inaccessible base class "type" is not allowed.

E4274B

improperly terminated macro invocation

[Explanation]
Improperly terminated macro invocation.

E4276B

name followed by "::" must be a class or namespace name

[Explanation]
Name followed by "::" must be a class or namespace name.

E4277B

invalid friend declaration

[Explanation]

Invalid friend declaration.

E4278B

aconstructor or destructor may not return avalue

[Explanation]
A constructor or destructor may not return avalue.

E4279B

invalid destructor declaration

PART 1 OPERATION

[Explanation]
Invalid destructor declaration.

273

APPENDIX C Error Message

274

E4280B

declaration of a member with the same name as its class

[Explanation]
Declaration of a member with the same name asiits class.

E4281B

global-scope qualifier (leading "::") is not alowed

[Explanation]
Global-scope qualifier (leading "::") is not allowed.

E4282B

the global scope has no "xxxx"

[Explanation]
The global scope has no "xxxx".

E4283B

qualified nameis not allowed

[Explanation]
Qualified nameis not allowed.

E4284B

NULL referenceis not allowed

[Explanation]
NULL referenceis not allowed.

E4285B

initialization with "{...}" is not allowed for object of type "type"

[Explanation]
Initialization with "{...}" is not allowed for object of type "type".

E4286B

base class "type" is ambiguous

[Explanation]
Base class "type" is ambiguous.

PART 1 OPERATION

APPENDIX C Error Message

E4287B

derived class "type" contains more than one instance of class "type"

[Explanation]

Derived class "type" contains more than one instance of class "type".

E4288B

cannot convert pointer to base class "type" to pointer to derived class "type" -- base

classisvirtual

[Explanation]

Cannot convert pointer to base class "type" to pointer to derived class "type" -- base class

isvirtual.

E4289B

no instance of constructor "entity" matches the argument list

[Explanation]
No instance of constructor "entity" matches the argument list.

E4290B

copy constructor for class "type" is ambiguous

[Explanation]

Copy constructor for class "type" is ambiguous.

E4291B

no default constructor exists for class "type"

[Explanation]
No default constructor exists for class "type".

E4292B

"xxxX" is not a nonstatic data member or base class of class "type"

[Explanation]
"xxxx" is not anonstatic data member or base class of class "type".

E4293B

indirect nonvirtua base classis not allowed

PART 1 OPERATION

[Explanation]

Indirect nonvirtual base classis not allowed.

275

APPENDIX C Error Message

E4294B invalid union member -- class "type" has a disallowed member function

[Explanation]
Invalid union member -- class "type" has a disallowed member function.

E4296B invalid use of non-lvalue array

[Explanation]
Invalid use of non-lvalue array.

E4297B expected an operator
[Explanation]
Expected an operator.

E4298B inherited member is not alowed
[Explanation]

Inherited member is not allowed.

E4299B cannot determine which instance of entity-kind "entity" isintended

[Explanation]

Cannot determine which instance of entity-kind "entity" is intended.

E4300B apointer to a bound function may only be used to call the function

[Explanation]
A pointer to a bound function may only be used to call the function.

E4301B typedef name has already been declared (with same type)

[Explanation]
Typedef name has already been declared (with same type).

276 PART 1 OPERATION

APPENDIX C Error Message

E4302B

entity-kind "entity" has already been defined

[Explanation]
Entity-kind "entity" has already been defined.

E4304B

no instance of entity-kind "entity" matches the argument list

[Explanation]
No instance of entity-kind "entity" matches the argument list.

E4305B

type definition is not alowed in function return type declaration

[Explanation]
Type definition is not allowed in function return type declaration.

E4306B

default argument not at end of parameter list

[Explanation]
Default argument not at end of parameter list.

E4307B

redefinition of default argument

[Explanation]
Redefinition of default argument.

E4308B

more than one instance of entity-kind "entity" matches the argument list

[Explanation]
More than one instance of entity-kind "entity" matches the argument list.

E4309B

more than one instance of constructor "entity” matches the argument list

PART 1 OPERATION

[Explanation]
More than one instance of constructor "entity" matches the argument list.

277

APPENDIX C Error Message

E4310B default argument of type "type" isincompatible with parameter of type "type"

[Explanation]
Default argument of type "type" isincompatible with parameter of type "type".

E4311B cannot overload functions distinguished by return type alone

[Explanation]
Cannot overload functions distinguished by return type aone.

E4312B no suitable user-defined conversion from "type" to "type" exists

[Explanation]
No suitable user-defined conversion from "type" to "type" exists.

E4313B type qualifier is not allowed on this function

[Explanation]
Type qudlifier is not allowed on this function.

E4314B only nonstatic member functions may be virtual

[Explanation]

Only nonstatic member functions may be virtual.

E4315B the object has type qualifiers that are not compatible with the member function

[Explanation]
The object has type qualifiersthat are not compatible with the member function.

E4316B program too large to compile (too many virtual functions)

[Explanation]
Program too large to compile (too many virtual functions).

278 PART 1 OPERATION

APPENDIX C Error Message

E4317B

return type is not identical to nor covariant with return type "type" of overridden

virtual function entity-kind "entity"

[Explanation]

Return typeis not identical to nor covariant with return type "type" of overridden

virtual function entity-kind "entity".

E4318B

override of virtua entity-kind ""entity"" is ambiguous

[Explanation]
Override of virtual entity-kind "entity" is ambiguous.

E4319B

pure specifier ("= 0") alowed only on virtual functions

[Explanation]
Pure specifier ("= 0") alowed only on virtual functions.

E4320B

badly-formed pure specifier (only "= 0" is allowed)

[Explanation]
Badly-formed pure specifier (only "= 0" is allowed).

E4321B

data member initidizer is not allowed

[Explanation]
Data member initializer is not allowed.

E4322B

object of abstract classtype "type" is not allowed

[Explanation]
Object of abstract classtype "type" is not allowed.

E4323B

function returning abstract class "type" is not allowed

PART 1 OPERATION

[Explanation]
Function returning abstract class "type" is not allowed.

279

APPENDIX C Error Message

280

E4325B

inline specifier allowed on function declarations only

[Explanation]
Inline specifier allowed on function declarations only.

E4326B

"inline" is not allowed

[Explanation]
"inline" is not allowed.

E4327B

invalid storage class for an inline function

[Explanation]
Invalid storage class for an inline function.

E4328B

invalid storage class for a class member

[Explanation]
Invalid storage class for a class member.

E4329B

local class member entity-kind "entity" requires a definition

[Explanation]

Local class member entity-kind "entity" requires a definition.

E4330B

entity-kind "entity" isinaccessible

[Explanation]
Entity-kind "entity" isinaccessible.

E4332B

class "type" has no copy constructor to copy a const object

[Explanation]
Class "type" has no copy constructor to copy a const object.

PART 1 OPERATION

APPENDIX C Error Message

E4333B

defining an implicitly declared member function is not allowed

[Explanation]
Defining an implicitly declared member function is not allowed.

E4334B

class "type" has no suitable copy constructor

[Explanation]
Class "type" has no suitable copy constructor.

E4335B

linkage specification is not allowed

[Explanation]
Linkage specification is not allowed.

E4336B

unknown external linkage specification

[Explanation]
Unknown external linkage specification.

E4337B

linkage specification is incompatible with previous "entity" (declared at line xxxx)

[Explanation]

Linkage specification isincompatible with previous "entity" (declared at line xxxx).

E4338B

more than one instance of overloaded function "entity" has"C" linkage

[Explanation]
More than one instance of overloaded function "entity" has"C" linkage.

E4339B

class "type" has more than one default constructor

PART 1 OPERATION

[Explanation]
Class "type" has more than one default constructor.

281

APPENDIX C Error Message

282

E4341B

"operator xxxXx" must be a member function

[Explanation]
"operator xxxx" must be amember function.

E4342B

operator may not be a static member function

[Explanation]
Operator may not be a static member function.

E4343B

no arguments allowed on user-defined conversion

[Explanation]
No arguments allowed on user-defined conversion.

E4344B

too many parameters for this operator function

[Explanation]
Too many parameters for this operator function.

E4345B

too few parameters for this operator function

[Explanation]

Too few parameters for this operator function.

E4346B

nonmember operator requires a parameter with class type

[Explanation]
Nonmember operator requires a parameter with class type.

E4347B

default argument is not allowed

[Explanation]
Default argument is not allowed.

PART 1 OPERATION

APPENDIX C Error Message

E4348B

more than one user-defined conversion from "type" to "type" applies

[Explanation]
More than one user-defined conversion from "type" to "type" applies.

E4349B

no operator "xxxx" matches these operands

[Explanation]
No operator "xxxx" matches these operands.

E4350B

more than one operator "xxxx" matches these operands

[Explanation]
More than one operator "xxxx" matches these operands.

E4351B

first parameter of alocation function must be of type "size t"

[Explanation]
First parameter of allocation function must be of type "size t".

E4352B

allocation function requires "void *" return type

[Explanation]

Allocation function requires "void *" return type.

E4353B

deallocation function requires "void" return type

[Explanation]
Deallocation function requires "void" return type.

E4354B

first parameter of deallocation function must be of type void *

PART 1 OPERATION

[Explanation]
First parameter of deallocation function must be of type void *.

283

APPENDIX C Error Message

284

E4356B type must be an object type
[Explanation]
Type must be an object type.
E4357B base class "type" has already been initialized
[Explanation]
Base class "type" has already been initialized.
E4358B base class hame required -- "type" assumed (anachronism)
[Explanation]
Base class name required -- "type" assumed (anachronism).
E4359B entity-kind "entity" has already been initialized
[Explanation]
Entity-kind "entity" has already been initialized.
E4360B name of member or base class is missing
[Explanation]
Name of member or base class is missing.
E4361B assignment to "this" (anachronism)
[Explanation]
Assignment to "this" (anachronism).
E4362B "overload" keyword used (anachronism)

[Explanation]
"overload" keyword used (anachronism).

PART 1 OPERATION

APPENDIX C Error Message

E4363B

invalid anonymous union -- nonpublic member is not allowed

[Explanation]
Invalid anonymous union -- nonpublic member is not allowed.

E4364B

invalid anonymous union -- member function is not allowed

[Explanation]
Invalid anonymous union -- member function is not allowed.

E4365B

anonymous union at globa or namespace scope must be declared static

[Explanation]
Anonymous union at global or namespace scope must be declared static.

E4366B

entity-kind "entity" provides no initializer for

[Explanation]
Entity-kind "entity" provides no initializer for.

E4367B

implicitly generated constructor for class "type" cannot initialize

[Explanation]

Implicitly generated constructor for class "type" cannot initialize.

E4369B

entity-kind "entity" has an uninitialized const or reference member

[Explanation]
Entity-kind "entity" has an uninitialized const or reference member.

E4371B

class "type" has no assignment operator to copy a const object

PART 1 OPERATION

[Explanation]
Class "type" has no assignment operator to copy a const object.

285

APPENDIX C Error Message

286

E4372B class "type" has no suitable assignment operator
[Explanation]
Class "type" has no suitable assignment operator.
E4373B ambiguous assignment operator for class "type"
[Explanation]
Ambiguous assignment operator for class "type".
E4375B declaration requires a typedef name
[Explanation]
Declaration requires a typedef name.
E4377B "virtual" is not allowed
[Explanation]
"virtual" is not allowed.
E4378B "static" isnot allowed
[Explanation]
"static" is not allowed.
E4379B cast of bound function to normal function pointer (anachronism)
[Explanation]
Cast of bound function to normal function pointer (anachronism).
E4380B expression must have pointer-to-member type

[Explanation]
Expression must have pointer-to-member type.

PART 1 OPERATION

APPENDIX C Error Message

E4381B

extra";" ignored

[Explanation]
Extra";" ignored.

E4382B

nonstandard member constant declaration (standard form is a static const integral
member)

[Explanation]
Nonstandard member constant declaration (standard form is a static const integral
member).

E4384B

no instance of overloaded "entity” matches the argument list

[Explanation]
No instance of overloaded "entity" matches the argument list.

E4386B

no instance of entity-kind "entity" matches the required type

[Explanation]
No instance of entity-kind "entity" matches the required type.

E4387B

delete array size expression used (anachronism)

[Explanation]
Delete array size expression used (anachronism).

E4388B

"operator->" for class "type" returnsinvalid type "type"

[Explanation]
"operator->" for class "type" returnsinvalid type "type".

E4389B

a cast to abstract class "type" is not allowed

PART 1 OPERATION

[Explanation]
A cast to abstract class "type" is not allowed.

287

APPENDIX C Error Message

E4390B function "main” may not be called or have its address taken

[Explanation]
Function "main" may not be called or have its address taken.

E4391B anew-initializer may not be specified for an array

[Explanation]
A new-initializer may not be specified for an array.

E4392B member function "entity" may not be redeclared outside its class

[Explanation]
Member function "entity" may not be redeclared outside its class.

E4393B pointer to incomplete class type is not allowed

[Explanation]
Pointer to incomplete class type is not allowed.

E4394B reference to local variable of enclosing function is not allowed

[Explanation]

Reference to local variable of enclosing function is not allowed.

E4395B single-argument function used for postfix "xxxx" (anachronism)

[Explanation]
Single-argument function used for postfix "xxxx" (anachronism).

E4397B implicitly generated assignment operator cannot copy

[Explanation]
Implicitly generated assignment operator cannot copy.

288 PART 1 OPERATION

APPENDIX C Error Message

E4403B

entity-kind "entity" has already been declared

[Explanation]
Entity-kind "entity" has already been declared.

E4404B

function "main" may not be declared inline

[Explanation]
Function "main” may not be declared inline.

E4405B

member function with the same name asits class must be a constructor

[Explanation]
Member function with the same name as its class must be a constructor.

E4406B

using nested entity-kind "entity" (anachronism)

[Explanation]
Using nested entity-kind "entity" (anachronism).

E4407B

a destructor may not have parameters

[Explanation]

A destructor may not have parameters.

E4408B

copy constructor for class "type" may not have a parameter of type "type"

[Explanation]
Copy constructor for class "type" may not have a parameter of type "type".

E4409B

entity-kind "entity" returns incomplete type "type"

PART 1 OPERATION

[Explanation]
Entity-kind "entity" returnsincomplete type "type".

289

APPENDIX C Error Message

290

E4410B protected entity-kind "entity” is not accessible through a"type" pointer or object
[Explanation]
Protected entity-kind "entity" is not accessible through a "type" pointer or object.
E4411B aparameter is not alowed
[Explanation]
A parameter is not allowed.
E4412B an "asm" declaration is not allowed here
[Explanation]
An "asm" declaration is not allowed here.
E4413B no suitable conversion function from "type" to "type" exists
[Explanation]
No suitable conversion function from "type" to "type" exists.
E4415B no suitable constructor exists to convert from "type" to "type"
[Explanation]
No suitable constructor exists to convert from "type" to "type".
E4416B more than one constructor applies to convert from "type" to "type"
[Explanation]
More than one constructor applies to convert from "type" to "type".
E4417B more than one conversion function from "type" to "type" applies

[Explanation]
More than one conversion function from "type" to "type" applies.

PART 1 OPERATION

APPENDIX C Error Message

E4418B

more than one conversion function from "type" to abuilt-in type applies

[Explanation]
More than one conversion function from "type" to a built-in type applies.

E4424B

aconstructor or destructor may not have its address taken

[Explanation]
A constructor or destructor may not have its address taken.

E4425B

dollar sign ("$") used inidentifier

[Explanation]
Dollar sign ("$") used in identifier.

E4426B

temporary used for initial value of reference to non-const (anachronism)

[Explanation]
Temporary used for initial value of reference to non-const (anachronism).

E4427B

qualified name is not allowed in member declaration

[Explanation]

Qualified nameis not allowed in member declaration.

E4428B

enumerated type mixed with another type (anachronism)

[Explanation]
Enumerated type mixed with another type (anachronism).

E4429B

the size of an array in "new" must be non-negative

PART 1 OPERATION

[Explanation]
The size of an array in "new" must be non-negative.

291

APPENDIX C Error Message

292

E4432B "enum" declaration is not allowed
[Explanation]
"enum" declaration is not allowed.
E4433B qualifiers dropped in binding reference of type "type" to initializer of type "type"
[Explanation]
Qualifiers dropped in binding reference of type "type" to initializer of type "type".
E4434B areference of type "type" (not const-qualified) cannot be initialized with a value of
type "type"
[Explanation]
A reference of type "type" (not const-qualified) cannot be initialized with a value of type
"type".
E4435B apointer to function may not be deleted
[Explanation]
A pointer to function may not be deleted.
E4436B conversion function must be a nonstatic member function
[Explanation]
Conversion function must be a nonstatic member function.
E4437B template declaration is not allowed here
[Explanation]
Template declaration is not allowed here.
E4438B expected a"'<"
[Explanation]
Expected a"<".

PART 1 OPERATION

APPENDIX C Error Message

PART 1 OPERATION

E4439B expected a">"
[Explanation]
Expected a">".
E4440B template parameter declaration is missing
[Explanation]
Template parameter declaration is missing.
E4441B argument list for entity-kind "entity" is missing
[Explanation]
Argument list for entity-kind "entity" is missing.
E4442B too few arguments for entity-kind "entity”
[Explanation]
Too few arguments for entity-kind "entity".
E4443B too many arguments for entity-kind "entity"
[Explanation]
Too many arguments for entity-kind "entity".
E4445B entity-kind "entity" is not used in declaring the parameter types of entity-kind
"entity"
[Explanation]

Entity-kind "entity" is not used in declaring the parameter types of entity-kind "entity".

293

APPENDIX C Error Message

294

E4446B

two nested types have the same name: "entity" and "entity" (declared at line xxxx)
(cfront compatibility)

[Explanation]
Two nested types have the same name: "entity" and "entity" (declared at line xxxx)
(cfront compatibility).

E4447B

global "entity" was declared after nested "entity" (declared at line xxxx) (cfront
compatibility)

[Explanation]
Globa "entity" was declared after nested "entity" (declared at line xxxx) (cfront
compatibility).

E4449B

more than one instance of entity-kind "entity" matches the required type

[Explanation]
More than one instance of entity-kind "entity" matches the required type.

E4450B

the type "long long" is honstandard

[Explanation]
Thetype "long long" is nonstandard.

E4451B

omission of "xxxx" is nonstandard

[Explanation]
Omission of "xxxx" is nonstandard.

E4452B

return type may not be specified on a conversion function

[Explanation]
Return type may not be specified on a conversion function.

PART 1 OPERATION

APPENDIX C Error Message

E4456B

excessive recursion at instantiation of entity-kind "entity

[Explanation]
Excessive recursion at instantiation of entity-kind "entity".

E4457B

"xxxX" is not afunction or static data member

[Explanation]
"xxxx" is not afunction or static data member.

E4458B

argument of type "type" isincompatible with template parameter of type "type"

[Explanation]
Argument of type "type" isincompatible with template parameter of type "type".

E4459B

initialization requiring atemporary or conversion is not allowed

[Explanation]
Initialization requiring a temporary or conversion is not allowed.

E4461B

initial value of reference to non-const must be an lvalue

[Explanation]
Initial value of reference to non-const must be an Ivalue.

E4463B

"template” isnot allowed

[Explanation]

"template" is not allowed.

E4464B

"type" is not aclass template

PART 1 OPERATION

[Explanation]
"type" is not a class template.

295

APPENDIX C Error Message

296

E4466B

"main" is not avalid name for afunction template

[Explanation]
"main" isnot avalid name for afunction template.

E4467B

invalid reference to entity-kind "entity" (union/nonunion mismatch)

[Explanation]
Invalid reference to entity-kind "entity" (union/nonunion mismatch).

E4468B

atemplate argument may not reference alocal type

[Explanation]

A template argument may not reference alocal type.

E44698B

tag kind of xxxx isincompatible with declaration of entity-kind "entity" (declared at
line xxxx)

[Explanation]

Tag kind of xxxx isincompatible with declaration of entity-kind "entity" (declared at line
XXXX).

E4470B

the global scope has no tag named "xxxx"

[Explanation]
The global scope has no tag named "xxxx".

E4471B

entity-kind "entity" has no tag member named "xxxx"

[Explanation]
Entity-kind "entity" has no tag member named "xxxx".

E4473B

entity-kind "entity" may be used only in pointer-to-member declaration

[Explanation]

Entity-kind "entity" may be used only in pointer-to-member declaration.

PART 1 OPERATION

APPENDIX C Error Message

E4475B

atemplate argument may not reference a non-external entity

[Explanation]
A template argument may not reference a non-external entity.

E4476B

name followed by "::~" must be a class hame or atype name

[Explanation]
Name followed by "::~" must be a class name or a type name.

E4477B

destructor name does not match name of class "type"

[Explanation]
Destructor name does not match name of class "type".

E4478B

type used as destructor name does not match type "type"

[Explanation]
Type used as destructor name does not match type "type".

E4481B

invalid storage class for atemplate declaration

[Explanation]

Invalid storage class for atemplate declaration.

E4484B

invalid explicit instantiation declaration

[Explanation]
Invalid explicit instantiation declaration.

E4485B

entity-kind "entity" is not an entity that can be instantiated

PART 1 OPERATION

[Explanation]
Entity-kind "entity" is not an entity that can be instantiated.

297

APPENDIX C Error Message

E4486B compiler generated entity-kind "entity" cannot be explicitly instantiated

[Explanation]
Compiler generated entity-kind "entity" cannot be explicitly instantiated.

E4487B inline entity-kind "entity" cannot be explicitly instantiated

[Explanation]
Inline entity-kind "entity" cannot be explicitly instantiated.

E4488B pure virtua entity-kind "entity" cannot be explicitly instantiated

[Explanation]
Pure virtual entity-kind "entity" cannot be explicitly instantiated.

E4489B entity-kind "entity" cannot be instantiated -- no template definition was supplied

[Explanation]
Entity-kind "entity" cannot be instantiated -- no template definition was supplied.

E4490B entity-kind "entity" cannot be instantiated -- it has been explicitly specialized

[Explanation]
Entity-kind "entity" cannot be instantiated -- it has been explicitly specialized.

E4493B no instance of entity-kind "entity" matches the specified type

[Explanation]
No instance of entity-kind "entity" matches the specified type.

E4496B template parameter "xxxx" may not be redeclared in this scope

[Explanation]
Template parameter "xxxx" may not be redeclared in this scope.

298 PART 1 OPERATION

APPENDIX C Error Message

E4498B

template argument list must match the parameter list

[Explanation]
Template argument list must match the parameter list.

E4500B

extra parameter of postfix "operator xxxx" must be of type "int"

[Explanation]
Extra parameter of postfix "operator xxxx" must be of type "int".

E4501B

an operator name must be declared as afunction

[Explanation]
An operator name must be declared as a function.

E4502B

operator name is not allowed

[Explanation]
Operator name is not allowed.

E4503B

entity-kind "entity" cannot be specialized in the current scope

[Explanation]

Entity-kind "entity" cannot be specialized in the current scope.

E4504B

nonstandard form for taking the address of a member function

[Explanation]
Nonstandard form for taking the address of a member function.

E4505B

too few template parameters -- does not match previous declaration

PART 1 OPERATION

[Explanation]

Too few template parameters -- does not match previous declaration.

299

APPENDIX C Error Message

E4506B too many template parameters -- does not match previous declaration

[Explanation]
Too many template parameters -- does not match previous declaration.

E4507B function template for operator delete(void *) is not alowed

[Explanation]
Function template for operator delete(void *) is not allowed.

E4508B class template and template parameter may not have the same name

[Explanation]
Class template and template parameter may not have the same name.

E4510B atemplate argument may not reference an unnamed type

[Explanation]
A template argument may not reference an unnamed type.

E4511B enumerated type is not allowed

[Explanation]
Enumerated type is not allowed.

E4512B type qualifier on areference typeis not alowed

[Explanation]
Type quaifier on areference typeis not alowed.

E4513B avalue of type "type" cannot be assigned to an entity of type "type"

[Explanation]
A value of type "type" cannot be assigned to an entity of type "type".

300 PART 1 OPERATION

APPENDIX C Error Message

E4515B

cannot convert to incompl ete class "type"

[Explanation]
Cannot convert to incomplete class "type".

E4516B

const object requires an initializer

[Explanation]
Const object requires an initializer.

E4517B

object has an uninitialized const or reference member

[Explanation]
Object has an uninitialized const or reference member.

E4518B

nonstandard preprocessing directive

[Explanation]
Nonstandard preprocessing directive.

E4519B

entity-kind "entity" may not have atemplate argument list

[Explanation]
Entity-kind "entity" may not have atemplate argument list.

E4520B

initialization with "{...}" expected for aggregate object

[Explanation]
Initialization with "{...}" expected for aggregate object.

E4521B

pointer-to-member selection class types are incompatible ("type" and "type")

PART 1 OPERATION

[Explanation]

Pointer-to-member selection class types are incompatible ("type" and "type").

301

APPENDIX C Error Message

302

E4522B

pointless friend declaration

[Explanation]
Pointless friend declaration.

E4525B

a dependent statement may not be a declaration

[Explanation]
A dependent statement may not be a declaration.

E4526B

a parameter may not have void type

[Explanation]

A parameter may not have void type.

E45298B

this operator is not alowed in atemplate argument expression

[Explanation]

This operator is not allowed in atemplate argument expression.

E4530B

try block requires at least one handler

[Explanation]
Try block requires at least one handler.

E4531B

handler requires an exception declaration

[Explanation]
Handler requires an exception declaration.

E4532B

handler is masked by default handler

[Explanation]
Handler is masked by default handler.

PART 1 OPERATION

APPENDIX C Error Message

E4536B

exception specification isincompatible with that of previous entity-kind "entity"
(declared at line XXXX)XXXX

[Explanation]

Exception specification is incompatible with that of previous entity-kind "entity"
(declared at line XXXX)XXXX.

E4540B

support for exception handling is disabled

[Explanation]
Support for exception handling is disabled.

E4541B

omission of exception specification isincompatible with previous entity-kind "entity"
(declared at line xxxx)

[Explanation]

Omission of exception specification is incompatible with previous entity-kind "entity"
(declared at line xxxx).

E4543B

non-arithmetic operation not allowed in nontype template argument

[Explanation]
Non-arithmetic operation not allowed in nontype template argument.

E4544B

use of alocal type to declare anonlocal variable

[Explanation]
Use of alocal type to declare anonlocal variable.

E4545B

use of alocal typeto declare afunction

PART 1 OPERATION

[Explanation]

Use of alocal type to declare afunction.

303

APPENDIX C Error Message

E4546B transfer of control bypasses initialization of

[Explanation]
Transfer of control bypassesinitialization of.

E4548B transfer of control into an exception handler

[Explanation]
Transfer of control into an exception handler.

E4551B entity-kind "entity" cannot be defined in the current scope

[Explanation]

Entity-kind "entity" cannot be defined in the current scope.

E4552B exception specification is not allowed

[Explanation]
Exception specification is not allowed.

E4555B tag kind of xxxx isincompatible with template parameter of type "type"

[Explanation]
Tag kind of xxxx isincompatible with template parameter of type "type".

E4556B function template for operator new(size t) isnot allowed

[Explanation]

Function template for operator new(size t) is not allowed.

E4558B pointer to member of type "type" is not allowed

[Explanation]
Pointer to member of type "type" is not allowed.

304 PART 1 OPERATION

APPENDIX C Error Message

E45598B

elipsisis not alowed in operator function parameter list

[Explanation]
Ellipsisis not allowed in operator function parameter list.

E4560B

"entity" isreserved for future use as a keyword

[Explanation]
"entity" isreserved for future use as a keyword.

E4598B

atemplate parameter may not have void type

[Explanation]
A template parameter may not have void type.

E45998B

excessive recursive instantiation of entity-kind "entity” due to instantiate-all mode

[Explanation]
Excessive recursive instantiation of entity-kind "entity" due to instantiate-all mode.

E4601B

athrow expression may not have void type

[Explanation]

A throw expression may not have void type.

E4603B

parameter of abstract classtype "type" is not allowed

[Explanation]
Parameter of abstract class type "type" is not alowed.

E4604B

array of abstract class "type" is not allowed

PART 1 OPERATION

[Explanation]
Array of abstract class "type" is not allowed.

305

APPENDIX C Error Message

E4605B floating-point template parameter is nonstandard

[Explanation]
Floating-point template parameter is nonstandard.

E4606B this pragma must immediately precede a declaration

[Explanation]
This pragma must immediately precede a declaration.

E4607B this pragma must immediately precede a statement

[Explanation]
This pragma must immediately precede a statement.

E4608B this pragma must immediately precede a declaration or statement

[Explanation]
This pragma must immediately precede a declaration or statement.

E4609B thiskind of pragmamay not be used here

[Explanation]
Thiskind of pragma may not be used here.

E4612B specific definition of inline template function must precede itsfirst use

[Explanation]
Specific definition of inline template function must precede itsfirst use.

E4615B parameter type involves pointer to array of unknown bound

[Explanation]
Parameter type involves pointer to array of unknown bound.

306 PART 1 OPERATION

APPENDIX C Error Message

E4616B parameter type involves reference to array of unknown bound

[Explanation]
Parameter type involves reference to array of unknown bound.

E4619B nonstandard unnamed field

[Explanation]
Nonstandard unnamed field.

E4620B nonstandard unnamed member

[Explanation]
Nonstandard unnamed member.

E4624B "xxxX" is not atype name

[Explanation]

"xxxx" is not atype name.

E4643B "restrict” is not allowed

[Explanation]
"restrict” is not allowed.

E4644B apointer or reference to function type may not be qualified by "restrict"

[Explanation]
A pointer or reference to function type may not be qualified by "restrict".

E4646B acalling convention modifier may not be specified here

[Explanation]
A calling convention modifier may not be specified here.

PART 1 OPERATION 307

APPENDIX C Error Message

E4647B conflicting calling convention modifiers

[Explanation]
Conflicting calling convention modifiers.

E4651B a calling convention may not be followed by a nested declarator

[Explanation]
A calling convention may not be followed by a nested declarator.

E4654B declaration modifiers are incompatible with previous declaration

[Explanation]
Declaration modifiers are incompatible with previous declaration.

E4655B the modifier "xxxx" is not allowed on this declaration

[Explanation]
The modifier "xxxx" is not allowed on this declaration.

E4656B transfer of control into atry block

[Explanation]

Transfer of control into atry block.

E4658B closing brace of template definition not found

[Explanation]
Closing brace of template definition not found.

E4660B invalid packing alignment value

[Explanation]
Invalid packing alignment value.

308 PART 1 OPERATION

APPENDIX C Error Message

E4661B

expected an integer constant

[Explanation]
Expected an integer constant.

E4663B

invalid source file identifier string

[Explanation]
Invalid source file identifier string.

E4664B

a class template cannot be defined in afriend declaration

[Explanation]
A class template cannot be defined in afriend declaration.

E4665B

"asm" isnot allowed

[Explanation]
"asm" is not allowed.

E4666B

"asm" must be used with afunction definition

[Explanation]

"asm" must be used with a function definition.

E4667B

"asm" function is nonstandard

[Explanation]
"asm" function is nonstandard.

E4668B

ellipsis with no explicit parameters is nonstandard

PART 1 OPERATION

[Explanation]
Ellipsis with no explicit parameters is nonstandard.

309

APPENDIX C Error Message

310

E4669B "&..." isnonstandard
[Explanation]
"&..." isnonstandard.
E4670B invalid use of "&..."
[Explanation]
Invalid use of "&...".
E4672B temporary used for initial value of reference to const volatile (anachronism)
[Explanation]
Temporary used for initial value of reference to const volatile (anachronism).
E4673B areference of type "type" cannot be initialized with a value of type "type"
[Explanation]
A reference of type "type" cannot be initialized with ava ue of type "type".
E4674B initial value of reference to const volatile must be an lvalue
[Explanation]
Initial value of reference to const volatile must be an lvalue.
E4681B expected _except or __ finally
[Explanation]
Expected __except or __finaly.
E4682B a__leave statement may only be used withina__try

[Explanation]
A __leave statement may only be used withina__try.

PART 1 OPERATION

APPENDIX C Error Message

E4688B

"xxxx" not found on pack alignment stack

[Explanation]
"xxxx" not found on pack alignment stack.

E4689B

empty pack alignment stack

[Explanation]
Empty pack alignment stack.

E4691B

entity-kind "entity", required for copy that was eliminated, isinaccessible

[Explanation]
Entity-kind "entity", required for copy that was eliminated, is inaccessible.

E4692B

entity-kind "entity", required for copy that was eliminated, is not callable because
reference parameter cannot be bound to rvalue

[Explanation]
Entity-kind "entity", required for copy that was eliminated, is not calable because
reference parameter cannot be bound to rvalue.

E4693B

<typeinfo> must be included before typeid is used

[Explanation]
<typeinfo> must be included before typeid is used.

E4694B

XXXX cannot cast away const or other type qualifiers

PART 1 OPERATION

[Explanation]
XXXX cannot cast away const or other type qualifiers.

311

APPENDIX C Error Message

312

E4695B

the typein adynamic_cast must be a pointer or reference to a complete class type, or
void *

[Explanation]

The type in a dynamic_cast must be a pointer or reference to a complete class type, or
void *.

E4696B

the operand of apointer dynamic_cast must be a pointer to a complete class type

[Explanation]

The operand of a pointer dynamic_cast must be a pointer to a complete classtype.

E4697B

the operand of areference dynamic_cast must be an Ivalue of acomplete class type

[Explanation]
The operand of areference dynamic_cast must be an lvalue of a complete classtype.

E4698B

the operand of aruntime dynamic_cast must have a polymorphic class type

[Explanation]
The operand of aruntime dynamic_cast must have a polymorphic class type.

E4701B

an array type is not allowed here

[Explanation]
An array typeisnot alowed here.

E4702B

expected an "="

[Explanation]
Expected an "=".

PART 1 OPERATION

APPENDIX C Error Message

E4703B

expected a declarator in condition declaration

[Explanation]
Expected a declarator in condition declaration.

E4704B

"xxxX", declared in condition, may not be redeclared in this scope

[Explanation]
"xxxX", declared in condition, may not be redeclared in this scope.

E4705B

default template arguments are not allowed for function templates

[Explanation]

Default template arguments are not allowed for function templ ates.

E4706B

expected a"," or ">

[Explanation]
Expecteda”," or ">".

E4707B

expected atemplate parameter list

[Explanation]
Expected a template parameter list.

E4709B

bool typeis not alowed

[Explanation]
Bool type is not allowed.

E4710B

offset of base class "entity" within class "entity" istoo large

PART 1 OPERATION

[Explanation]
Offset of base class "entity" within class "entity" istoo large.

313

APPENDIX C Error Message

314

E4711B

expression must have bool type (or be convertible to bool)

[Explanation]
Expression must have bool type (or be convertible to boal).

E4713B

entity-kind "entity" is not a variable name

[Explanation]
Entity-kind "entity" is not avariable name

E4714B

__based modifier is not allowed here

[Explanation]
__based modifier is not alowed here.

E4716B

variablein __based modifier must have pointer type

[Explanation]
Variablein __based modifier must have pointer type.

E4717B

the typein a const_cast must be a pointer, reference, or pointer to member to an
object type

[Explanation]
The type in a const_cast must be a pointer, reference, or pointer to member to an object
type.

E4718B

aconst_cast can only adjust type qualifiers: it cannot change the underlying type

[Explanation]
A const_cast can only adjust type qualifiers: it cannot change the underlying type.

E4719B

mutable is not allowed

[Explanation]
Mutable is not allowed.

PART 1 OPERATION

APPENDIX C Error Message

E4720B

redeclaration of entity-kind "entity” is not allowed to alter its access

[Explanation]
Redeclaration of entity-kind "entity" is not allowed to alter its access.

E4724B

namespace definition is not allowed

[Explanation]
Namespace definition is not allowed.

E4725B

name must be a namespace name

[Explanation]
Name must be a namespace name.

E4726B

namespace alias definition is not allowed

[Explanation]
Namespace alias definition is not allowed.

E4727B

namespace-qualified nameis required

[Explanation]
Namespace-qualified nameis required.

E4728B

ahamespace nameis not allowed

[Explanation]
A namespace nameis not allowed.

E4730B

entity-kind "entity" is not a class template

PART 1 OPERATION

[Explanation]
Entity-kind "entity" is not a class template.

315

APPENDIX C Error Message

316

E4731B

array with incomplete element type is nonstandard

[Explanation]
Array with incomplete element type is nonstandard.

E4732B

allocation operator may not be declared in a namespace

[Explanation]
Allocation operator may not be declared in a namespace.

E4733B

deallocation operator may not be declared in a namespace

[Explanation]
Deallocation operator may not be declared in a namespace.

E4734B

entity-kind "entity" conflicts with using-declaration of entity-kind "entity"

[Explanation]
Entity-kind "entity" conflicts with using-declaration of entity-kind "entity".

E4735B

using-declaration of entity-kind "entity" conflicts with entity-kind "entity" (declared
at line xxxx)

[Explanation]
Using-declaration of entity-kind "entity" conflicts with entity-kind "entity” (declared at
line Xxxx).

E4738B

aclass-qualified name is required

[Explanation]
A class-qualified name is required.

E4742B

entity-kind "entity" has no actual member "xxxx"

[Explanation]

Entity-kind "entity" has no actual member "xxxx".

PART 1 OPERATION

APPENDIX C Error Message

E4744B incompatible memory attributes specified

[Explanation]
Incompatible memory attributes specified.

E4746B memory attribute may not be followed by a nested declarator

[Explanation]
Memory attribute may not be followed by a nested declarator.

E4749B atype qualifier is not allowed

[Explanation]
A type qualifier is not alowed.

E4750B entity-kind "entity" (declared at line xxxx) was used before its template was declared

[Explanation]
Entity-kind "entity" (declared at line xxxx) was used before its template was declared.

E4751B static and nonstatic member functions with same parameter types cannot be
overloaded

[Explanation]

Static and nonstatic member functions with same parameter types cannot be overloaded.

E4752B no prior declaration of entity-kind "entity"

[Explanation]
No prior declaration of entity-kind "entity".

E4753B atemplate-id is not allowed

[Explanation]
A template-id is not allowed.

PART 1 OPERATION 317

APPENDIX C Error Message

E4754B aclass-quaified nameis not allowed

[Explanation]
A class-qualified name is not allowed.

E4755B entity-kind "entity" may not be redeclared in the current scope

[Explanation]
Entity-kind "entity" may not be redeclared in the current scope.

E4756B qualified nameis not allowed in namespace member declaration

[Explanation]
Qualified nameis not allowed in namespace member declaration.

E4757B entity-kind "entity" is not atype name

[Explanation]
Entity-kind "entity" is not atype name.

E4758B explicit instantiation is not alowed in the current scope

[Explanation]

Explicit instantiation is not allowed in the current scope.

E4759B entity-kind "entity" cannot be explicitly instantiated in the current scope

[Explanation]
Entity-kind "entity" cannot be explicitly instantiated in the current scope.

E4760B entity-kind "entity" explicitly instantiated more than once

[Explanation]
Entity-kind "entity" explicitly instantiated more than once.

318 PART 1 OPERATION

APPENDIX C Error Message

E4761B

typename may only be used within atemplate

[Explanation]
Typename may only be used within atemplate.

E4765B

nonstandard character at start of object-like macro definition

[Explanation]
Nonstandard character at start of object-like macro definition.

E4766B

exception specification for virtual entity-kind "entity" isincompatible with that of
overridden entity-kind "entity"

[Explanation]

Exception specification for virtual entity-kind "entity" is incompatible with that of

overridden entity-kind "entity".

E4769B

"entity”, implicitly called from entity-kind "entity", is ambiguous

[Explanation]
"entity”, implicitly called from entity-kind "entity", is ambiguous.

E4771B

"explicit" is not allowed

[Explanation]
"explicit" isnot allowed.

E4772B

declaration conflicts with "xxxx" (reserved class name)

[Explanation]
Declaration conflicts with "xxxx" (reserved class name).

E4773B

only "()" isalowed asinitializer for array entity-kind "entity"

PART 1 OPERATION

[Explanation]
Only "()" isallowed asinitializer for array entity-kind "entity".

319

APPENDIX C Error Message

E4774B "virtua" is not alowed in afunction template declaration

[Explanation]
"virtual" is not allowed in afunction template declaration.

E4775B invalid anonymous union -- class member template is not allowed

[Explanation]
Invalid anonymous union -- class member template is not allowed.

E4776B template nesting depth does not match the previous declaration of entity-kind "entity

[Explanation]
Template nesting depth does not match the previous declaration of entity-kind "entity".

E4777B this declaration cannot have multiple "template <...>" clauses

[Explanation]
This declaration cannot have multiple "template <...>" clauses.

E4779B "xxxx", declared in for-loop initialization, may not be redeclared in this scope

[Explanation]

"xxxx", declared in for-loop initialization, may not be redeclared in this scope.

E4782B definition of virtual entity-kind "entity" is required here

[Explanation]
Definition of virtual entity-kind "entity" isrequired here.

E4784B astorage classis not allowed in afriend declaration

[Explanation]
A storage classis not allowed in afriend declaration.

320 PART 1 OPERATION

APPENDIX C Error Message

E4785B

template parameter list for "entity” is not allowed in this declaration

[Explanation]
Template parameter list for "entity" is not allowed in this declaration.

E4786B

entity-kind "entity" is not avalid member class or function template

[Explanation]
Entity-kind "entity" is not avalid member class or function template.

E4787B

not avalid member class or function template declaration

[Explanation]
Not avalid member class or function template declaration.

E4788B

atemplate declaration containing atemplate parameter list may not be followed by an
explicit specialization declaration

[Explanation]

A template declaration containing a template parameter list may not be followed by an
explicit specialization declaration.

E4789B

explicit specialization of entity-kind "entity" must precede the first use of entity-kind
"entity"

[Explanation]
Explicit specialization of entity-kind "entity" must precede the first use of entity-kind
"entity".

E4790B

explicit speciaization is not alowed in the current scope

PART 1 OPERATION

[Explanation]

Explicit specialization is not allowed in the current scope.

321

APPENDIX C Error Message

E4791B partial specialization of entity-kind "entity" is not allowed

[Explanation]
Partial specialization of entity-kind "entity" is not allowed.

E4792B entity-kind "entity" is not an entity that can be explicitly specialized

[Explanation]
Entity-kind "entity" is not an entity that can be explicitly specialized.

E4793B explicit speciaization of entity-kind "entity" must precede itsfirst use

[Explanation]
Explicit specialization of entity-kind "entity" must precede itsfirst use.

E4794B template parameter xxxx may not be used in an elaborated type specifier

[Explanation]
Template parameter xxxx may not be used in an elaborated type specifier.

E4795B specializing entity-kind "entity" requires "template<>" syntax

[Explanation]
Speciadizing entity-kind "entity" requires "template<>" syntax.

E4799B specializing entity-kind "entity" without "template<>" syntax is nonstandard

[Explanation]
Specializing entity-kind "entity" without "template<>" syntax is nonstandard.

E4800B this declaration may not have extern "C" linkage

[Explanation]
This declaration may not have extern "C" linkage.

322 PART 1 OPERATION

APPENDIX C Error Message

E4801B

"xxxX" is not a class or function template name in the current scope

[Explanation]
"xxxx" is not aclass or function template name in the current scope.

E4802B

specifying a default argument when redeclaring an unreferenced function template is
nonstandard

[Explanation]
Specifying a default argument when redeclaring an unreferenced function template is
nonstandard.

E4803B

specifying a default argument when redeclaring an already referenced function
templateis not allowed

[Explanation]

Specifying a default argument when redeclaring an already referenced function template
isnot allowed.

E4804B

cannot convert pointer to member of base class "type" to pointer to member of
derived class "type" -- base classis virtual

[Explanation]

Cannot convert pointer to member of base class "type" to pointer to member of derived
class"type" -- base classisvirtual.

E4805B

exception specification isincompatible with that of entity-kind "entity" (declared at
[ine XXXX)XXXX

PART 1 OPERATION

[Explanation]
Exception specification is incompatible with that of entity-kind "entity" (declared at line
XXXX)XXXX.

323

APPENDIX C Error Message

E4806B omission of exception specification isincompatible with entity-kind "entity"
(declared at line xxxx)

[Explanation]
Omission of exception specification is incompatible with entity-kind "entity" (declared at
line Xxxx).

E4807B the parse of this expression has changed between the point at which it appeared in the
program and the point at which the expression was evaluated -- "typename" may be
required to resolve the ambiguity

[Explanation]

The parse of this expression has changed between the point at which it appeared in the
program and the point a which the expression was evaluated -- "typename' may be
required to resolve the ambiguity.

E4808B default-initialization of referenceis not allowed

[Explanation]

Default-initialization of reference is not allowed.

E4809B uninitialized entity-kind "entity" has a const member

[Explanation]
Uninitialized entity-kind "entity" has a const member.

E4810B uninitialized base class "type" has a const member

[Explanation]
Uninitialized base class "type" has a const member.

E4811B const entity-kind "entity" requires an initializer -- class "type" has no explicitly
declared default constructor

[Explanation]
Const entity-kind "entity" requires an initializer -- class "type" has no explicitly declared
default constructor.

324 PART 1 OPERATION

APPENDIX C Error Message

E4812B const object requires an initializer -- class "type" has no explicitly declared default
constructor
[Explanation]
Const object requires an initializer -- class "type" has no explicitly declared default
constructor.
E4816B in afunction definition atype qualifier on a"void" return typeis not allowed
[Explanation]
In afunction definition atype qualifier on a"void" return typeis not allowed.
E4817B static data member declaration is not allowed in this class
[Explanation]
Static data member declaration is not alowed in this class.
E4818B template instantiation resulted in an invalid function declaration
[Explanation]
Template instantiation resulted in an invalid function declaration.
E4819B ".."isnot alowed
[Explanation]
"..." isnot alowed.
E4821B extern inline entity-kind "entity" was referenced but not defined
[Explanation]
Extern inline entity-kind "entity" was referenced but not defined.
E4822B invalid destructor name for type "type"

PART 1 OPERATION

[Explanation]
Invalid destructor name for type "type".

325

APPENDIX C Error Message

326

E4824B

destructor reference is ambiguous -- both entity-kind "entity” and entity-kind "entity"
could be used

[Explanation]

Destructor reference is ambiguous -- both entity-kind "entity” and entity-kind "entity"
could be used.

E4827B

only one member of a union may be specified in a constructor initializer list

[Explanation]

Only one member of aunion may be specified in a constructor initializer list.

E4828B

support for "new[]" and "delete[]" is disabled

[Explanation]
Support for "new[]" and "delete]]" is disabled.

E4832B

no appropriate operator deleteisvisible

[Explanation]
No appropriate operator deleteisvisible.

E4833B

pointer or reference to incomplete type is not allowed

[Explanation]
Pointer or reference to incomplete typeis not allowed.

E4834B

invalid partial specialization -- entity-kind "entity” is already fully specialized

[Explanation]
Invalid partial specialization -- entity-kind "entity" isalready fully specialized.

E4835B

incompatible exception specifications

[Explanation]

Incompatible exception specifications.

PART 1 OPERATION

APPENDIX C Error Message

E4837B

omission of explicit typeis nonstandard ("int" assumed)

[Explanation]
Omission of explicit typeis nonstandard ("int" assumed).

E4838B

more than one partial specialization matches the template argument list of entity-kind
"entity"

[Explanation]
More than one partial speciaization matches the template argument list of entity-kind
"entity".

E4840B

atemplate argument list is not allowed in a declaration of a primary template

[Explanation]
A template argument list is not allowed in a declaration of a primary template.

E4841B

partial specializations may not have default template arguments

[Explanation]
Partial specializations may not have default template arguments.

E4842B

entity-kind "entity" is not used in template argument list of entity-kind "entity"

[Explanation]
Entity-kind "entity" is not used in template argument list of entity-kind "entity".

E4843B

the type of partial specialization template parameter entity-kind "entity” depends on
another template parameter

PART 1 OPERATION

[Explanation]

The type of partial specialization template parameter entity-kind "entity" depends on
another template parameter.

327

APPENDIX C Error Message

E4844B

the template argument list of the partial specialization includes a nontype argument
whose type depends on a template parameter

[Explanation]
The template argument list of the partial specialization includes a nontype argument
whose type depends on atemplate parameter.

E4845B

this partial specialization would have been used to instantiate entity-kind "entity"

[Explanation]
This partial specialization would have been used to instantiate entity-kind "entity".

E4846B

this partial specialization would have been made the instantiation of entity-kind
"entity" ambiguous

[Explanation]
This partial specialization would have been made the instantiation of entity-kind "entity"
ambiguous.

E4847B

expression must have integral or enum type

[Explanation]

Expression must have integral or enum type.

E4848B

expression must have arithmetic or enum type

[Explanation]
Expression must have arithmetic or enum type.

E4849B

expression must have arithmetic, enum, or pointer type

328

[Explanation]
Expression must have arithmetic, enum, or pointer type.

PART 1 OPERATION

APPENDIX C Error Message

E4850B

type of cast must be integral or enum

[Explanation]
Type of cast must beintegral or enum.

E4851B

type of cast must be arithmetic, enum, or pointer

[Explanation]
Type of cast must be arithmetic, enum, or pointer.

E4852B

expression must be a pointer to a complete object type

[Explanation]
Expression must be a pointer to a complete object type.

E4853B

apartia specialization of amember class template must be declared in the class of
which it is amember

[Explanation]

A partial specialization of a member class template must be declared in the class of which
it isamember.

E4854B

apartial specialization nontype argument must be the name of a nontype parameter or
a constant

[Explanation]
A partial specialization nontype argument must be the name of a nontype parameter or a
constant.

E4855B

return type is not identical to return type "type" of overridden virtual function entity-
kind "entity"

PART 1 OPERATION

[Explanation]
Return typeis not identical to return type "type" of overridden virtual function entity-kind
“entity"”.

329

APPENDIX C Error Message

330

E4857B

apartia specialization of aclass template must be declared in the namespace of
which it is amember

[Explanation]

A partial specialization of a class template must be declared in the namespace of which it
isamember.

E4861B

invalid character in input line

[Explanation]
Invalid character in input line.

E4862B

function returns incomplete type "type

[Explanation]
Function returns incompl ete type "type".

E4864B

XXXX is not atemplate

[Explanation]

XXXX isnot atemplate.

E4865B

afriend declaration may not declare a partial specialization

[Explanation]
A friend declaration may not declare a partial specialization.

E4868B

space required between adjacent ">" delimiters of nested template argument lists

(">>" istheright shift operator)

[Explanation]

Space required between adjacent ">" delimiters of nested template argument lists (">>" is
the right shift operator).

PART 1 OPERATION

APPENDIX C Error Message

E4871B

template instantiation resulted in unexpected function type of "type" (the meaning of
aname may have changed since the template declaration -- the type of the templateis

"type’)

[Explanation]

Template instantiation resulted in unexpected function type of "type" (the meaning of a
name may have changed since the template declaration -- the type of the template is
“type").

E4872B

ambiguous guiding declaration -- more than one function template "entity” matches
type "type"

[Explanation]
Ambiguous guiding declaration -- more than one function template "entity" matches type
"type".

E4873B

non-integral operation not allowed in nontype template argument

[Explanation]
Non-integral operation not allowed in nontype template argument.

E4875B

Embedded C++ does not support templates

[Explanation]
Embedded C++ does not support templates.

E4876B

Embedded C++ does not support exception handling

[Explanation]
Embedded C++ does not support exception handling.

E4877B

Embedded C++ does not support namespaces

PART 1 OPERATION

[Explanation]
Embedded C++ does not support namespaces.

331

APPENDIX C Error Message

E4878B Embedded C++ does not support run-time type information

[Explanation]
Embedded C++ does not support run-time type information.

E4879B Embedded C++ does not support the new cast syntax

[Explanation]
Embedded C++ does not support the new cast syntax.

E4880B Embedded C++ does not support using-declarations

[Explanation]
Embedded C++ does not support using-declarations.

E4881B Embedded C++ does not support "mutable”

[Explanation]
Embedded C++ does not support "mutable’.

E4882B Embedded C++ does not support multiple or virtual inheritance

[Explanation]

Embedded C++ does not support multiple or virtual inheritance.

E4884B pointer-to-member representation "xxxx" has already been set for entity-kind "entity"

[Explanation]
Pointer-to-member representation "xxxx" has aready been set for entity-kind "entity"

E4885B "type" cannot be used to designate constructor for "type"

[Explanation]
"type" cannot be used to designate constructor for "type".

332 PART 1 OPERATION

APPENDIX C Error Message

E4886B

invalid suffix on integral constant

[Explanation]
Invalid suffix on integral constant.

E4887B

operand of __uuidof must have a class type for which __declspec(uuid("...")) has
been specified

[Explanation]

Operand of __uuidof must have a class type for which __declspec(uuid("...")) has been

specified.

E4888B

invalid GUID stringin __declspec(uuid(”..."))

[Explanation]
Invalid GUID string in ___declspec(uuid(”...")).

E4890B

variable length array with unspecified bound is not allowed

[Explanation]
Variable length array with unspecified bound is not allowed.

E4891B

an explicit template argument list is not allowed on this declaration

[Explanation]
An explicit template argument list is not allowed on this declaration.

E4892B

an entity with linkage cannot have a variably modified type

[Explanation]
An entity with linkage cannot have a variably modified type.

E4893B

avariable length array cannot have static storage duration

PART 1 OPERATION

[Explanation]
A variable length array cannot have static storage duration.

333

APPENDIX C Error Message

334

E4894B

entity-kind "entity" is not atemplate

[Explanation]
Entity-kind "entity" is not atemplate.

E4896B

expected a template argument

[Explanation]
Expected a template argument.

E4898B

nonmember operator requires a parameter with class or enum type

[Explanation]
Nonmember operator requires a parameter with class or enum type.

E4900B

using-declaration of entity-kind "entity" is not allowed

[Explanation]
Using-declaration of entity-kind "entity" is not allowed.

E4901B

qualifier of destructor name "type" does not match type "type"

[Explanation]
Qualifier of destructor name "type" does not match type "type".

E4905B

incorrect property specification; correct formis__declspec(property(get=namel,
put=name2))

[Explanation]

Incorrect property specification; correct form is __ declspec(property(get=namel,
put=name2)).

E4906B

property has already been specified

[Explanation]
Property has already been specified.

PART 1 OPERATION

APPENDIX C Error Message

E4907B

__declspec(property) is not allowed on this declaration

[Explanation]
__declspec(property) is not allowed on this declaration.

E4908B

member is declared with __declspec(property), but no "get" function was specified

[Explanation]
Member is declared with __declspec(property), but no "get" function was specified.

E4909B

the _ declspec(property) "get" function "xxxx" ismissing

[Explanation]
The __declspec(property) "get" function "xxxx" is missing.

E4910B

member is declared with __declspec(property), but no "put” function was specified

[Explanation]
Member is declared with __declspec(property), but no “put” function was specified.

E4911B

the __declspec(property) "put" function "xxxx" is missing

[Explanation]

The __declspec(property) "put” function "xxxx" is missing.

E4912B

ambiguous class member reference -- entity-kind "entity" (declared at line xxxx) used
in preference to entity-kind "entity" (declared at line xxxx)

PART 1 OPERATION

[Explanation]

Ambiguous class member reference -- entity-kind "entity" (declared at line xxxx) used in

preference to entity-kind "entity" (declared at line xxxx).

335

APPENDIX C Error Message

E4913B missing or invalid segment name in __declspec(allocate(™..."))

[Explanation]
Missing or invalid segment namein __declspec(allocate("...")).

E4914B __declspec(alocate) is not allowed on this declaration

[Explanation]
__declspec(allocate) is not allowed on this declaration.

E4915B a segment name has already been specified

[Explanation]
A segment name has already been specified.

E4916B cannot convert pointer to member of derived class "type" to pointer to member of
base class "type" -- base classis virtual

[Explanation]

Cannot convert pointer to member of derived class "type" to pointer to member of base
class "type" -- base classisvirtual.

E4925B atype qualifier cannot be applied to afunction type

[Explanation]
A type qualifier cannot be applied to a function type.

E4928B incorrect use of va_start

[Explanation]
Incorrect use of va_start.

E4929B incorrect use of va_arg

[Explanation]

Incorrect use of va_arg.

336 PART 1 OPERATION

APPENDIX C Error Message

E4930B

incorrect use of va_end

[Explanation]
Incorrect use of va_end.

E4934B

amember with reference typeis not alowed in aunion

[Explanation]
A member with reference type is not allowed in aunion.

E4935B

"typedef" may not be specified here

[Explanation]
"typedef" may not be specified here.

E4936B

redeclaration of "entity" atersits access

[Explanation]
Redeclaration of "entity" altersits access.

E4937B

a class or namespace qualified nameis required

[Explanation]

A class or namespace qualified name is required.

E4938B

return type "int" omitted in declaration of function "main"

[Explanation]
Return type "int" omitted in declaration of function "main".

E4939B

pointer-to-member representation "xxxx" istoo restrictive for "entity"

PART 1 OPERATION

[Explanation]
Pointer-to-member representation "xxxx" istoo restrictive for "entity".

337

APPENDIX C Error Message

E4940B missing return statement at end of non-void function "entity"

[Explanation]
Missing return statement at end of non-void function "entity".

E4941B duplicate using-declaration of "entity" ignored

[Explanation]
Duplicate using-declaration of "entity" ignored.

E4946B name following "template" must be a member template

[Explanation]
Name following "template" must be a member template.

E4947B name following "template" must have a template argument list

[Explanation]
Name following "template" must have atemplate argument list.

E4948B nonstandard local-class friend declaration -- no prior declaration in the enclosing
scope

[Explanation]

Nonstandard local-class friend declaration -- no prior declaration in the enclosing scope.

E4949B specifying a default argument when redeclaring an unreferenced function template is
nonstandard

[Explanation]
Specifying a default argument when redeclaring an unreferenced function template is
nonstandard.

338 PART 1 OPERATION

APPENDIX C Error Message

E4951B

return type of function "main" must be "int"

[Explanation]
Return type of function "main" must be "int".

E4952B

atemplate parameter may not have classtype

[Explanation]
A template parameter may not have class type.

E4953B

a default template argument cannot be specified on the declaration of a member of a
class template

[Explanation]
A default template argument cannot be specified on the declaration of a member of a
classtemplate.

E4954B

areturn statement is not allowed in ahandler of afunction try block of a constructor

[Explanation]
A return statement is not allowed in a handler of afunction try block of a constructor.

E4955B

ordinary and extended designators cannot be combined in an initializer designation

[Explanation]

Ordinary and extended designators cannot be combined in an initializer designation.

E4956B

the second subscript must not be smaller than the first

PART 1 OPERATION

[Explanation]
The second subscript must not be smaller than the first.

339

APPENDIX C Error Message

340

E4960B

type used as constructor name does not match type "type"

[Explanation]
Type used as constructor name does not match type "type".

E4961B

use of atype with no linkage to declare a variable with linkage

[Explanation]
Use of atype with no linkage to declare a variable with linkage.

E4962B

use of atype with no linkage to declare afunction

[Explanation]

Use of atype with no linkage to declare a function.

E4963B

return type may not be specified on a constructor

[Explanation]
Return type may not be specified on a constructor.

E4964B

return type may not be specified on a destructor

[Explanation]
Return type may not be specified on a destructor.

E4965B

incorrectly formed universal character name

[Explanation]

Incorrectly formed universal character name.

E4966B

universal character name specifies an invalid character

[Explanation]
Universal character name specifies an invalid character.

PART 1 OPERATION

APPENDIX C Error Message

E4967B

auniversal character name cannot designate a character in the basic character set

[Explanation]
A universal character name cannot designate a character in the basic character set.

E4968B

this universal character is not allowed in an identifier

[Explanation]
This universal character isnot allowed in an identifier.

E4969B

theidentifier _ VA_ARGS__ can only appear in the replacement lists of variadic
macros

[Explanation]
The identifier _ VA_ARGS _ can only appear in the replacement lists of variadic
macros.

E4971B

array range designators cannot be applied to dynamic initializers

[Explanation]

Array range designators cannot be applied to dynamic initializers.

E4972B

property name cannot appear here

[Explanation]
Property name cannot appear here.

E4975B

avariable-length array typeis not allowed

[Explanation]
A variable-length array typeis not allowed.

E4976B

acompound literal is not allowed in an integral constant expression

PART 1 OPERATION

[Explanation]

A compound literal is not allowed in an integral constant expression.

341

APPENDIX C Error Message

E4977B acompound literal of type "type" is not allowed

[Explanation]
A compound literal of type "type" is not allowed.

E4978B atemplate friend declaration cannot be declared in alocal class

[Explanation]
A template friend declaration cannot be declared in alocal class.

E4979B ambiguous "?" operation: second operand of type "type" can be converted to third
operand type "type", and vice versa

[Explanation]
Ambiguous "?" operation: Second operand of type "type" can be converted to third
operand type "type", and vice versa.

E4980B call of an object of aclasstype without appropriate operator() or conversion functions
to pointer-to-function type

[Explanation]
Call of an object of a class type without appropriate operator() or conversion functions to
pointer-to-function type.

E4982B there is more than one way an object of type "type" can be called for the argument
list:

[Explanation]
There is more than one way an object of type "type" can be called for the argument list.

E4983B loop in sequence of "operator->" functions starting at class "type"

[Explanation]

Loop in sequence of "operator->" functions starting at class "type".

342 PART 1 OPERATION

APPENDIX C Error Message

E4984B typedef name has already been declared (with similar type)

[Explanation]
Typedef name has already been declared (with similar type).

E4985B operator new and operator delete cannot be given internal linkage

[Explanation]
Operator new and operator delete cannot be given internal linkage.

E4986B storage class "mutable” is not allowed for anonymous unions

[Explanation]

Storage class "mutable” is not allowed for anonymous unions.

E4988B abstract class type %t is not allowed as catch type:

[Explanation]
Abstract class type %t is not allowed as catch type.

E4989B aqualified function type cannot be used to declare a nonmember function or a static
member function

[Explanation]
A qualified function type cannot be used to declare a nonmember function or a static
member function.

E4990B aqualified function type cannot be used to declare a parameter

[Explanation]
A qualified function type cannot be used to declare a parameter.

PART 1 OPERATION 343

APPENDIX C Error Message

E4991B cannot create a pointer or reference to qualified function type
[Explanation]
Cannot create a pointer or reference to qualified function type.
E4992B extra braces are nonstandard
[Explanation]
Extra braces are nonstandard.
E4994B subtraction of pointer types %t1 and %t2 is nonstandard
[Explanation]
Subtraction of pointer types %t1 and %t2 is nonstandard.
E4995B an empty template parameter list is not allowed in atemplate template parameter
declaration
[Explanation]
An empty template parameter list is not allowed in a template template parameter
declaration.
E4996B expected "class'
[Explanation]
Eexpected "class’.
E4997B the "class"' keyword must be used when declaring atemplate template parameter

344

[Explanation]
The "class" keyword must be used when declaring atemplate template parameter.

PART 1 OPERATION

APPENDIX C Error Message

E4999B aqualified nameis not allowed for afriend declaration that is a function definition

[Explanation]
A qualified nameis not allowed for afriend declaration that is a function definition.

E5000B %n1 is not compatible with %n2

[Explanation]
%n1 is not compatible with %n2.

E5001B a storage class may not be specified here

[Explanation]
A storage class may not be specified here.

E5002B class member designated by a using-declaration must be visible in a direct base class

[Explanation]
Class member designated by a using-declaration must be visible in adirect base class.

E5007B atemplate template parameter cannot have the same name as one of its template
parameters

[Explanation]
A template template parameter cannot have the same name as one of its template
parameters.

E5008B recursive instantiation of default argument

[Explanation]
Recursive instantiation of default argument.

PART 1 OPERATION 345

APPENDIX C Error Message

346

E5009B

a parameter of atemplate template parameter cannot depend on the type of another
template parameter

[Explanation]

A parameter of a template template parameter cannot depend on the type of another
template parameter.

ES010B

%n is not an entity that can be defined

[Explanation]
%n is not an entity that can be defined.

ES5011B

destructor name must be qualified

[Explanation]
Destructor name must be qualified.

E5012B

friend class name may not be introduced with "typename"

[Explanation]
Friend class name may not be introduced with "typename”.

ES013B

a using-declaration may not name a constructor or destructor

[Explanation]

A using-declaration may not name a constructor or destructor.

E5014B

aqualified friend template declaration must refer to a specific previously declared
template

[Explanation]

A qualified friend template declaration must refer to a specific previously declared
template.

PART 1 OPERATION

APPENDIX C Error Message

E5015B

invalid specifier in class template declaration

[Explanation]
Invalid specifier in class template declaration.

E5018B

%n has ho member class %sq

[Explanation]
%n has no member class %sQ.

ES019B

the global scope has no class named %sq

[Explanation]
The global scope has no class named %sq.

E5020B

recursive instantiation of template default argument

[Explanation]
Recursive instantiation of template default argument.

E5021B

access declarations and using-declarations cannot appear in unions

[Explanation]
Access declarations and using-declarations cannot appear in unions.

ES022B

%no is not a class member

[Explanation]

%no is not a class member.

ES5023B

nonstandard member constant declaration is not allowed

PART 1 OPERATION

[Explanation]
Nonstandard member constant declaration is not allowed.

347

APPENDIX C Error Message

E5028B invalid redeclaration of nested class

[Explanation]
Invalid redeclaration of nested class.

E5029B type containing an unknown-size array is not allowed

[Explanation]
Type containing an unknown-size array is not allowed.

E5030B avariable with static storage duration cannot be defined within an inline function

[Explanation]
A variable with static storage duration cannot be defined within an inline function.

E5031B an entity with internal linkage cannot be referenced within an inline function with
external linkage

[Explanation]
An entity with interna linkage cannot be referenced within an inline function with
externa linkage.

E5032B argument type %t does not match this type-generic function macro

[Explanation]
Argument type %t does not match this type-generic function macro.

E5034B friend declaration cannot add default arguments to previous declaration

[Explanation]
Friend declaration cannot add default arguments to previous declaration.

E5035B %n cannot be declared in this scope

[Explanation]

%n cannot be declared in this scope.

348 PART 1 OPERATION

APPENDIX C Error Message

E5036B the reserved identifier %sg may only be used inside a function
[Explanation]
The reserved identifier %sq may only be used inside a function.
E5037B this universal character cannot begin an identifier
[Explanation]
This universal character cannot begin an identifier.
E5038B expected a string literal
[Explanation]
Expected a string literal.
E5039B unrecognized STDC pragma
[Explanation]
Unrecognized STDC pragma.
E5040B expected "ON", "OFF", or "DEFAULT"
[Explanation]
Expected "ON", "OFF", or "DEFAULT".
E5041B a STDC pragmamay only appear between declarationsin the global scope or before
any statements or declarations in a block scope
[Explanation]
A STDC pragma may only appear between declarations in the global scope or before any
statements or declarations in a block scope.
E5042B incorrect use of va_copy

PART 1 OPERATION

[Explanation]

Incorrect use of va_copy.

349

APPENDIX C Error Message

350

E5043B %s can only be used with floating-point types
[Explanation]
%s can only be used with floating-point types.
E5044B complex typeis not allowed
[Explanation]
Complex typeis not allowed.
E5045B invalid designator kind
[Explanation]
Invalid designator kind.
E5047B complex floating-point operation result is out of range
[Explanation]
Complex floating-point operation result is out of range.
E5049B aninitializer cannot be specified for aflexible array member
[Explanation]
An initializer cannot be specified for aflexible array member.
E5051B standard requires that %n be given atype by a subsequent declaration ("int" assumed)
[Explanation]
Standard requires that %n be given atype by a subsequent declaration ("int" assumed).
E5052B adefinition is required for inline %n

[Explanation]
A definition is required for inline %n.

PART 1 OPERATION

APPENDIX C Error Message

E5054B afloating-point type must be included in the type specifier for a_Complex or
_Imaginary type

[Explanation]
A floating-point type must be included in the type specifier for a _Complex or
_Imaginary type.

E5055B types cannot be declared in anonymous unions

[Explanation]
Types cannot be declared in anonymous unions.

E5061B declaration of %n isincompatible with a declaration in another trandation unit

[Explanation]
Declaration of %n isincompatible with a declaration in another translation unit.

E5062B the other declaration is %p

[Explanation]

The other declaration is %p.

E5063B detected during compilation of secondary trandlation unit %sq

[Explanation]
Detected during compilation of secondary translation unit %sg.

E5064B compilation of secondary translation unit %sq

[Explanation]
Compilation of secondary trandlation unit %sq.

E5065B afield declaration cannot have a type involving avariable length array

[Explanation]

A field declaration cannot have atype involving avariable length array.

PART 1 OPERATION 351

APPENDIX C Error Message

E5066B declaration of %n had a different meaning during compilation of %sq

[Explanation]
Declaration of %n had a different meaning during compilation of %sq.

E5067B expected "template”

[Explanation]
Expected "template”.

E5068B "export" cannot be used on an explicit instantiation

[Explanation]
"export" cannot be used on an explicit instantiation.

E5069B "export" cannot be used on this declaration

[Explanation]
"export" cannot be used on this declaration.

E5070B amember of an unnamed namespace cannot be declared "export"

[Explanation]

A member of an unnamed namespace cannot be declared "export”.

E5071B atemplate cannot be declared "export" after it has been defined

[Explanation]
A template cannot be declared "export" after it has been defined.

E5072B adeclaration cannot have alabel

[Explanation]
A declaration cannot have alabdl.

352 PART 1 OPERATION

APPENDIX C Error Message

E5073B

support for exported templatesis disabled

[Explanation]
Support for exported templatesis disabled.

E5075B

%n already defined during compilation of %sq

[Explanation]
%n aready defined during compilation of %sqg.

ES076B

%n aready defined in another trandlation unit

[Explanation]
%n aready defined in another translation unit.

E5077B

anon-static local variable may not be used in a___based specification

[Explanation]
A non-static local variable may not beused ina___based specification.

E5081B

afield with the same name as its class cannot be declared in a class with a user-
declared constructor

[Explanation]
A field with the same name as its class cannot be declared in a class with a user-declared
constructor.

E5084B

%n cannot be instantiated -- it has been explicitly specialized in the trandation unit
containing the exported definition

PART 1 OPERATION

[Explanation]

%n cannot be instantiated -- it has been explicitly specialized in the trandation unit
containing the exported definition.

353

APPENDIX C Error Message

E5085B

object typeis: %s

[Explanation]
Object typeis: %s.

E5086B

the object has cv-qualifiers that are not compatible with the member %n

[Explanation]
The object has cv-qualifiers that are not compatible with the member %n.

ES087B

no instance of %n matches the argument list and object (the object has cv-qualifiers
that prevent a match)

[Explanation]
No instance of %n matches the argument list and object (the object has cv-qualifiers that
prevent a match).

E5088B

an attribute specifies a mode incompatible with %t

[Explanation]
An attribute specifies a mode incompatible with %t.

ES089B

there is no type with the width specified

[Explanation]
There is no type with the width specified.

E5090B

invalid alignment value specified by attribute

354

[Explanation]
Invalid alignment value specified by attribute.

PART 1 OPERATION

APPENDIX C Error Message

E5091B

invalid attribute for %ot

[Explanation]
Invalid attribute for %t.

E5092B

invalid attribute for %n

[Explanation]
Invalid attribute for %n.

ES094B

attribute %sq does not take arguments

[Explanation]
Attribute %sq does not take arguments.

ES096B

expected an attribute name

[Explanation]
Expected an attribute name.

E5098B

attributes may not appear here

[Explanation]
Attributes may not appear here.

ES099B

invalid argument to attribute %sq

[Explanation]
Invalid argument to attribute %sq.

E5102B

"goto *expr" is nonstandard

PART 1 OPERATION

[Explanation]
"goto *expr" is nonstandard.

355

APPENDIX C Error Message

356

E5103B

taking the address of alabel is nonstandard

[Explanation]
Taking the address of alabel is nonstandard.

E5106B

attribute %sq is only allowed in afunction definition

[Explanation]
Attribute %sq is only allowed in a function definition.

E5107B

the "transparent_union" attribute only applies to unions, and %t is not a union

[Explanation]

The "transparent_union" attribute only applies to unions, and %t is not a union.

E5111B

only parameters can be transparent

[Explanation]
Only parameters can be transparent.

E5112B

the %sq attribute does not apply to local variables

[Explanation]
The %sq attribute does not apply to local variables.

E5113B

attributes are not permitted in a function definition

[Explanation]
Attributes are not permitted in afunction definition.

E5115B

the second constant in a case range must be larger than the first

[Explanation]

The second constant in a case range must be larger than the first.

PART 1 OPERATION

APPENDIX C Error Message

E5116B

an asm nameis not permitted in afunction definition

[Explanation]
An asm name s not permitted in a function definition.

E5118B

unknown register name "%s"

[Explanation]
Unknown register name " %s".

E5120B

unknown asm constraint modifier '%s

[Explanation]

Unknown asm constraint modifier '%s.

E5121B

unknown asm constraint |etter '%s

[Explanation]
Unknown asm constraint letter '%s.

E5122B

asm operand has no constraint | etter

[Explanation]

Asm operand has no constraint letter.

E5123B

an asm output operand must have one of the'=' or '+' modifiers

[Explanation]
An asm output operand must have one of the '=" or '+' modifiers.

E5124B

an asm input operand may not have the '=' or '+ modifiers

PART 1 OPERATION

[Explanation]
An asm input operand may not have the '=' or '+' modifiers.

357

APPENDIX C Error Message

358

E5125B

too many operands to asm statement (maximum is 10)

[Explanation]
Too many operands to asm statement (maximum is 10).

E5126B

too many colons in asm statement

[Explanation]
Too many colonsin asm statement.

E5127B

register "%s" used more than once

[Explanation]
Register "%s" used more than once.

E5128B

register "%s" is both used and clobbered

[Explanation]
Register "%s" is both used and clobbered.

E5129B

register "%s" clobbered more than once

[Explanation]
Register "%s" clobbered more than once.

E5130B

register "%s" has afixed purpose and may not be used in an asm statement

[Explanation]
Register "%s" has a fixed purpose and may not be used in an asm statement.

E5131B

register "%s" has afixed purpose and may not be clobbered in an asm statement

[Explanation]
Register "%s" has a fixed purpose and may not be clobbered in an asm statement.

PART 1 OPERATION

APPENDIX C Error Message

E5132B an empty clobbers list must be omitted entirely
[Explanation]
An empty clobbers list must be omitted entirely.
E5133B expected an asm operand
[Explanation]
Expected an asm operand.
E5134B expected aregister to clobber
[Explanation]
Expected aregister to clobber.
E5135B "format” attribute applied to %n which does not have variable arguments
[Explanation]
"format" attribute applied to %n which does not have variable arguments.
E5136B first substitution argument is not the first variable argument
[Explanation]
First substitution argument is not the first variable argument.
E5137B format argument index is greater than number of parameters
[Explanation]
Format argument index is greater than number of parameters.
E5138B format argument does not have string type

PART 1 OPERATION

[Explanation]
Format argument does not have string type.

359

APPENDIX C Error Message

E5139B the "template” keyword used for syntactic disambiguation may only be used within a
template

[Explanation]

The "template” keyword used for syntactic disambiguation may only be used within a
template.

E5140B a debug option must be specified on the command-line for the db_opt pragmato be
used

[Explanation]
A debug option must be specified on the command-line for the db_opt pragmato be used.

E5144B storage class must be auto or register

[Explanation]
Storage class must be auto or register.

E5145B %t1 would have been promoted to %t2 when passed through the ellipsis parameter;
use the latter type instead

[Explanation]
%t1 would have been promoted to %t2 when passed through the ellipsis parameter; use
the latter type instead.

E5146B %sq is not a base class member

[Explanation]
%sq is not a base class member.

E5147B __super cannot appear after "::

[Explanation]

__super cannot appear after "::".

360 PART 1 OPERATION

APPENDIX C Error Message

E5148B

__super may only be used in a class scope

[Explanation]
__super may only be used in a class scope.

E5149B

__super must be followed by "::"

[Explanation]
__super must be followed by "::".

E5150B

[%s instantiation contexts not shown]

[Explanation]

[%s instantiation contexts not shown.]

E5153B

declaration does not match its alias %n

[Explanation]
Declaration does not match its alias %n.

E5154B

entity declared as alias cannot have definition

[Explanation]
Entity declared as alias cannot have definition.

E5158B

void return type cannot be qualified

PART 1 OPERATION

[Explanation]
Void return type cannot be qualified.

361

APPENDIX C Error Message

362

E5161B

amember template corresponding to %no is declared as atemplate of adifferent kind
in another trandlation unit

[Explanation]
A member template corresponding to %no is declared as a template of a different kind in
another tranglation unit.

E5163B

va_start should only appear in afunction with an ellipsis parameter

[Explanation]

va_start should only appear in afunction with an ellipsis parameter.

E5166B

statement expressions are only allowed in block scope

[Explanation]
Statement expressions are only allowed in block scope.

E5167B

from trandation unit

[Explanation]
From trandlation unit.

E5170B

unrecognized UPC pragma

[Explanation]
Unrecognized UPC pragma.

E5171B

shared block size does not match one previously specified

[Explanation]
Shared block size does not match one previously specified.

PART 1 OPERATION

APPENDIX C Error Message

E5173B

the block size of a shared array must be greater than zero

[Explanation]
The block size of a shared array must be greater than zero.

E5174B

multiple block sizes not allowed

[Explanation]
Multiple block sizes not allowed.

E5175B

strict or relaxed requires shared

[Explanation]
Strict or relaxed requires shared.

E5176B

THREADS not allowed in this context

[Explanation]
THREADS not allowed in this context.

E5177B

block size specified exceeds the maximum value of %s

[Explanation]
Block size specified exceeds the maximum value of %s.

E5178B

function returning shared is not allowed

[Explanation]

Function returning shared is not allowed.

E5179B

only arrays of a shared type can be dimensioned to a multiple of THREADS

PART 1 OPERATION

[Explanation]
Only arrays of a shared type can be dimensioned to a multiple of THREADS.

363

APPENDIX C Error Message

364

E5180B

one dimension of an array of a shared type must be a multiple of THREADS when
the number of threads is nonconstant

[Explanation]

One dimension of an array of a shared type must be a multiple of THREADS when the
number of threads is nonconstant.

E5181B

shared type inside a struct or union is not alowed

[Explanation]
Shared type inside a struct or union is not allowed.

E5182B

parameters may not have shared types

[Explanation]
Parameters may not have shared types.

E5183B

adynamic THREADS dimension requires a definite block size

[Explanation]
A dynamic THREADS dimension requires a definite block size.

E5184B

shared variables must be static or extern

[Explanation]
Shared variables must be static or extern.

E5187B

branching into or out of aupc_forall loop is not allowed

[Explanation]
Branching into or out of aupc_forall loop is not allowed.

E5188B

affinity expression must have a shared type or point to a shared type

[Explanation]
Affinity expression must have a shared type or point to a shared type.

PART 1 OPERATION

APPENDIX C Error Message

E5190B shared void* types can only be compared for equality

[Explanation]
Shared void* types can only be compared for equality.

E5196B the hidden declaration is %p

[Explanation]
The hidden declaration is %op.

E5199B %npd must have external C linkage

[Explanation]
%npd must have external C linkage.

E5201B typedef %sq may not be used in an elaborated type specifier

[Explanation]
Typedef %sg may not be used in an elaborated type specifier.

E5203B parameter %sq may not be redeclared in a catch clause of function try block

[Explanation]

Parameter %sq may not be redeclared in a catch clause of function try block.

E5204B theinitial explicit specialization of %n must be declared in the namespace containing
the template

[Explanation]

The initial explicit specialization of %n must be declared in the namespace containing the
template.

E5206B "template" must be followed by an identifier

[Explanation]
"template" must be followed by an identifier.

PART 1 OPERATION 365

APPENDIX C Error Message

366

E5207B

MY THREAD not alowed in this context

[Explanation]
MY THREAD not alowed in this context.

E5208B

layout qualifier cannot qualify pointer to shared

[Explanation]
Layout qualifier cannot qualify pointer to shared.

E5209B

layout qualifier cannot qualify an incomplete array

[Explanation]

Layout qualifier cannot qualify an incomplete array.

E5210B

declaration of %sq hides handler parameter

[Explanation]
Declaration of %sq hides handler parameter.

E5212B

this pragma cannot be used in a_Pragma operator (a#pragma directive must be used)

[Explanation]
This pragma cannot be used in a_Pragma operator (a#pragma directive must be used).

E5216B

an asm name is not allowed on a nonstatic member declaration

[Explanation]
An asm nameis not allowed on a nonstatic member declaration.

E5219B

the "init_priority" attribute can only be used for namespace scope variables of class
types

[Explanation]
The "init_priority" attribute can only be used for namespace scope variables of class
types.

PART 1 OPERATION

APPENDIX C Error Message

E5226B

labels can be referenced only in function definitions

[Explanation]
Labels can be referenced only in function definitions.

E5227B

transfer of control into a statement expression is not allowed

[Explanation]
Transfer of control into a statement expression is not allowed.

E5228B

transfer of control out of a statement expression is not allowed

[Explanation]
Transfer of control out of a statement expression is not allowed.

E5229B

this statement is not allowed inside of a statement expression

[Explanation]
This statement is not allowed inside of a statement expression.

E5230B

anon-POD class definition is hot allowed inside of a statement expression

[Explanation]

A non-POD class definition is not allowed inside of a statement expression.

E5231B

destructible entities are not allowed inside of a statement expression

[Explanation]
Destructible entities are not allowed inside of a statement expression.

E5232B

adynamically-initialized local static variable is not allowed inside of a statement

expression

PART 1 OPERATION

[Explanation]
A dynamically-initialized local static variable is not allowed inside of a statement
expression.

367

APPENDIX C Error Message

E5233B avariable-length array is not allowed inside of a statement expression

[Explanation]
A variable-length array is not allowed inside of a statement expression.

E5234B a statement expression is not alowed inside of a default argument

[Explanation]
A statement expression is not allowed inside of a default argument.

E5236B interface types cannot have virtual base classes

[Explanation]
Interface types cannot have virtual base classes.

E5237B interface types cannot specify "private" or "protected"

[Explanation]
Interface types cannot specify "private" or "protected”.

E5238B interface types can only derive from other interface types

[Explanation]

Interface types can only derive from other interface types.

E5239B "type" is an interface type

[Explanation]
"type" isan interface type.

E5240B interface types cannot have typedef members

[Explanation]
Interface types cannot have typedef members.

368 PART 1 OPERATION

APPENDIX C Error Message

E5241B

interface types cannot have user-declared constructors or destructors

[Explanation]
Interface types cannot have user-declared constructors or destructors.

E5242B

interface types cannot have user-declared member operators

[Explanation]
Interface types cannot have user-declared member operators.

E5243B

interface types cannot be declared in functions

[Explanation]
Interface types cannot be declared in functions.

E5244B

cannot declare interface templates

[Explanation]
Cannot declare interface templates.

E5245B

interface types cannot have data members

[Explanation]

Interface types cannot have data members.

E5246B

interface types cannot contain friend declaration

[Explanation]
Interface types cannot contain friend declaration.

E5247B

interface types cannot have nested classes

PART 1 OPERATION

[Explanation]
Interface types cannot have nested classes.

369

APPENDIX C Error Message

E5248B

interface types cannot be nested class types

[Explanation]
Interface types cannot be nested class types.

E5249B

interface types cannot have member templates

[Explanation]
Interface types cannot have member templates.

E5250B

interface types cannot have static member functions

[Explanation]
Interface types cannot have static member functions.

E5251B

this pragma cannot be used in a___pragma operator (a#pragma directive must be
used)

[Explanation]
This pragma cannot be used in a___pragma operator (a#pragma directive must be used).

E5252B

qualifier must be base class of "type"

[Explanation]

Qualifier must be base class of "type".

E5253B

declaration must correspond to a pure virtual member function in the indicated base
class

370

[Explanation]
Declaration must correspond to a pure virtual member function in the indicated base
class.

PART 1 OPERATION

APPENDIX C Error Message

E5254B

integer overflow in internal computation due to size or complexity of "type"

[Explanation]
Integer overflow ininternal computation due to size or complexity of "type".

E5255B

integer overflow in internal computation

[Explanation]
Integer overflow in internal computation.

ES5256B

__ w64 can only be specified on int, long, and pointer types

[Explanation]

__ w64 can only be specified on int, long, and pointer types.

E5260B

invalid alignment specifier value

[Explanation]
Invalid alignment specifier value.

E5261B

expected an integer literal

[Explanation]
Expected an integer literal.

E5263B

expected an argument value for the "xxxx" attribute parameter

[Explanation]

Expected an argument value for the "xxxx" attribute parameter.

E5264B

invalid argument value for the "xxxx" attribute parameter

PART 1 OPERATION

[Explanation]
Invalid argument value for the "xxxx" attribute parameter.

371

APPENDIX C Error Message

E5265B expected a boolean value for the "xxxx" attribute parameter

[Explanation]
Expected a boolean value for the "xxxx" attribute parameter.

E5266B apositional argument cannot follow a named argument in an attribute

[Explanation]
A positional argument cannot follow a named argument in an attribute.

E5267B attribute "xxxx" has no parameter named "xxxx"

[Explanation]
Attribute "xxxx" has no parameter named "xxxx".

E5268B expected an argument list for the "xxxx" attribute

[Explanation]
Expected an argument list for the "xxxx" attribute.

E5269B expected a"," or "]"

[Explanation]
Expecteda”," or "]".

E5270B attribute argument "xxxx" has already been given avalue

[Explanation]
Attribute argument "xxxx" has already been given avalue.

E5271B avalue cannot be assigned to the "xxxx" attribute

[Explanation]
A value cannot be assigned to the "xxxx" attribute.

372 PART 1 OPERATION

APPENDIX C Error Message

E5272B

athrow expression may not have pointer-to-incomplete type

[Explanation]
A throw expression may not have pointer-to-incomplete type.

E5273B

alignment-of operator applied to incomplete type

[Explanation]
Alignment-of operator applied to incomplete type.

E5274B

"xxxx" may only be used as a standal one attribute

[Explanation]
"xxxx" may only be used as a standal one attribute.

E5275B

"xxxx" attribute cannot be used here

[Explanation]
"xxxx" attribute cannot be used here.

E5276B

unrecognized attribute "xxxx"

[Explanation]

Unrecognized attribute "xxxx".

ES5277B

attributes are not allowed here

[Explanation]
Attributes are not allowed here.

E5278B

invalid argument value for the "xxxx" attribute parameter

PART 1 OPERATION

[Explanation]
Invalid argument value for the "xxxx" attribute parameter.

373

APPENDIX C Error Message

374

E5279B

too many attribute arguments

[Explanation]
Too many attribute arguments.

E5280B

conversion from inaccessible base class "type" is not allowed

[Explanation]
Conversion from inaccessible base class "type" is not allowed.

E6001B

bad argument for #pragmaint_to_unsigned

[Explanation]
Bad argument for #pragmaint_to_unsigned.

E6002B

argument for #pragmaint_to_unsigned must return an unsigned type

[Explanation]
Argument for #pragmaint_to_unsigned must return an unsigned type.

E6003B

cannot preprocess encrypted file: "xxxx"

[Explanation]

Cannot preprocess encrypted file: "xxxx".

E6007B

__interrupt is specified

[Explanation]
__interrupt is specified.

E6010B

__ioisspecified

[Explanation]
__ioisspecified.

PART 1 OPERATION

APPENDIX C Error Message

E6013B

entity-kind "entity” may not beinitialized for __io

[Explanation]
Entity-kind "entity" may not be initialized for __io.

E6014B

#pragma xxxx: syntax error: unknown specifier

[Explanation]
#pragma section or #pragma segment: syntax error: unknown specifier.

E6015B

#pragma xxxx: invalid section name specified

[Explanation]
#pragma section or #pragma segment: invalid section name specified.

E6017B

#pragma xxxx: invalid section attr specified

[Explanation]
#pragma section or #pragma segment: invalid section attr specified.

E6018B

#pragma xxxx: syntax error: address is expected

[Explanation]

#pragma section or #pragma segment: syntax error: address is expected.

E6019B

#pragma xxxx: address is not integral constant expression

[Explanation]

#pragma section or #pragma segment: addressis not integral constant expression.

E6020B

#pragmainline: syntax error: unknown specifier

PART 1 OPERATION

[Explanation]
#pragmainline: syntax error: unknown specifier.

375

APPENDIX C Error Message

376

E6021B

#pragmaintvect: syntax error: unknown specifier

[Explanation]
#pragma intvect: syntax error: unknown specifier.

E6022B

#pragma intvect: syntax error: vector number is expected

[Explanation]
#pragmaintvect: syntax error: vector number is expected.

E6023B

#pragma intvect: vector number is not integral constant expression

[Explanation]
#pragmaintvect: vector number is not integral constant expression.

E6024B

#pragma intvect: same vector number exist

[Explanation]
#pragma intvect: same vector number exist.

E6025B

#pragma intvect: invalid type of interrupt function

[Explanation]
#pragmaintvect: invalid type of interrupt function.

E6026B

#pragma intvect: interrupt function is not found

[Explanation]
#pragmaintvect: interrupt function is not found.

E6027B

#pragma defvect: syntax error: unknown specifier

[Explanation]
#pragma defvect: syntax error: unknown specifier.

PART 1 OPERATION

APPENDIX C Error Message

E6028B

#pragma defvect: duplicate defvect function

[Explanation]
#pragma defvect: duplicate defvect function.

E6029B

#pragma defvect: invalid type of interrupt function

[Explanation]
#pragma defvect: invalid type of interrupt function.

E6030B

#pragma defvect: interrupt function is not found

[Explanation]
#pragma defvect: interrupt function is not found.

E6031B

#pragmailm: syntax error: interrupt level is expected

[Explanation]
#pragmailm: syntax error: interrupt level is expected.

E6033B

#pragmailm: invalid constant for interrupt level value

[Explanation]

#pragmailm: invalid constant for interrupt level value.

E6034B

#pragmailm: interrupt level is out of range

[Explanation]
#pragmailm: interrupt level is out of range.

E6035B

#pragma noilm: “#pragmailm' not exist

PART 1 OPERATION

[Explanation]
#pragma noilm; “#pragmailm' not exist.

377

APPENDIX C Error Message

378

E6036B “#pragma noilm' expected
[Explanation]
“#pragma noilm' expected.
E6037B “#pragma endasm' expected
[Explanation]
“#pragma endasm'’ expected.
E6050B #pragma loop unroll: unroll count number is out of range
[Explanation]
#pragmaloop unroll: unroll count number is out of range.
E6051B #pragma statement if: branch rate number is out of range
[Explanation]
#pragma statement if: branch rate number is out of range.
E6052B #pragma intvect: vector number is out of range
[Explanation]
#pragmaintvect: vector number is out of range.
E6055B argument xxxx of xxxx should be immediately avalue
[Explanation]
Argument xxxx of xxxx should be immediately avalue.
E6057B argument xxxx of xxxx should be an accumulator number defined by media.h

[Explanation]

Argument xxxx of xxxx should be an accumulator number defined by media.h.

PART 1 OPERATION

APPENDIX C Error Message

Fo001B

#include file "xxxx" includes itsel f

[Explanation]
#include file "xxxx" includes itself.

Fo002B

out of memory

[Explanation]
Out of memory.

FO003B

could not open source file "xxxx"

[Explanation]
Could not open source file "xxxx".

Fo004B

expected afile name

[Explanation]
Expected afile name.

Fo005B

"xxxx" is not avalid source file name

[Explanation]

"xxxx" is not avalid source file name.

F9006B

#error directive; XXxx

[Explanation]

#error directive: Xxxx

Fo007B

program too large or complicated to compile

PART 1 OPERATION

[Explanation]
Program too large or complicated to compile.

379

APPENDIX C Error Message

380

Fo008B

could not open temporary file "xxxx"

[Explanation]
Could not open temporary file "xxxx".

Fo009B

name of directory for temporary filesistoo long ("xxxx")

[Explanation]
Name of directory for temporary filesistoo long ("xxxx").

F9010B

could not open source file "xxxx" (no directoriesin search list)

[Explanation]
Could not open source file "xxxx" (no directoriesin search list).

Fo011B

error while writing xxxx file

[Explanation]

Error while writing xxxx file.

Fo012B

invalid intermediate language file

[Explanation]
Invalid intermediate language file.

F9013B

error while deleting file "xxxx"

[Explanation]
Error while deleting file "xxxx".

Fo014B

could not create instantiation request file "xxxx"

[Explanation]
Could not create instantiation request file "xxxx".

PART 1 OPERATION

APPENDIX C Error Message

Fo015B

unable to obtain mapped memory

[Explanation]
Unable to obtain mapped memory.

Fo016B

insufficient memory for PCH memory allocation

[Explanation]
Insufficient memory for PCH memory allocation.

Fo017B

"xxxx" isnot avalid directory

[Explanation]

"xxxx" isnot avalid directory.

Fo018B

cannot build temporary file name

[Explanation]
Cannot build temporary file name.

Fo019B

could not set locale "xxxx" to alow processing of multibyte characters

[Explanation]

Could not set locale "xxxx" to allow processing of multibyte characters.

F9020B

invalid output file: "xxxx"

[Explanation]
Invalid output file: "xxxx".

Fo021B

cannot open output file: "xxxx"

PART 1 OPERATION

[Explanation]
Cannot open output file: "xxxx".

381

APPENDIX C Error Message

382

Fo022B

cannot open definition list file: "xxxx"

[Explanation]
Cannot open definition list file: "xxxx".

Fo023B

invalid message file

[Explanation]
Invalid messagefile.

F9024B

invalid precompiled header file

[Explanation]
Invalid precompiled header file.

Fo025B

cannot open exported template file: "xxxx"

[Explanation]
Cannot open exported template file: "xxxx".

Fo026B

exported template file "xxxx" is corrupted

[Explanation]
Exported template file "xxxx" is corrupted.

F9027B

mangled nameis too long

[Explanation]
Mangled name istoo long.

Fo028B

invalid export information file "xxxx" at line number "xxxx"

[Explanation]
Invalid export information file "xxxx" at line number "xxxx".

PART 1 OPERATION

APPENDIX C Error Message

Fo029B

not support asm statement in function with covariant return type

[Explanation]
Not support asm statement in function with covariant return type.

Fo030B

multiple global functions named xxxx.

[Explanation]
Multiple global functions named xxxx.

F9031B

XxXX not supported by -Kcrossfile.

[Explanation]
XxxXX not supported by -Kcrossfile.

Fo032B

-Kpu requires =filename.

[Explanation]
-Kpu requires =filename.

Fo033B

specified profile hasinvalid data

[Explanation]
Specified profile hasinvalid data.

F9099B [561]

invalid macro definition

[Explanation]
Invalid macro definition.

F9099B [562]

invalid macro undefinition

PART 1 OPERATION

[Explanation]
Invalid macro undefinition.

383

APPENDIX C Error Message

384

F9099B [563]

invalid preprocessor output file

[Explanation]
Invalid preprocessor output file.

F9099B [564]

cannot open preprocessor output file

[Explanation]
Cannot open preprocessor output file.

F9099B [565]

IL file name must be specified if input is

[Explanation]
IL file name must be specified if input is.

F9099B [566]

invalid IL output file

[Explanation]
Invalid IL output file.

F9099B [567]

cannot open IL output file

[Explanation]

Cannot open IL output file.

F9099B [568]

invalid C output file

[Explanation]
Invalid C output file.

F9099B [569]

cannot open C output file

[Explanation]
Cannot open C output file.

PART 1 OPERATION

APPENDIX C Error Message

F9099B [570]

error in debug option argument

[Explanation]
Error in debug option argument.

F9099B [571]

invalid option

[Explanation]
Invalid option.

F9099B [572]

back end requires name of IL file

[Explanation]
Back end requires name of IL file.

F9099B [573]

could not open IL file

[Explanation]
Could not open IL file.

FO099B [574]

invalid number

[Explanation]

Invalid number.

F9099B [575]

incorrect host CPU id

[Explanation]
Incorrect host CPU id.

F9099B [576]

invalid instantiation mode

PART 1 OPERATION

[Explanation]
Invalid instantiation mode.

385

APPENDIX C Error Message

386

F9099B [578]

invalid error limit

[Explanation]
Invalid error limit.

F9099B [579]

invalid raw-listing output file

[Explanation]
Invalid raw-listing output file.

F9099B [580]

cannot open raw-listing output file

[Explanation]
Cannot open raw-listing output file.

F9099B [581]

invalid cross-reference output file

[Explanation]
Invalid cross-reference output file.

F9099B [582]

cannot open cross-reference output file

[Explanation]

Cannot open cross-reference output file.

F9099B [583]

invalid error output file

[Explanation]
Invalid error output file.

F9099B [584]

cannot open error output file

[Explanation]
Cannot open error output file.

PART 1 OPERATION

APPENDIX C Error Message

F9099B [585]

virtual function tables can only be suppressed when compiling C++

[Explanation]
Virtual function tables can only be suppressed when compiling C++.

F9099B [586]

anachronism option can be used only when compiling C++

[Explanation]
Anachronism option can be used only when compiling C++.

F9099B [587]

instantiation mode option can be used only when compiling C++

[Explanation]
Instantiation mode option can be used only when compiling C++.

F9099B [588]

automatic instantiation mode can be used only when compiling C++

[Explanation]
Automatic instantiation mode can be used only when compiling C++.

F9099B [589]

implicit template inclusion mode can be used only when compiling C++

[Explanation]

Implicit template inclusion mode can be used only when compiling C++.

F9099B [590]

exception handling option can be used only when compiling C++

[Explanation]
Exception handling option can be used only when compiling C++.

F9099B [591]

strict ANSI mode isincompatible with K& R mode

PART 1 OPERATION

[Explanation]
Strict ANSI mode isincompatible with K& R mode.

387

APPENDIX C Error Message

FO099B [592] | strict ANSI mode isincompatible with cfront mode

[Explanation]
Strict ANSI mode isincompatible with cfront mode.

FO099B [593] | missing source file name

[Explanation]
Missing source file name.

FO099B [594] | output files may not be specified when compiling several input files

[Explanation]
Output files may not be specified when compiling several input files.

F9099B [595] | too many arguments on command line

[Explanation]
Too many arguments on command line.

FO099B [596] | an output file was specified, but none is needed

[Explanation]
An output file was specified, but noneis needed.

FO099B [597] | IL display requires name of IL file

[Explanation]
IL display requires name of IL file.

FO099B [600] | strict ANSI mode isincompatible with allowing anachronisms

[Explanation]
Strict ANSI mode isincompatible with allowing anachronisms.

388 PART 1 OPERATION

APPENDIX C Error Message

F9099B [602]

local instantiation mode is incompatible with automatic instantiation

[Explanation]
Local instantiation mode is incompatible with automatic instantiation.

F9099B [613]

invalid error tag in diagnostic control option

[Explanation]
Invalid error tag in diagnostic control option.

FO099B [614]

invalid error number in diagnostic control option

[Explanation]
Invalid error number in diagnostic control option.

F9099B [622]

invalid precompiled header output file

[Explanation]
Invalid precompiled header output file.

F9099B [623)]

cannot open precompiled header output file

[Explanation]
Cannot open precompiled header output file.

F9099B [625]

cannot open precompiled header input file

[Explanation]
Cannot open precompiled header input file.

F9099B [635]

invalid PCH memory size

PART 1 OPERATION

[Explanation]
Invalid PCH memory size.

389

APPENDIX C Error Message

390

F9099B [636]

PCH options must appear first in the command line

[Explanation]
PCH options must appear first in the command line.

F9099B [638]

precompiled header files may not be used when compiling several input files

[Explanation]
Precompiled header files may not be used when compiling several input files.

F9099B [648]

strict ANSI mode is incompatible with Microsoft mode

[Explanation]
Strict ANSI mode isincompatible with Microsoft mode.

F9099B [649]

cfront mode is incompatible with Microsoft mode

[Explanation]
Cfront mode isincompatible with Microsoft mode.

F9099B [659]

wchar_t keyword option can be used only when compiling C++

[Explanation]

wchar_t keyword option can be used only when compiling C++.

F9099B [660]

invalid packing alignment value

[Explanation]
Invalid packing alignment value.

F9099B [675]

SVR4 C compatibility option can be used only when compiling ANSI C

[Explanation]
SVR4 C compatibility option can be used only when compiling ANSI C.

PART 1 OPERATION

APPENDIX C Error Message

F9099B [677]

strict ANSI mode isincompatible with SVR4 C mode

[Explanation]
Strict ANSI mode isincompatible with SVR4 C mode.

F9099B [680]

invalid PCH directory

[Explanation]
Invalid PCH directory.

F9099B [690]

RTTI option can be used only when compiling C++

[Explanation]
RTTI option can be used only when compiling C++.

F9099B [699]

bool option can be used only when compiling C++

[Explanation]
Bool option can be used only when compiling C++.

F9099B [712]

array new and delete option can be used only when compiling C++

[Explanation]

Array new and delete option can be used only when compiling C++.

F9099B [736]

namespaces option can be used only when compiling C++

[Explanation]
Namespaces option can be used only when compiling C++.

F9099B [762]

specia_subscript_cost option can be used only when compiling C++

PART 1 OPERATION

[Explanation]
Specia_subscript_cost option can be used only when compiling C++.

391

APPENDIX C Error Message

392

F9099B [763]

typename option can be used only when compiling C++

[Explanation]
Typename option can be used only when compiling C++.

F9099B [764]

implicit typename option can be used only when compiling C++

[Explanation]
Implicit typename option can be used only when compiling C++.

F9099B [770]

option "explicit" can be used only when compiling C++

[Explanation]
Option "explicit" can be used only when compiling C++.

F9099B [778]

option to control the for-init scope can be used only when compiling C++

[Explanation]
Option to control the for-init scope can be used only when compiling C++.

F9099B [781]

option to control warnings on for-init differences can be used only when compiling
C++

[Explanation]

Option to control warnings on for-init differences can be used only when compiling C++.

F9099B [798]

option "old_specializations' can be used only when compiling C++

[Explanation]
Option "old_specializations' can be used only when compiling C++.

F9099B [813]

option "implicit_extern_c_type_conversion” can be used only when compiling C++

[Explanation]
Option "implicit_extern_c_type conversion" can be used only when compiling C++.

PART 1 OPERATION

APPENDIX C Error Message

F9099B [814]

strict ANSI mode isincompatible with long preserving rules

[Explanation]
Strict ANSI mode isincompatible with long preserving rules.

F9099B [820]

option "extern_inline" can be used only when compiling C++

[Explanation]
Option "extern_inline" can be used only when compiling C++.

F9099B [856]

option "guiding_decls" can be used only when compiling C++

[Explanation]
Option "guiding_decls' can be used only when compiling C++.

F9099B [874]

option "embedded_c++" can be used only when compiling C++

[Explanation]
Option "embedded c++" can be used only when compiling C++.

F9099B [883]

invalid Microsoft version number

[Explanation]

Invalid Microsoft version number.

F9099B [889)]

option "vla" can be used only when compiling C

[Explanation]
Option "vlad" can be used only when compiling C.

F9099B [899]

option "enum_overloading” can be used only when compiling C++

PART 1 OPERATION

[Explanation]
Option "enum_overloading” can be used only when compiling C++.

393

APPENDIX C Error Message

394

F9099B [903]

option "nonstd_qualifier_deduction” can be used only when compiling C++

[Explanation]
Option "nonstd_qualifier_deduction™ can be used only when compiling C++.

F9099B [917]

invalid directory for instantiation files

[Explanation]
Invalid directory for instantiation files.

F9099B [918]

option "one_instantiation_per_object" can be used only when compiling C++

[Explanation]

Option "one_instantiation_per_object" can be used only when compiling C++.

F9099B [921]

an instantiation information file name may not be specified when compiling several
input files

[Explanation]

An instantiation information file name may not be specified when compiling several input
files.

F9099B [922]

option "one_instantiation_per_object" may not be used when compiling several input
files

[Explanation]

Option "one instantiation_per_object" may not be used when compiling severa input
files.

F9099B [923]

more than one command line option matches the abbreviation "--xxxx"

[Explanation]

More than one command line option matches the abbreviation "--xxxx".

PART 1 OPERATION

APPENDIX C Error Message

F9099B [927]

late/early tiebreaker option can be used only when compiling C++

[Explanation]
Late/early tiebreaker option can be used only when compiling C++.

F9099B [931]

pending instantiations option can be used only when compiling C++

[Explanation]
Pending instantiations option can be used only when compiling C++.

F9099B [932]

invalid directory for #import files:

[Explanation]

invalid directory for #import files.

F9099B [933]

an import directory can be specified only in Microsoft mode

[Explanation]
An import directory can be specified only in Microsoft mode.

F9099B [943]

option "class_name _injection" can be used only when compiling C++

[Explanation]
Option "class_name_injection” can be used only when compiling C++.

FO099B [944]

option "arg_dep_lookup" can be used only when compiling C++

[Explanation]
Option "arg_dep_lookup™ can be used only when compiling C++.

F9099B [945]

option "friend_injection" can be used only when compiling C++

PART 1 OPERATION

[Explanation]
Option "friend_injection” can be used only when compiling C++.

395

APPENDIX C Error Message

F9099B [950] | option "nonstd_using_decl” can be used only when compiling C++

[Explanation]
Option "nonstd_using_decl" can be used only when compiling C++.

FO099B [957] | option "designators’ can be used only when compiling C

[Explanation]
Option "designators" can be used only when compiling C.

FO099B [958] | option "extended designators' can be used only when compiling C

[Explanation]
Option "extended_designators' can be used only when compiling C.

F9099B [974] | option "compound_literals" can be used only when compiling C

[Explanation]
Option "compound_literals" can be used only when compiling C.

FO099B [993] | invalid macro definition:

[Explanation]

Invalid macro definition.

Fo099B Sun mode is incompatible with cfront mode
[1004]

[Explanation]
Sun mode is incompatible with cfront mode.

F9099B strict ANSI mode is incompatible with Sun mode
[2005]

[Explanation]
Strict ANSI mode isincompatible with Sun mode.

396 PART 1 OPERATION

APPENDIX C Error Message

F9099B
[1006]

Sun mode is only alowed when compiling C++

[Explanation]
Sun modeis only allowed when compiling C++.

F9099B
[1017]

option "dep_name" can be used only when compiling C++

[Explanation]
Option "dep_name" can be used only when compiling C++.

F9099B
[1024]

option "ignore_std" can be used only when compiling C++

[Explanation]
Option "ignore_std" can be used only when compiling C++.

F9099B
[1025]

option "parse_templates' can be used only when compiling C++

[Explanation]
Option "parse_templates' can be used only when compiling C++.

F9099B
[1026]

option "dep_name" cannot be used with "no_parse_templates"

[Explanation]

Option "dep_name" cannot be used with "no_parse templates’.

F9099B
[1027]

language modes specified are incompatible

PART 1 OPERATION

[Explanation]
L anguage modes specified are incompatible.

397

APPENDIX C Error Message

F9099B option "export" can be used only when compiling C++
[1058]

[Explanation]
Option "export" can be used only when compiling C++.

Fo099B option "export" cannot be used with "no_dep _name"
[1059]

[Explanation]
Option "export" cannot be used with "no_dep_name".

Fo099B option "export" cannot be used with "implicit_include"
[2060]

[Explanation]
Option "export" cannot be used with "implicit_include".

F9099B the option to list makefile dependencies may not be specified when compiling more
[1078] than one tranglation unit
[Explanation]

The option to list makefile dependencies may not be specified when compiling more than
one trandation unit.

Fo099B the option to generate preprocessed output may not be specified when compiling
[1080] more than one translation unit
[Explanation]

The option to generate preprocessed output may not be specified when compiling more
than one translation unit.

Fo099B "implicit_include" cannot be used when compiling more than one translation unit
[1082]

[Explanation]

"implicit_include" cannot be used when compiling more than one trand ation unit.

398 PART 1 OPERATION

APPENDIX C Error Message

F9099B
[1104]

file name specified more than once:

[Explanation]
File name specified more than once.

F9099B
[1141]

more than one preinclude option specified

[Explanation]
More than one preinclude option specified.

F9099B
[1157]

unrecognized flag name

[Explanation]
Unrecognized flag name.

F9099B
[1164]

the "short_enums' option isonly valid in GNU C and GNU C++ modes

[Explanation]
The "short_enums' option isonly valid in GNU C and GNU C++ modes.

F9099B
[1191]

UPC mode is incompatible with C++ and K& R modes

[Explanation]
UPC mode is incompatible with C++ and K& R modes.

F9099B
[1281]

option "export" requires distinct template signatures

PART 1 OPERATION

[Explanation]
Option "export" requires distinct template signatures.

399

APPENDIX C Error Message

400

F9099B invalid architecture specified by the --cpu option:
[9095]
[Explanation]
Invalid architecture specified by the --cpu option.
Fo099B cannot open include files list output file
[9096]
[Explanation]
Cannot open include files list output file.
F9099B cannot open message file
[9097]
[Explanation]
Cannot open messagefile.
Fo099B invalid assert definition
[9098]

[Explanation]
Invalid assert definition.

PART 1 OPERATION

APPENDIX D Reserved Pragma Directive

APPENDIX D Reserved Pragma Directive

The pragma directive has been reserved by the C compiler is described.

B Pragma directive has been reserved by C compiler
The following pragma directives have been reserved by the fcc911s command.

#pragma ARGSUSED
#pragma NOTREACHED
#pragma STDC

#pragma VARARGS
#pragma __printf_args
#pragma __scanf_args
#pragma builtin

#pragma can_instantiate
#pragma db_name
#pragma db_opt
#pragma define_type info
#pragma diag_default
#pragma diag_error
#pragma diag_remark
#pragma diag_suppress
#pragma diag_warning
#pragma hdrstop
#pragma ident

#pragma int_to_unsigned
#pragma loop

#pragma no_pch
#pragma pcros

#pragma realos

#pragma statement
#pragma unknown_control_flow

#pragma weak

PART 1 OPERATION 401

APPENDIX E About Reentrancy of C Library Functions

APPENDIX E About Reentrancy of C Library Functions

Reentrancy of C library functions is described.

B About Reentrancy of C Library Functions

@ List of reentrant functions

Table E-1 List of reentrant functions (1/2)

function name header file name

abs stdlib.h
atoi stdlib.h
atol stdlib.h
bsearch stdlib.h
difftime time.h

div stdlib.h
isalnum ctype.h
isalpha ctype.h
iscntrl ctype.h
isdigit ctype.h
isgraph ctype.h
islower ctype.h
isprint ctype.h
ispunct ctype.h
isspace ctype.h
isupper ctype.h
isxdigit ctype.h
labs stdlib.h
Idiv stdlib.h
memchr string.h
memcmp string.h
memcpy string.h
memmove string.h

402

PART 1 OPERATION

APPENDIX E About Reentrancy of C Library Functions

Table E-1 List of reentrant functions (2/2)

function name header file name
memset string.h
gsort stdlib.h
strcat string.h
strchr string.h
stremp string.h
strepy string.h
strespn string.h
strien string.h
strncat string.h
strncmp string.h
strncpy string.h
strpbrk string.h
strrchr string.h
strspn string.h
strstr string.h
tolower ctype.h
toupper ctype.h
va arg stdarg.h
va_end stdarg.h
va_start stdarg.h
All runtime library functions

PART 1 OPERATION

403

APPENDIX E About Reentrancy of C Library Functions

404

@ List of non-reentrant functions

Table E-2 List of non-reentrant functions (1/3)

function name header file name

abort stdlib.h
acos math.h
asctime timeh

asin math.h
assert assert.h
atan math.h
atan2 math.h
atexit stdlib.h
atof stdlib.h
calloc stdlib.h
cell math.h
clearerr stdio.h
coSs math.h
cosh math.h
ctime timeh

exit stdlib.h
exp math.h
fabs math.h
fclose stdio.h
feof stdio.h
ferror stdio.h
fflush stdio.h
fgetc stdio.h
fgetpos stdio.h
fgets stdio.h
floor math.h
fmod math.h
fopen stdio.h

PART 1 OPERATION

APPENDIX E About Reentrancy of C Library Functions

Table E-2 List of non-reentrant functions (2/3)

function name header file name

fprintf stdio.h
fputc stdio.h
fputs stdio.h
fread stdio.h
free stdlib.h
freopen stdio.h
frexp math.h
fscanf stdio.h
fseek stdio.h
fsetpos stdio.h
ftell stdio.h
fwrite stdio.h
getc stdio.h
getchar stdio.h
gets stdio.h
gmtime time.h
Idexp math.h
localtime time.h
log math.h
log10 math.h
longjmp setjmp.h
malloc stdlib.h
mktime time.h
modf math.h
pow math.h
printf stdio.h
putc stdio.h
putchar stdio.h
puts stdio.h
rand stdlib.h
realloc stdlib.h

PART 1 OPERATION

405

Table E-2 List of non-reentrant functions (3/3)

APPENDIX E About Reentrancy of C Library Functions

function name

header file name

rewind stdio.h
scanf stdio.h
setbuf stdio.h
setjmp setjimp.h
setvbuf stdio.h
sin math.h
sinh math.h
sprintf stdio.h
sort math.h
srand stdlib.h
sscanf stdio.h
stream_init -
stritime time.h
strtod stdlib.h
strtok string.h
strtol stdlib.h
strtoul stdlib.h
tan math.h
tanh math.h
ungetc stdio.h
vfprintf stdio.h
vprintf stdio.h
vsprintf stdio.h

PART 1 OPERATION

INDEX

INDEX

The index follows on the next page.
This is listed in alphabetic order.

407

INDEX

Index

Symbols

#pragma section
Section Name Change Function(#pragma section)

.. 98

#pragma segment

Section Name Change Function(#pragma segment)

.. 99

__divsb

__divsb Intrinsic Function.........c.cccoeeeeeeeeeeen. 107
__divsh

__divshintrinsic Function............ccccoeevveeeennee. 109
__divub

__divub Intrinsic FUNCLIONcccvvveeiieieeenis 108
__divuh

__divuh Intrinsic FUNCLIONcooeeiiieiiieeeeeeen, 110
__modsb

__modsb Intrinsic FUNCLiONccevvvieeeeiiinnnns 111
__modsh

__modsh Intrinsic Function...............ccceeeeeeee. 113
__modub

__modub Intrinsic Function......................o..o. 112
__moduh

__moduh Intrinsic FUNCLiON...........cccooeiveeeennnee. 114
__muls

__mulsiIntrinsic FUNCtion............ccccccveeeeenninnne 105
__mulsh

__mulsh Intrinsic Function..............eeeeeeeeeen. 103
__mulu

__mulu Intrinsic FUnctioncccccccvveeeeeiienns 106
__muluh

__muluh Intrinsic FUNCLioNccooeeeveeeeeeenn. 104
__wait_nop

__wait_nop Intrinsic FuNctionc.cccccoeene. 102
_abort Function

_abort FUNCLION ... 144
_exit Function

_EXIt FUNCHION ... 143

408

A
addition
Arithmetic operation (addition, subtraction,
multiplication, and division)................. 153
Alignment
fcc911ls Command Boundary Alignment.............. 69
ANSI Standard
Macros Stipulated by ANSI Standard................. 115
Area Management
AreaManagement..............cceevvviriiiieininiins 160
Argument
fcc91ls Command Argument..........eevevvvvvvnennnnnnn. 77
fcc911s Command Argument Extension Format
... 80
Arithmetic operation
Arithmetic operation (addition, subtraction,
multiplication, and division)................. 153
asm Statement
Description by asm Statementccccvvveeenn. 90
assert
BSSENt N 168
B
Bit Field
fcc911ls Command Bit Field.........ooooviiiiiiiiieeeen. 70
Boundary Alignment
fcc911s Command Boundary Alignment............... 69
C
C compiler
Pragma directive has been reserved by C compiler
... 401
C Libraries
Operations Specificto C Libraries.........cc.......... 174
C++
C++ Specifications for C/C++ Compiler and EC++
SPECIfiCationS........covvvveriiiiiiieie e, 157
Modifications to C++ Specifications for C/C++
Compiler from SOcccovvviieieiiinen. 156
C++ Template
Circumventing limitations on the use of the C++
template.......ccooeeveieiiie e 158
Function for Controlling Instantiation of C++
Template....cccooeveeieieieee e, 119
Limitations on Use of C++ Template................. 158

C/C++ Compiler
C++ Specifications for C/C++ Compiler and EC++
Specifications.........ccuvveeeiiiieeeniniis 157

C/C++ Compiler FUNCLIONS.........coooiiiiiiiiiceeeeeen, 2
Modificationsto C++ Specifications for C/C++
Compiler from1SOcccveeeeeeiieinnnne 156
Call Interface
fcc911s Command Function Call Interface........... 74
fcc911ls Command Interrupt Function Call Interface
.. 85
Calling Procedure
fcc911ls Command Calling Procedure................... 81
Cancel
List of Command Cancel Options................c.....e. 24

Circumventing limitations
Circumventing limitations on the use of the C++

template......cccvvviiiiiiie 158
clock Function
clock FUNCLION ..o, 146
close Function
close FUNCLIONcccceeeiiiiiiiiiiei, 137, 164
Command
Command BasiC ProCESS........ccceeeveiiciiiiiiiineneeeeennn 3
Command Line..........ocoooeeiiiiiiiiiiiiee, 16
Command Operands.cveeeeiiiieeeeeiniieeeennnns 17
Command Process...........cccoovevviveeeveeieiiiiiiinnn, 16
Command Related Options.............ccecvvvvnneee. 26, 57
fcc911s Command Argumentcooeeveeeevnieeeeenn. 77
fcc911ls Command Argument Extension Format
.. 80
fcc9lls Command Bit Field......coooeeevieiiiiiiieeeen, 70
fcc911s Command Boundary Alignment 69
fcc911s Command Calling Procedure................... 81
fcc911ls Command Function Call Interface........... 74
fcc911ls Command Interrupt Function Call Interface
.. 85
fcc9lls Command Register Guarantee................. 83
fcc911s Command Register Setupoeeevvvveeee. 83
fcc9lls Command Return Value...........ccvvvveeeee. 84
fcc911s Command Source Program List of sbrk
FUNCLiON.......ooeiiiecce e, 165
fcc9lls Command Stack Framecccevvvveeee. 75
List of Command Cancel Options............cccceeeee. 24
List of Command Options..........c.eeveevnveerenininnee. 20
Macros Predefined by fcc911s Command........... 115
Position within Command Line............ccccoevvneees 19
Command Library
fcc911ls Command Library Section Names........ 126
Command Section Structure
fcc911s Command Section Structure.................... 66
Command Structure
fcc9l1ls Command Structure/Union 72
Comment Entry
Acceptable Comment Entry in Option File........... 61
Comparison
COMPANTSON ...cciieiiiiiiiiiie e 153
Compiler
C/C++ Compiler FUNCLIONS..........ccoccvvviiiieieeeee, 2

INDEX

Compiler-dependent Language Specification
DifferentialS.........occvveeeeiiiiiieeiiiiieeeene 150
Limitations on Compiler Trandation 116
Modifications to C++ Specifications for C/C++
Compiler fromI1SO.........ueeeeevieiiiiiinns 156
Pragma directive has been reserved by C compiler

Compiler-dependent Language
Compiler-dependent Language Specification

DifferentialS.......cocvvvvivveiiiiiiiiiiiieeeennn. 150
conversion
Type conversion (floating-point number ->floating-
POINt NUMBEN) ... 154
Type conversion (floating-point number ->integer)
.. 154
Type conversion (integer ->floating-point number)
.. 154
ctype
CLYPEN. e 168
D
Data Output
Data Output Related Options..........cccceeeeeee... 26, 32
Debug Information
Debug Information Related Options............... 26, 56
Debugger
Coordination with Symbolic Debugger 5
Simulator Debugger Setup........coovveeevviiiieeeeeeenn. 162
Dependency
Exclusiveness and Dependency.........c.ccooeeeeeeneee 19
Directory Names
File Names and Directory Names......................... 18
division
Arithmetic operation (addition, subtraction,
multiplication, and division) 153
Dynamic Allocation
Dynamic Allocation AreaChange...................... 165
E
EC++
C++ Specifications for C/C++ Compiler and EC++
Specifications...........cccuvvviiiieiieieeeenns 157
errno
EBITNO.N ..o 168
Error
Error LeVEloovvveeecceecn e 64
error messages
Format of error messagescccuvvveeeeeeeennnnnne 179
Exclusiveness
Exclusiveness and Dependency...........cccoeeeueeneee. 19
Execution Process
Execution Process OVEIVIeW..........ccceoevveeeeennnee 122

409

INDEX

Extension Format
fcc911s Command Argument Extension Format

.. 80
F
fcc9lls
fcc91ls Command Argumentoovvveeeeiiiineeeenne 77
fcc911s Command Argument Extension Format
.. 80
fcc9lls Command Bit Fieldeveeeeveeeeeiiiiiiee 70
fcc911s Command Boundary Alignment 69
fcc911s Command Calling Procedure................... 81
fcc911s Command Function Call Interface 74
fcc911s Command Interrupt Function Call Interface
.. 85
fcc911s Command Library Section Names 126
fcc911ls Command Register Guarantee................. 83
fcc911s Command Register Setup........cceevvvveeeeenn. 83
fcc91lls Command Return Value.............cceeeeeee. 84
fcc911ls Command Section Structure.................... 66
fcc911s Command Source Program List of sbrk
FUNCLiON ... 165
fcc911ls Command Stack Frame..........ooooeveeneneeeee. 75
fcc911ls Command Structure/Union...................... 72
Macros Predefined by fcc911s Command............ 115
Rules for Name Generation with the fcc9l1s 68
fentl
FeNtlh. 172
FELANG
FELANG.ootiii ittt 13
FETOOL
[= 1 | 8
File Names
File Names and Directory Names............cccceeenen.. 18
File Organization
File Organization.............cooooiiiiiiiiieeenieae e 126
File System
File System OVErview..........cccovvveeeeiiiiieeee e 160
float
FlOBEN. .o 169

floating-point number
Type conversion (floating-point number ->floating-

POINt NUMBEr)oooiiiiiiiieeeece e 154
Type conversion (floating-point number ->integer)
.. 154
Type conversion (integer ->floating-point number)
.. 154
Format
fcc911s Command Argument Extension Format
.. 80
Frame
fcc911ls Command Stack Frame...........ccoovvvveeenne 75
Interrupt Stack Frame............oovvvvviieiiiciiieeeeee, 86

410

Function Call Interface
fcc911s Command Interrupt Function Call Interface

... 85
Function Calling Procedure
Interrupt Function Calling Procedure.................... 87
G
Guarantee
fcc911ls Command Register Guarantee................. 83
H
Header File
Header File Search.............cooviviviii, 4
|
I/O Area
1/O Area Access FUNCLION.........cvvveeeeeniiciiiieeee, 96
I/0 Port
Special /O POIt ... 163
Identifier
Tool ldentifiercocoeeeeeeii, 63
INC
INCOLL....co e 11
INC911
INCOLL. ..ot 11
Initialization
Initialization..............cccoooeiinr 161
Initialization of Stream Area...........cccccvvvvvnvnnne. 131
Initialization/Termination Process.............cccuu.... 131
In-line Expansion
In-line Expansion Specifying Function................. 97
Instruction
Description by Pragma Instruction....................... 91
integer
Type conversion (floating-point number ->integer)
... 154
Type conversion (integer ->floating-point number)
... 154
Interface
fcc911ls Command Function Call Interface........... 74
fcc911ls Command Interrupt Function Call Interface
... 85
Interrupt
fcc911s Command Interrupt Function Call Interface
... 85
Interrupt Function Calling Procedure.................... 87
Interrupt Function Description Function............... 94
Interrupt Level Setup Function.................... 94,101
Interrupt Mask Disable Functioncccccveeene. 93
Interrupt Mask Setup Function.............ccccccevvnenne. 93
Interrupt Stack Frame.............cooevvvvvvvivviininninnnnnn, 86
Interrupt Vector Table Generation Function 95

Interrupt Level

Interrupt Level Setup Function............cccceeeene 101
Interrupt Vector
Interrupt Vector Table Generation Function.......... 95
Intrinsic Function
__divsb Intrinsic Function...........ccccccvveveeeennnnnns 107
__divshIntrinsic Function...........ccccccvvveeeeennnnnn, 109
__divub Intrinsic FUNCtioncccccevveeeeeennnnnn, 108
__divuh Intrinsic Functioncccceeeeiiinienennn. 110
__modsb Intrinsic FUNCtion...........cccceeeveeeieeennn. 111
__modsh Intrinsic FUNCtion...........cccceeeeeeeieeenn.. 113
__modub Intrinsic FUNCLioNccceveeieeeieeennn. 112
__moduh Intrinsic FUNCLiONccoveiiieeienennn. 114
__mulsiIntrinsic FUNCLIONcvvveiiiiiiieieeenn. 105
__mulsh Intrinsic Function............ccccceeveeeieeennn. 103
__mulu Intrinsic FUNCLION..........cevveiiiiiieeieeen, 106
__muluh Intrinsic FUNctionccccoeeeveeeieeennn. 104
__wait_nop Intrinsic Function.............c.ceeee.n... 102
isatty Function
isatty FUNCEIONcvviiiiiiiiiieeeieeee 141, 164
ISO
Modificationsto C++ Specifications for C/C++
Compiler from SOccceevvviiieeee 156
L
Language
Compiler-dependent Language Specification
DifferentialS.........oeeeeeiieeiiiiiiiiiieeee. 150
Language Specification
Language Specification Related Options......... 26, 37
LIB
I T P 9
LIB911
LIBOLL .o 9
Library
Low-level Function Library Overview 160
Processes and Functions must be prepared for Using
Library ..o 130
limits
lMItSN. e 169
Linkage
Linkage Related Options..............veveiiiiienennn. 26, 58
Load Module
Load Module Creation............cccuvveeeeeieneeennnnnns 161

Low-level Function
Low-level Function (System-dependent Process)

TYPES .o 127
Low-level Function Library Overview 160
Low-level Function Specifications..................... 135
Low-level Function TYPEScccvvvvvveeeeeeeeniennne 133
Standard Library Functions and Required Processes/
Low-level FUNCLions...........ccceevvvveeeenn. 134
Iseek Function
Iseek FUNCLION ... 140, 163

INDEX

M
Macros
Macros Predefined by fcc911s Command 115
Macros Stipulated by ANSI Standard 115
Mask
Interrupt Mask Disable Functioncccceeeen. 93
Interrupt Mask Setup Function............cccoevvvveeene 93
math
MAthN e 170
Messages
Format of error messagescccvvvveeveeeeeennnnne 179
Messages Generated in Tranglation Process........... 63
Multiple Specifying
Multiple Specifying of Same Option..................... 19
multiplication
Arithmetic operation (addition, subtraction,
multiplication, and division) 153
N
Name Generation
Rules for Name Generation with the fcc911s......... 68
Names
File Names and Directory Names...............cc....... 18
o]
Object
Output Object Related Options 26, 49
open Function
open FUNCHIONoooeiiiiiiiiiieeeeee 136, 163
OPT
(O I 10
OPT911
OPTOLL..ciiiiiiiiee ettt e 10
Optimization
OPLIMIZALTION ... 5
Optimization Related Options.............ccceee..... 26, 42
Option
Command Related Options............cccceeeeeennnn. 26, 57
Data Output Related Options..........cccceeeeenn... 26, 32
Debug Information Related Options............... 26, 56
Language Specification Related Options
.. 26, 37
Linkage Related OptionS..........ccvvveeeiiivieeeenne 26, 58
List of Command Cancel Options............ccccocuveeee. 24
List of Command OptionSc.ceveveiriiieeeeininenn. 20
Multiple Specifying of Same Option..................... 19
Optimization Related Options..........ccccceee...... 26, 42
Option File Related Options...........ccccvveeeeeenn. 26, 60
OPLioN SYNEAXcevvviviiieiieee e ee e e e e e e e 19
Options for Compiling Process Contral................... 3
Output Object Related Optionscceee...... 26, 49
Preprocessing Related Options............cccoeveeevneee. 29
Preprocessor Related Options........cvvveeeeveiicennnee. 26

INDEX

Trandation Control Related Options............... 26, 27
Option File

Acceptable Comment Entry in Option File............ 61

Default Option File.........covvveiiiiiiieiiiecee e, 62

OPLIoN FIle ..o 61

Option File Limitations.............cccccvvvvvvieieneeeeennnnn 61

Option File Related Options..........cccceeeeeeeen.. 26, 60
Output

The Open and Close Processes of the Standard Input/
Output and Standard Error Output File

.. 131
Output Object
Output Object Related Options...........ccceee..... 26, 49
P
Port
Special /O POI......uuveieiiiieeeiieeee e 163
Pragma
Pragma directive has been reserved by C compiler
.. 401
Section Name Change Function(#pragma section)
.. 98
Section Name Change Function(#pragma segment)
.. 99
Pragma Instruction
Description by Pragma Instruction....................... 91
Preprocessing
Preprocessing Related Optionsccveveviinneen. 29
Preprocessor
Preprocessor related options..........ceveeeevriiinnnee. 26
Procedure
Interrupt Function Calling Procedure.................... 87
Process
Initialization/Termination Process..........cccceeu..... 131
Processes and Functions must be prepared for Using
Libraryooovceeeeiiii e 130
Standard Library Functions and Required Processes/
Low-level Functions..........cccceeeeeeeennnn. 134
System-dependent Processesueevveeeeeenennnnes 127
Process Control
Options for Compiling Process Contral 3
R
read Function
read FUNCLION..........cvvvviiiiiiie e, 138, 163
Register Guarantee
fcc911ls Command Register Guarantee................. 83
Register Setup
fcc911ls Command Register Setup......vveeeeeeeeennn. 83
Re-include
Re-include Prevention Function......................... 118
Return Value
fcc91ls Command Return Value...........ooovvveeeen. 84

412

S

sbrk Function
fcc911s Command Source Program List of sbrk
FUNCLION. ... 165
Sbrk FUNCLION. ... 142,164

Section
fcc911s Command Library Section Names......... 126
Section Name Change Function(#pragma section)

Section Name
Section Name Change Function(#pragma section)

... 98
Section Name Change Function(#pragma segment)
... 99
Section Structure
fcc911s Command Section Structure.................... 66
segment
Section Name Change Function(#pragma segment)
... 99
Sensitiveness
Case SENSIIVENESScccivvviiiieeeeeeeee e 19
setimp
SEMP.N e 170
Setup
fcc911s Command Register Setupcoeevvvvveeeene 83
Interrupt Level Setup Function.................... 94, 101
Interrupt Mask Setup Function..............ccccvveeeeen. 93
Simulator Debugger Setup.........cccvvvveeeieeeeeennnn. 162
Simulator
Simulator Debugger Setup..........coeeeeveveivivieennns 162
Source Program
fcc911s Command Source Program List of sbrk
FUNCLION........oviieeeiiiiiee e, 165
Special 1/0 Port
Special O POIt ... 163
Stack
fcc911s Command Stack Frameooeevvvvvieeeees 75
Interrupt Stack Frame.............cooevvvvvvvevviininnnennnnn. 86
Stack Frame
fcc911s Command Stack Frameooevvvvvveeenees 75
Standard

The Open and Close Processes of the Standard | nput/
Output and Standard Error Output File

Standard Error
The Open and Close Processes of the Standard Input/
Output and Standard Error Output File

Standard Input
The Open and Close Processes of the Standard Input/
Output and Standard Error Output File

Standard Library
Standard Library Functions and Required Processes/

Low-level Functions..............cccceeeneee 134

Startup Routine

Startup Routine Creation............ccocvvveveiniiieeeenn. 124
Statement

Description by asm Statementcccceeeevviinnnns 90
stdarg

StAArg.N e 170
stddef

StAAEf. N 170
stdio

SO .o 171
stdlib

SEAID.N. e 171
Stream Area

Initialization of Stream Area........cccccevveeeeeeienne 131
string

SN N 172
subtraction

Arithmetic operation (addition, subtraction,

multiplication, and division)................. 153

Symbolic Debugger

Coordination with Symbolic Debugger 5
Syntax

Option SYNtaX.......ccceeeeeeeeeeeeieieeeeeeeeeenn 19
sysl/types

SYFYPES N 173

System-dependent Process
Low-level Function (System-dependent Process)

TYPES .o 127
System-dependent Processes.........c.vvveeeviineeeenne 127
T
Template
Circumventing limitations on the use of the C++
template...........cooeeveiiie e 158

INDEX

Function for Controlling Instantiation of C++

Template......oceeiiiieeiiiieeeee e 119

Limitations on Use of C++ Template.................. 158
Termination Process

Initialization/Termination Process...................... 131
time

IMEN . 173
Time Function

TIMEeFUNCHON......cooeiiiiiieei e 145
time Function

tiME FUNCLION ...vvee e 147
TMP

TMPcet e 12
Tool

TOool 1dentifiervueeeeeieeiiieieeeeee e, 63
Translation

Limitations on Compiler Trandation 116
Translation Control

Trandation Control Related Options............... 26, 27
Translation Process

Messages Generated in Tranglation Process........... 63

Type conversion
Type conversion (floating-point number ->floating-

POINt NUMDEr)coviiiiiiiieiiecee e 154
Type conversion (floating-point number ->integer)
.. 154
Type conversion (integer ->floating-point number)
.. 154
U
Union
fcc911ls Command Structure/Union...................... 72
unistd
UNISEA N 172
W

write Function
WHtE FUNCLION ...ee e, 139, 163

413

INDEX

414

CM81-00206-5E

FUJITSU MICROELECTRONICS « CONTROLLER MANUAL

FR FAMILY
SorFTuNe ™ C/C++ COMPILER MANUAL

for V6

July 2008 the fifth edition

Published FUJITSU MICROELECTRONICS LIMITED

Edited Business & Media Promotion Dept.

	CHAPTER 1 SOFTUNE C/C++ COMPILER
	1.1 C/C++ Compiler Functions
	1.2 Basic Process of Commands
	1.3 C/C++ Compiler Basic Functions

	CHAPTER 2 SETTING ENVIRONMENT VARIABLES IN SYSTEM BEFORE STARTING
	2.1 FETOOL
	2.2 LIB911
	2.3 OPT911
	2.4 INC911
	2.5 TMP
	2.6 FELANG

	CHAPTER 3 C/C++ COMPILER OPERATION
	3.1 Command Line
	3.2 Command Operands
	3.3 File Names and Directory Names
	3.4 Command Options
	3.4.1 List of Command Options
	3.4.2 List of Command Cancel Options

	3.5 Details of Options
	3.5.1 Translation Control Related Options
	3.5.2 Preprocessing Related Options
	3.5.3 Data Output Related Options
	3.5.4 Language Specification Related Options
	3.5.5 Optimization Related Options
	3.5.6 Output Object Related Options
	3.5.7 Debug Information Related Options
	3.5.8 Command Related Options
	3.5.9 Linkage Related Options
	3.5.10 Option File Related Options

	3.6 Option Files
	3.7 Messages Generated in Translation Process

	CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE
	4.1 Section Structure of fcc911s Command
	4.2 Rules for Name Generation with the fcc911s
	4.3 fcc911s Command Boundary Alignment
	4.4 fcc911s Command Bit Field
	4.5 fcc911s Command Structure/Union
	4.6 fcc911s Command Function Call Interface
	4.6.1 fcc911s Command Stack Frame
	4.6.2 fcc911s Command Argument
	4.6.3 fcc911s Command Argument Extension Format
	4.6.4 fcc911s Command Calling Procedure
	4.6.5 fcc911s Command Register
	4.6.6 fcc911s Command Return Value

	4.7 fcc911s Command Interrupt Function Call Interface
	4.7.1 fcc911s Command Interrupt Stack Frame
	4.7.2 fcc911s Command Interrupt Function Calling Procedure

	CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
	5.1 Assembler Description Functions
	5.2 Interrupt Control Functions
	5.3 I/O Area Access Function
	5.4 In-line Expansion Specifying Function
	5.5 Section Name Change Function
	5.6 Interrupt Level Setup Function
	5.7 Intrinsic Function
	5.7.1 Integer Operation Intrinsic Function

	5.8 Predefined Macros
	5.9 Limitations on Compiler Translation
	5.10 Re-include Prevention Function
	5.11 Function for Controlling Instantiation of C++ Template

	CHAPTER 6 EXECUTION ENVIRONMENT
	6.1 Execution Process Overview
	6.2 Startup Routine Creation

	CHAPTER 7 LIBRARY OVERVIEW
	7.1 File Organization
	7.2 Relationship to Library Incorporating System

	CHAPTER 8 LIBRARY INCORPORATION
	8.1 Library Incorporation Overview
	8.2 Initialization/Termination Process Necessary for Using Library
	8.3 Low-level Function Types
	8.4 Standard Library Functions and Required Processes/Low- level Functions
	8.5 Low-level Function Specifications
	8.5.1 open Function
	8.5.2 close Function
	8.5.3 read Function
	8.5.4 write Function
	8.5.5 lseek Function
	8.5.6 isatty Function
	8.5.7 sbrk Function
	8.5.8 _exit Function
	8.5.9 _abort Function

	8.6 Time Function Specifications
	8.6.1 clock Function
	8.6.2 time Function

	CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS
	9.1 Compiler-dependent C Language Specification Differentials
	9.2 Type of Floating-point Data and Range of Representable Values
	9.3 Floating-point Operation due to the Runtime Library Function
	9.4 Dissimilarities between C++ Specifications for C/C++ Compiler and ISO
	9.5 C++ Specifications for C/C++ Compiler and EC++ Specifications
	9.6 Limitations on Use of C++ Template

	CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY
	10.1 Low-level Function Library Overview
	10.2 Low-level Function Library Use
	10.3 Low-level Func. Function
	10.4 Low-level Function Library Change

	APPENDIX
	APPENDIX A List of Types, Macros, Functions, and Variables Provided by C Libraries
	APPENDIX B Operations Specific to C Libraries
	APPENDIX C Error Message
	APPENDIX D Reserved Pragma Directive
	APPENDIX E About Reentrancy of C Library Functions

