FUJITSU MICROELECTRONICS

CONTROLLER MANUAL CM71-00203-5E

FR FAMILY

SOFTUNE™ ASSEMBLER MANUAL
for V6

(o8
FUJITSU






FR FAMILY

SOFTUNET™MASSEMBLER MANUAL
for V6

FUJITSU MICROELECTRONICS LIMITED






PREFACE

B Purpose of this manual and target readers
This manual describes the functions and operations of the Fujitsu SOFTUNE Assembler.

This manual is intended for engineers who are developing application programs using the FR family
microprocessor. Read this manual thoroughly.

B Trademarks
SOFTUNE is atrademark of FUJITSU MICROELECTRONICS LIMITED.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the U.S. and other countries.
The company names and brand names herein are the trademarks or registered trademarks of their respective
OWners.
B Configuration of This Manual
This manual consists of two parts and an appendix.
PART1 OPERATION
Part 1 explains how to use the SOFTUNE assembler.
PART2 SYNTAX
Part 2 describes the syntax and format for writing assembly source programs.
APPENDI X

The two appendixes explain error messages and note restrictions that must be observed.



« The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.

« Theinformation, such as descriptions of function and application circuit examples, in this document are presented solely for the
purpose of reference to show examples of operations and uses of FUJTSU MICROELECTRONICS device; FUJTSU
MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When
you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of
such use of the information. FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of
the use of the information.

* Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license
of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJTSU
MICROELECTRONICS or any third party or does FUJTSU MICROELECTRONICS warrant non-infringement of any third-
party's intellectual property right or other right by using such information. FUJTSU MICROELECTRONICS assumes no
liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of
information contained herein.

« The products described in this document are designed, developed and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured,
could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss
(i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life
support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible
repeater and artificial satellite).

Please note that FUJTSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or
damages arising in connection with above-mentioned uses of the products.

« Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.

e Exportation/release of any products described in this document may require necessary procedures in accordance with the
regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

* The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Copyright© 2002-2008 FUJTSU MICROELECTRONICS LIMITED All rights reserved.



CONTENTS

PARTL  OPERATION e e e e e et e et e e et e e et e e e e eannns 1
CHAPTER 1 OVERVIEW ...ttt e e e et e et e et e e et e e eaaeees 3
1.1 SOFTUNE ASSEIMDIET .ttt e e e e e e e e e e e e e e et e e e e e e e e s et a bbb eaeaeaeeaaaeas 4
1.2 FNTST o g o1 1= Y ] = b PP 5

CHAPTER 2 ENVIRONMENT VARIABLES AND DIRECTORY STRUCTURE

OF THE DEVELOPMENT ENVIRONMENT ...cooviiiiiiii e 7

2.1 ] = 1 1 SRR 8
2.2 L I 2 S SUPPPR 9
2.3 1/ PPN 10
2.4 1\ L 1 PP EPPSPPPO 11
25 L@ I 1 I SRR SPPPSP 12
2.6 Directory Structure of the Development ENVIFONMENT ........c.ueeiiiiiiiiieiie e 13
CHAPTER 3  STARTUP METHOD ...cooiiiii ettt e 15
3.1 FASMOLLS COMMIANGS ...eiiiiieiiiiiitit ettt e e e oottt et e e e e e e s e tab b et ettt e e e e e e e s babb b ee b e e e e e eeeeeasnnnbbnbneeeeeas 16
3.2 SPECIYING @ FlE ..o ettt et e e e e e e e e e b et e e e e e e e e e e e e e snnbbsbeeeeeeas 17
3.3 [ F= L Lo [T a T ] 1 LT AN F= g =PSRRI 18
3.3.1 Format for Specifying @ File NAME ......ouueiiiiiii i e e e e e e e e e e e e e eeaeaans 19
3.3.2 Specifying a File Name with File Name Components Omitted ............c.eeeeeeiiiiiiiiniiiiiiiieeeee e 20
3.4 L) 11 o 1= S 21
3.5 Comments Allowed in an OPLION FlE .......oooiiiiiiiee e as 22
3.6 Default OPLIoN FlE ...ttt e e e e ettt e e e e e e e e e s bbb e e e eeaaaaeaaaean 23
3.7 I £ 00T LT ] 4 IO To [ PRSPPI 24
CHAPTER 4  STARTUP OPTIONS ...ttt e e e 25
4.1 01 (o ] = U (8] o O] o] 1o o 1N 26
4.2 SEANTUP OPLION LIS .eeeiiiiieiiiiite ettt e e e e e e e ettt e e e e e e e e e e e s nbbabbe e e e e e aaaeeeeaaannbbnbeeeeeeas 27
4.3 Details of the Startup OPLIONS .....ccooiii i e rr e e e e e e e e e s s rereeaeeeeeean 29
4.4 Options Related to Objects and DebugQiNg ........evvuiiiiiiiiiiiii e 30
4.4.1 T o TSSOSO 31
4.4.2 o o OSSN 32
4.5 (@ o1 o] g FJN Rd=T F= 1 (=T I (o N 1= 1 o 33
45.1 e IR | TR PRSPPI 34
45.2 0 P 35
45.3 =liN, =ISIC, =ISEC, -ICTOS .. 36
45.4 [ g T [ o PR PP TP 38
45.5 e = | SOOI 39
4.6 Options Related t0 the PrepPrOCESSOL .......civviiiiiieiiiiiiiciirs e e e e et e e e e e e e e e e et et e e et aaeaeaaeas 40
4.6.1 e o TSP 41
4.6.2 e T = PRSPPI 42



4.6.3 e D OSSR 43
4.6.4 | e e et e e e e e e e e eet e eeeaa e e et e eetaeeeeaa et eareeeaeeetn e eeanaaa e anaann 44
4.6.5 e [ SO URPPR 45
4.6.6 e OSSP RTPR 46
4.7 Target-Dependent OPLIONS ......c.uuiiieiiiiiiie ittt e e e st e e s bbbt e e s s bb e e e e sabrre e e e annnneeee s 47
4.7.1 O LSRRI 48
4.7.2 FPU Information Options (-FPU, -XFPU) ..ot 49
4.7.3 &1 11 PO TP PP PPP PPN 50
4.7.4 e | PSPPI 51
4.8 (@1 [T R @] o] (o] o =T PP UT T TR PT PP 52
4.8.1 KOO e e ettt eaeeeaeaeeeaaeeeeeeterrre i ———————— 53
4.8.2 e TSRS 54
4.8.3 LSO 55
4.8.4 e 1= 11 0[PSR PP PP PRPPPPPTNN 56
4.8.5 e 2T Y ST 57
4.8.6 SCIMIST, “XCIMISH ...iiiiiiiiiiiiauttatattiaa e e e e s e e e e e e aeaaaaetetaeeeeeesebete bbb b s a s oo o e e e e e e eeeaaaeeeeeeeeeessesnsbnnnbnnnnnnan 58
4.8.7 BTV o T Cox.Y] o o T PPt 59
4.8.8 T T N 60
4.8.9 SUDSW, “XUDSW ...ttt ettt s sttt e e sttt e e e e e bt e e e s sbb et e e ansba e e e e s ansbaeaeesnsbaeeeennnsaaneean 61
4.8.10  -OVEW, -XOVFW ...ttt ettt ettt e e sttt e e st bttt e e e sa bt e et e e s nbb et e e s annbbeeeeeannnneeeesn 62
4.8.11 -reglist_check, -XregISt._ CRECK .........uuiuiiii e e e e e e e e e e ae e 65
N 12 O © LSRR 67
CHAPTER 5 OPTIMIZATION CODE CHECK FUNCTIONS ..o, 69
5.1 Optimization Code Check FuNnctions of fasmMO11s ........ccccccviiiiiiiiiiee e 70
5.1.1 Optimization Code CheCK LEVEIS ......ccoiiiii i 71
5.1.2 Forward Reference Symbol Optimization FUNCHON ...t 72
5.1.3 Optimization Of LDI INSITUCLIONS .....ccoiiiiiieiieeiee et e e e e e e e s ree e e e e e e e e e e s s nreeeeees 73
5.1.4 Optimization of BranCh INSITUCLIONS ........ccooi oo e 74
5.15 Optimization of LDI:20 and LDI:32 INSTIUCLIONS ......ooiiiiiiiiiiiiiiaee et 76
5.1.6 Optimization that Prevents Interlocks Caused by Register Interference .........cccccccovvvccivviennnnnnn. 77
5.1.7 Optimization that Replaces Normal Branch INStrUCtIONS ..........uvuiiiiiiiiiiiiiiieeeeeeeeceeceeeeeeeveesieiiaens 79
5.1.8 Optimization that Replaces Delayed Branch INSrUCHIONS ...........cooiiiiiiiiiiiiiii e 81
CHAPTER 6 ASSEMBLY LIST e eaaes 83
6.1 (0] 141 00 131 1o ) o S 84
6.2 = (o <IN o] 1 4= A O UUPPPPPPR 85
6.3 Tl o] gat=T1Te] o I ) ST PPUPTRR 87
6.4 Y00 (o= IR ) PP PPPPRP 89
6.4.1 Preprocessor and Optimization Code Check ProCesSiNgs ........oevvvvvviviviniiiiiiiiiiiiieieieeeeeeeeeeeeeeee 90
6.4.2 o] g DI o] =\ T TSSO PPPPPPPP 91
6.4.3 ol 8o [= 1 PP PP PRR O 92
6.4.4 .END, .PROGRAM, .SECTION ...iitiiiieiiiiiie ettt ettt e e e st e e e e anbbe e e e s anbaeeeeennsbees 93
6.4.5 ALIGN, LORG, .SKIP .. ittt ittt s et e e e sttt e e e s ettt e e e e st b ae e e e e sntaaeeeasantbeeeeennsees 94
6.4.6 LEXPORT, .GLOBAL, IMPORT .ttt ettt ettt e e e st ee e e e snebe s 95
6.4.7 (0 1O N PRSP 96
6.4.8 .DATA, .BYTE, .HALF, .LONG, .WORD, .DATAB ......ctttiiiiitiiie et eiee e enae e e 97



6.4.9 .FDATA, .FLOAT, .DOUBLE, .FDATAB ...t 99

L 0 T S TR e ] 0 P 101
6.4.11  .SDATA, .ASCIIl, .SDATAB ...iitiiiie ittt e e et e e e sttt e e e s st e e e e e asbeeeeeesnbbeeeeesanraeeeeeaas 102
B.4.12  DEBUG ....ooiiiiiiii ettt sttt ettt et e ettt e e e e e et b e e e e e ata—ea e e et baeeeeaabaaeeeeatrrreeeeaarraeeaeaas 103
LR e N I 1= 2P 104
6.4.14 .FORM, .TITLE, .HEADING, .LIST, .PAGE, .SPACE ...ttt ittt 105

6.5 Y =Tod 1T o T 1 TP T TP TP 107
6.6 L0 0TI (oY (=T =T Lo N1 RO 108

P AR T 2 S Y N T A X ettt e et e e e e e e aaaa s 109
CHAPTER 7 BASIC LANGUAGE RULES ..., 111
7.1 SEATEMENT FOIMMAL ... r e e e e e e e e e e e e e et e e e et eeae e bbb b be bt e e eas 112
7.2 (O T 1= o1 1= B PSPPI 114
7.3 A F= 10 < S PP PPPTPPPPPUPTPTPRTN 115
7.4 Forward Reference Symbols and Backward Reference Symbols ..., 117
7.5 INEEOET CONSTANTS ...ttt e e e e e s s e e e et e e e e s e s e b e e e et e e e e e e nananes 118
7.6 LoCation COUNLEN SYMDOIS ....uuiiiiiiiiiii it e et s e s e e e e e e e aeaaaaaeaaeeeeeeaessernrnrnnes 119
7.7 (O g T 1= ol (=] g @0 1151 7= 1 | £ TP T TR PRI 120
7.8 S 11T PP 122
7.9 Floating-POINt CONSLANTS .......uuiiiiiiiiieie e e e s s s e s e s e e e e e aeaaaaeeaeeeeeaesessnenrnnnnes 123
7.10 Data Formats of FIoating-Point CONSIANTS ..........uuiiiiiiiiiiaiiiiiee e 125
400 S b o (=171 o 1R 127
00 0 Ot R 1= ¢ 1 1 ST STRURPRPRPTPT 129
7.11.2 Range of OPerand VAlUE ........cooo ittt e e e e e e e e r e e e e e e e e e e e e aans 130
00 I T T @ T = Y (0] = 131
7.11.4 Values Calculated from NAIMES .........uoiiiiiiiiiiiiiiie e e e e e e e s eee e e e e e e s e e aaas 133
7.11.5 Precedence Of OPEIALOIS ......cooiiiiiiiiiieiie e e ettt e e e e e e e e e e b et bttt e e eaaaeaeaaaannbbsaeeeeaaaaaaeaaaanns 135
40 = U= |1 (= ] £ SRR 136
0 T O 01 11 1= o PP TP 137
CHAPTER 8  SECTIONS ..e e et e et e et e et e eeaa e ean 139
8.1 SecCtion DESCHPHON FOMMAL ......uueiiiiiiiiie ittt e e e e e e e b bt e e e e e e e e e e s e e annbbabeeeeeeas 140
8.2 Y= Tod 10T T I8 1= O 142
8.3 Section TYPES and ALIHDULES ......ccoo i e e e e e e e et et e e e e as 144
8.4 Section AIOCALION PALEINS .......eeiiiiiiiei ittt e e e e e e e e et et e e e e e e e e e e e e annnbebreeeaaeaens 145
8.5 Y =Tod 1T o T a1 Vo =N 1YL 1= 1 o o £SO 146
8.6 Multiple DescCriptions Of @ SECHON ......uiiiiii i e e e e e e e e e e e e e e e e e aaareearane 148
8.7 Setting ROM STOrage SECLONS ....oooiiiiiiiiiiiiie ettt e e e e e e b et e e e e e e e e e e s aannbbbrseeeaaeaens 149
CHAPTER 9 MACHINE INSTRUCTIONS ..ot 151
9.1 Maching INSLrUCLION FOIMAL .....c.oiiiiiiie et e e st e e e s st e e e s s srbeeeeesane 152
9.2 (O 01T = L [o I =] o I o 1 = 153
CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS ..., 155
10.1  Scope of Integer Constants Handled by Pseudo-INStruCtions .............occcvviiiiiiiieieiiniiiiiieeee e 156
10.2  Program Structure Definition INStIUCTIONS .......ceviiiieeiiiiiiiiiieieee e e et er e e e e e e e s e ereeeeeas 157



10.2.1 . PROGRAM INSITUCTION .euniiiiiiiiii ettt et e e e e e e e e e e e et sesaae e s saa e s se b e s enan e seaaneeretnsas 158

10.2.2  .END INSITUCTION .oouiititiiiiiie e e e e e e e e e e e e e e e e e e e e e e e e e e eeeeaessre st e b eeas 159
O 7 T Sl @ I [ 1 I [ 1 U T4 1T o 160
10.3  Address CoNtrol INSLIUCLIONS .....uuuuuuiiiieieie i e eeeeeeeee e s s s e s e s e e e e eaeaaaaaeeeeeseeeassssrernnnnes 162
O 0 R I [ €1 VI 1 £ (W o 1 o] o SOOI 163
O T @ 1 { € 1 =3 {1 o 1o ) o 164
O e T S 1 1 1S3 1 U o 1o ) o 165
10.4  Program LinKage INSIIUCHIONS ......cooiiiiiiiiiiiiiiiie ettt e s e e e e e e snenneeas 166
O Y = @ ] 1 13 1§ o 1] o 167
O N € I @ = 7 Y I [ 1 1 U ox 1 o o 168
10.4.3  IMPORT INSIUCLION ..uuuitiiiiieieii i et e e e s s s e e e e e e e e e e e e e e e e e e e eeaesasesbara b e s aens 169
10.5 Symbol Definition INSITUCLIONS ....uuuieiiiie i s s e s e s e e e e e e e aeaeeeeeeeeeaeeaeesrnnnnes 170
O 0 N (@ 1 A 1o =) 1 W o3 1o 171
10.5.2  |REG INSITUCHION .oittiiitiiiiiie e ie et e ettt e e s e e e e e e e e e eeeaeaeeeeeeeeeeeasasaesba b e eeas 172
10.6  Area Definition INSITUCHIONS ....uuuueiiiiiiiie oo e s s s e s e e e e e e e aaaaeeeeeeeeaesaneernnnnes 173
10.6.1 .DATA, .BYTE, .HALF, .LONG, and .WORD INStrUCLIONS ........cccccceiiiiiiiiiiiiiiiiiieee e 174
10.6.2  .DATAB INSIIUCLION ...uiiiititiiiiiii e i e e e ee et e e e e e s e e e e e e e e e eeeeeeeeeeeresaesrbbab e eeas 176
10.6.3 .FDATA, .FLOAT, and .DOUBLE INSITUCLIONS ......ccccciiiiiiiiiiiiiiieecee e e e s sintreeee e e e e e e e e eenanennneees 177
O G 7 AN AN = 13 0 o o o 179
10.6.5  |RES INSIIUCLION .uitiiiiiiieie ittt e e e e e e s sttt e e e e e e s e s st e e e e eeeaessaaaansntenreeeeeeaeeesseaannnnnrenes 180
O GG e = {13 T 1o o 181
10.6.7 .SDATA and .ASCII INSITUCHIONS .....ccoeeiiiiiiici s e e e e e e e e e e e e e e e e as 182
10.6.8  .SDATAB INSIIUCHION ...eeeiiiiiiiiiiieiei e e e e e e e e st e e e e e e e s e s st e e e e eeeeessaaa s sstenteeeneeeeeessesannnnnnenes 183
10.6.9 .STRUCT and .ENDS INSEIUCLIONS .......cccciiiiiiiiiiiiiiiiiiiiise s s e e e e e e e e e e e e e e e e eeeas 184
10.7 Debugging Information Output Control INSIUCHION ........cociiiiiiiiiiiiie e 186
10.8 Library File Specification INSIIUCHION ........cccuiiiiiiiiieiie e e e e e e e e e e e s s neeeees 187
10.9  List Output Control INSIIUCLIONS .....uuiiieii i i s s e s e e e e e e e aaeeaaeeeeeeeeeeaseaneernnnnes 188
O N @ ] 1Y I 013 £ T 4o T 189
10.9.2 . TITLE INSIIUCLION .ooiiiiiiiiiiiiicitee e et e e e e e e s e e et e e e ee e e e e s an s ssbenreeeeeaeeeeeeeennnnnrenes 190
10.9.3  .HEADING INSITUCTION ...uvueeiieieii e s s s e e e e e e e e e e e e e e e et e e e eeeeeeaeeesrnnnnnn e aeeeeas 191
O S I 1S I [ 1S3 (1 T o o 192
O IR T =X € i [ S £ o 1o o SR 194
O G TN S AN @ i 1 13 {1 o o o 195
CHAPTER 11 PREPROCESSOR PROCESSING .....cooiii e 197
L11.1 PrEPIOCESSON ....ciiiiiiiiiiiiittetettttat e s o e o e e e e e e e e e aeaaaaaeetae et e e aeetesebebbbb s e e o a4 a4 e e 2 e e eaeaaaaaaeeeeeeeansnnnnbnnnnes 198
11.2  BaSIC PreproCeSSOr RUIES ........ueiiiiiiieiiiiiiiiiiitie et e e e e s et e e e e e e e e s s s s ae e ea e e e e e e s e s annsenareneeeeaeas 200
11.2.1 Preprocessor INSIrUCHION FOMMAL ........ooviviiiiiiiiiirie s e e e e e e e e e e 201
2 @ ] 10 1= o £ PP 202
11.2.3  ContinUAation OF @ LINE ....ccoiiiiiiiieiiee e e e e s s e e e e e e e e e e s e st eeeeeaeeeeseeeannnnnenes 203
N A [ 01 =0 [=] o 0] 015 = | £ SO PPPPRT 204
T O o F= 1= od (= g 00 11 = 1 | £ 205
0 G |V = Vo o TN 1\ = U1 207
0 A o 4 g LI AN o [0 0= £ 208
11.2.8  LOCAI SYMDOIS ...ttt ettt e e e e e e e e e e e bbb bt reeeaaaeeeeeeeannbnreees 209
11.3  PreproCeSSOr EXPIESSIONS .....uuuuieiiieeeeiiisiiitiuteeeeeeteeesessaasastaeraerreaeeaesssaaassstaearrereeeeessaaasnssssrnnreesees 210
B /= Vol o T I =Y ] 1) PP 212

Vi



O 0t R o P= T3 (o B [ 53 £ (U o3 1o o T 213

11.4.2  FOCAI INSIIUCTION .uuviiitiiie i e e e e e e e e e e e e e e e e e e e e e ee e ae e e e e e ns 214
B <11 . T T 1= 1 T4 o 215
0 S < LY o [ T 1 U 1T o 216
11.5  MaCro Call INSLIUCLIONS .....oviviiiiiiiiiiiiieieie it e e e e e e e e e e e e e e e e et e e et a s e s e seseeeaaaaaaseaesesesessssessrnrnnes 217
T (=T o Lo Y T o= 1 1= [ o PP 218
11.7  Conditional ASSEMDBIY INSLIUCLIONS ....coiiiiiiiiiie et e e e e e e e eeeaaaeas 220
A - 1 Y 1 U (o2 1 o o LSOO 221

0 A <y (0 1= 1 ] {1 o (o] 222
A T - o (= 1 ] (W o 1) 223
11.7.4  HEISE INSITUCTION ..uuiiiitiiiiii i s e s e s e e e e e e e e e e e e e e e e e e e eeeaaesree s b e e eeas 224
A T 1) 1S3 (1 T 1T o 225
A T < =Y o To 1) 1 =3 (B o 1o o 227
11.8  Macro Name REPIACEMENT ........uiiiiiiiiiiii ettt e e e st e e e s snenneeas 228
0 Ao [ T U= 1 13 (o 1o o 229
11.8.2 Replacing Formal Macro Arguments by Character Strings (# Operator) ........ccccccceeeeeiiiiiivnenen. 231
11.8.3 Concatenating the Characters to be Replaced by Macro Replacement (## operator) .............. 232
B 1Yo 1 ] 1 (1 o 1o 233
S T T - o To [ 1S 1 U 1T o 234
11.8.6  HPUIGE INSITUCTION .eeeiiiiie it e et e e e e e e e s s s et e e e e e e e e e e s asasssbenreeeeaeeeeessesnnnnnnrenes 235
e T << 1 Tod 11 o [ 1 1S3 (1 o o) o PP 236
I O T = 1 g = [ B U i 1 T o PPN 237
0 I = =Y ¢ (o gl 1 1] 1 U1 o SO 238
I 7 << o = T [ = T 1 1 0T 1o o PP 239
11.13 NO-0PEeration INSIFUCLION .......uiieiiiiiiiiie ettt e oottt e e e e e e e s s bbb e et e e e e e e e e e e e e e annnbbbbbeeeaaaaeas 240
0 I T 1 = Y= Vo o T AN 41T SO 241
11.15 Differences from the C PreprOCESSOr ....ccciciiiiiiiiicce e s e e e e e e e e e e e e et et e e e e e eeaeaesererrnranas 243
CHAPTER 12 ASSEMBLER PSEUDO MACHINE INSTRUCTIONS .......ccooiiiiiien, 245
12.1 Assembler Pseudo Maching INSITUCLIONS ..........ccooiiiiiiiiiiie s e e e e e e e e e e e e e e e e aeeaaraaas 246
AN e e =1 N 15 253
APPENDIX A EITON MESSAUTES ..eituuiiiiiiitiaieee ittt e e e e ettt e et e ettt s s e e e et s r e e e et ets b e e e eee bbb s e eeeeebaa s e eaeesansnneens 254
e o AN [T ) = B L= 1 ox 1 o] P 278
LN 279

Vi



viii



PART1 OPERATION

Part 1 explains how to use the SOFTUNE assembler.

CHAPTER 1 OVERVIEW

CHAPTER 2 ENVIRONMENT VARIABLES AND DIRECTORY STRUCTURE OF THE
DEVELOPMENT ENVIRONMENT

CHAPTER 3 STARTUP METHOD

CHAPTER 4 STARTUP OPTIONS

CHAPTER 5 OPTIMIZATION CODE CHECK FUNCTIONS
CHAPTER 6 ASSEMBLY LIST

PART 1 OPERATION



PART 1 OPERATION



CHAPTER 1
OVERVIEW

This chapter provides an overview of the SOFTUNE
assembler.

1.1 SOFTUNE Assembler
1.2 Assembler Syntax

PART 1 OPERATION 3



CHAPTER 1 OVERVIEW

1.1 SOFTUNE Assembler

The SOFTUNE assembler (hereafter the assembler) assembles source programs written
in assembly language for the FR families. The assembler processing consists of two
phase: the preprocessor phase and assembly phase.

B Overview
This Assembler assembles the source programs described with the FR family assembly language. Also, it
outputs re-locatabl e objects and assembly lists.

There are two main processes of the assembler; the pre-process phase and the assembly phase.
See Figure 1.1-1 for the configuration of the Assembler.

Figure 1.1-1 Assembler Configuration

| Source program file
v

fasm911s

Preprocessor phase

Assembly phase

\—b{ Preprocessing result file |
—»| Object file |
4>| Assemble lists file |

B Preprocessor Phase
In this phase, the assembler performs preprocessing. Preprocessing refers to text-related processing such as
macro definition or expansion.

Since the assembler supports the C preprocessor specification as one of its function specifications, the
header file can be shared with C when preprocessor processing is performed.

Only C preprocessor instructions and comments delimited by /* and */ can be shared with C.
The assembler also supports assembl er-specific functions, including macro definition and expansion.
Theresults of preprocessing can be stored in afile.

B Assembly Phase
In this phase, the assembler translates machine instructions and pseudo-instructions to generate object code.
The following functions are supported in the assembly phase:

e Comment description shared with C
» Debugging information output
« Optimization check function for machine instructions

4 PART 1 OPERATION



CHAPTER 1 OVERVIEW

1.2 Assembler Syntax

The assembler supports extended functions that facilitate the user programming, as
well as a language specification that complies with IEEE-649 specifications.

B Overview

The assembler supports the following four functions, in addition to a language specification that complies
with |EEE-649 specifications:

e Comment description shared with C
Even though the assembler is being used, comments can be inserted in the same way as with C.

[Example]
/* _______________________________
Main processing
__________________________________ */
.SECTION CODE, CODE,ALIGN=2
CALL _init /* Initialization processing */

* Assembler pseudo-instructions

Assembler functions has been expanded with the addition of list control instructions and area definition
instructions, as well as assembler pseudo-instructions complying with |EEE-649 specifications.

» Preprocessor processing
The assembler supports the C preprocessor specification.
The header file can therefore be shared with C when preprocessor processing is performed.
Only C preprocessor instructions and comments delimited by /* to */ can also be used in C.

In addition, the assembler also supports assembler-specific functions, including macro definition and
expansion.

[Example]
#ifdef SPC_MODE

#include "spc.h"

#endif
#define SIZE MAX 256 /* Maximum size */
» Debugging information output
Debugging information can be included in an object.
This function isrequired for debugging a program.

PART 1 OPERATION 5



CHAPTER 1 OVERVIEW

6 PART 1 OPERATION



CHAPTER 2

ENVIRONMENT VARIABLES
AND DIRECTORY STRUCTURE
OF THE DEVELOPMENT

ENVIRONMENT

This chapter describes environment variables used with
the assembler and the directory structure of the
development environment.



CHAPTER 2 ENVIRONMENT VARIABLES AND DIRECTORY STRUCTURE OF THE DEVELOPMENT

2.1 FETOOL

FETOOL specifies the directory in which the development environment is to be
installed.

If this environment variable is not specified, the system assumes the parent directory of
the directory that contains the assembler that has been started as the installation
directory.

B FETOOL
[Format]

SET FETOOL=directory

[Description]
FETOOL specifies the directory in which the development environment isto be installed.

Thefiles required for the development environment, such as message files, include files, and library files,
are accessed in this directory.

For details of the directory structure of the development environment, see Section "2.6 Directory
Structure of the Development Environment".

If FETOOL is not specified, the system assumes the parent directory of the directory that contains the
assembler that has been started (location-of-directory-containing-assembler\..) as the instalation
directory.

[Examplé]
SET FETOOL=D:\SOFTUNE

8 PART 1 OPERATION



CHAPTER 2 ENVIRONMENT VARIABLES AND DIRECTORY STRUCTURE OF THE DEVELOPMENT

2.2 FELANG

FELANG specifies the format in which messages are output.
This environment variable can be omitted.

B FELANG
[Format]

SET FELANG={ASCII|EUC|SJIS}

[Description]

FELANG specifies the format in which messages are output.
* When ASCII is specified

Messages are encoded in ASCII.

Messages are output in English.

Specify this format for a system that does not support Japanese-language environment.
* When EUC is specified

Messages are encoded in EUC.

Messages are output in Japanese.

Specify thisformat for an EUC terminal.
* When SJISis specified

Messages are encoded in SJIS.

M essages are output in Japanese.

Specify thisformat for an SJIS terminal.

When SJISis specified in a Windows environment, Japanese messages are usually displayed.
* Reference:

This specification of FELANG also applies to help messages and error messages.

This environment variable can be omitted.

The default output format is ASCII.
[Example]

SET FELANG=ASCII

PART 1 OPERATION 9



CHAPTER 2 ENVIRONMENT VARIABLES AND DIRECTORY STRUCTURE OF THE DEVELOPMENT

2.3 TMP

TMP specifies a work directory used by the assembler.
This environment variable can be omitted.

H TMP
[Format]

SET TMP=directory

[Description]
TMP specifies awork directory used by the assembler.
If adirectory that cannot be accessed is specified, the assembler terminates abnormally.
This environment variable can be omitted.
The default work directory isthe current directory.
[Example]
SET TMP=D:\TMP

10 PART 1 OPERATION



CHAPTER 2 ENVIRONMENT VARIABLES AND DIRECTORY STRUCTURE OF THE DEVELOPMENT

2.4 INC911

INC911 specifies an include path.
Specify a path to search for an include file specified using the #include instruction.

This environment variable can be omitted.

B INC911
[Format]

SET INC9ll=path

[Description]
INC911 specifies an include path.
Specify a path to search for an include file specified using the #include instruction.

The system first searches the path that has been specified using the include path specification startup
option (-1). If no include fileisfound, the system then searches the path set for INC911.

This environment variable can be omitted.
[Examplé]
SET INC911=E:\INCLUDE

PART 1 OPERATION 11



CHAPTER 2 ENVIRONMENT VARIABLES AND DIRECTORY STRUCTURE OF THE DEVELOPMENT

2.5 OPT911

OPT911 specifies the directory that contains the default option file.
This environment variable can be omitted.

B OPT911
[Format]

SET OPT91l=directory

[Description]
OPT911 specifies the directory that contains the default option file.
For an explanation of the default option file, see Section "3.6 Default Option File".
These environment variables can be omitted.

If these variables are not specified, a default option file under the development environment directory is
accessed.

The default option files under the development environment directory are as follows:
%FETOOL%\LIB\911\FASM911.0PT
[Example]
SET OPT911=D:\USR

12 PART 1 OPERATION



CHAPTER 2 ENVIRONMENT VARIABLES AND DIRECTORY STRUCTURE OF THE DEVELOPMENT

2.6 Directory Structure of the Development Environment

This section describes the directory structure of the development environment.

B Directory Structure of the Development Environment
The development environment consists of the following directories and files:
e %FETOOL%\BIN
Thisisaload module directory.
This directory contains the C compiler, assembler, linker, and simulator.
e %FETOOL%\LIB
Thisisalibrary directory.
This directory contains appended files such aslibraries.
* %FETOOL%\LI1B\911
These directories contain the MCU libraries.
These directories contain message files, library files, and include files.
* %FETOOL%\LIB\911\INCLUDE
These directories contain the MCU includefiles.
These directories contain the standard C compiler includefile.
These directories are searched last in a search using the #include instruction.
The directory structure for the development environment is as follows:

Figure 2.6-1 The Directory Structure for the Development Environment

%FETOOL%\ <4— Directory set for environment variable FETOOL
— BIN\ <4— Directory in which the load module is located
L FASM911S.EXE
— LIB\ <4— Directory in which libraries are located
— 911\ <«4— Directory in which FR family libraries are located

ASM911_A.MSG (error message file: ASCII)
ASM911_E.MSG (error message file: EUC)
ASM911_S.MSG (error message file: SJIS)
FASM911.0PT (default option file)
INCLUDE\ «4— Include file directory

L Include file

PART 1 OPERATION 13



CHAPTER 2 ENVIRONMENT VARIABLES AND DIRECTORY STRUCTURE OF THE DEVELOPMENT

14 PART 1 OPERATION



CHAPTER 3
STARTUP METHOD

This chapter describes how to start the assembler.
The assembler startup commands are as follows:
- fasm911s

3.1 fasm911s Commands

3.2 Specifying a File

3.3 Handling of File Names

3.4 Option File

3.5 Comments Allowed in an Option File
3.6 Default Option File

3.7 Termination Code

PART 1 OPERATION 15



CHAPTER 3 STARTUP METHOD

3.1 fasm911s Commands

The fasm911s commands are described in the following format:
fasm911ls [startup-option] ... [file-name]

B fasm911s Command Lines
[Format]

fasm91lls [startup-option] ... [file-name]

[Description]

A startup option and a file name can be specified on the fasm911s command line.

A startup option and a file name can be specified at any position on the command line.

More than one startup option can be specified.

A startup option and a file name are delimited with a space.

The fasm911s commands identify a startup option from afile name in the following steps:

1)Any character string prefixed with the option symbol is assumed to be a startup option. The option
symbol isahyphen (-).

2)If a startup option is accompanied by an argument, a character that follows the startup option is
assumed to be the argument.

3)Any character string that is not a startup option is assumed to be a file name.

For details of the startup options, see "CHAPTER 4 STARTUP OPTIONS".

If "-f option-file-name" is specified as a startup option, the system reads the file specified by -f and
executes the fasm911s command described in the file.

This function allows the fasm911s commands to be stored in afile.
For details, see Section "3.4 Option File".

If a startup option and a file name are omitted and nothing is specified after the fasm911s command, a
startup option list (help message) is output.

The fasm911s commands support the default option file function.
The fasm911s command described in the default option file is executed first.
For details, see Section "3.6 Default Option File".
[Example]
fasm91lls -f def.opt -1 prog.asm
fasm91lls -f def.opt prog.asm

16 PART 1 OPERATION



3.2 Specifying a File

CHAPTER 3 STARTUP METHOD

Specify an assembly source file.

Only a single assembly source file can be specified.

If the file extension is omitted, the system appends ".asm" to the file name.

B Specifying a File

[Example]

File specification

File to be assembled

fasm91lls test

fasm91lls test.
fasm91ls D:\WORK\test
fasm91lls ..\FR\abc.src

test.asm

test.
D:\WORK\test.asm
..\FR\abc.src

Note :

For an explanation of how to write a file, see the relevant OS manual.

PART 1 OPERATION

17



CHAPTER 3 STARTUP METHOD

3.3 Handling of File Names

This section describes how the assembler handles file names.

This section covers the following two items:
* Format for specifying a file name
» Specifying a file name with components omitted

B Format for Specifying a File Name

The assembler assumes that a file name consists of these three parts: <path-name>, <primary-file-name>,

and <file-extension>.
<file-extension> refers to the characters that follow the period (.).
<path-name> and <file-extension> can be omitted.

B Specifying a File Name with Components Omitted

This section explains how the assembler handles a file name when file name components are omitted.

18

PART 1 OPERATION



CHAPTER 3 STARTUP METHOD

3.3.1 Format for Specifying a File Name

This section describes the format for specifying a file name.

The assembler assumes that a file name consists of these three parts: <path-name>,
<primary-file-name>, and <file-extension>.

<file-extension> indicates characters that follow the period (.).

<path-name> and <file-extension> can be omitted.

B Format for Specifying a File Name
[Format]

"<path-names>" <primary-file-name> "<extensions>"

[Description]
For an explanation of file names, see the relevant OS manual.

The assembler assumes that a file name consists of these three parts: <path-name>, <primary-file-
name>, and <file-extension>.

<file-extension> indicates the characters that follow the period (.).
<path-name> and <file-extension> can be omitted.

For an explanation of handling file names when file name components are omitted, see Section "3.3.2
Specifying a File Name with File Name Components Omitted”.

When Windows version is used, <drive-name> isincluded in <path-name>.
[Example]

Figure 3.3-1 Example of Specifying a File Name
D:\WORK\SRC\TEST.ASM

File extension

Path name  Primary file name

PART 1 OPERATION 19



CHAPTER 3 STARTUP METHOD

3.3.2 Specifying a File Name with File Name Components
Omitted

This section describes the handling of file names when file name components are
omitted.

B Specifying a File Name with Components Omitted
This section describes the handling of file names when file name components are omitted.
When only a path name is used to specify an object file or list file, the primary file name of the source file
isused.

When only a path nameis specified

<specified-path-name><primary-file-name-of-source-file><default-extensions>

Table 3.3-1 shows how the system handles a file name when file name components are omitted.

Table 3.3-1 Handling of a Partly Omitted File Name

Omitted component Handling
Path name Current
Extension Source file extension .asm
Object file extension .0bj
List file extension dst
Option file extension .opt
Preprocessing result file extension .as

[Example]
fasm91lls TEST -o D:\WORK\SRC\TEST -1f abc
Source file name: TEST.asm
Object file name: D:\WORK\SRC\TEST.obj

List file name: abc.lst

20 PART 1 OPERATION



CHAPTER 3 STARTUP METHOD

3.4 Option File

The option file function is used to describe the fasm911s commands in a file so that
they can be specified as a batch. With this function, frequently used startup options
can be stored in a file.

To specify an option file, use the -f startup option.

B Option File
[Format]

-f option-file-name

[Description]
The option file function is used to describe the fasm911s commands in afile so that they can be specified
asabatch. With thisfunction, frequently used startup options can be stored in afile.
To specify an option file, use the -f startup option.
If the file extension is omitted from the option file name, the system appends ".opt" to the file name.
fasm911s commands can be described in an option file.
Comments can be placed in an option file.
For details, see Section "3.5 Comments Allowed in an Option File".
An option file can be nested up to eight levels deep.
[Example]

Figure 3.4-1 Example of Specifying an Option File

option file:def.opt

-1 D:\usninclude
-D SMAP
-l

fasm911s-V -f def.opt test
The above example isinterpreted as follows:
fasm911s-V -l D:\usr\include -D SMAP - test

PART 1 OPERATION 21



CHAPTER 3 STARTUP METHOD

3.5 Comments Allowed in an Option File

A comment can start at any column.
A comment starts with a number sign (#) and continues to the end of a line.

B Comments Allowed in an Option File
[Format]

# Comment

Comments can be also used in the following formats:

/* Comment */
// Comment
; Comment

[Description]
A comment can start at any column.
A comment starts with a number sign (#) and continues to the end of aline.
[Example]
#
# FR80 customization option
#
# Include path
#
-I D:\usr\test\include # Test include
#
#Define
#
-D SMAP
-D VER=2

22 PART 1 OPERATION



CHAPTER 3 STARTUP METHOD

3.6 Default Option File

A default option file is supported as one of the option file functions. If an option file is
to be used but the -f startup option is not specified, a predetermined option file is read
and executed.

This file is called the default option file.

B Default Option File

A default option file is supported as one of the option file functions. If an option file is to be used but the -f
startup option is not specified, a predetermined option fileis read and executed.

Thisfileis called the default option file.

The default option file is always read when the assembler is started. The startup options suitable to the user
environment can be specified beforehand.

To suppress the default option file function, specify the -Xdof startup option on the command line.
When this option is specified, the default option fileis not read.

The default option file name is predetermined as follows:

Command name Default option file name

fasm911s FASM911.0PT

The default option fileis referenced as described below.
¢ When environment variable OPT911 is set
The system references the file under the directory set for environment variable OPT911.
%O0PT911%\FASM911.0PT
*  When environment variable OPT911 is not set
The system references the default option file under the development environment directory.
%FETOOL%\LIB\911\FASM911.0PT
The default option fileis not always required.

PART 1 OPERATION 23



CHAPTER 3 STARTUP METHOD

3.7

Termination Code

A termination code is output when the assembler terminates processing and returns
control to the OS.

B Termination Code
A termination code is output when the assembler terminates processing and returns control to the OS.

The value of this code informs the user of the approximate processing status of the assembler.

Table 3.7-1 lists the termination codes.

Table 3.7-1 Termination Codes

Processing status

Termination code

Normal termination 0
Warning Oor1l

Error 2

Abnormal termination 3

Notes:
e The termination code output when a warning occurs varies with the specification of the
-Cwno or -Xcwno option. For details, see Section "4.8.7 -cwno, -Xcwno".
« If a warning and an error occur simultaneously, a termination code is returned for the error.
< If an error occurs, no object file is created.
24 PART 1 OPERATION



CHAPTER 4
STARTUP OPTIONS

This chapter explains the assembler startup options.
The startup options control assembly processing.

The startup options are identified by an option symbol.
The option symbol is a hyphen (-).

4.1 Rules for Startup Options

4.2 Startup Option List

4.3 Details of the Startup Options

4.4 Options Related to Objects and Debugging
4.5 Options Related to Listing

4.6 Options Related to the Preprocessor

4.7 Target-Dependent Options

4.8 Other Options

PART 1 OPERATION 25



CHAPTER 4 STARTUP OPTIONS

4.1 Rules for Startup Options

This section describes the rules for startup options.

B Rules for Startup Options
The specifications for overall startup options are given below.
From this point, a startup option is simply referred to as an option.
» Specifying a single option more than once
If an option is specified more than once, the one specified last is used.
[Example]
fasm91lls -o abc test.asm -o def
The system uses "-o def", thus creating an object file named def.obj.

« Options that can be specified more than once
- -D name[=def]: Specifiesamacro name.

- -U name: Cancels amacro name.

- -l path: Specifies an include path.

- -f filename: Specifies an option file.
The above options can be specified more than once. Each specification isvalid.
» Positioning of options

The position in which an option is specified has no special meaning. An option has the same meaning no
matter where it is specified on the command line.

[Example]
1) fasm91lls -C -name prog test.asm -1
2) fasm91lls test.asm -1 -name prog -C
The assembler performs the same processing in both 1) and 2).

e Mutualy exclusive and dependent relationships

Some options have either mutually exclusive or dependent relationships. If such types of options are
specified simultaneously, the one specified last is valid.

[Example]
fasm91lls -1f tl test.asm -X1

The system accepts -X1, but does not create a list file.

26 PART 1 OPERATION



4.2

CHAPTER 4 STARTUP OPTIONS

Startup Option List

Table 4.2-1 lists the startup options.

B Startup Options

Table 4.2-1 Startup Options (1/2)
Specification format Function overview Initial value
Options related to objects and debugging
-o [filename] Specifies an object file name. Output
-Xo Creates no object file.
-g Outputs debugging information. Not output
-Xg Cancels the output of debugging information.
Options related to listing
-1 Outputs alist file. Not output
-1f filename Outputs alist file (with afile name specified).
-X1 Cancels the output of alist file.
-pl {0]20-255} Specifies the number of lines on alist page. 60
-pw {80-1023} Specifies the number of columnsin alist line. 100
-linf {ON|OFF} Outputs an information list. ON
-lsrc {ON|OFF} Outputs asource list. ON
-1lsec {ON|OFF} Outputs a section list. ON
-lcros {ON|OFF} Outputs a cross-reference list. OFF
-linc {ON|OFF} Outputs an includefilelist. ON
-lexp {ON|OFF|OBJ} Outputs amacro expansion section to alist. OBJ
-tab {0-32} Specifies the number of tab expansion characters 8
Options related to the preprocessor
-p Specifies not to start the preprocessor. Start
-P Starts only the preprocessor.
-Pf filename Starts only the preprocessor (with afile name specified).
-D name [=def] Specifies amacro name.
-U name Cancels amacro name.
-I path Specifies an include path.
-H Outputs an include path. Not output
-C Specifies whether to leave comments in the preprocessor output. Commentsare
not left.
PART 1 OPERATION 27



CHAPTER 4 STARTUP OPTIONS

Table 4.2-1 Startup Options (2/2)

Specification format Function overview Initial value
Target-dependent options
-0 [0-2] Specifies the optimization code check level. 0
-FPU [0-15] Specifies the FPU channel number. No FPU
-XFPU Specifies that the FPU is not connected.
-cpu MB-number Specifies the target chip.
-cif CPU-information Specifies a CPU information file to be referred.
file name
Other options
-Xdof Cancels adefault option file. 2
-f filename Specifies an option file.
-w [0-3] Specifies the output level of warning messages. Not displayed
-name module-name Specifies a module name.
-V Outputs a startup message.
-XV Cancels output of a start message.
-cmsg Outputs a termination message. Not output
-Xcmsg Suppresses the output of a terminating message.
-cwno Specifies 1 as the termination code when awarning messageis 0is specified

output.
-Xcwno Specifies 0 as the termination code when awarning messageis
output.

-help Outputs a help message. Not displayed
-UDSW Warning when referring to undefined symbol. Outputs
-XUDSW Warning output isinhibited when referring to an undefined symbol.
-OVEFW Specifies to generate a code asa WARNING level for overflow.
-XOVFW Specifies not to generate a code as an error level for overflow. ERROR
-reglst check Specification of duplication specification check for register list. Check

-Xreglst_ check

Suppression specification of duplication specification check for
register list.

-CO

Specification of output FR/FR80 common object.

28

PART 1 OPERATION




CHAPTER 4 STARTUP OPTIONS

4.3 Details of the Startup Options

The startup options are classified as follows based on function:

* Options related to objects and debugging

» Options related to listing

» Options related to the preprocessor

» Target-dependent options

» Other options

This section describes the functions of the startup options in details.

B Options Related to Objects and Debugging
Options used to specify an object file name or to control output of debugging information.
B Options Related to Listing
Options used to specify alist file name or alist format
B Options Related to the Preprocessor
Options used to specify preprocessor operations
B Target-dependent Options
Options dependent on the target chip
B Other Options

Other options include those used to specify an option file, the output level of warning messages, or a
module name.

PART 1 OPERATION 29



CHAPTER 4 STARTUP OPTIONS

4.4 Options Related to Objects and Debugging

The options related to objects and debugging are used to specify an object file name or
to control output of debugging information.

B Options Related to Objects and Debugging
The following four options related to objects and debugging are supported:
* O Specifies an object file name.
¢ -Xo0......Creates no abject file.
LI s (AR Outputs debugging information.
e -Xg......Cancels output of debugging information.

30 PART 1 OPERATION



CHAPTER 4 STARTUP OPTIONS

4.4.1 -0, -X0

-0 creates an object file having the specified object file name.

-Xo creates no object file.

If neither -0 nor -Xo is specified, an object is output to the file having the primary file
name of the source file suffixed with the file-extension .obj.

W -0
[Format]
-o [object-file-namel]
[Description]
-0 creates an object file having the specified object file name.
If an object file name is omitted or if only a path name is specified, an object is output to the file having
the primary file name of the source file suffixed with the file-extension .obj.
For details, see Section "3.3.2 Specifying a File Name with File Name Components Omitted"”.
[Example]
fasm91lls exl -o exl_a
M -Xo
[Format]
-Xo
[Description]

-X0 creates no object file.
[Example]

fasm9lls exl -Xo

PART 1 OPERATION 31



CHAPTER 4 STARTUP OPTIONS

4.4.2 -g, -Xg

-g outputs debugging information.
-Xg outputs no debugging information.
If the -g option is not specified, debugging information is not output.

m g

[Format]

-9

[Description]
-g outputs debugging information to an object file.

Outputting debugging information enables symbolic debugging using the simulator debugger or emulator
debugger.

Specify this option when performing high-level language debugging.
[Example]
fasm91lls c_test -g
B -Xg
[Format]

_Xg

[Description]
-X g outputs no debugging information to an object file.
[Example]

fasm91ls c_test -Xg

32 PART 1 OPERATION



CHAPTER 4 STARTUP OPTIONS

4.5 Options Related to Listing

The options related to listing are used to specify an assembly list file name or a list format.

B Options Related to Listing
The following 12 options related to listing are supported:

I Outputs an assembly list file.

e | S Outputs an assembly list file (with afile name specified).
Xl Cancels output of an assembly list file.

Pl Specifies the number of lines on an assembly list page.
-pW .......... Specifies the number of columnsin an assembly list line.
-linf ......... Outputs an information list.

-lsrc......... Outputs asource list.

-lsec......... Outputs a section list.

-lcros...... Outputs a cross-reference list.

-linc......... Outputs an include to alist.

-lexp........ Outputs a macro expansion sectionto alist.

-tab.......... Specifies the number of tab expansion characters.

PART 1 OPERATION

33



CHAPTER 4 STARTUP OPTIONS

4.5.1

-1, -If, -XI

-| creates an assembly list file.

-If creates an assembly list file having the specified file name.
-X| creates no assembly list file.

If -1, -If, nor -XI is specified, no assembly list file is created.

W -If

m -Xl

34

[Format]

-1

[Description]
-| creates an assembly list file.

An assembly list is output to the file having the primary file name of the source file suffixed with the file-
extension .Ist.

[Example]
fasm91lls test -1

[Format]

-1f assembly-list-file-name

[Description]
-If creates an assembly list file having the specified assembly list file name.

If only a path name is specified, an assembly list is output to the file having the primary file name of the
source file suffixed with the extension .Ist.

For details, see Section "3.3.2 Specifying a File Name with File Name Components Omitted".
[Example]
fasm9lls test -1f\fasm\src

[Format]

-X1

[Description]
-X| creates no assembly list file.
[Example]
fasm91lls test -X1

PART 1 OPERATION



CHAPTER 4 STARTUP OPTIONS

45.2 -pl, -pw

-pl specifies the number of lines on an assembly list page
-pw specifies the number of columns in an assembly list line.

H -pl
[Format]
-pl {0]20-255}
[Description]
-pl specifies the number of lines on an assembly list page.
An assembly list is created so that a single page contains the specified number of lines.
A number between 20 and 255 can be specified as the number of lines.
If Ois specified as the number of lines, no page break is created.
If this option is not specified, 60 is the default.
[Example]
fasm91lls test -pl O
H -pw

[Format]

-pw {80-1023}

[Description]
-pw specifies the number of columnsin an assembly list line.
A number between 80 and 1023 can be specified as the number of columns.
If this option is not specified, 100 is the default.

[Example]

fasm91lls test -pw 80

PART 1 OPERATION 35



CHAPTER 4 STARTUP OPTIONS

45.3 -linf, -Isrc, -Isec, -Icros

An assembly list consists of the following four lists:

* Information list

» Source list

» Section list

» Cross-reference list

Specify whether each of these lists is output.

* linf specifies whether an information list is output.

* Isrc specifies whether a source list is output.

* |sec specifies whether a section list is output.

* |lcros specifies whether a cross-reference list is output.

B -linf

[Format]

-linf {ON|OFF}

ON:  Aninformation list is output. <default>
OFF.  Aninformation list is not output.
[Description]

-linf specifies whether an information list is output.

Either uppercase or lowercase can be used to specify ON or OFF.

If this option is not specified, ON isthe default.
[Example]
fasm91lls test -linf off
W -Isrc
[Format]

-lsrc {ON|OFF}

ON: A sourcelist isoutput. <default>

OFF: A sourcelist isnot output.
[Description]

-lsrc specifies whether a source list is output.

Either uppercase or lowercase can be used to specify ON or OFF.

If this option is not specified, ON isthe default.
[Example]

fasm91lls test -1lsrc on

36

PART 1 OPERATION




M -Isec

B -Icros

[Format]

CHAPTER 4 STARTUP OPTIONS

-lsec {ON|OFF}

ON: A section list isoutput. <default>

OFF: A section list is not output.
[Description]

-Isec specifies whether a section list is output.

Either uppercase or lowercase can be used to specify ON or OFF.

If this option is not specified, ON is the default.
[Example]

fasm91lls test -lsec on

[Format]

-lcros {ON|OFF}

ON: A crossreference list is output.

OFF. A cross-reference list is not output. <default>
[Description]

-lcros specifies whether a cross-reference list is output.

Either uppercase or lowercase can be used to specify ON or OFF.

If this option is not specified, OFF is the defaullt.
[Example]

fasm91lls test -lcros on

PART 1 OPERATION

37



CHAPTER 4 STARTUP OPTIONS

45.4 -linc, -lexp

-linc and -lexp control output of an include file and macro expansion section in the
source list.

-linc controls output of an include file to the list.

-lexp controls output of a macro expansion section to the list.

W -linc
[Format]
-linc {ON|OFF}
ON:  Anincludefileisoutput to the list. <default>
OFF: Anincludefileis not output to thelist.
[Description]
-linc controls output of an include fileto the list.
Either uppercase or lowercase can be used to specify ON or OFF.
If this option is not specified, ON is the default.
[Example]
fasm91lls test -linc off
W -lexp

[Format]

-lexp {ON|OFF|OBJ}

ON: A macro expansion section is output to the list.
OFF: A macro expansion section is not output to the list.

OBJ. Thetext of amacro expansion section is not output to the list. Only the object code is output to
thelist. <default>

[Description]
-lexp controls output of a macro expansion section to the list.
Either uppercase or lowercase can be used to specify ON or OFF.
If this option is not specified, OBJ is the default.

[Example]

fasm9lls test -lexp obj

38 PART 1 OPERATION



CHAPTER 4 STARTUP OPTIONS

4.5.5 -tab

-tab specifies the number of space characters used to expand tabs when a list is output.

H -tab

[Format]

-tab {0-32}

[Description]
-tab specifies the number of space characters used to expand tabs when alist is output.
If this option is not specified, 8 isthe default.
[Example]
fasm91lls test -tab 4

PART 1 OPERATION 39



CHAPTER 4 STARTUP OPTIONS

4.6 Options Related to the Preprocessor

The options related to the preprocessor are used to specify preprocessor operations.

B Options Related to the Preprocessor
The following eight options related to the preprocessor are supported:
* P Does not start the preprocessor.
e -P.... Starts only the preprocessor.
e -Pf..... Starts only the preprocessor (with a file name specified).
e -D... Specifies a macro name.
e -U.... Cancels amacro name.
o -l Specifies an include path.
e -H..... Outputs an include path.
e -C...... Leaves comments in the preprocessor output.

40 PART 1 OPERATION



CHAPTER 4 STARTUP OPTIONS

4.6.1 -p

-p specifies that the preprocessor is not started.
-p must be specified using a lowercase letter.

H-p

[Format]

b

[Description]
-p specifies that the preprocessor is not started.
This means that the preprocessor phase is skipped, and the assembly phase is performed directly.

Specifying this option reduces required processing time because the preprocessor processing is not
performed.

This option is valid when an assembly source that does not include any preprocessor instructions output
by a high-level language compiler is assembled.
[Example]

fasm9lls test -p

PART 1 OPERATION 41



CHAPTER 4 STARTUP OPTIONS

4.6.2

-P, -Pf

-P outputs the results of preprocessing performed in the preprocessor phase.
-Pf outputs the results of preprocessing performed in the preprocessor phase to the file
having the specified file name.

WP

42

[Format]

-P

[Description]
-P outputs the results of preprocessing performed in the preprocessor phaseto afile.
The results are output to the file having the primary file name of the source file suffixed with the
extension .as.
When this option is specified, only preprocessor processing is performed; the processing in the assembly
phase is not performed.

[Example]

fasm9lls test -P

[Format]

-Pf preprocessing-result-file-name

[Description]

-Pf outputs the results of preprocessing performed in the preprocessor phase to the file having the
specified file name.

If only a path name is specified, the results are output to the file having the primary file name of the
source file suffixed with the file-extension .as.

For details, see Section "3.3.2 Specifying a File Name with File Name Components Omitted"”.

When this option is specified, only preprocessor processing is performed; the processing in the assembly
phase is not performed.

[Example]

fasm91lls test -Pf \fasm\src

PART 1 OPERATION



CHAPTER 4 STARTUP OPTIONS

4.6.3 -D, -U

-D defines a defined character string for a macro name.
-U cancels a macro name specified using -D.

H-D
[Format]

-D macro-name [=definition-character-string]

[Description]
-D defines a definition character string for amacro name.
If "-D macro-name" is specified without "=defined-character-string", 1 is defined.

If "-D macro-name=" is specified and no definition character string is specified, a null character is
defined.

This option can be specified more than once.
This option has the same function as the #define instruction.
[Example]
fasm91lls test -D OS_type=3 -D Windows

[Format]

-U macro-name

[Description]
-U cancels a macro name specified using -D.

If the same macro name is specified by using both the -D and -U options, the macro name is canceled
regardless of the order in which the options are specified.

This option can be specified more than once.
This option has the same function as the #undef instruction.
[Example]
fasm91lls test -D ABC=10 -U ABC

PART 1 OPERATION 43



CHAPTER 4 STARTUP OPTIONS

4.6.4 -1

-l specifies an include path.
Specify a path to search for an include file specified using the #include instruction.

-
[Format]

-I include-path

[Description]
-1 specifies an include path.
Specify a path to search for an include file specified using the #include instruction.
This option can be specified more than once. The specified paths are searched in the order they are
specified.
For details of the #include instruction, see Section "11.9 #include Instruction”.
[Example]
fasm91lls test -I \include -I \FR

44 PART 1 OPERATION



CHAPTER 4 STARTUP OPTIONS

4.6.5 -H

-H outputs the path name of an include file that is read using the #include instruction to
the standard output.
Path names are output one to a line in the order in which they are read.

m-H

[Format]

-H

[Description]
-H outputs the path name of an include file that is read using the #include instruction to the standard
output.
Path names are output one to aline in the order in which they are read.
A path nameis not output if an include file was not found when the path was searched.
[Example]

fasm91lls test -I \include -I \FR -H

PART 1 OPERATION 45



CHAPTER 4 STARTUP OPTIONS

4.6.6 -C

-C leaves all comments and blank characters during preprocessor processing.
If this option is not specified, a comment and series of blank characters are replaced
with a single blank character.

m-C

[Format]

-C

[Description]
-C leaves all comments and blank characters during preprocessor processing.
If this option is not specified, a comment and a series of blank characters are replaced with a single blank

character.
Omitting this option reduces the processing load in the assembly phase.
[Example]

fasm9lls test -C

46 PART 1 OPERATION



CHAPTER 4 STARTUP OPTIONS

4.7 Target-Dependent Options

The target-dependent options are options dependent on the target chip.

B Target-dependent Options
The following five target-dependent options are supported:

LI © BRSSO Specifies the check level of the optimization code.
e -FPU.......... Specifies the FPU channel number.

« -XFPU....... Specifies that no FPU is connected.

* -CPU..couue. Specifiesthe target chip.

e Cifirriinnns Specifies a CPU information file to be referred.

PART 1 OPERATION 47



CHAPTER 4 STARTUP OPTIONS

4.7.1 -O

-O specifies the check level for machine instruction optimization code.

m-O

[Format]

-0 [check-level]

check-level: 0to 2
[Description]
-O specifies the check level for machine instruction optimization code.

For details of checking optimization code, see "CHAPTER 5 OPTIMIZATION CODE CHECK
FUNCTIONS".

If check-level is omitted, O isthe default.
If this option is not specified, 0 isthe default.
[Examplé]
fasm91lls test -0 2

48 PART 1 OPERATION




CHAPTER 4 STARTUP OPTIONS

4.7.2 FPU Information Options (-FPU, -XFPU)

The FPU information options are options related to the FPU.

-FPU specifies that the FPU is connected and simultaneously specifies the number of
the channel to which the FPU is connected.

-XFPU specifies that the FPU is not connected.

If neither -FPU nor -XFPU is specified, it is assumed that the FPU is not connected.

It is an effective option only when Target CPU is FR family.

B FPU Information Options (-FPU and -XFPU)
The following two FPU information options are supported:
e -FPU........ Specifies that the FPU is connected.
e -XFPU..... Specifies that the FPU is not connected.

H -FPU

[Format]

-FPU [channel-number]

channel-number: 0to 15

[Description]
-FPU specifies that the FPU is connected.
channel-number indicates the number of the channel to which the FPU is connected.
If channel-number is omitted, O is the defaullt.
If this option is not specified, the FPU is not connected, disabling the use of FPU instructions.
It is an effective option only when target CPU is FR family.
It isinvalid when target CPU is FR80 family.

[Example]

fasm91lls test -FPU 0
H -XFPU

[Format]

-XFPU

[Description]
-XFPU specifies that the FPU is not connected.
Therefore, FPU instructions cannot be used.
[Example]

fasm91lls test -XFPU

PART 1 OPERATION 49



CHAPTER 4 STARTUP OPTIONS

4.7.3

-cpu

-cpu specifies the target chip.

Specify the name of the product to be used as the target chip.

B -cpu

50

[Format]

-cpu target

target: name of the product to be used
[Description]
-cpu specifies the target chip.

Specify the name of the product to be used as target.

[Example]
fasm91lls test -cpu MB91101
fasm91lls test -cpu MB91307

PART 1 OPERATION




CHAPTER 4 STARTUP OPTIONS

4.7.4 -cif

-cif specifies a CPU information file that SOFTUNE Tools reference.

W -cif
[Format]
-cif CPU-information-filename
CPU-information-filename: CPU information file name to be referenced
[Description]
Specify a CPU information file that SOFTUNE Tools reference.
[Example]
fasm91lls test -cpu MB91101 -cif "C:\Softune6\1lib\911\911l.csv"
Note:

SOFTUNE Tools get CPU information by referring the CPU information file. Reference to the
different CPU information file between the related tools may cause an error to the program to be
created. The CPU information file that comes standard with SOFTUNE Tools is located at:

Installation directory\lib\911\911.csv

When installing the compiler assembler packs in a different directory and using the compiler,
assembler and linkage editor instead of SOFTUNE Workbench, specify -cif so that each tool can
refer the same CPU information file.

PART 1 OPERATION 51



CHAPTER 4 STARTUP OPTIONS

4.8 Other Options

Other options include options used to specify an option file, output level of warning
messages, or module name.

B Other Options
The following 18 options are also supported:

e -Xdof.....cooemne. Cancels the default option file.

LI PR Specifies an option file.

¢ W Specifies the output level of warning messages.

* -NAMEe....ccoeuee. Specifies amodule name.

¢ Vo Displays a startup message.

o XV e Cancels the display of a startup message.

¢ -CMSY.eevereerernens Outputs a termination message.

o -XCMSY..oveeenene Suppresses the output of a termination message.

¢ -CWNO...cocvrurnene. Specifies 1 as the termination code when awarning is output.

e -XCWno............. Specifies 0 as the termination code when awarning is output.

e -helpai, Displays a help message.

e -UDSW............. Warning when referring to undefined symbol.

e -XUDSW........... Warning output is inhibited when referring to an undefined symbol.
e -OVFW............. Specifies to generate a code as a WARNING level for overflow.
e -XOVFW. .......... Specifies not to generate a code as an ERROR level for overflow.

» -reglst_check..... Specification of duplication specification check for register list.
e -Xreglst_check.. Suppression specification of duplication specification check for register list.
¢ -CO .o Specification of output FR/FR80 common object.

52 PART 1 OPERATION



CHAPTER 4 STARTUP OPTIONS

4.8.1 -Xdof

-Xdof cancels reading of the default option file.
If this option is not specified, the default option file is always read.

W -Xdof
[Format]

-Xdof

[Description]
-Xdof cancels reading of the default option file.
If this option is not specified, the default option fileis always read.
For details of the default option file, see Section "3.6 Default Option File".
[Example]
fasm91lls test -Xdof

PART 1 OPERATION 53



CHAPTER 4 STARTUP OPTIONS

4.8.2 -f

-f reads the specified option file.
The fasm911s commands can be placed in an option file.

| -f
[Format]

-f option-file-name

[Description]
-f reads the specified option file.
If the file-extension is omitted from the option file name, .opt is automatically added.
The fasm911s commands can be placed in an option file.
Multiple option files can be specified.
For details of option files, see Section "3.4 Option File".
[Example]
fasm91lls test -f test.opt

54 PART 1 OPERATION



CHAPTER 4 STARTUP OPTIONS

4.8.3 -W

-w sets the output level of warning messages.
If 0 is specified as the warning level, no warning messages will be output.

m-w

[Format]

-w [warning-levell]

[Description]
-w sets the output level of warning messages.
If Oisspecified for warning-level, no warning messages will be output.
If warning-level is omitted, 2 is the default.
If this option is not specified, 2 is the default.
For details of warning levels and warning messages that can be output, see "APPENDIX A Error
Messages'.
The following table lists the warning levels and warning messages that can be output:

Warning level Warning message

0 No warning messages are output.

1,2 Warning messages other than error numbers W1551A and W1711A are output.

3 All warning messages are output.

[Example]

fasm91lls test -w O

Note:
The following warnings are output when the warning level is set to 3.
W1551A: A warning is output if there is no .END instruction at the end of the source file.
W1711A: A warning is output if an address is returned to a .ORG instruction.

PART 1 OPERATION 55



CHAPTER 4 STARTUP OPTIONS

4.8.4 -name

-name specifies a module name.
A module name specified using this option is assumed to be valid even though it is also
specified using the .PROGRAM instruction.

B -name

[Format]

-name module-name

[Description]
-name specifies amodule name.
A specified module name must comply with naming rules.

A module name specified using this option is assumed to be valid even though it is also specified using
the .PROGRAM instruction.

[Example]

fasm91lls test -name prog

Note:

When an inappropriate character string is specified for the module name with this option, a warning
message is output with the last line of the source lines.

56 PART 1 OPERATION



CHAPTER 4 STARTUP OPTIONS

4.8.5 -V, -XV

-V displays a startup message when the assembler is executed.
-XV cancels the display of a startup message.

If neither -V nor -XV is specified, a startup message is not displayed.

-V

[Format]

-V

[Description]
-V displays a startup message when the assembler is executed.

A startup message contains the version information and copyright information of the executed assembler.

[Examplé]
fasm91lls test -V
m -XV

[Format]

-XV

[Description]
-XV cancelsthe display of a startup message.
[Example]
fasm9lls test -V -XV

PART 1 OPERATION

57



CHAPTER 4 STARTUP OPTIONS

4.8.6 -cmsg, -Xcmsg

-cmsg displays a termination message when the assembler is executed.
-Xcmsg cancels the display of a termination message.
If neither -cmsg nor -Xcmsg is specified, an exit message is not displayed.

W -cmsg

[Format]

-cmsg

[Description]
-cmsyg displays a termination message when the assembler is executed.
[Example]
fasm91lls test -cmsg
B -Xcmsg
[Format]

-Xcmsg

[Description]
-Xcmsg cancels the display of atermination message.
[Example]

fasm91lls test -cmsg -Xcmsg

58 PART 1 OPERATION



CHAPTER 4 STARTUP OPTIONS

4.8.7 -CWno, -Xcwno

-cwno specifies 1 as the assembler termination code when a warning message is output.
-Xcwno specifies 0 as the assembler termination code when a warning message is output.
If neither -cwno nor -Xcwno is specified, 0 is the assembler termination code displayed
when a warning message is output.

M -cwno
[Format]

-Cwno

[Description]
-cwno specifies 1 as the assembler termination code when awarning message is output.
[Example]
fasm91lls test -cwno
B -Xcwno

[Format]

-Xcwno

[Description]
-Xcwno specifies 0 as the assembl er termination code when awarning message is output.
[Example]

fasm91lls test -cwno -Xcwno

PART 1 OPERATION 59



CHAPTER 4 STARTUP OPTIONS

4.8.8 -help

-help displays the startup option list.
This list is referred to as the help message.

W -help
[Format]

-help

[Description]
-help displays the startup option list.
Thislist isreferred to as the help message.

If this option is specified, assembly processing is not performed.

[Example]
fasm91lls test -help

60

PART 1 OPERATION




CHAPTER 4 STARTUP OPTIONS

4.8.9 -UDSVW, -XUDSW

-UDSW displays a warning message when referring to an undefined symbol.

-XUDSW does not display a warning message when referring to an undefined symbol.
If neither -UDSW nor -XUDSW is specified, a warning message is displayed when
referring to an undefined symbol.

B -UDSW

[Format]

-UDSW

[Description]
This option displays a warning message when referring to an undefined symbol.
[Example]
fasm91lls test -UDSW
W -XUDSW

[Format]

-XUDSW

[Description]

This option does not display awarning message when referring to an undefined symbol.
[Example]

fasm91lls test -XUDSW

PART 1 OPERATION 61



CHAPTER 4 STARTUP OPTIONS

4.8.10

-OVFW, -XOVFW

The -OVFW option displays a warning message when the operation result of an operand
that describes an operational equation exceeds that operand size.

The -XOVFW option displays an error message when the operation result of an operand
that describes an operational equation exceeds that operands size.

If neither -OVFW nor -XOVFW is specified, an ERROR message is displayed when the
results of the operation coded in the immediate value operand exceed that operand

size.

Hm -OVFW

62

[Format]

-OVFW

[Description]
The -OVFW option performs the following processing when the operation result of an operand that
describes an operational equation exceeds that operand size.
The operand that describes an operational equation includes an immediate value and an address value.

« Displaysawarning message. (W1541A: Vaue out of range.)
e Outputs an object file.

* Masks the operand operation result in accordance with the operand size, and sets only the lower bits to
generates a code.

» Outputs an assemble list is output when an assemble list output specification option (-1) is specified.

The following shows an example of this option, and an example of an output list.
To output an assemble list, specify the assemble list output specification option (-I).

[Example]
fasm91lls test -OVEFW -1

PART 1 OPERATION



B -XOVFW

CHAPTER 4 STARTUP OPTIONS

Output list
123456H is masked by 20 bits. The value output to
the object is 23456H.

SN LOC OBJ LLINE SOURCE

<test.asm> =====

CO 00000000 9B213456 5 LDI:20 #123456H,R1

*** a.asm(2) W1541A: Value out of range (in operand 1)
When -OVFW is specified, assembler
output WARNING.

[Format]

-XOVFW (Default)

[Description]
The -OVFW option performs the following processing when the operation result of an operand that
describes an operational equation exceeds that operand size.
The operand that describes an operational equation includes an immediate value and an address value.

Displays an error message. (W1541A: Value out of range.)
Does not output an object file.

Masks the operand operation result in accordance with the operand size, and sets only lower bits to
output a code to the assemblelist.

Outputs an assembly list is output when an assembly list output specification option (-1) is specified.

The following shows an example of this option, and an example of an output list.
To output an assembly list, specify the assembly list output specification option (-1).
The assemble list is aso output when an error occurs.

[Example]

fasm91lls test -XOVFW -1

PART 1 OPERATION 63



CHAPTER 4 STARTUP OPTIONS

* Output list
123456H is masked by 20 bits. The value output to
the object is 23456H.
SN LOC OBJ LLINE SOURCE
<test.asm> =====
CO 00000000 9B213456 5 LDI:20 #123456H,R1

*** a.asm(2) E4541A: Value out of range (in operand 1)
When -XOVFW is specified, assembler ]

output ERROR.

64 PART 1 OPERATION



CHAPTER 4 STARTUP OPTIONS

4.8.11  -reglist_check, -Xreglst_check

-reglst_check is an option for outputting warning when there are duplication
specification for the register list.
-Xreglst_check is an option for suppressing -reglst_check.

B -reglst_check

[Format]

-reglst check (Default)

[Description]

When this option is specified a warning is displayed if there are duplications in the register list.
(W1546A: Duplication in the specification of the register list (Register name).

[Example 1 Specified by " "]
STM (R1, R2, R3, R1)

**%* gample.asm(2) W1546A: Duplication in the specification of the register list (R1)

[Example 2 Specified by " -"]

STM (R1-R5, R3-R6)
*** gample.asm(3) W1546A: Duplication in the specification of the register list (R3,R4,R5)

[Example 3 Specified by "-" and " "]
STM (R1-R5, R3,R6,R7)
**% gample.asm(4) W1546A: Duplication in the specification of the register list (R3)

[Example 4 Specified by a multiple of register list symbols]

WKREG: .REG (R1-R4)
WKREG2: .REG (R3-R6)
STM (WKREG, WKREG2)
*** gample.asm(8) W1546A: Duplication in the specification of the register list (R3,R4)

[Example 5 Specified by a register list symbol and " "]

WKREG: .REG (R1-R4)
STM (WKREG,R2,R4,R7)
*** gample.asm(8) W1546A: Duplication in the specification of the register list (R2,R4)

[Example 6 Specified by a register list symbol and " -"]

WKREG: .REG (R1-R4)
STM (WKREG,R2-R5,R7)
*** gample.asm(8) W1546A: Duplication in the specification of the register list (R2,R3,R4)

PART 1 OPERATION 65



CHAPTER 4 STARTUP OPTIONS

[Example 7 Duplication specified in register list symbol]

WKREG: .REG (R1,R4,R7,R3-R7)
*** gample.asm(8) W1546A: Duplication in the specification of the register list (R4,R7)

B -Xreglst_check
[Format]

-Xreglst_check

[Description]
When this option is specified, the -reglst_check option is suppressed.
This option is the default setting.

66 PART 1 OPERATION



CHAPTER 4 STARTUP OPTIONS

48.12 -CO

FR/FR80 common object can linked with either target CPU of FR and FR80.

m -CO

[Format]

-CO

[Description]
FR/FR80 common object can linked with either target CPU of FR and FR80.
When -CO option is specified, the error occurs by the instruction shown in the Table 4.8-1.

Table 4.8-1 Incompatibility of FR and FR80 Instructions

'I'I
Py

Instructions incompatibility FR80

X

LDRES @Ri+,#u4

STRES #u4,@Ri

COPOP #u4#CC,CRj,CRi

COPLD #u4#CC,Rj,CRi

COPST #u4,#CC,CRj,Ri

COPSV #ud,#CC,CRj,Ri

SRCHORI

SRCH1Ri

X| X| X O O O O] O] O
O] O] O] X| X| X| X| X

SRCHC Ri

O: Compatible X: Incompatible

¢ When -CO option is specified
The following error occurs by the instruction shown in the Table 4.8-1.
E4601A :Unusable operation mnemonic with common object (instruction-name)
¢ When -CO option is not specified
-Target CPU isFR
The following error occurs by the instruction for FR80 shown in the Table 4.8-1.

E4600A: Invalid operation mnemonic (instruction-name)

PART 1 OPERATION 67



CHAPTER 4 STARTUP OPTIONS

-Target CPU isFR80
The following error occurs by the instruction for FR shown in the Table 4.8-1.
E4600A: Invalid operation mnemonic (instruction-name)

The following errors occur regardless of presence specified of -CO option, when the instruction that
doesn't exist neither FR or FR80 is described.

E4600A: Invalid operation mnemonic (instruction-name)

Note:
-Cpu option cannot omit.
Please specify -cpu option when you make a FR/FR80 common object.

[Example]

fasm91lls -cpu MB91101 common module.asm -CO

fasm91lls -cpu MB91680 common module.asm -CO

68 PART 1 OPERATION



CHAPTER 5

PART 1 OPERATION

OPTIMIZATION CODE
CHECK FUNCTIONS

This chapter describes the optimization code check
functions of assemblers.

The optimization code check functions locate those
instruction codes in a program that can be rewritten to
speed up program execution.

5.1 Optimization Code Check Functions of fasm911s

69



CHAPTER 5 OPTIMIZATION CODE CHECK FUNCTIONS

5.1 Optimization Code Check Functions of fasm911s

For the fasm911s, those portions of a program that can be optimized, provided
optimization does not disturb program operation, are located.
For optimization other than branch instruction optimization, a warning message is

displayed.

B Optimization Code Check Functions for the fasm911s
For the fasm911s, the following six kinds of optimizable instructions are located:

70

Optimization of LDI instructions

Optimization of branch instructions

Optimization of LDI:20 and LDI:32 instructions

Optimization that prevents interlocks caused by register interference
Optimization that replaces normal branch instructions

Optimization that replaces delayed branch instructions

PART 1 OPERATION



5.1.1

CHAPTER 5 OPTIMIZATION CODE CHECK FUNCTIONS

Optimization Code Check Levels

Table 5.1-1 lists optimization code check processing to be detected and their
corresponding check levels.
A check level is specified using the start-time option -O.
If a check level is not specified, the default is 0.

B Check Levels and Optimization Code Check Processing

Table 5.1-1 Check Levels and Optimization Code Check Processing

Check
level

Optimization of LDI
instructions and
optimization of

branch instructions

Optimization of
LDI:20 and LDI:32
instructions

Optimization that
prevents register-
interference-
originated interlocks

Optimization that
replaces normal
branch instructions

Optimization that
replaces delayed
branch instructions

0 Y - - - -
1 Y N N - -
2 Y N N N N

Y: Optimization is performed.
N: The optimization code check displays a warning message.
- . An optimization code check is not performed.

PART 1 OPERATION

71



CHAPTER 5 OPTIMIZATION CODE CHECK FUNCTIONS

5.1.2 Forward Reference Symbol Optimization Function

The assembler provides a forward reference symbol optimization function.

B Forward Reference Symbol Optimization Function
The assembler provides aforward reference symbol optimization function.
This optimization function operates only on the following instructions;
e LDl instruction:LDI

* Extended branch instruction: CALL20 BRA20 Bcc20 CALL20:D BRA20:D Bec20:D
CALL32 BRA32 Bcec32 CALL32:D BRA32:D Bee32:D

Because the optimization function performs processing at high speed, some requirements are imposed on
the immediate value of the operand and the description of the branch address expression as explained
below. The symbols mean both forward reference and backward reference.

@ LDI instruction

» The symbol represents an address that has an absolute value.

¢ The symbol isincluded in the same section as the machine instructions.
The symbol isincluded in a section other than the code sections.

e Theformat of the expression applies to one of the following:
- symbol

- symbol + offset-value
- symbol - offset-value
[Example]
.SECTION P, CODE,ALIGN=2
LDI #fwd no+3,R2

.SECTION D,DATA,LOCATE=0x1000
fwd no: .DATA 1,2,3

@ Extended branch instruction

« The symbol represents an address that has an absolute or relative value.
» Thesymbol isincluded in the same section as the machine instructions.

e Theformat of the expression applies to one of the following:
- symbol

- symbol + offset-value
- symbol - offset-value
[Example]

.SECTION P,CODE,ALIGN=2
BRA32 #label,R2

label: ADD  #4,R1
In ordinary use, these requirements do not matter, and most instructions can be optimized.

72 PART 1 OPERATION



CHAPTER 5 OPTIMIZATION CODE CHECK FUNCTIONS

5.1.3 Optimization of LDI Instructions

Optimization is performed on LDl instructions (except LDI:8, LDI:20, and LDI:32
instructions).

B Optimization of LDI Instructions
Optimization is aways performed.
Optimization is performed on LDI instructions (except LDI:8, LDI:20, and LDI:32 instructions).

If the immediate value expression contains a forward reference symbol, the maximum number of bits is
usually selected as explained in Section "7.4 Forward Reference Symbols and Backward Reference
Symbols".

[Example When forward reference symbol optimization isnot performed]

.SECTION P,CODE,ALIGN=2
LDI #fwd no,R2 -- > LDI:32 #fwd no,R2 (A 32-bit instruction is created.)
.SECTION D,DATA,LOCATE=0x1000

fwd no: .DATA 1,2,3

[Example When forward reference symbol optimization is performed]

.SECTION P,CODE,ALIGN=2
LDI #fwd no,R2 ---> LDI:20 #fwd no,R2 (A 20-bit instruction is created.)
.SECTION D,DATA, LOCATE=0%x1000

fwd no: .DATA 1,2,3

As shown in the above example, the optimum instruction format is selected for the LDI instruction

according to the value of forward reference symbol fwd no. (In the above case, since the vaue of

fwd_no is 0x1000, the LDI:20 instruction is selected.)

Note :

For optimization, the symbol must satisfy some requirements. For details, see Section "5.1.2
Forward Reference Symbol Optimization Function”.

PART 1 OPERATION 73



CHAPTER 5 OPTIMIZATION CODE CHECK FUNCTIONS

5.1.4 Optimization of Branch Instructions

Optimization operates on branch instructions. The optimum instruction is created

based on the distance to the branch destination label.

The following instructions are optimized (20-bit extended branch instructions, 32-bit

extended branch instructions)

* Instructions to be optimized: CALL20 BRA20 Bcc20 CALL20:D BRA20:D Bcc20:D
CALL32 BRA32 Bcc32 CALL32:D BRA32:D Bcc32:D

B Optimization of Branch Instructions
Optimization is always performed.
Optimization operates on 20-hit extended branch instructions or 32-bit extended branch instructions.

First, the distance to the branch destination is calculated by the following expression:

distance = branch-destination-label - current-location - 2

Then the optimal instruction for the distance is created.
Table 5.1-2 shows the relationships between the distance and instructions that are created.
If the branch destination label is an external reference symbol, the distanceis classified as "other".

The following can be specified for the condition-specifying portion "cc".

Specif)_/ing Condition Specif)_/ing Condition
condition condition

EQ (2)=1 NV (V)=0

NE (2)=0 LT (V) or (N)=1

BC (©)=1 GE (V) or (N)=0

NC (C)=0 LE ((V) xor (N)) or (2)=1

N (N)=1 GT ((V) xor (N)) or (2)=0

(N)=0 LS (Q)or(2)=1
\Y% (V)=1 HI (C) or (2)=0

Note :

Some requirements are imposed on optimization. For details, see Section "5.1.2 Forward
Reference Symbol Optimization Function”.

74 PART 1 OPERATION



Table 5.1-2 Relationships between Distance and Created Instructions in Branch Instructions

CHAPTER 5 OPTIMIZATION CODE CHECK FUNCTIONS

Extended branch

) . Distance Created instruction
Instruction
CALL20 label,Ri -0x800 ~ +0x7fe CALL label
Other LDI:20 #lfflbel,Rl
CALL @R1
CALL20:D label,Ri -0x800 ~ +0x7fe CALL:D label
Other LDI:20 #1§be1 ,Ri
CALL:D @R1
BRA20 label,Ri -0x100 ~ +0xfe BRA label
Other LDI:20 #l?.bel,Rl
JMP @R1
BRA20:D label,Ri -0x100 ~ +0xfe BRA:D label
LDI:20 #label,Ri
Other JMP:D @Ri
Bcc20 label,Ri -0x100 ~ +0xfe Bcc label
Bxcc false
(*) . .
Other LDI:20 #1§be1,R1
JMP @R1
false:
Bcc20:D label,Ri -0x100 ~ +0xfe Bcc label
Bxcc false
(*) : i
Other LDI:20 #l?.bel,Rl
JMP:D @R1
false:
CALL32 label,R1 -0x800 ~ +0x7fe CALL label
Other LDI:32 #lébel,Rl
CALL @R1
CALL32:D label,Ri -0x800 ~ +0x7fe CALL:D label
Other LDI:32 #1§be1,R1
CALL:D @R1
BRA32 label,Ri -0x100 ~ +0xfe BRA label
Other LDI:32 #l?.bel,Rl
JMP @R1
BRA32:D 1label,Ri -0x100 ~ +0xfe BRA:D label
Other LDI:32 #lébel,Rl
JMP:D @R1
Bcc32 label,Ri -0x100 ~ +0xfe Bcc label
Bxcc false
(*) : i
Other ILDI:32 #lfflbel,Rl
JMP @R1
false:
Bcc32:D  label,Ri -0x100 ~ +0xfe Bcc label
(%) Bxcc false
Other LDI:32 #l?.bel,Rl
JMP:D @R1
false:

* 1 Xcc represents the condition opposite to cc.

PART 1 OPERATION

75



CHAPTER 5 OPTIMIZATION CODE CHECK FUNCTIONS

5.1.5

Optimization of LDI:20 and LDI:32 Instructions

Optimization operates on LDI:20 and LDI:32 instructions.

If the instruction can be replaced with one having a smaller immediate value, it is
replaced and a warning message is displayed.

The immediate value, however, must not include a forward reference symbol, and must
be an absolute value.

The following instructions are optimized.

* Instructions optimized: LDI:20, LDI:32

B Optimization of LDI:20 and LDI:32 Instructions

76

Optimization operates on LDI:20 and LDI:32 instructions.

If the instruction can be replaced with one having a smaller immediate value, it is replaced and a warning
message is displayed.
The immediate value, however, must not include a forward reference symbol, and must be an absolute
value.
e LDI:20 #120,Ri

If the value of i20 isin the range 0 to Oxff, the instruction is changed to an LDI:8 instruction.
e LDI:32 #I32,Ri

If the value of 132 isin the range 0 to Oxff, the instruction is changed to an LDI:8 instruction.

If the value of i32 isin the range 0x100 to Oxffff, the instruction is changed to an LDI:20 instruction.
[Example]

Before optimization After optimization
LDI:20 #0,R0 LDI:8 #0,RO
LDI:20 #0xff, RO LDI:8 #0xff,RO
LDI:32 #0,R0 LDI:8 #0,RO
LDI:32 #0xff,RO LDI:8 #0xff,RO
LDI:32 #O0xffff,RO LDI:20 #Oxffff,RO

PART 1 OPERATION



CHAPTER 5 OPTIMIZATION CODE CHECK FUNCTIONS

5.1.6 Optimization that Prevents Interlocks Caused by
Register Interference

Optimization operates on an instruction for which an interlock occurs because of
register interference. Itis checked the relation of before and after of instruction. If the
instruction can be placed before the preceding instruction, it is placed there to avoid an
interlock, and a warning message is displayed.
The following instructions are optimized.
* Instructions optimized: LD, LDUH, LDUB, LEAVE, ANDCCR, ORCCR, DIV1

MOV Ri, PS

DMOV @dir10, R13

DMOVB @dir8, R13

B Optimization that Prevents Interlocks Caused by Register Interference

When aregister hazard occurs, FR/FR80 controls pipelining by applying an interlock, avoiding the hazard.
Note that if there is no register interference, there is no hazard occurs and no interlock is applied.

Optimization operates on a instruction for which an interlock occurs because of register interference. Itis
checked the relation of before and after of instruction. If the instruction can be placed before the preceding
instruction, it is placed there to avoid an interlock, and a warning message is displayed.

Optimization operates on instructions whose number of machine cycles is represented by "b" in the
Programming Manual.

[Example 1 Instructionsthat arereplaced]

Before optimization After optimization Comment
ADDN #4,R1 LD @R4,RO RO in LD causes register interference.
LD @R4,RO ADDN #4,R1 LD and ADDN are replaced.
CMP  #0,RO CMP  #0,RO
ST R1, @R2 DMOV @dirl0,R13 R13in DMOV causes register interference.
DMOV @dirl0,R13 ST R1,@R2 DMOV and ST are replaced.
MOV ~ R13,RO MOV ~ R13,RO
ADDN #4,R1 LEAVE R14 in LEAVE causes register interference.
LEAVE ADDN #4,R1 LEAVE and ADDN are replaced.
MOV ~ R14,RO MOV ~ R14,RO

PART 1 OPERATION 77



CHAPTER 5 OPTIMIZATION CODE CHECK FUNCTIONS

78

[Example 2 Instructionsthat are not replaced]

Before optimization

After optimization

Comment

ADDN  #4,R1 «— Instructions are not replaced because no

LD @R4,RO register interference occurs.

CMP #0,R2

ST R2,@R4 «— Although RO in LD causes register

LD @R4, RO interference, instructions cannot be replaced
CMP #0,RO because @R4 in LD is specifiedin ST.
ADDN #4,R1 «— R15 in LEAVE does not cause an interlock.
LEAVE

MOV @R15+,RP

PART 1 OPERATION



5.1.7 Optimization that Replaces Normal Branch Instructions

CHAPTER 5 OPTIMIZATION CODE CHECK FUNCTIONS

Optimization operates on a normal branch instruction. It is checked the relation of
before and after of instruction. If the instruction can be placed before the preceding
instruction, a warning message is displayed, and it is changed to a delayed branch

instruction. In addition, the preceding instruction is moved to the delay slot.

This processing loads the instruction into the delay slot, maintain execution speed.

The following instructions are optimized.
* Instructions optimized: JMP, RET

CALL, BRA, Bcc

CALL20, BRA20, Bcc20
CALL32, BRA32, Bcc32

B Optimization that Replaces Normal Branch Instructions
When an instruction is determined to be a branch instruction, FR/FR80, which is performing pipelining, has
aready read the next instruction.

In branching, a normal branch instruction cancels an instruction that is being read unnecessarily while it is
being executed. This reduces execution speed.

Optimization operates on a normal branch instruction. It is checked the relation of before and after of
If the instruction can be placed before the preceding instruction, a warning message is
displayed, and it is changed to a delayed branch instruction. In addition, the preceding instruction is moved
tothedelay dot.

This processing loads the instruction into the delay slot, maintaining execution speed.

instruction.

For details of delayed branches, see the Programming Manual.

[Example 1 Instructionsthat arereplaced]

Before optimization After optimization Comment
ADDN  #4,RO BRA:D label BRA ischanged to BRA:D.
BRA label ADDN #4,R0O ADDN is moved to the delay slot.
ADDN #4,R0O CALL:D label CALL ischangedto CALL:D.
CALL label ADDN #4,R0 ADDN is moved to the delay slot.
ADDN #4,R0O BEQ:D label BEQ is changed to BEQ:D.
BEQ label ADDN #4,R0 ADDN is moved to the delay slot.

PART 1 OPERATION

79



CHAPTER 5 OPTIMIZATION CODE CHECK FUNCTIONS

80

[Example 2 Instructionsthat are not replaced]

Before optimization

After optimization

Comment

CMP #4,R0O «— Instructions cannot be replaced because an

BEQ label instruction that toggles a flag precedes a
conditional branch instruction.

MUL R2,R3 «— Instructions cannot be replaced because an

BRA label instruction before a branch instruction cannot
be moved to the delay dlot.

CALL:D 1labell «— Instructions cannot be replaced because the

ADDN #4,R0O delay slot precedes a branch instruction.

BRA label2

labell: «— Instructions cannot be replaced because a label

BRA label2 precedes a branch instruction.

PART 1 OPERATION



CHAPTER 5 OPTIMIZATION CODE CHECK FUNCTIONS

5.1.8 Optimization that Replaces Delayed Branch Instructions

Optimization operates on a delayed branch instruction. If there is a NOP instruction in
the delay slot, and the delayed branch instruction can be placed before the preceding
instruction, the NOP instruction is deleted, and a warning message displayed. In
addition, the preceding instruction is moved to the delay slot.
If the instructions cannot be replaced, the delayed branch instruction is changed to a
normal branch instruction, and the NOP instruction is deleted. A warning message is
also displayed.
If the delay slot holds an instruction other than a NOP instruction, the optimization is
not performed.
The following instructions are optimized.
* Instructions optimized: JMP:D, RET:D

CALL:D, BRA:D, Bcc:D

CALL20:D, BRA20:D, Bcc20:D

CALL32:D, BRA32:D, Bcc32:D

B Optimization that Replaces Delayed Branch Instructions

When an instruction is determined to be a branch instruction, FR/FR80, which is performing pipelining, has

aready read the next instruction.
The delayed branch instruction must execute the read instruction by storing it in the delay dlot.

For this reason, since the next instruction is inevitably executed during branching, the program must
written very carefully.

be

Generally, while a program is being developed, a NOP instruction is always placed in the delay slot. When

the program is closer to completion, the NOP instruction is deleted.

Optimization operates on a delayed branch instruction. If a NOP instruction is in the delay slot, and the
delayed branch instruction can be placed before the preceding instruction, the NOP instruction is deleted,

and awarning message is displayed. In addition, the preceding instruction is moved to the delay slot.

If the instructions cannot be replaced, the delayed branch instruction is changed to a normal branch

instruction, and the NOP instruction is deleted. A warning message is also displayed.
If the delay dlot holds an instruction other than a NOP instruction, the optimization is not performed.
For details of delayed branches, see the Programming Manual.

PART 1 OPERATION

81



CHAPTER 5 OPTIMIZATION CODE CHECK FUNCTIONS

[Example 1 Instructionsthat arereplaced]

Before optimization After optimization Comment
ADDN #4,R0O BRA:D label ADDN is moved to the delay slot.
BRA:D label ADDN #4,RO NOP is deleted
NOP
MOV R1,R2 CALL:D label MOV is moved to the delay slot.
CALL:D  label MOV R1,R2 NOP is deleted.

NOP

ADDN #4,R0O BEQ:D label ADDN is moved to the delay slot.
BEQ:D label ADDN #4,R0 NOP is deleted

NOP

[Example 2 Instructionsthat are not replaced]

Before optimization After optimization

Comment

ADDN #4,RO «—
CALL:D 1label
LDI:8 #4 ,R4

Thereisno optimization because an instruction
other than a NOP instruction isin the delay
Slot.

MUL R2,R3 MUL R2,R3 Instructions cannot be replaced because the

BRA:D label BRA label instruction before the branch instruction cannot

NOP be placed inthe delay slot. The delayed branch
instruction is therefore changed to a normal
branch instruction, and the NOP instruction is
deleted.

CALL:D 1labell CALL:D labell The instructions cannot be replaced because

ADDN #4,R0O ADDN #4,RO the delay slot precedes a branch instruction.

BRA:D label2 BRA label2 The delayed branch instruction is therefore

NOP changed to anormal branch instruction, and the
NOP instruction is del eted.

CMP #4,R0O CMP #4,R0 The instructions cannot be replaced because

BEQ:D label BEQ label the instruction before the conditional branch

NOP instruction is aflag-dependent instruction. The
delayed branch instruction is therefore changed
to anormal branch instruction, and the NOP
instruction is deleted.

labell: labell: Theinstructions cannot be replaced because a

BRA:D label2 BRA label2 label precedes abranch instruction. The
NOP delayed branchinstruction istherefore changed

to anormal branch instruction, and the NOP
instruction is del eted.

82

PART 1 OPERATION




CHAPTER 6
ASSEMBLY LIST

This chapter describes the contents of the assembly list.

6.1 Composition
6.2 Page Format
6.3 Information List
6.4 Source List

6.5 Section List

6.6 Cross-reference List

PART 1 OPERATION 83



CHAPTER 6 ASSEMBLY LIST

6.1 Composition

The assembly list is created if the start-time option -l or -If has been specified.
The assembly list consists of the following four lists:

Information list
Source list

Section list
Cross-reference list

B Composition
The assembly list is created if the start-time option -1 or -If has been specified.
The assembly list consists of the following four lists.

e [nformation list

The information list consists of specified start-time contents, the number of errors, the number of
warnings, and the names of source files, include files, and option files.

* Sourcelist

The source list consists of various items of information about assembling the source program.
Information is displayed for each line.

Error information, location, object data and other information are displayed.
e Sectionlist

The section list consists of the names and attributes of and other data about sections defined in the source
program.

* Cross-reference list

The cross-reference list consists of the definition of symbol names used in the source program and line
numbers that are referenced by those symbols.

B Relationship with Start-time Options
With the fasm911s, whether to display alist can be specified using start-time options.
For details of the start-time options, see Section "4.5 Options Related to Listing”.
Table 6.1-1 shows the relationship between lists and start-time options.

Table 6.1-1 Relationship between Lists and Start-time Options

List Start-time option Initial value
Information list -linf { ON|OFF} ON : Displayed
Source list -lsrc { ON|OFF} ON : Displayed
Section list -Isec { ON|OFF} ON : Displayed
Cross-reference list -lcros { ON|OFF} OFF: Not displayed

84 PART 1 OPERATION



6.2 Page Format

CHAPTER 6 ASSEMBLY LIST

The format of pages forming an assemble list is shown below. In fasm911s, the size of

this format can be specified by a startup option or pseudo-instruction.

When using start-time options, specify the number of lines with -pl, and the number of

columns with -pw.

When using pseudo-instructions, specify the number of lines with ".FORM LIN", and the
number of columns with ".FORM COL".

B Information List

The format of pages forming an assemble list is shown below. In fasm911s, the size of this format can be

specified by a startup option or pseudo-instruction.
When using start-time options, specify the number of lines with -pl, and number of columns with -pw.

When using pseudo-instructions, specify the number of lines with ".FORM LIN", and the number of

columns with ".FORM COL".

The header of each page consists of four lines.

Figure 6.2-1 shows the page format.

Figure 6.2-1 Page Format

Header

Number
of lines

A

Number of columns

\ 4

Number of lines

Number of columns

Range of specified values

0.20to 255

80 to 1023

Initial value

60

100

Note :

When 0 is specified as the number of lines, there are no page breaks.

PART 1 OPERATION

85



CHAPTER 6 ASSEMBLY LIST

B Header Format

86

The header consists of four lines. The fourth lineisablank line.

Figure 6.2-2 Header Format

Format of the first and second header lines

FR/FR80 Family SOFTUNE Assembler VxxLxx 2003-03-09 10:09:09 Page: 1
Assembler name/Version Date of assembly ~ Page number

(counting starts with
the first page)
Format of the third line of the header

« Information list

FR/FR80 Family SOFTUNE Assembler VxxLxx 2003-03-09 10:09:09 Page: 1
- ASSEMBLE INFORMATION - ( sample ) <& Module name

« Source list

FR/FR80 Family SOFTUNE Assembler VxxLxx 2003-03-09 10:09:09 Page: 2
- SOURCE LISTING - ( sample ) <« Module name

*: The data on this line can be changed to a character string specified with the .TITLE instruction
or .HEADING instruction.Section list

- Section list
FR/FR80 Family SOFTUNE Assembler VxxLxx 2003-03-09 10:09:09 Page: 10
- SECTION LISTING - ( sample ) <« Module name

- Cross-reference list

FR/FR80 Family SOFTUNE Assembler VxxLxxX 2003-03-09 10:09:09 Page: 11

- CROSSREFERENCE LISTING - ( sample ) < Module name

Format of the fourth header lines

This line is always blank.

PART 1 OPERATION




CHAPTER 6 ASSEMBLY LIST

6.3 Information List

The format (sizes) of pages composing the assembly list can be specified using start-
time options or pseudo-instructions.

B Information List

[Format 1]
Figure 6.3-1 Information List [Form 1]
FR/FR80 Family SOFTUNE Assembler VxxLxx 2003-03-13 17:22:30 Page: 1
- ASSEMBLE INFORMATION - ( sample )< Module name
. Ci d ified wh
| Command line : fasm91lls sample -W 2 ¢—— asosrzmg{; s?gr?(s:l ed when
\ \
| Total errors : 0 |
| Total warnings : 0 . |
Displayed if no
} There were no errors. 4 errors have occurred.
\

| Object file : sample.obj g—— Objectfile name |
| List file : sample.lst <«—— Listfile name \
‘ NO NEST SOURCE-FILE-NAME CREATE DATE/TIME ‘
B 0 sample.asm 2003-03-01 09:00:00 |
} Source file name Date of file created }

File number Current path : D:\WORK <@—— Current directory when assembly starts

(counting starts with 0) Include path . INC911 = D:\INCLUDE «— Include directory ‘
| Work file path :  TMP = D:\TMP €—— Work directory
| Default Option file : OPT911 = D:\ (fasm91ll.opt) «— Default option file
‘ + directory (and file

Envi name)

‘ n\_/lrglnmem Information about specified environment variables
| NO NEST OPTION-FILE-NAME variable name CREATE DATE/TIME
L) D:\fasm911l.opt <«—— Option file name 2003-03-01 09:00:00 |
\ -1 -P -lcros on < File contents |

PART 1 OPERATION 87



CHAPTER 6 ASSEMBLY LIST

[Format 2]

Figure 6.3-2 Information List [Form 2]

Command line

FR/FR80 Family SOFTUNE Assembler VxxLxx
- ASSEMBLE INFORMATION - ( sample )

2003-03-13 17:22:30

fasm91ls

-None-

sample.lst

p** Total errors
P++ Total warnings
Asterisks are &isplayed
if any errors or
warnings havq occurred. Object file
List file
NO NEST SOURCE-FILE-NAME
0 sample.asm
1 * sample.h

88

asterisks represents the nesting depth.)

Current path
Include path

Work file path
Default Option file

D: \WORK
INC911

TMP
OPT911

= -None- = D:\TOOL\LIB\911

CREATE DATE/TIME

-None- = D:\TOOL\LIB\911

-1 sample -Xg

First Line:
First Line:

Page: 1
Module name

[
[
) [
\
\

If any errors or warnings have occurred,

the number of each and the list line number of
the line of the first occurrence for the error or
warning is found are displayed.

\ INCLUDE\
D: \TMP

\

(fasm911.opt)

If no option file errors exist, no file

contents are displayed.

PART 1 OPERATION



CHAPTER 6 ASSEMBLY LIST

6.4 Source List

The source list consists of various items of information about assembling the source
program. Information is displayed for each line of the program.
Error information, location, object data and, other information are displayed.

B Source List

Figure 6.4-1 Source List

FR/FR80 Family SOFTUNE Assembler VxxLxx 2003-03-13 17:22:30 Page: 2
- SOURCE LISTING - ( sample )
SN LOC OBJ LLINE SOURCE

<sample.asm> —=========

DA 00000000 -----=-=---- <DATA>--—-————=—-—-—— 1 .SECTION DATA, DATA
DA 00000000 OOABCDEF 00000123 2 .DATA.W OxABCDEF, 0x123
DA 00000008 0020 0010 3 .DATA.H 32, 16
CO 00000000 ---=====--- <CODE>--—-——=—=—-—-—— 4 .SECTION CODE, CODE, ALIGN=4
CO 00000000 9FAO 5 NOP
CO 00000002 9FAO 6 NOP
CO 00000004 9FAO0 7 NOP
8 . IMPORT imp
CO 00000006 9F8100000000 R 9 LDT #rel, R1
CO 0000000C 9F8300000000 I 10 LDT #imp, R3
A
Object code value Source program
(hexadecimal number) If the source program
will not fit on one line,
Location value it is displayed on two lines or more.

(hexadecimal number)
List line number

First two characters of the section name These numbers correspond to

the list line numbers in the object file.
: 10 decimal digits.

The attribute of the value included in the object code.

The order of priority for the displayed attribute is as follows.
I:  External reference value
S: Section value
R: Relative value

Blank: Absolute value

PART 1 OPERATION 89



CHAPTER 6 ASSEMBLY LIST

6.4.1 Preprocessor and Optimization Code Check Processings

If any operation is performed on a line by the preprocessor or by the optimization code
check functions, a symbol is displayed for the line.

B Preprocessor and Optimization Code Check Processings

Figure 6.4-2 Preprocessor and Optimization Code Check Processings

SN LOC OBJ LLINE SOURCE
6 #ifdef DEF1
7 X .DATA 0 /* then */
8 #else

DA 00000004 00000001 9 .DATA 1 /* then */
10 #endif

Information about operations performed by the preprocessor
or optimization code check functions
Blank: Normal

Preprocessor
X: The line has not been assembled.
&: Macro expansion is performed for this line.
Optimization code check
X: The instruction has been deleted by optimization.
C: The instruction has been replaced with another
instruction by optimization.
O: A new instruction has been created by optimization.
V. The order of this and the next instruction have been

switched by optimization.

(This symbol always appears with A.)

The order of this and the preceding instruction have
been changed by optimization.

(The symbol always appears with V.)

>

90 PART 1 OPERATION



CHAPTER 6 ASSEMBLY LIST

6.4.2 Error Display

The following list format is displayed for a line containing an error.

B Error Display

Figure 6.4-3 Error Display

SN LOC OBJ LLINE SOURCE

DA 00000064 00000000 34 .DATA un_def
*** g.asm(34) W1527A: Undefined symbol: Treats as an external reference symbol (un_def)

Error ID number
Line number in the source file
(Not a list line number) W15272

Source file name T L Tool identifier (A: Assembler)

Error number (three digits)

Error level

Wi1: Warning level

E4: Syntax error

F9: Fatal error (abnormal termination of assembly)

PART 1 OPERATION 91



CHAPTER 6 ASSEMBLY LIST

6.4.3 Include File

The following list format is displayed for a file that has been read with the #include
instruction.

M Include File

Figure 6.4-4 Include File

SN LOC OBJ LLINE SOURCE
11 #include "aaa.h"
<aaa.h> —=========
CO 00000002 9FAOQ 12=1 NOP
CO 00000004 9FAO 13=1 NOP
CO 00000006 9FAO 14=1 NOP
<a.asm> ==========
Include file name If "-linc off" or ".LIST NOINC"
has been specified,
Name of the file located this portion is not displayed.
when control returns Error messages,
from the include file however, are displayed.

Number of include nests
(8 maximum)

92 PART 1 OPERATION



CHAPTER 6 ASSEMBLY LIST

6.4.4 .END, .PROGRAM, .SECTION

This section describes the list format of the following program structure definition
instructions:

 .END: Ends the source program.
« PROGRAM: Declares a module name.
e SECTION: Defines a section.

B .END

SN LOC OBJ LLINE SOURCE

25 .END
or
=> 00000300 25 .END 0x300 /*start address*/
or
=> 00000010 R 25 .END start /*start address*/
If specified, a start address R: Relative value
is displayed in hexadecimal. Blank: Absolute value
Anything written after the .END instruction is not assembled.
Anything written after the .END instruction is also not displayed in the list.

B .PROGRAM

SN LOC OBJ LLINE SOURCE

MODULE NAME = test_modulel 9 .PROGRAM test_modulel

A character string specified as the module name is displayed
If the character string is long, it is displayed in folding style

B .SECTION

SN LOC OBJ LLINE SOURCE

SE 00000000 ----------- <SECl>-----=-----~- 4 .SECTION SEC1,CODE,ALIGN=4

SE 00000010 ----------- <SEC2>-----==----~- 19 .SECTION SEC2,CODE, LOCATE=0x10

Location Section name

If the section name is longer than the display space,
it is displayed with truncating the exceeded characters.

First two characters of the section name

PART 1 OPERATION 93



CHAPTER 6 ASSEMBLY LIST

6.4.5 ALIGN, .ORG, .SKIP

This section describes the list format for the following address control instructions:
e .ALIGN: Performs boundary alignment.
« .ORG: Changes the value of a location counter.

 .SKIP: Increments the value of a location counter.
B ALIGN
SN LOC OBJ LLINE SOURCE
CO 00000004 - 00000001 [3]1 < [4] 16 .ALIGN 4
Location before the Specified ALIGN value
ALIGN instruction (decimal number)
Location after the Offset value to the ALIGN boundary
ALIGN instruction (decimal number)
B .ORG
SN LOC OBJ LLINE SOURCE
CO 00000500 29 .ORG 0x500

Location after the .ORG instruction

B .SKIP
SN LOC OBJ LLINE SOURCE
CO 0000002A - 00000020 [10] 25 .SKIP 10

Specified SKIP value (decimal number)
Location before the SKIP instruction

Location after the SKIP instruction

94 PART 1 OPERATION



6.4.6

.EXPORT, .GLOBAL, .IMPORT

CHAPTER 6 ASSEMBLY LIST

The following program link instructions are not changed in the list:
e .EXPORT: Declares an external definition symbol.

» .GLOBAL: Declares an external definition symbol or external reference symbol.
 .IMPORT: Declares an external reference symbol.
B EXPORT

SN LOC OBJ LLINE SOURCE

. ' . . 21 : .EXPORT expl, exp2
B GLOBAL

SN LOC OBJ LLINE SOURCE

- . . . 8 : .GLOBAL impl, expl
B .IMPORT

SN LOC OBJ LLINE SOURCE

. ' . . 6 : .IMPORT impl

PART 1 OPERATION

95



CHAPTER 6 ASSEMBLY LIST

6.4.7

EQU, .REG

This section describes the list format for the following symbol definition instructions:

.EQU: Assigns avalue to a symbol.
.REG: Assigns avalue to aregister list symbol.

96

Register list value set as register symbol value
(hexadecimal number)

EQU
SN LOC OBJ LLINE SOURCE
. ‘ ::00000100 . SyIilOl: .EQU 0x100
Set symbol value (hexadecimal number)
.REG
SN LOC OBJ LLINE SOURCE
. . :.(BEBF) . reg:jlz .REG (r0-r5,r9-r13)

PART 1 OPERATION



CHAPTER 6 ASSEMBLY LIST

6.4.8 .DATA, .BYTE, .HALF, .LONG, .WORD, .DATAB

This section describes the list format of the following area definition instructions
(integer):

« .DATA: Defines constants (integer).

» .BYTE: Defines constants (8-bit integer).

» .HALF: Defines constants (16-bit integer).

« .LONG: Defines constants (32-bit integer).

« .WORD: Defines constants (32-bit integer).

» .DATAB: Defines constant blocks (integer).

H .DATA
SN LOC OBJ This indicates that boundary LLINE SOURCE
: : : alignment has been performed. : :
SE 00000000 10 I}hif?ffzf::’qlhesameas 8 .DATA.B 0x10
SE 00000001 20 10 arorAHPE 9 .DATA.B 0x20,16
SE 00000003 0OR 00S 10 .DATA.B RELO1,SEC1
SE 00000006 - 00000005 [1] < [2] 11 .DATA.H 0x10
SE 00000006 0010
SE 00000008 0020 0010 12 .DATA.H 32,16
SE 0000000C 0000R 0000S 13 .DATA.H RELO1,SEC1
SE 00000010 00000010 14 .DATA.L 0x10
SE 00000014 00000020 00000010 15 .DATA.L 0x20,0x10
SE 0000001C 00000000R 000000008 16 .DATA.L RELO1,SEC1
Location Data value Symbol following a data value
If multiple data values are defined, I: External reference value
as many values as possible are S: Section value
displayed side by side R: Relative value
(hexadecimal number). Blank: Absolute value
B BYTE
Theformat in thelist is the same as that of .DATA.B.
B HALF
Theformat in the list is the same as that of .DATA.H.
B LONG
Theformat in thelist is the same asthat of .DATA.L.
B WORD

Theformat in thelist is the same as that of .DATA.W.

PART 1 OPERATION 97



CHAPTER 6 ASSEMBLY LIST

B .DATAB

SN LOC OBJ

SE 00000000 [2] 10
SE 00000002 [16]

SE 00000034 [2] 00

This indicates that boundary
alignment has been performed.
The format is the same as

that of .ALIGN.

0020

SE 00000024 - 00000022 [2] < [4]
SE 00000024 [2] 00000010

SE 0000002C [2] 00000000

Location

Data value

(hexadecimal number)

Repeat count
(decimal number)

98

LLINE

e}

11
12

Attribute included in a data value
External reference value
Section value
Relative value
Blank: Absolute value

SOURCE

.DATAB.
.DATAB.
.DATAB.

.DATAB.
.DATAB.

2,0x10
16,0x20
2,0x10

2,RELO1
2,SECL

PART 1 OPERATION



CHAPTER 6 ASSEMBLY LIST

6.4.9 .FDATA, .FLOAT, .DOUBLE, .FDATAB

This section describes the list format for the following area definition instructions
(floating-point data):

 .FDATA:Defines constants (floating-point numbers).

* .FLOAT:Defines constants (32-bit floating-point numbers).
 .DOUBLE:Defines constants (64-bit floating-point numbers).
 .FDATAB:Defines constant blocks (floating-point numbers).

B .FDATA
SN LOC OBJ LLINE SOURCE
SE 00000000 3F800000 40133333 6 .FDATA.S 0r1.0,0r2.3
SE 00000008 3FF0000000000000 7 .FDATA.D 0rl.0
SE 00000010 11112222 8 .FDATA.S 0x11112222
SE 00000014 1111222233334444 9 .FDATA.D 0x1111222233334444

Location Data value
If multiple data values are defined, as many
values as possible are displayed side by side
(hexadecimal number).

Note :

"00000024 - 00000022 [2] < [4]" indicates that boundary alignment has been performed. The format
is the same as that of .ALIGN.

B .FLOAT
The format in thelist is the same as that of .FDATA.S.

B .DOUBLE
Theformat in thelist is the same as that of .FDATA.D.

PART 1 OPERATION 99



CHAPTER 6 ASSEMBLY LIST

B .FDATAB
SN LOC OBJ LLINE SOURCE
SE 00000000 [2] 3F800000 8 .FDATAB. S 2,0rl.0
SE 00000008 [2] 3FF0000000000000 9 .FDATAB.D 2,0rl.0
Location Data value

(hexadecimal number)

Repeat count
(decimal number)

Note :

"00000024 - 00000022 [2] < [4]" indicates that boundary alignment has been performed. The format
is the same as that of .ALIGN.

100 PART 1 OPERATION



6.4.10 .RES, .FRES

CHAPTER 6 ASSEMBLY LIST

This section describes the list format of the following area definition instructions (no

data values):

 .RES: Areadefinition instruction (no data values: integer)
* .FRES: Area definition instruction (no data values: floating-point number)

B RES
SN LOC OBJ This indicates that boundary LLINE SOURCE
: : : alignment has been performed. : :
SE 00000000 [2]B The format is the same as that of .ALIGN. 3 _RES.B 2
SE 00000002 [5]H 9 .RES.H 5
SE 00000010 - 0000000C[4]<[8] 10 .RES.L 3+1-1
SE 00000010 [31L
L Data size
: B: 1 byte
Location H- 2 bytes
L: 4 bytes
Repeat count W:4 bytes
(decimal number)
B .FRES
SN LOC OBJ LLINE SOURCE
SE 00000000 [21S 8 .FRES.S 2
SE 00000008 [2]1D 9 .FRES.D 2

L Data size

S:Single-precision floating-point data
(area size: 4 bytes)

D:Double-precision floating-point data
(area size: 8 bytes)

Location

Repeat count
(decimal number)

PART 1 OPERATION

101



CHAPTER 6 ASSEMBLY LIST

6.4.11

.SDATA, .ASCII, .SDATAB

This section describes the list format for the following area definition instructions
(character string):
» .SDATA: Defines a character string.

* .ASCII:

» .SDATAB: Defines a character string block.

Defines a character string.

H .SDATA
SN LOC OBJ LLINE SOURCE
SE 00000000 61 62 63 64 65 66 67 68 69 6A 6 .SDATA "abcdefghijklmnopgrstuv\
6B 6C 6D 6E 6F 70 71 72 73 74 7 wxy1234567890" /*continuation-line*/
75 76 09 77 78 79 31 32 33 34
35 36 37 38 39 30
SE 00000024 31 32 33 FF 31 32 33 8 .SDATA "123\xff123", "12345\t\n"
SE 0000002B 31 32 33 34 35 09 0A
SE 00000039 31 32 33 09 31 32 33 9 .SDATA "123\tl123", " ", "\"", 6\
SE 00000039 10 "1234567890"
SE 00000039 22
SE 0000003A 31 32 33 34 35 36 37 38 39 30
SE 00000044 11 .SDATA "" /*null character-string*/
Location Data value
Displayed byte by byte (hexadecimal number)
B ASCII
Theformat in thelist is the same as that of .SDATA.
B .SDATAB
SN LOC OBJ Repeat count (decimal number) LLINE SOURCE
SE 000000A0 [2] 7 .SDATAB 2,"" /*null character-string*/
SE 000000A0 [5] 31 32 33 34 35 36 37 38 8 .SDATAB 5,"12345678901234567890"

102

Location

39 30 31 32 33 34 35 36 37 38

39 30

Data value

Displayed byte by byte (hexadecimal number)

PART 1 OPERATION



6.4.12 .DEBUG

CHAPTER 6 ASSEMBLY LIST

This section describes the list format for the following debugging information display

control instruction:

 .DEBUG: Specifies which portion of the debugging information to display.

B .DEBUG
SN LOC OBJ LLINE SOURCE
T Desuc TwromMATION Already ON : 28 : .DEBUG ON
Il DEBUG TNFORMATION on > OFF : 31 : .DEBUG OFF
I o__l_  DEBUG INFORMATION off -> ON : 40 : .DEBUG ON

If the debugging information
display option (-g) is not specified
at start time, "Ignore" is displayed.

PART 1 OPERATION

ON/OFF status
off -> ON: Debugging information display is on from this line.
on->OFF:  Debugging information display is off from this line.
Already ON:  Debugging information display has already been started.
Already OFF: Debugging information display has already been stopped.

103



CHAPTER 6 ASSEMBLY LIST

6.4.13 .LIBRARY

The following instruction specifying a library file is not changed in the list:
* .LIBRARY: Specifies a library file.

B LIBRARY

SN LOC OBJ LLINE SOURCE

10 .LIBRARY "library.lib"

104 PART 1 OPERATION



6.4.14

CHAPTER 6 ASSEMBLY LIST

.FORM, .TITLE, .HEADING, .LIST, .PAGE, .SPACE

This secti
e .FORM:
e TITLE:
e .HEADI
e LIST:
 .PAGE:

on describes the list format for the following list display control instructions:
Specifies the number of lines and the number of columns on a page.
Specifies attitle.

NG: Changes atitle.
Specifies details of displaying the assembly source list.
Specifies a page break.

» .SPACE: displaying blank lines.

SN LOC OBJ LLINE SOURCE
: 8 .FORM LIN=70,COL=80
70 lines
The list file format changes to 70 lines x 80 columns
starting with this line.
< 80 columns >
A
SN LOC OBJ LLINE SOURCE
6 .TITLE "SAMPLE PROGRAM"

The title is displayed on all pages starting with the first page.

FR/FR80 Family SOFTUNE Assembler VxxLxxX 2003-03-09 10:09:09 Page: 2
SAMPLE PROGRAM «¢ Character string specified with .TITLE

SN LOC OBJ LLINE SOURCE

SN LOC OBJ LLINE SOURCE

6 .HEADING "SAMPLE PROGRAM"

Page break occurs at the line where .HEADING is described.

FR/FR80 Family SOFTUNE Assembler VxxLxx 2003-03-09 10:09:09 Page: 2
SAMPLE PROGRAM «¢ Character string specified with .HEADING

SN LOC OBJ LLINE SOURCE

PART 1 OPERATION 105



CHAPTER 6 ASSEMBLY LIST

SN LOC OBJ LLINE SOURCE
6
The list is not displayed from the line 7 ; . -LIST ) OFF 1s . on the next
where .LIST OFF occurs to the line ) line (eighth line).
immediately before the line where .LIST 10 LIST ON
ON occurs. (The line number is increasing.) 11
SN LOC OBJ LLINE SOURCE
5 ; .PAGE is on the next line
(sixth line).
A page break occurs at the line where .PAGE is specified.
(If .PAGE is on the first line of the page, there is no page break.)
SN LOC OBJ LLINE SOURCE
5 ; .SPACE 2 is on the next

line (sixth line).

The specified number of blank lines are created. ——

7 ;

106 PART 1 OPERATION



6.5

Section List

CHAPTER 6 ASSEMBLY LIST

The section list consists of the names and attributes of and other data about sections

defined in the source program.

B Section List

Figure 6.5-1 Section List

Z
o

N oUW R o

10
11
12
13
14

SECTION-NAME

secl

sec02
on .
sec05
sec06
sec07
sec08
sec09
secl0
secll
secl2
secl3
secld
secl5
secl6
secl?

Section name

(Displayed in the order

in which they appear.)

FR/FR80 Family SOFTUNE Assembler VxxLxx
- SECTION LISTING -

2003-03-09 10:

09:09 Page: 10

( sample )
SIZE

00000008
00000008
00000004
0000006C
00000020
00000004
00000004
00000012
00000010
00000004
00000400
00000000
00000010
00000010
00000020
00000028

Section size

ATTRIBUTES
CODE REL
CODE REL
CODE REL
CODE REL
DATA REL
CONST REL
COMMON REL
STACK REL
DUMMY

CODE REL
CODE ABS
CODE REL
DATA ABS
CONST REL
COMMON ABS
STACK REL

(hexadecimal number)

Section number in the order that the sections appear
Start with 0. Dummy sections are not numbered.
These numbers correspond to the section numbers in the object file.

PART 1 OPERATION

Section type

Module name

ALIGN=2
ALIGN=2
ALIGN=2
ALIGN=2
ALIGN=4
ALIGN=4
ALIGN=4
ALIGN=4

ALIGN=4
LOCATE=00000100
ALIGN=4
LOCATE=00000000
ALIGN=4
LOCATE=00000010
ALIGN=4

Section placement format
ALIGN values are displayed for relative sections.

LOCATE values are displayed for absolute sections.

Blanks are displayed for dummy sections.

107



CHAPTER 6 ASSEMBLY LIST

6.6 Cross-reference List

The cross-reference list consists of the definition of the symbol names used in the
source program and the line numbers that are referenced by those symbols.

B Cross-reference List

Figure 6.6-1 Cross-reference List

FR/FR80 Family SOFTUNE Assembler VxxLxx 2003-03-09 10:09:09 Page: 11
- CROSSREFERENCE LISTING - ( sample ) Module name
NAME ATTRIB. VALUE DEFINITION/REFERENCES
Al . . . . . . . . . . . . . REL/EXP 00000000 11 #
DMYSEC . . . . . . . . . . . SECT/DUM 9 #
a . . . . . . . . . . . . . ABS 00000004 8 # 9 77
b . . .. ... .. . . . . ABS 00000008 13 # 14
bsscommonl . . . . . . . . . SECT/REL 00000000 6 #
bssnop . . . . . . . . . . . SECT/REL 00000000 9 #
bsssym name . . . . . . . . SECT/REL 00000000 3 #
call . . . . . . . . . . . . REL/EXP 00000024 14 #
commonl . . . . . . . . . . REL/EXP 00000000 6 #
data . . . . . . . . . . . . SECT/REL 00000000 11 #
fwdor . . . . . . . . . . . ABS 00000019 25 # 16
fwdo2 . . . . . . . . . . . ABS 00000055 27 # 20
miss . . . . . . . . . . . . UNDEFINED 39
nop . . . . . . . . . . . . REL/EXP 00000000 9 #
rel . . . . . . . . . . . . REL 00000006 12 #
size . . . . . . . . . . . . IMP 3
sym_name . . . . . . . . . . REL/EXP 00000000 3 #
text . . . . . . . . . . . . SECT/REL 00000000 1 #
text_abs . . . . . . . . . . SECT/ABS 0000000C 112 #
XYZ .« « <« <. . . . . . . . UNDEFINED 17
Symbol names (including section names) Symbol value Reference line number
Symbol names are displayed in alphabetical order. (hexadecimal number) (list line number)

(Note that uppercase names come ahead
of lowercase names.)
Definition line number (list line number)

Symbol type
ABS Absolute symbol
REL Relative symbol

ABS/EXP Absolute symbol (external definition specified)
REL/EXP Relative symbol (external definition specified)
IMP External reference symbol

SECT/ABS  Absolute section

SETC/REL  Relative section

SECT/DUM  Dummy section

UNDEFINED Undefined symbol

REGLIST Register list symbol

STRU/TAG  Structure tag name

STRU/MEM  Structure member name

STRU/ABS  Absolute symbol (structure variable)
STRU/REL  Relative symbol (structure variable)

108 PART 1 OPERATION



PART2 SYNTAX

Part 2 describes the syntax and format for writing assembly source programs.

CHAPTER 7 BASIC LANGUAGE RULES

CHAPTER 8 SECTIONS

CHAPTER 9 MACHINE INSTRUCTIONS

CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS
CHAPTER 11 PREPROCESSOR PROCESSING

CHAPTER 12 ASSEMBLER PSEUDO MACHINE INSTRUCTIONS

PART 2 SYNTAX 109



110 PART 2 SYNTAX



CHAPTER 7
BASIC LANGUAGE RULES

This chapter describes writing and rules that create the
program using the assembly language.

7.1 Statement Format

7.2 Character Set

7.3 Names

7.4 Forward Reference Symbols and Backward Reference Symbols
7.5 Integer Constants

7.6 Location Counter Symbols

7.7 Character Constants

7.8 Strings

7.9 Floating-Point Constants

7.10 Data Formats of Floating-Point Constants
7.11 Expressions

7.12 Register Lists

7.13 Comments

PART 2 SYNTAX 111



CHAPTER 7 BASIC LANGUAGE RULES

7.1 Statement Format

An assembly statement line consists of the following five fields:

Symbol field
Operation field
Operand field
Comment field
Continuation field

B Statement Format

The format of an assembly statement is as follows:

Continuation

Symbol field Operation field Operand field Comment field field

Every field is optional.
The symbol, operation, and operand fields must be separated by one or more spaces or tabs.

B Symbol Field

Thisfield is used to write a symbol.

A symbol startsin the first column. Alternatively, a symbol can start in any column after the first provided
it endswith acolon (:).

[Example]

SYMBOL
SYMBOL:
SYMBOL:

B Operation Field

Thisfield is used to write the operation mnemonic for a machine or pseudo-instruction.
Thisfield starts in the second or any subsequent column.

The symbol and operation fields must be separated by one or more spaces or tabs.
[Example]

.SECTION CODE
NOP
.DATA 100

B Operand Field

Thisfield is used to write one or more operands for a machine or pseudo-instruction.
Two or more operands must be separated by acomma (,).
The operation and operand fields must be separated by one or more spaces or tabs.

112 PART 2 SYNTAX



CHAPTER 7 BASIC LANGUAGE RULES

[Example]

.SECTION DATA,DATA,ALIGN=4
.DATA 1,2,4

.SECTION CODE, CODE,ALIGN=2
LD @(R14,4) ,R1

B Comment Field
Thisfield is used to write acomment.
Thisfield can start in any column.

A semicolon (;) or two dashes (//) indicates the start of a comment, which extends to the end of the line.
Comments of thistype are called line comments.

A comment can be enclosed by /* and */, asin C. Comments of this type are called range comments. A
range comment can be inserted anywhere.

[Example]

ST RP,@-SP ; Comment
ENTER /* Comment */ #20 // Comment

B Continuation Field
A backslash (\), specified at the end of aline, allows a statement to continue on the next line.
If any character other than a new line character follows a backslash (1), continuation is not allowed.

A backslash (\) can also be specified within a comment, character constant, or string.

[Example]
.DATA 0x01,0x02,0x03, \
0x04,0x05,0x06, ; Comment \
0x07,0x08,0x09
.SDATA "abcdefghijklmnopgrstuvwxyz \
ABCDEFGHIJKLMNOPQRSTUVWXYZ" /* String continuation */

PART 2 SYNTAX 113



CHAPTER 7 BASIC LANGUAGE RULES

7.2 Character Set

The following are the characters that can be used to write programs in assembly
language:

» Alphabetic characters: Uppercase letters (A to Z) and lowercase letters (a to z)
* Numeric characters: 0to 9

e Symbols: +-*/%<>|&~=()!"$@#_"'":.\;spacetab

B Character Set
Table 7.2-1 shows the character set that can be used for the assembler.

Table 7.2-1 Character Set

Type Character
Uppercase letter ABCDEFGHIJKLMNOPQRSTUVWXYZ
Lowercase letter abcdefghijklmnopgrstuvwxyz

Numeric character 0123456789

Symbols +-*[%<>|& =()!"
$@#_ '":.\;SpaceTab

Notes:
« Some terminals display a yen sign (¥) in place of a backslash (\).

« Symbols that are not included in the character set, as well as Japanese-encoded characters
(SJIS or EUC code), can be used in a comment or string.

114 PART 2 SYNTAX



CHAPTER 7 BASIC LANGUAGE RULES

7.3 Names

The assembler uses names to identify and refer program elements.

Names such as module names, symbols, section names, structure tag names, register
list symbols, and macro names are used.

The following are reserved words:

* Register names: These vary with the architecture.

» Size operators : SIZEOF

B Naming Rules
« Thefirst character of a name must be an alphabetic character or underscore ().

e The second and subsequent characters of a name are alphabetic characters, numeric characters, and
underscores ().

¢ Names are separated the uppercase from lowercase.
B Name Classification
Names are classified by purpose, as described below:

@® Module names

Module names are defined with the .PROGRAM instruction. They are used to identify objects.

@ Symbols

Symbols are names to which values have been assigned.
They are usually defined in asymbol field.

They are used as branch destination labels or data addresses.
Vaues are assigned with instructions such as .EQU.

@ Section names

Section names are defined with the .SECTION instruction.
They are used to identify sections.
They are assigned to symbols.

When a section name is used as aterm in an expression, it indicates the start address of the section that is
to be set after linking is completed.

@ Structure tag names
Structure tag names are defined with the .STRUCT instruction.
They are used to identify structures.

@ Register list symbols

Register list symbols are defined with the .REG instruction. They represent register lists.
They are assigned to symbols.

PART 2 SYNTAX 115



CHAPTER 7 BASIC LANGUAGE RULES

@ Macro names
Macro names are used with the preprocessor.
For information about the preprocessor, see "CHAPTER 11 PREPROCESSOR PROCESSING".

B Reserved Words
Reserved words are names that have been reserved for the assembler. The user cannot redefine them.

Reserved words are not case-sensitive.
The following are reserved words:

@ Register names:

RO to R15, AC, FP, SP, PS, TBR, RP, SSP, USP, MDH, MDL, CRO to CR15

@ Operators
SIZEOF

@ Other reserved names

The following are reserved names for the linker.

In the assembler, these cannot be used even though no error detection is provided to detect the use of
these reserved names.

* Section names and symbol names starting with_ ROM_or _RAM _.

116 PART 2 SYNTAX



CHAPTER 7 BASIC LANGUAGE RULES

7.4 Forward Reference Symbols and Backward Reference
Symbols

In an assembly program, symbols used as operands for machine or pseudo-
instructions are handled as forward reference symbols or backward reference symbols.
When a used symbol has not yet been defined, it is handled as a forward reference
symbol.

When a used symbol has already been defined, it is handled as a backward reference
symbol.

B Forward Reference Symbols and Backward Reference Symbols
In an assembly program, symbols used as operands for machine or pseudo-instructions are handled as
forward reference symbols or backward reference symbols.
When a used symbol has not been defined, it is handled as aforward reference symbol.
When a used symbol has already been defined, it is handled as a backward reference symbol.
[Example]
BEQ aaa /* aaa is a forward reference symbol for the BEQ instruction */
aaa:
BLT aaa /* aaa is a backward reference symbol for the BLT instruction */
The following restrictions apply to symbols handled as forward reference symbols:

* An expression containing a forward reference symbol, even when the symbol has an absolute value, is
handled asif it were arelative expression. A forward reference symbol, therefore, cannot be used as an
operand for which only an absolute value can be specified.

« When aforward reference symbol is used as an operand for a machine instruction, instruction code is
usualy generated with the maximum number of bits for the range of selectable bits. For example, when
LDI # forward-reference-symbol,Ri is written, LDI:32 is selected. In most of these cases, however,
even though the code contains forward reference symbols, the optimum code is generated because the
assembler performs optimization for forward reference symbols.

For more information, see Section "5.1.2 Forward Reference Symbol Optimization Function”.

B Size Operator
In general, the size operator is handled as a relative value because the size is calculated by the linker.
However, the size of adummy section is calculated by the assembler.

In this case, the size operator is handled as a forward reference symbol for processing reasons.
For information about the size operator, see Section "7.11.4 Values Calculated from Names".

PART 2 SYNTAX 117



CHAPTER 7 BASIC LANGUAGE RULES

7.5 Integer Constants

There are four integer constant types: binary constant, octal constant, decimal
constant, and hexadecimal constant.

B Integer Constants

There are four integer constant types. binary constant, octal constant, decimal constant, and hexadecimal
constant.

Also, the long type specification (such as 123L) and unsigned type specification (for example, 123U) in C
are supported.
B Binary Constants
Binary constants are integer constants represented in binary.
Each binary constant must be given a prefix (B' or Ob) or suffix (B).
Prefixes and suffixes can use either uppercase or lowercase.
[Examplé]
B’0101 0b0101 0101B
B Octal Constants
Octal constants are integer constants represented in octal.
Each octal constant must be given a prefix (Q' or 0) or suffix (Q).
Prefixes and suffixes can use either uppercase or lowercase.
[Example]
Q’'377 0377 377Q
B Decimal Constants
Decimal constants are integer constants represented in decimal.
Each decimal constant can be given a prefix (D") or suffix (D).
Prefixes and suffixes are optional only for decimal constants.
Prefixes and suffixes can use either uppercase or lowercase.
[Example]
D’ 1234567 1234567 1234567D
B Hexadecimal Constants
Hexadecimal constants are integer constants represented in hexadecimal.
Each hexadecimal constant must be given a prefix (H' or 0x) or suffix (H).
Prefixes and suffixes can use either uppercase or lowercase.
[Examplé]
H'ff 0xFF  OFFH

118 PART 2 SYNTAX



CHAPTER 7 BASIC LANGUAGE RULES

7.6 Location Counter Symbols

Location counter symbols represent the current location counter.
The dollar sign ($) is used as a location counter symbol.

B Location Counter Symbols
The assembler uses the location counter for addressing during assembly.
The current location value can be referred by using location counter symbols.
The dollar sign ($) is used as alocation counter symbol.

The location counter value is an absolute value for an absolute section, and a relative value for a relative
section.

[Examplé]

BEQ  S$+4
CALL label-$

PART 2 SYNTAX 119



CHAPTER 7 BASIC LANGUAGE RULES

7.7

Character Constants

Character constants represent character values.
Each character constant must be enclosed in single quotation marks (').
Each character constant can contain up to four characters.

Bl Character Constants

Each character constant must be enclosed in single quotation marks ().

Characters, extended representation, octal notations, and hexadecimal notations can be used as character
constants.

Each character constant can contain up to four characters.
Character constants are handled as a base-256 system.
e Characters

Any character (including the space character) except a backslash (\) and single quotation mark (*) can be
used as character constants.

[Example]
'p’ "@A’ TOA" "
« Extended representation
A backslash (\) followed by a specific character can be used as a character constant.
Character constants of thistype are called extended representation.
Table 7.7-1 lists the extended representation.

Table 7.7-1 Extended Representation

Character Character constant Value
New line \n O0x0A
Horizontal tab \t 0x09
Backspace \b 0x08
Carriage return \r 0x0D
Form feed \f 0x0C
Backslash \\ 0x5C
Single quotation mark \ 0x27
Double quotation mark \" 0x22
Alert \a 0x07
Vertical tab \v 0x0B
Question mark \? Ox3F

Note :

Only lowercase letters can be used in extended representation.

120

PART 2 SYNTAX



CHAPTER 7 BASIC LANGUAGE RULES

[Example]
'\I'l' /\u I\Il\\l
e Octal representation
When an octal representation is used, a character code bit pattern can be directly specified to represent

one-byte data.
Each octal representation starts with a backslash (\), and contains up to three octal digits.
[Example]
Character constant Bit pattern
"\0’ b’ 00000000
"\377' br11111111
"\53" b’00101011
"\0123" b’00001010 — Divided into ’\012’ and '3’

» Hexadecimal representation

When a hexadecimal representation is used, a character code bit pattern can be directly specified to
represent one-byte data.

Each hexadecimal representation starts with a backslash (1), and contains character x (lowercase) one or
two hexadecimal digits.

[Examplé]
Character constant Bit pattern
"\x0"’ b’ 00000000
"\xff’ br11111111
"\x2B’ b’00101011
"\x0A5" b’00001010 — Divided into ’'\x0A’’ and 'S5’

PART 2 SYNTAX 121



CHAPTER 7 BASIC LANGUAGE RULES

7.8 Strings

Each string must be enclosed in double quotation marks ().

W Strings
Each string must be enclosed in double quotation marks ().

Strings use the same formats as those for character strings. For more information, see Section "7.7
Character Constants'.

To specify a double quotation mark (") in astring, use an representation (\").
A single quotation mark (") can be specified without using an representation.
[Example]

"ABCD\n"

"012345\n\0"

"\xff Fujitsu\tMicroelectronics\n\0377\0"

Note :

When a Japanese string is written, it is output to the object in its Japanese encoding (SJIS or EUC).
The assembler does not convert the code.

122 PART 2 SYNTAX



CHAPTER 7 BASIC LANGUAGE RULES

7.9 Floating-Point Constants

The following are the formats for floating-point constants:

o [Or][+|-){.d|d[.[d]1} [e[[+|-]d]]: dis a decimal number.
o [F1[+|-{.d|d[.[d]]} [e[[*+|-]d]]: d is a decimal number.
e Oxh: his ahexadecimal number.
 H'h: his ahexadecimal number.

B Notation for Floating-point Constants
[Format 1]

[or] [+]-1 {.d|d [.[dl]} [e [[+]-1 4al]
[F'] [+]-1 {.d|a [.[dl]} [e [[+]-1 4al]

d is a decimal number.

[Description]
A valueis used to specify afloating-point constant.
Theletter "e" indicates the specification of the exponent part.
The value that follows "€" is the exponent part.
An uppercase "E" can be used instead of alowercase"e".
A prefix (Or or F') is optional.
[Example]
0r954 Or-12e+0 415.
F’ .5 F’ 2.0e2 -2.5E-4
[Format 2]

0xh
H'h h is a hexadecimal number.

[Description]

A bit pattern is used to directly specify a floating-point constant.

A hit pattern for the data length is specified using a hexadecimal number.
[Example1: Torepresent negative infinity with double precision:]

OxFFF0000000000000

[Example 2: To represent negative infinity with single precision:]

OxFF800000

PART 2 SYNTAX

123



CHAPTER 7 BASIC LANGUAGE RULES

B Specification of Single or Double Precision
Whether a floating-point constant has single precision (32 hits) or double precision (64 bits) depends on the
pseudo-instructions or the size specification.
» Single precision (32 bits) is specified when:
1) No size specification appears in a pseudo-instruction for a floating-point constant.
2) The size specification symbol Sis used.
3) The .FLOAT instruction is used.
» Double precision (64 bits) is specified when:
1) The size specification symbol D is used.
2) The .DOUBLE instruction is used.
[Example]
.FDATA.S 1.2 /* Single precision is specified because the S size specification is used */
.FDATA.D 1.2 /* Double precision is specified because the D size specification is used */
.FDATA 1.2 /* Single precision is specified because no size specification is used */

.FLOAT 0.1 /* Single precision is specified because the .FLOAT instruction is used */
.DOUBLE 0.1 /* Double precision is specified because the .DOUBLE instruction is used */

124 PART 2 SYNTAX



CHAPTER 7 BASIC LANGUAGE RULES

7.10 Data Formats of Floating-Point Constants

The data formats of floating-point constants comply with the ANSI/IEEE Std754-1985
specifications.

The following two data formats are provided for floating-point constants:

» Data format for single-precision floating-point constants

» Data format for double-precision floating-point constants

The range of the representable floating-point constants is shown below.

B Data Format of Single-precision Floating-point Constants

The data format of single-precision floating-point constants includes 1 bit in the sign part, 8 bits in the
exponent part, and 23 bits in the mantissa part.

31 30 23 22 0
Exponent part Mantissa part
Sign part

B Data Format of Double-precision Floating-point Constants

The data format of double-precision floating-point constants includes 1 bit in the sign part, 11 bits in the
exponent part, and 52 bits in the mantissa part.

63 62 52 51 0

!

Sign part

Exponent part Mantissa part

PART 2 SYNTAX 125



CHAPTER 7 BASIC LANGUAGE RULES

B Range of the Representable Floating-point Constants
Table 7.10-1 shows the range of the representabl e floating-point constants.

126

Table 7.10-1 Range of the Representable Floating-Point Constants

Precision

Range of representable floating-point constants

Single precision

-3.40282356779733661637e+38
to -1.17549431578982589985e-38
-0
0
1.17549431578982589985e-38
to 3.40282356779733661637e+38

Double precision

-1.79769313486231580793e+308
to -2.22507385850720125958e-308
-0
0
2.22507385850720125958e-308
to 1.79769313486231580793e+308

PART 2 SYNTAX



7.11  Expressions

CHAPTER 7 BASIC LANGUAGE RULES

Expressions can be used in places where addresses or data values can be specified.

C-like operators are provided for expressions.

B Expression Syntax
Thefollowing is the BNF notation syntax:

[Syntax]

<expression>::=<expression>'||'<expression>
;:=<expression>'& & '<expression>
;1=<expression>'|'<expression>
‘:=<expression>"'<expression>
;:=<expression>'& '<expression>
;:=<expression>{ '=="['1="} <expression>
si=<expression>{ '<''<='|'>'|'’>="} <expression>
;1=<expression>{'<<'['>>"} <expression>
;:=<expression>{'+'[-'} <expression>

i=<expression>{"*'|'/'%"} <expression>

2=("~+']-'|'SIZEOF'} <expression>
i ='('<expression>")'
=<term>

Logical OR expression
Logical AND expression
Bitwise OR expression
Bitwise XOR expression
Bitwise AND expression
Equality expression
Relational expression
Shift expression
Addition expression
Multiplication expression
Unary expression
Parenthesized expression

<term>::={ humeric-constant|character-constant|symbol |l ocation-counter}

Note:

Every expression is an integer expression. Floating-point constant expressions are not supported.

B Expression Types

Expressions are calculated during assembly. Relative symbols, externa reference symbols, and section
symbols are kept as terms, then processed by the linker. Therefore, for any expressions containing relative
symbols, external reference symbols, or section symbols, relocation information is generated, and then the

expressions are processed by the linker.
Expressions are classified as shown below:

@ Absolute expressions

« Expression that consists of only numeric constants, character constants, and/or symbols having absolute

values

« Expression that does not contain any forward reference symbols

« Expression that does not contain any size operators

PART 2 SYNTAX

127



CHAPTER 7 BASIC LANGUAGE RULES

@ Simple relative expressions

« Expression that contains asingle relative value
« Expression that does not contain any forward reference symbols
» Expression that does not contain any size operators

@ Compound relative expressions

» Expression that contains two or more relative values

« Expression that contains one or more external reference values

» Expression that contains one or more section values

« Expression that contains one or more forward reference symbols

» Expression that contains one or more size operators

A relative expression usualy refers to a compound relative expression.

B Precision in Operations of Expressions

Operations with a precision of 32 bits are performed on expressions. Note that the result of an operation
with a precision of more than 32 bits is not assured. (If such an operation is performed, no error will
result.).

128 PART 2 SYNTAX



CHAPTER 7 BASIC LANGUAGE RULES

7.11.1 Terms

Terms represent absolute values, relative values, external reference values, or section
values. They can be used in expressions.

B Term Types
The following term types are provided:
* Numeric constant
» Character constant
» Symbol (absolute, relative, external reference, and section)
* Location counter (%)
Each term has an absolute value, relative value, external reference value, or section value.
B Absolute Values
Any of the following terms has an absolute value:
e Numeric constant
e Character constant
« Symbol defined with the .EQU instruction
« Symbol that represents an address within an absolute section
» Location counter within an absolute section
» Section symbol for an absolute section
» Sizeoperator for calculating the size of adummy section
B Relative Values
Since relative values are resolved by the linker, relocation information is generated.
Any of the following terms has arelative value:
« Symbol that represents an address within arelative section
 Location counter within arelative section
» Sizeoperator for calculating the size of a non-dummy section
B External Reference Values
Since external reference values are resolved by the linker, relocation information is generated.
The following term has an external reference value:
» External reference symbol
B Section Values
Each section value has the start address of a section.
Since section values are resolved by the linker, relocation information is generated.
Only section symbols for relative sections have section values.

Section symbols for absolute sections have absolute values.

PART 2 SYNTAX 129



CHAPTER 7 BASIC LANGUAGE RULES

7.11.2

Range of Operand Value

The range of the value of the operands that describes an operational equation that can

be described is determined according to the type.

The assembler displays a warning or an error when the value of the operand operation

result is out of range.

Whether the message is a warning or an error is determined by the specification of the -OVFW

and -XOVFW options. (Refer to Section "4.8.10 -OVFW, -XOVFW".)
This section explains the range of the operand value.

B Range of Operand Values

Table 7.11-1 lists examples of operand value range.

130

If the operational result is outside of the range in the table below (Table 7.11-1), the assembler will display

awarni ng or an error.

For details on each operand, see the Hardware Manual.

Table 7.11-1 Example Ranges of Operand Values

Operand Types

Range of Values

4-bit immediate value (i4)

0to 15 (0 when expanded), or -16 to -1

(negative when expanded)
Signed 8-bit immediate value (i8, s8) -128 to 255
Signed 10-bit immediate value (s10) -512 to 508
Signed 20-bit immediate value (i20) -524288 to 1048575
Signed 32-bit immediate value (i32) -2147483648 to 4294967295
Unsigned 4-bit immediate value (u4) 0to15
Unsigned 8-bit immediate value (u8) 0to 255
Unsigned 10-bit immediate value (u10) 0to 1020
Unsigned 6-bit address value (udisp6) 0to 60
Signed 8-hit address value (disp6) -128to 127
Signed 9-bit address value (disp9) -256 to 254
Signed 10-bit address value (disp10) -512 to 508
Unsigned 8-hit address value (dir8) 0to 255
Unsigned 9-bit address value (dir9) 0to 510
Unsigned 10-bit address value (dir10) 0to 1020
Signed 9-bit branch address (label9) -128to0 254
Signed 12-bit branch address (label 12) -2048 to 2046

PART 2 SYNTAX




CHAPTER 7 BASIC LANGUAGE RULES

7.11.3  Operators

Operators are used in expressions.

Boolean values are assumed to be true if they are nonzero; they are assumed to be
false if they are zero.

The following are the operators:

* Logical operators: || &&!

* Bitwise operators: | & " ~

* Relational operators: ==!l=<<=>>=

« Arithmetic operators: +-*/% >> << +(unary-expression) -(unary-expression)

» Operators for calculating values from names: SIZEOF

B Boolean Values
Boolean values are assumed to be true if they are nonzero; they are assumed to be false if they are zero.

B Logical Operators
The following are the logical operators:
* expression|lexpression: Boolean value OR operation
e expression& & expression: Boolean value AND operation
» lexpression: Boolean value inversion
B Bitwise Operators
The following are the bitwise operators:
e expression|expression: Bitwise OR operation
e expression&expression: Bitwise AND operation
* expressionexpression: Bitwise X OR operation (exclusive OR operation)
e ~expression:; Bitwiseinversion
B Relational Operators
For evaluation of an expression based on arelational operator, 1 is assumed when the expression is true; 0
is assumed when the expression isfalse.
Thefollowing are the relational operators:
e expression==expression:Equal to
» expression!=expression: Not equal to
* expression<expression: Lessthan
e expression<=expression: Lessthan or equal to
* expression>expression: Greater than
e expression>=expression:Greater than or equal to

PART 2 SYNTAX 131



CHAPTER 7 BASIC LANGUAGE RULES

B Arithmetic Operators
The following are the arithmetic operators:

expression+expression: Addition
expression-expression:  Subtraction
expression* expression: Multiplication
expression/expression:  Division
expression%expression: Modulo operation
expression<<expression: Left shift
expression>>expression: Right shift

+expression:; Positive
-eXpression: Negative

B Operators for Calculating Values from Names
The following are the operators for calculating values from names.

132

For more information, see Section "7.11.4 Values Calculated from Names'.

SIZEOF section: Size operator

PART 2 SYNTAX



CHAPTER 7 BASIC LANGUAGE RULES

7.11.4 Values Calculated from Names

The following
programming:

special operators are provided to refer values required for addressing or

» SIZEOF: Size operator

B Section Size Extraction (SIZEOF Operator)
[Format]

SIZEOF section-symbol
SIZEOF (section-symbol)

A section symbol can be enclosed in parentheses.

[Description]

The size operator is used to calculate the size of a section.
Section symbols, therefore, are the only terms that can be used as operation for SIZEOF.

Because the section size is calculated by the linker, any expression that contains the size operator is
handled as arelative expression.

For dummy sections, however, because the code is not output to an object file, the size is calculated by
the assembler.

In this case, the assembler handles the size operator as if it were a forward reference symbol. This is
because multiple subsections are allowed for composing a section so that the section size is unknown
until the assembler completes internal processing PASS1. That is, each expression containing the size
operator is handled as if it were a relative expression, regardless of whether it eventualy takes an
absolute value.

[Example]

.SECTION ABC,DATA,ALIGN=4
.SECTION PROGRAM, CODE,ALIGN=4
LDI #SIZEOF (ABC),R1

LDI #SIZEOF (DMY) ,R2

.SECTION DATA,DATA,ALIGN=4
.DATA SIZEOF (PROGRAM) , SIZEOF (DMY)

.SECTION DMY,DUMMY,ALIGN=4

PART 2 SYNTAX 133



CHAPTER 7 BASIC LANGUAGE RULES

B Pseudo-instructions for which an Expression Containing the Size Operator cannot be

Specified

An expression containing the size operator cannot be used for the pseudo-instructions listed below.

Any expression containing the size operator is valid (can be specified) for machine instructions.

.END instruction (start address)
.SECTION instruction (boundary value and start address)
ALIGN instruction (boundary value)
.ORG instruction (expression)

.SKIP instruction (expression)

.EQU instruction (expression)
.DATAB instruction (expression 1)
.FDATAB instruction (expression 1)
.RES instruction (expression)

.FRES instruction (expression)
.SDATAB instruction (expression)

B Obtaining the Size of a Section in Another Module

To obtain the size of a section in another module, create a blank section for the desired section, then use the
Size operator.

134

[Example] To obtain the size of section Sin another module;

.SECTION S,STACK,ALIGN=4 /* Create a blank section for section S */
.SECTION P, CODE,ALIGN=2
LDI #SIZEOF(S),R1 /* Use the size operator to obtain the size of section S */

PART 2 SYNTAX



7.11.5

Precedence of Operators

CHAPTER 7 BASIC LANGUAGE RULES

The precedence of operators is the same as that in C.

B Precedence of Operators

Table 7.11-2 shows the precedence of operators.

Table 7.11-2 Precedence of Operators

Precedence Operator Associativity Target expression
1 @] L eft-to-right Parenthesized expression
2 S!I Z~E+OF Right-to-left Unary expression
3 * [ % L eft-to-right Multiplication expression
4 +- L eft-to-right Addition expression
5 << >> L eft-to-right Shift expression
6 <<=>>= L eft-to-right Relational expression
7 === L eft-to-right Equality expression
8 & L eft-to-right Bitwise AND expression
9 A L eft-to-right Bitwise XOR expression
10 | L eft-to-right Bitwise OR expression
11 && L eft-to-right Logical AND expression
12 | Left-to-right Logical OR expression
[Example]
.IMPORT imp
.DATA 10 + 2 * 3

data_h: .DATA
data 1: .data

imp >> 8 & Oxff
imp & Oxff

PART 2 SYNTAX 135



CHAPTER 7 BASIC LANGUAGE RULES

7.12  Register Lists

In a register list, zero or more general-purpose registers can be defined.
When defining two or more registers, separate them with a comma (,).

B Register Lists
[Format]

([register-specification [,register-specification] ... 1)

register-specification: {register|range|register-list-symbol}
register: General-purpose register for each target architecture
range: register-register
register-list-symbol: Symbol to which aregister list is assigned
[Description]
In aregister list, zero or more general-purpose registers can be defined.
When defining two or more registers, separate them with acomma (,).
When arange is specified, register numbers must be listed in ascending order.
A register list symbol can be specified.
Before aregister list symbol can be used, however, it must have already been defined.
[Example]
STM (R1,R2,R7 to R9)
WKREG: .REG (Rl to R4)
LDM (WKREG)
LDM (WKREG,R8,R10)

136 PART 2 SYNTAX



CHAPTER 7 BASIC LANGUAGE RULES

7.13 Comments

There are two types of comment: line comment and range comment.
A line comment starts with a semicolon (;) or two slashes (//).
A comment can be enclosed in /*and */, as in C.

B Comments

[Format]

/* Range comment */
// Line comment
;  Line comment

[Description]
A comment can start in any column.
There are two types of comment: line comment and range comment.
A line comment starts with a semicolon (;) or two slashes (//).
A comment can be enclosed in /* and */, asin C.
Comments of this type are called range comments.
A range comment can be inserted anywhere.
[Examplé]

; Line comment
// Line comment

.SECTION D1,DATA,ALIGN=2 // Line comment
/* Range comment */ .DAT 1

.DATA /* Range comment */ Oxff ; Line comment

PART 2 SYNTAX

137



CHAPTER 7 BASIC LANGUAGE RULES

138 PART 2 SYNTAX



CHAPTER 8
SECTIONS

The memory space can be divided into different areas.
Each area that is used meaningfully is called a section.
Based on how used, the memory space is divided into
sections. Sections having the same name can be
grouped.

Because linkage between sections having the same
name is created during linking, using sections enables
the memory space to be handled logically.

This chapter describes the coding of sections.

8.1 Section Description Format

8.2 Section Types

8.3 Section Types and Attributes

8.4 Section Allocation Patterns

8.5 Section Linkage Methods

8.6 Multiple Descriptions of a Section

8.7 Setting ROM Storage Sections

PART 2 SYNTAX 139



CHAPTER 8 SECTIONS

8.1 Section Description Format

The .SECTION instruction declares the start of a section description.
Multiple descriptions of a section are allowed.

The section type is determined by the type of the section.

The allocation pattern of a section is determined by its allocation pattern.

B Section Description Format
[Format]

.SECTION section-namel[,section-typel] [,section-allocation-pattern]

text

section-type: { CODE|DATA|CONST|COMMONI|STACK|DUMMY |IOJIOCOMMON}
section-allocation-pattern: { ALIGN=boundary-value]LOCATE=start-address}
boundary-value: Expression (absolute expression)
start-address; Expression (absolute expression)

[Description]
The .SECTION instruction declares the start of a section description.

Instructions for generating object code or updating the location counter cannot precede the first
occurrence of the . SECTION instruction.

Multiple descriptions of a section are allowed.
For more information, see Section "8.6 Multiple Descriptions of a Section”.

B Section Types
Specifying the type of a section determines the attribute of that section.
For more information, see Section "8.2 Section Types'.
There are 8 section types, which are listed below.
By default, CODE is assumed.

« CODE............... Code section

« DATA .............. Data section

¢ CONST ............. Data section with initial values
¢« COMMON........ Common section

e STACK.......... Stack section

« DUMMY........... Dummy section

LI [ © I/0 section

¢ |OCOMMON....Common I/O section

140 PART 2 SYNTAX



CHAPTER 8 SECTIONS

B Section Allocation Patterns
One of the following section allocation patterns is specified:
@ ALIGN ........... Relative section
An alocation address in memory is determined by the linker.
A section is aligned on amemory boundary specified by the boundary value.
@ LOCATE ........ Absolute section

A section is allocated starting at the specified start address.
By default, ALIGN=2 is used.
For more information, see Section "8.4 Section Allocation Patterns'.

[Examplé]
.SECTION PROG, CODE,ALIGN=8
/* Section name: PROG */
/* Section type: Code section */

/* Section attribute: Relative section (boundary value 8) */

.SECTION VAL,DATA,LOCATE=0x1000
/* Section name: VAL */
/* Section type: Data section */

/* Section attribute: Absolute section starting at address 0x1000 */

PART 2 SYNTAX 141



CHAPTER 8 SECTIONS

8.2 Section Types

The type of a section depends on the type of data that will be stored in it.

B Section Types
The type of a section depends on the type of data that will be stored init.

The following explains general data types to be used for the section types:

@ Code section (CODE specification)

Program code is stored.
Machine instructions are usually used.
[Example]
.SECTION PROG,CODE,ALIGN=2
start program:
LDI:32 # data_init,RO
CALL @RO

@ Data section (DATA specification)

Datawithout initial valuesis stored.
The .RES and .FRES instructions are usually used.
[Examplé]

.SECTION VAL,DATA,ALIGN=4
vl: .RES 1
v2: .RES.H 2
Initial-value data that is allowed to be changed is also stored in a data section.

For more information, see Section "8.7 Setting ROM Storage Sections".
[Example]
.SECTION INIT,DATA,ALIGN=4
ptbl: .DATA 10,11,12 /* Data values that are allowed to be changed */

@ Data section with initial values (CONST specification)

Initial-value data that does not change is stored.
This section type is usually specified to code data values that will be stored in ROM.
[Example]

.SECTION PARAM,CONST,ALIGN=4

paraml: .DATA 10
param2: .DATA -1

@ Common section (COMMON specification)

This section type is specified to allocate shared variables or shared aress.

Shared linkage between common sections is created by the linker.

142 PART 2 SYNTAX



CHAPTER 8 SECTIONS

[Example]
.SECTION COMval,COMMON,ALIGN=4
val: .DATA 500
tbl: .DATAB.B 10,0xff

@ Stack section (STACK specification)

This section is used to allocate a stack area.
The .RES instruction is usually used to allocate an area.
[Examplé]
.SECTION STACKAREA, STACK,ALIGN=256
.RES.B 0x1000 /* 4K bytes */

@ Dummy section (DUMMY specification)

Dummy section descriptions are not output as object code.

Dummy section descriptions, therefore, are meaningful only when defined symbols within them are
handled or when the dummy section size is cal culated.

[Example: To usethe IO areaas adummy section:]
Header file iodef.h

.SECTION IO MAP,DUMMY, LOCATE=0x100
iodatal: .RES.H 1
iodata2: .RES.H 1
iodata3: .RES.H 1

Source file a.asm

#include "iodef.h" /* Read the IO definition file */
.SECTION P,CODE,ALIGN=2

DMOVH @iodata2,R13 /* Read a value from IO */

Source file b.asm

#include "iodef.h" /* Read the IO definition file */
.SECTION P,CODE,ALIGN=2

DMOVH R13,@iodata2 /* Write a value to IO */

@ 1/0 section (10 specification)

Datais stored in an areato which various I/O ports have been allocated.

@ Common I/O section IOCOMMON specification)

Datais stored in an areato which various I/O ports have been allocated.

Shared linkage between common 1/O sections is created by the linker.

PART 2 SYNTAX 143



CHAPTER 8 SECTIONS

8.3 Section Types and Attributes

When section code is output to an object, five attributes (area type, linkage type, read
attribute, write attribute, and execute attribute) for each section are set as section
information.

These attributes are checked by the linker during linking.

B Section Types and Attributes
When section code is output to an object, five attributes (area type, linkage type, read attribute, write
attribute, and execute attribute) for each section are set as section information.

These attributes are checked by the linker during linking.
Table 8.3-1 lists the attribute for each section type.
Table 8.3-1 Attribute for Each Section Type

Section type Area type Linkage type Read Write Execute

CODE Code Concatenated linkage 0 X 0
DATA Data Concatenated linkage 0 0 X
CONST Constant Concatenated linkage o] X X
COMMON Data Shared linkage o} 0 X
STACK Stack Concatenated linkage 0 0 X
10 Data (1/0) Concatenated linkage 0 0 X

IOCOMMON Data (1/0O) Shared linkage o} o} X

o0...Allowed x...Notalowed

Note:
Dummy sections do not have an attribute because their code is not output to an object.

144 PART 2 SYNTAX



CHAPTER 8 SECTIONS

8.4 Section Allocation Patterns

There are two types of section allocation pattern:

* Relative section

* Absolute section

The allocation address for a relative section is determined by the linker.

The allocation address for an absolute section can be specified by the assembler.

B Section Allocation Patterns
There are two section allocation patterns:

@ Relative section (ALIGN specification)

The allocation address for a relative section is determined by the linker. The value of a symbol having an
address within a relative section is unknown until linking has been completed. A symbol of this type is
called arelative symbol.

A section whose location need not be known can be set as arelative section.

In general, since most programs contain code for relative sections, the linker determines their location
addresses.

The linker allocates relative sections to the memory space based on the boundary values specified with
ALIGN.

[Example€]
.SECTION PROG, CODE,ALIGN=2
_main:
ST RP,@-SP
ENTER #20

@ Absolute section (LOCATE specification)

The allocation address for an absol ute section can be specified by the assembler.

The linker allocates absolute sections to the memory space starting at the start addresses specified with
LOCATE. The value of a symbol having an address within an absolute section is known because the
addressis determined. A symbol of thistypeiscalled an absolute symbol.

An absolute section can be used to define an EIT vector table or 10 area.

The following format can be used to specify absolute sections:

LOCATE=address

[Example]
.SECTION IO,DATA,LOCATE=0x100
timer cmd: /* Timer command address */
.RES 1
timer data: /* Timer data address */
.RES 1

PART 2 SYNTAX 145



CHAPTER 8 SECTIONS

8.5 Section Linkage Methods

Linkage between sections is created by the linker.

There are two types of section linkage: concatenated linkage and shared linkage.
In concatenated linkage, sections having the same name are concatenated in a memory

space.

In shared linkage, a memory space shared by sections having the same name is

created.

B Section Linkage Methods
Linkage between sectionsis created by the linker.
There are two types of section linkage: concatenated linkage and shared linkage.
The linkage method for a section depends on the type of the section.
Table 8.5-1 lists the section types and linkage methods.
Table 8.5-1 Section Types and Linkage Methods

Section type

Linkage method

CODE
DATA
CONST
STACK
10

Concatenated linkage

COMMON
IOCOMMON

Shared linkage

B Concatenated Linkage

Sections having the same name, specified in different source programs, are concatenated in a memory
space. Note that the same type and same allocation pattern must be specified for these sections.

146

PART 2 SYNTAX



[Example]

Source program s1.asm

CHAPTER 8 SECTIONS

f Lower address

.SECTION A,CODE,ALIGN=2

Source program s2.asm

2-byte boundary

Source program
s1.asm

Section A

.SECTION A,CODE,ALIGN=2

Source program s3.asm

v

Source program
s2.asm

Section A

.SECTION A,CODE,ALIGN=2

B Shared Linkage

v

Source program
s3.asm

Section A

¢ Upper address

A memory space shared by sections having the same name, specified in different source programs, is

created.
The size of this areaisthe size of the largest section.

[Example]

Source program s1.asm

f Lower address

.SECTION A,DATA,COMMON

Source program s2.asm
.SECTION A,DATA,COMMON

Source program s1.asm
Section A end address

Source program s2.asm
Section A end address

PART 2 SYNTAX

[
»

Shared area

|-

¢ Upper address

147



CHAPTER 8 SECTIONS

8.6

Multiple Descriptions of a Section

A single source program can contain multiple occurrences of the .SECTION instruction,
each of which specifies the same section name.

A set of section descriptions specifying the same section name is handled as a single
continuous section description.

B Multiple Descriptions of a Section

148

A single source program can contain multiple occurrences of the .SECTION instruction, each of which
specifies the same section name.
A set of section descriptions specifying the same section name is handled as a single continuous section
description.
The first occurrence of the .SECTION instruction declares the start of a section description.  Subsequent
occurrences of the .SECTION instruction indicate the continuation of the section description.
For the second and subsequent descriptions specifying the same section name, the location counter inherits
the value from the previous description.
Multiple occurrences of the .SECTION instruction must not specify different section types or section
allocation patterns.
By default, the second and subsequent section descriptions with the same name inherit the section types and
alocation patterns that have already been defined.
[Example]
.SECTION P, CODE,ALIGN=2
Text 1
.SECTION D,DATA,ALIGN=4
Text 2
.SECTION P,CODE
Text 3
.SECTION D
Text 4
The above source program is handled in the same way as the following source program.
.SECTION P,CODE,ALIGN=2
Text 1
Text 3
.SECTION D,DATA,ALIGN=4
Text 2
Text 4

PART 2 SYNTAX



CHAPTER 8 SECTIONS

8.7 Setting ROM Storage Sections

This section describes how to write programs or data values that will be stored in ROM.
Program code, as well as initial-value data that does not change, can be stored in ROM,
then used from ROM. For initial-value data that is allowed to be changed, however,
specify that the data is stored in ROM with the -sc linker option. Also specify that it
should be transferred to RAM at run time so that it can be used.

B Setting ROM Storage Sections

Programs and data values that will be stored in ROM can be classified as follows:

1) Program code (CODE section)

2) Initial-value data that does not change (CONST section)

3) Initial-value data that is allowed to be changed (DATA section)
The data of 1) or 2) can be stored in ROM, and then used from ROM. Before the data of 3) can be used,
however, because it is allowed to be changed, it must have already been transferred from ROM to RAM,.
Therefore, specify that the data is stored in the ROM area with the linker, and specify that it should be
transferred to the RAM area at run time so that it can be used.

Sections that will be used for ROM-to-RAM transfer should be given descriptive names.
The C compiler uses INIT as the name of a section for initial-value data that is allowed to be changed. The
assembler should also use INIT.
B Transfer of Initial-value Data
Initial-value data that is allowed to be changed is transferred from ROM to RAM as described below.

With the linker, use the -sc option to specify the name of sections for ROM-to-RAM transfer. The linker
then automatically generates the following symbols for the specified section names:
« ROM_section-name
¢ _RAM_section-name
The symbols indicate the start addresses in the ROM and RAM areas, respectively.
The following example specifies a ROM area (0x10000 to Ox1ffff) and a RAM area (0x20000 to Ox2ffff).
It also setsthe INIT sections for ROM-to-RAM transfer.

flnk91lls -ro ROM=0x10000/0x1ffff -ra RAM=0x20000/0x2ffff

-sc @INIT=ROM, INIT=RAM sample.obj

In this case, ROM_INIT and _RAM_INIT are generated, then ROM _INIT and _RAM_INIT are set to
0x10000 and 0x20000, respectively.
For more information, see the SOFTUNE Linkage Kit Manual.

The symbols are used to create a ROM-to-RAM transfer program, as shown in the following example. The
program is integrated into a startup routine.

PART 2 SYNTAX 149



CHAPTER 8 SECTIONS

150

[Example]
.IMPORT _ROM_INIT
.IMPORT RAM INIT
.SECTION INIT,DATA,ALIGN=4
ptbl:

.DATA 10,11,12

.SECTION CODE, CODE,ALIGN=2
init copy:
LDI # ROM_INIT,RO
LDI # RAM INIT,R1
LDI SIZEOF (INIT),R13
CMP #0,R13
BEQ:D init_copy_end
init_copy loop:
ADD #-1,R13
LDUB @(R13,R0),R12
BNE:D  init copy_loop
STB R12,@(R13,R1)
init_copy end:

/*
/*
/*
/*
/*

/*

/*
/*
/*
/*

/*
/*
/*
/*

Start address of the INIT section in ROM */
Start address of the INIT section in RAM */

Section for initial-value data that is allowed to be changed */

ptbl indicates the address in RAM */
Initial-value data is stored in ROM */

ROM-to-RAM transfer program */

Transfer source (ROM) address */
Transfer destination (RAM) address */
Obtain the INIT section size */
Compare the transfer size for 0 */

Reduce the size (R13) by 1 */

Obtain the ROM data */

Repeat until the size (R13) becomes 0 */
Transfer to RAM (delayed instruction) */

PART 2 SYNTAX



CHAPTER 9

MACHINE INSTRUCTIONS

This chapter describes the formats of machine
instructions and the rules governing how to write them.
For details of machine instructions and their addressing
mode, see the instruction manual of the relevant CPU.

9.1 Machine Instruction Format

9.2 Operand Field Format

PART 2 SYNTAX 151



CHAPTER 9 MACHINE INSTRUCTIONS

9.1 Machine Instruction Format

This chapter describes the format of machine instructions and the rules governing how

to write them.

B Machine Instruction Format

Machine instructions are interpreted and executed by the CPU to run a program.

For details of machine instructions, see the instruction manual of the relevant CPU.

The general format of machine instructions is shown below.

[Format]

[symbol]

operation

[operand[,operand] ... ]

operation: Instruction mnemonic
operand: Addressing mode

[Description]

If the symbol field holds a symbol, the current address is assigned to the symbol.

The operation field holds an instruction mnemonic.

The operand field holds operands necessary for the machine instruction. Operands must be separated

with acomma ().
Each operand specifies an addressing mode.

[Examples]

ST

ENTER
CALL32

152

RP,@-SP

_proc0,R12

PART 2 SYNTAX



CHAPTER 9 MACHINE INSTRUCTIONS

9.2 Operand Field Format

This section describes the format of the operand field.

B Operand Field Format

[Format]

[operand [,operand] ... ]

operand: Addressing mode
[Description]
An addressing mode that can be written in the operand field of a machine instruction is determined
according to the machine instruction.
If a machine instruction has more than one operand, they are separated with acommac (,).

For the addressing modes that can be written in the operand field of a machine instruction and their
details, see the instruction manual of the relevant CPU.

B Order of Operands

The order in which operands are written is determined by the machine instruction type. The basic rules
are asfollows:

@ Operation instructions

In operation instructions, an operation is performed between the second and first operands, and the result
is stored in the second operand.

First operand .op. second operand -> second operand
[Example]

ADD R2,R5 /* R5 + R2 --> R5 */

@ Transfer instructions

In transfer instructions, atransfer occurs from the first operand to the second operand.
First operand -> second operand
[Example]
MOV ~ R2,R5 /* R2 --> R5 */

PART 2 SYNTAX 153



CHAPTER 9 MACHINE INSTRUCTIONS

154 PART 2 SYNTAX



CHAPTER 10

PART 2 SYNTAX

ASSEMBLER PSEUDO-

INSTRUCTIONS

Unlike machine instructions, assembler pseudo-
instructions tell the assembler what to do.

The assembler pseudo-instructions are categorized into
the following eight groups:

Program structure definition instruction

Address control instruction

Program linkage instruction

Symbol definition instruction

Area definition instruction

Debugging information output control instruction
Library file specification instruction

List output control instruction

This chapter describes the format and function of each
assembler pseudo-instruction.

10.1 Scope of Integer Constants Handled by Pseudo-Instructions

10.2 Program Structure Definition Instructions

10.3 Address Control Instructions

10.4 Program Linkage Instructions

10.5 Symbol Definition Instructions

10.6 Area Definition Instructions

10.7 Debugging Information Output Control Instruction

10.8 Library File Specification Instruction

10.9 List Output Control Instructions

155



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.1

Scope of Integer Constants Handled by Pseudo-

Instructions

Pseudo-instructions can specify integer constants having four different sizes: byte

(8 bits), halfword (16 bits), long word (32 bits), word (32 bits).

If a size is not specified, a word is assumed.

B Scope of Integer Constants Handled by Pseudo-instructions

156

Pseudo-instructions can specify integer constants having the following four different sizes:

« Byte (8 hits)

« Halfword (16 bits)
e Long word (32 hits)
* Word (32 bits)

If no sizeis specified, one word is assumed.

Table 10.1-1 lists the size specifies used in pseudo-instructions.

Table 10.1-1 Size Specifies

Size specifier Data size
B (byte) 8 bits (1 byte)
H (halfword) 16 bits (2 bytes)
L (long word) 32 hits (4 bytes)
W (word) 32 bits (4 bytes)

PART 2 SYNTAX



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.2  Program Structure Definition Instructions

A program structure definition instruction signifies the end of a source program,
declares a module name, or defines section information.

B Program Structure Definition Instructions
There are three different program structure definition instructions:

* .PROGRAM : Declares amodule name.
« .END . Signifies the end of a source program.
o .SECTION : Definesasection.

PART 2 SYNTAX 157



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.2.1 .PROGRAM Instruction

The .PROGRAM instruction specifies a module name.
A module is named in accordance with naming rules.

If the .PROGRAM instruction is omitted, the main file name of an object file is used as
the module name.

B .PROGRAM Instruction
[Format]

.PROGRAM module-name

[Description]
The .PROGRAM instruction specifies the name of the module.
The module name is determined in accordance with naming rules.
The .PROGRAM instruction can be used in a source program only once.
If the PROGRAM instruction is omitted, the main file name of an object file is used as the module name.

If the main file name violates a naming rule, a warning message is output, and any character not allowed
in the module name is replaced with an underscore ().

[Example]
.PROGRAM test name
B Relationships with Startup Options
If the -name option is specified, a name specified in the option is used as the module name.

158 PART 2 SYNTAX




CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.2.2 .END Instruction

The .END instruction signifies the end of a source program.

The .END instruction can be omitted. If it is omitted, assembly continues until all
source programs are assembled.

A start address can be specified in the .END instruction.

B .END Instruction

[Format]

.END [start-address]

start-address. Expression
[Description]
The .END instruction signifies the end of a source program.

The .END instruction can be omitted. If it is omitted, assembly continues until al source programs are
assembl ed.

If a source program follows the .END instruction, it is not assembled.
If start-address is specified in the .END instruction, it sets the start address of the program.

The program start address is referred by the SOFTUNE debugger to load the program, and the
corresponding value is set in the program counter.

If start-address is omitted, no start addressis set up.
start-address must be an absolute or simple relative expression.
start-address must point within a code section.
[Example]
.PROGRAM test name
.SECTION PROG,CODE,ALIGN=2

start:

.END start

PART 2 SYNTAX 159



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.2.3

.SECTION Instruction

The .SECTION instruction declares the beginning of a section and specifies the type
and location format of the section.

B .SECTION Instruction

[Format]
.SECTION section-name] ,specification[ ,specification]]
specification . { section-typejsection-location-format}
section-type : {CODE|DATA|CONST|COMMONISTACK|DUMMY |IOJl OCOMMON}
section-location-format : { ALIGN=boundary-valuelLOCATE=start-address}
boundary-value . Expression (absol ute expression)
start-address . Expression (absolute expression)
[Description]

The .SECTION instruction declares the beginning of a section and specifies the type and location format
of the section.

The section is named in accordance with naming rules.

Only one section-type and section-location-format can be specified in one .SECTION instruction.
If section-type is omitted, a code section is assumed.

If the section placement format is omitted, ALIGN = 2 is specified.

B Section-type

The section-type operand specifies a section type.
See Section "8.2 Section Types' for details.

e CODE...cccocvvvvvrrnnn. A code section is specified.

o DATA ., A data section is specified.

e CONST ...coovvvreerenen A data section with initial valuesis specified.
¢ COMMON............... A common section is specified.

e STACK .ovevvverenn, A stack section is specified.

e DUMMY ..o A dummy section is specified

LI [ © An /O section is specified.

¢ IOCOMMON........... A common /O section is specified.

B Section-location-format

160

section-location-format specifies how the section is located.
See Section "8.4 Section Allocation Patterns' for details.

@ ALIGN=boundary-value

A relative section is specified.
The section is aligned on a specified boundary by the linker.
boundary-value must be an absolute expression.

boundary-value must be 2 raised to the nth power, where nis an integer.

PART 2 SYNTAX



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

@ LOCATE=start-address

An absolute section is specified.
The section is aligned on a specified start address.
start-address must be an absol ute expression.
[Examples]

.SECTION P,CODE,ALIGN=4

.SECTION D, DATA,LOCATE=0x1000

.SECTION C,CONST, LOCATE=0x2000

.SECTION V, COMMON, ALIGN=4

PART 2 SYNTAX 161



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.3 Address Control Instructions

An address control instruction changes the value in the location counter.

B Address Control Instructions
There are three different address control instructions:

¢ .ALIGN : Creates adignment on a boundary.
e .ORG : Changesthelocation counter value.
e .SKIP : Incrementsthe location counter value.

162 PART 2 SYNTAX



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.3.1 ALIGN Instruction

If the value in the location counter is not on a specified boundary, the .ALIGN
instruction increments the value until it is aligned on the specified boundary.
If the value is already on a specified boundary, the .ALIGN instruction does nothing.

B .ALIGN Instruction

[Format]

ALIGN boundary-value

boundary-value: Expression (absolute expression)
[Description]
If the value in the location counter is not on a specified boundary, the . ALIGN instruction increments the

value until it is aligned on the specified boundary. If the value is aready on a specified boundary, the
ALIGN instruction does nothing.

The expression must be an absolute expression.

The following restrictions are placed on the absolute expression.
« Thevaue must be 2 raised to the nth power (where nis an integer) and not greater than 0x80000000.
[Condition]

Boundary valuein .SECTION instruction > boundary valuein .ALIGN

(This condition does not apply to absolute sections.)
[Examples]
.SECTION D,DATA,ALIGN=8 /* (8=2"3) */

.DATA.B ©
.ALIGN 8
.DATA.B Oxff
.ALIGN 4

PART 2 SYNTAX 163



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.3.2 .ORG Instruction

The .ORG instruction sets the value of a specified expression in the location counter.

B .ORG Instruction

[Format]

.ORG expression

[Description]
The .ORG instruction sets the value of a specified expression in the location counter.

If the .ORG instruction is used within an absolute section, it is impossible to return the location counter
to alocation before the start address specified (LOCATE specification) in a.SECTION instruction.

The expression specified in the .ORG instruction must be an absolute expression or a ssimple relative
expression that has, asits value, a symbol in the same section as this instruction.

[Examples]
.SECTION D,DATA,LOCATE=0x100

.DATA 0
.ORG 0x200
.DATA 2
.ORG 0x300
.DATA 3

164 PART 2 SYNTAX



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.3.3 .SKIP Instruction

The .SKIP instruction increments the location counter by the value of the specified
expression.

Bl .SKIP Instruction
[Format]

SKIP expression

[Description]
The .SKIP instruction increments the location counter by the value of the specified expression.
The expression must be an absolute expression.

[Examples]
.SECTION D,DATA,ALIGN=2
.DATA.H 0x0505
.SKIP 2
.DATA.H 0x1010

PART 2 SYNTAX 165



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.4  Program Linkage Instructions

A program linkage instruction is used to enable programs to share symbols.

A program linkage instruction is used to declare an external definition for a symbols so
that the symbol can be referred by other programs. It is also used to declare an
external reference for a symbol in another program so that it can be used in the
program in which the program linkage instruction is issued.

B Program Linkage Instructions
There are three different program linkage instructions:

e .EXPORT : Declares an external definition symboal.
* .GLOBAL: Declaresan external definition/reference symbol.
e .IMPORT : Declaresan externa reference symbol.

166 PART 2 SYNTAX



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.4.1 .EXPORT Instruction

The .EXPORT instruction enables symbol defined in the program in which it is issued to
be referred in other programs.

B .EXPORT Instruction
[Format]

.EXPORT symbol[,symbol] ...

[Description]
The .EXPORT instruction enables symbol defined in the program in which it is issued to be referred in
other programs.
The symbol must be defined in the program that contains the .EXPORT instruction of interest.
The following two types of symbol can be specified in the .EXPORT instruction:;
« symbol with an absolute value
« symbol with an address
No error isreported if identical symbol are specified.

[Examples]
———————— Program 1 --------
.EXPORT abcl, abc2
abcl: .EQU 5%3
abc2: ADD R1,R5

———————— Program 2 --------
. IMPORT abcl, abc2

.DATA abcl

.DATA abc2

PART 2 SYNTAX 167



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.4.2

.GLOBAL Instruction

The .GLOBAL instruction declares symbol for external definition or reference.
If a symbol specified in the .GLOBAL instruction is defined in the program that contains
this instruction, the symbol is declared for external definition.

B .GLOBAL Instruction

168

[Format]

.GLOBAL symbol[,symboal] ...

[Description]
The .GLOBAL instruction declares symbol for external definition or reference.

If asymbol specified in the .GLOBAL instruction is defined in the program that contains this instruction,
the symbol is declared for external definition.

The following two types of externa definition symbol can be specified in the .GLOBAL instruction:
« symbol with an absolute value
* symbol with an address

If a symbol specified in the .GLOBAL instruction is not defined in the program that contains this
instruction, the symbol is declared for externa reference.

No error isreported if identical symbol are specified.
[Examples]
.GLOBAL abc, sub /* abc is an external definition symbol. */

/* sub is an external reference symbol. */

abc: CALL sub

PART 2 SYNTAX



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.4.3 AMPORT Instruction

The .IMPORT instruction declares that symbols specified in this instruction are defined
in programs other than the one containing this instruction.

B .IMPORT Instruction
[Format]

.IMPORT symbol[,symbol] ...

[Description]

The .IMPORT instruction declares that symbols specified in this instruction are defined in programs
other than the one containing this instruction.

The symbols specified in the .IMPORT instruction must be specified as external in the programs from
which they are imported.

No error isreported if identical symbols are specified.
[Examples]
———————— Program 1 --------
.IMPORT xyzl,xyz2

.DATA xyzl

.DATA Xyz2
———————— Program 2 --------

.EXPORT xyzl,xyz2

xyzl: .EQU 5*3

Xyz2: ADD R1,R5

PART 2 SYNTAX 169



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.5 Symbol Definition Instructions

A symbol definition instruction assigns a value to a symbol.

B Symbol Definition Instructions
There are two different symbol definition instructions:

* .EQU: Assignsavaueto asymbol.
« .REG: Assignsavalueto aregister list symbol.

170

PART 2 SYNTAX



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.5.1  .EQU Instruction

The .EQU instruction assigns the value of a specified expression to a specified symbol.

B .EQU Instruction

[Format]
symbol .EQU expression
[Description]

The .EQU instruction assigns the value of a specified expression to a specified symbol.

It isimpossible to assign avalue to a symbol that has already been defined.
The expression must be an absolute or simple relative expression.

[Examples]
TEN: .EQU
ONE: .EQU
vall: .DATA
val2:.EQU

PART 2 SYNTAX

10 /* TEN=10 */
TEN/10 /* ONE=TEN/10 */
O0xFFFF0000

vall+2

171



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.5.2 .REG Instruction

The .REG instruction assigns the contents of a specified register list to a specified
symbol.

Only general-purpose registers can be specified in the .REG instruction.

A symbol to which the contents of a register list is assigned is referred to as a register
list symbol.

A register list symbol that has only one register defined is referred to as a single-
register symbol.

B .REG Instruction

[Format]

symbol .REG ([regi ster-specification[,register-specification] ... ])

regi ster-specification:{ register|[range-specification|register-list-symbol }
register: Determined by the target MCU.
range-specification: register-register
register-list-symbol: Symbol to which the contents of aregister list are assigned
[Description]
The .REG instruction assigns the contents of a specified register list to a specified symbol.
Only general-purpose registers can be specified in the .REG instruction.
A symbol to which the contents of aregister list are assigned is referred to as aregister list symbol.
A register list symbol that has only one register defined is referred to as a single-register symbol.
A single-register symbol can be used as a general-purpose register.
See Section "7.12 Register Lists", for how to write aregister list symbol.

[Examples]
REGLIST: .REG (RO,R7 to R11)
REG1: .REG (R1)
LDM (REGLIST) /* Equivalent to LDM(RO,R7-R11) */
LDI #10,REG1 /* Equivalent to LDI#10,R1 */

172 PART 2 SYNTAX



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.6 Area Definition Instructions

An area definition instruction secures constants and areas in memory areas.

B Area Definition Instructions
There are 17 different area definition instructions:

PART 2 SYNTAX

.DATA:
.BYTE:
HALF:
.LONG:
.WORD:
.DATAB:
.FDATA:
.FLOAT:
.DOUBLE:
.FDATAB:
.RES:
.FRES:
.SDATA:
ASCII:
.SDATAB:
.STRUCT
.ENDS:

Defines an integer constant.
Defines an 8-bit integer constant.
Defines a 16-bit integer constant.
Defines a 32-hit integer constant.
Defines a 32-bit integer constant.
Defines an integer constant block.
Defines a floating-point constant.

Defines a 32-bit floating-point constant.
Defines a 64-bit floating-point constant.
Defines a floating-point constant block.

Defines an integer constant area.
Defines a floating-point constant area.
Defines a character string.

Defines a character string.

Defines a character string block.
Defines the beginning of a structure.
Defines the end of a structure.

173



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.6.1 .DATA, .BYTE, .HALF, .LONG, and .WORD Instructions

The following area definition instructions set the values of specified expressions in
memory as stated below:

The .DATA instruction secures memory areas each having the specified size.

The .BYTE instruction secures memory areas each having a size of one byte.

The .HALF instruction secures memory areas each having a size of one half word.
The .LONG instruction secures memory areas each having a size of one long word.
The .WORD instruction secures memory areas each having a size of one word.

B .DATA Instruction

[Format]

[symbal] .DATA.s expression[,expression] ...

Size specification (s): B........ Byte (8 bits)
H..... Half word (16 bits)
L Long word (32 bits)
W.... Word (32 hits) <<default>>
[Description]
The .DATA instruction sets the values of specified expressions in memory areas each having the
specified size (.9).
If asize specification (.s) is omitted, one word is assumed.
The expression specified in the instruction can be either absolute or relative expression.
[Examples]
.DATA.B 0x12,0x23,0xa3
.DATA -1,0xffffEffef
B BYTE Instruction

[Format]
[symbol] .BYTE expression[,expression] ...
[Description]

The .BY TE instruction secures memory areas each having a size of one byte (8 hits).
Thisinstruction is equivalent to the following definition:;
.DATA.B expression[,expression] ...
B .HALF Instruction

[Format]
[symbol] .HALF expression[,expression] ...
[Description]

The .HALF instruction secures memory areas each having a size of one halfword (16 bits).
Thisinstruction is equivalent to the following definition:
.DATA.H expression[,expression] ...

174 PART 2 SYNTAX



B .LONG Instruction

[Format]

CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

[symbol]

.LONG

expression[,expression] ...

[Description]

B WORD Inst

The .LONG instruction secures memory areas each having one long word (32 hits).
Thisinstruction is equivalent to the following definition:

.DATA.L expression[,expression] ...

ruction

[Format]

[symbol]

.WORD

expression[,expression] ...

[Description]

PART 2 SYNTAX

The .WORD instruction secures memory areas each having a size of one word ( 32 bits).

The bit length of word is 32 hits.
Thisinstruction is equivaent to the following definition:
.DATA.W Expression[,expression] ...

175



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.6.2

.DATAB Instruction

The .DATAB instruction sets a specified value in a specified number of memory areas
each having the specified size.
If no size is specified, 1 word is assumed.

B .DATAB Instruction

[Format]

[symbol] .DATAB.s expression-1,expression-2

Size specification (s):  B.....Byte (8 hits)
H.....Half word (16 bits)
L .....Long word (32 bits)
W ....Word (32 bits) <<default>>
[Description]
The .DATAB instruction sets a specified value (expression 2) in a specified number (expression 1) of
memory areas each having the specified size (.s).
If asize specification (.s) is omitted, one word is assumed.
Expression 1 must be an absolute expression.
Expression 2 can be either absolute or relative expression.
[Examplé]
.DATAB.B  4,0x12

Note:

If expression 1 in the .DATAB instruction is an excessively large number, it will take a long time to
execute the instruction, because the instruction sets the value of expression 2 in area by a specified
number (expression 1) of repetitions.

176

PART 2 SYNTAX




CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.6.3 .FDATA, .FLOAT, and .DOUBLE Instructions

The following area definition instructions set floating-point constants in memory as
stated below:

The .FDATA instruction secures memory areas each having the size that matches a
specified type specification.

The .FLOAT instruction secures memory areas each having the single-precision (4-byte)
Size.

The .DOUBLE instruction secures memory areas each having the double-precision
(8-byte) size.

B .FDATA Instruction
[Format]

[symbol] .FDATA.t fl oati ng-point-constant[ ,fl oating-point-constant] ...

Type specification (t): S......... Single-precision floating-point constant, 32-bit (4-byte) <<default>>
D....... Double-precision floating-point constant, 64-bit (8-byte)
[Description]
The .FDATA instruction sets floating-point constants in memory areas each having the size that matches
a specified type specifier (.t).
Neither an expression nor an integer constant can be specified instead of a floating-point constant.
If atype specification (.t) is omitted, the single-precision size is assumed.
See Section "7.9 Floating-Point Constants®, for floating-point constants.

[Examples]
.FDATA.S 2.1le4 /* Single precision */
.FDATA.D 3.2e5 /* Double precision */
.FDATA 4.3e-2 /* Single precision */
.FDATA OxFFFF0000 /* Single precision */

B .FLOAT Instruction
[Format]
[symbol] .FLOAT fl oati ng-point-constant[ ,fl oati ng-point-constant] ...
[Description]

The .FLOAT instruction secures memory areas each having the single-precision (4-byte) size.
Thisinstruction is equivalent to the following definition:;
.FDATA.S floating-point-constant[,floating-point-constant]...

PART 2 SYNTAX 177



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

B .DOUBLE Instruction

178

[Format]

[symbol]

.DOUBLE

floating-point-constant[,floating-point-constant] ...

[Description]

The .DOUBLE instruction secures memory areas each having the double-precision (8-byte) size.
Thisinstruction is equivalent to the following definition:
.FDATA.D floating-point-constant[,floating-point-constant]...

PART 2 SYNTAX



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.6.4 .FDATAB Instruction

The .FDATAB instruction sets a specified floating-point constant in a specified number
of memory areas each having the size that matches the specified type specifier.
If a type specifier is omitted, the single-precision size is assumed.

B .FDATAB Instruction
[Format]

[symboal] .FDATAB.t expression,floating-point-constant

Type specifier (t): S........ Single-precision floating-point constant, 32-bit (4-byte) <<default>>
D........ Double-precision floating-point constant, 64-bit (8-byte)
[Description]
The .FDATAB instruction sets a specified floating-point constant in a specified number of memory areas
each having the size that matches a specified type specifier (.t).
If atype specifier (.t) is omitted, the single-precision size is assumed.
The expression specified in the instruction must be an absolute expression.
Neither an expression nor an integer constant can be specified instead of a floating-point constant.
[Example]
.FDATAB.S 4, OxFFF00000
.FDATAB.S 12,0r1.2el0

Note:

If the expression specified in the .FDATAB instruction is an excessively large number, it will take a
long time to execute the instruction, because the instruction sets a floating-point constant in area by
a specified number (expression) of repetitions.

PART 2 SYNTAX 179



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.6.5 .RES Instruction

The .RES instruction secures a specified number of memory areas each having the
specified size.

The memory areas secured by the .RES instruction do not initially contain any data.
If no size is specified, one word is assumed.

B .RES Instruction

[Format]

[symbol] .RES.s expression

Size specifier (s): B .....Byte (8 bits)
H .....Half word (16 bits)
L......Long word (32 hits)
W ....Word (32 bits) <<default>>
[Description]
The .RES instruction secures a specified number (expression) of memory areas each having the specified
size(.9).
The memory areas secured by the .RES instruction do not initially contain any data.
If asize specifier (.s) is omitted, one word is assumed.
The expression specified in the instruction must be an absolute expression.
[Examples]
.RES.H 2 /* Two l-halfword areas (16 bits each) */
.RES.B 4 /* Four 1l-byte areas (8 bits each) */

180 PART 2 SYNTAX



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.6.6 .FRES Instruction

The .FRES instruction secures a specified number of memory areas each having the
size that matches a specified type specifier.

The memory areas secured by the .FRES instruction do not initially contain any data.
If a type specifier is omitted, the single-precision size is assumed.

B .FRES Instruction

[Format]

[symboal] FRESt expression

Type specifier (t):  S...... Single-precision floating-point constant, 32-bit (4-byte) <<default>>
D .....Double-precision floating-point constant, 64-bit (8-byte)
[Description]
The .FRES instruction secures a specified number (expression) of memory areas each having the size that
matches a specified type specifier (.t).
The memory areas secured by the .FRES instruction do not initially contain any data.
If atype specifier (.t) is omitted, the single-precision size is assumed.
The expression specified in thisinstruction must be an absolute expression.

[Examples]
.FRES.S 2 /* Two single-precision areas (4 bytes each) */
.FRES.D 4 /* Four double-precision areas (8 bytes each) */

PART 2 SYNTAX 181



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.6.7 .SDATA and .ASCII Instructions

The .SDATA and .ASCIl instructions set specified character strings in memory area.

Bl .SDATA Instruction

[Format]

[symbal] .SDATA character-string[ ,character-string] ...

[Description]
The .SDATA instruction sets specified character stringsin memory area.
See Section "7.8 Strings' for how to write character strings.

[Examples]
.SDATA "STR","IN","G" --> ]S |T |[R |I |N |G |
.SDATA "EF\tXYZ\0" --> |E |F |09]X |Y [Z |00]
B .ASCIl Instruction
[Format]
[symbol] ASCII character-string[,character-string] ...
[Description]
The .ASCII instruction is equivalent to the .SDATA instruction. They differ only in instruction name.
[Example]
.ASCII "GHI\r\n" --> |G |H |T |oD|oA|

182 PART 2 SYNTAX



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.6.8 .SDATAB Instruction

The .SDATAB instruction sets a specified character string in the specified number of
memory areas.

B .SDATAB Instruction

[Format]
[symbol] .SDATAB expression,character-string
[Description]
The .SDATAB instruction sets a specified character string in the specified number (expression) of
memory areas.

The expression specified in thisinstruction must be an absolute expression.
[Example]

SDATAB 3,"ABCD"
[alB[cpfas[cip[aB[CD]

Lower address Upper address

Note:
If the expression specified in the .SDATAB instruction is an excessively large number, it will take a
long time to execute the instruction, because the instruction sets a character string in area by a
specified number (expression) of repetitions.

PART 2 SYNTAX 183



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.6.9 .STRUCT and .ENDS Instructions

The .STRUCT and .ENDS instructions define the name and members of a structure.
The beginning (.STRUCT instruction) and end (.ENDS instruction) of a structure must

correspond.

Area definition pseudo-instructions are written as the members of the structure.

B .STRUCT and .ENDS Instructions

[Format]

structure-tag-name

.STRUCT

[member-name]

Area definition pseudo-instruction

Expression

structure-tag-name

.ENDS

[Description]

The .STRUCT and .ENDS instructions define the name and members of a structure.
The beginning (.STRUCT instruction) and end (.ENDS instruction) of a structure must correspond.
Area definition pseudo-instructions are written as the members of the structure.

[Examples]
ABC: .STRUCT
a: .BYTE 0
b: .WORD 2
ABC: .ENDS

BStructure Area Definition
[Format]
structure-symbol structure-tag-name <[expression[,...]]>
[Description]

The structure tag name functions as if it were an area definition pseudo-instruction for securing an area
having the size of the structure.

The operand field specifies the value of each structure member.
Expressions enclosed in angle brackets (<>) can be omitted, but the angle brackets cannot.
Each expression enclosed in angle brackets provides the initial value for the corresponding structure

member.

If an area does not need to be initialized, do not write an expression for it; just write acommac,).

If a member is followed only by members that do not need not be initialized, no expression need to be
specified after the one corresponding to that member.

[Examples]
ABC: .STRUCT
a: .BYTE 0
b: .WORD 2
ABC: .ENDS
C: ABC <0,2>

184

PART 2 SYNTAX



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

BAccess to a Structure

[Format]

structure-symbol .member-name

[Description]
A structure member can be referred by prefixing its name with a combination of the corresponding
structure symbol and a period (.).

A structure member has a 16-bit offset within the corresponding structure, and it can be written as a
displacement in an expression.

[Examples]
ABC: .STRUCT
a: .BYTE O
b: .WORD 2
ABC: .ENDS
C: ABC <0,2>

LDI:32 #c.a, RO
LDUB @RO, R1

PART 2 SYNTAX 185



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.7  Debugging Information Output Control Instruction

The debugging information output control instruction specifies part of the debugging
information that will be output.

If a startup option for debugging information output (-g) is specified, symbol
information used in a program is output to the corresponding object.

Specifying ON or OFF in the debugging information output control instruction ensures
that only necessary debugging information is output.

B Debugging Information Output Control Instruction
Only one debugging information output control instruction is available, which is:
- .DEBUG: Specifies part of the debugging information to be output.

B .DEBUG Instruction

[Format]

DEBUG {ON|OFF}

ON: Signifies the beginning of debugging information output.
OFF: Signifiesthe stop of debugging information output.
[Description]
The .DEBUG instruction specifies part of the debugging information to be output.

If a startup option for debugging information output (-g) is specified for a program, symbol information
used in the program is output to the corresponding object.

Specifying ON or OFF in the .DEBUG instruction ensures that only necessary debugging information is
output.

The .DEBUG instruction may be used in a source program any number of times; it is valid whenever it
appears.
Debugging information is output for symbol within a range where debugging information output is ON.
Debugging information output is initially ON.
[Examples]
.DEBUG ON
/* Debugging information in this range is output. */
.DEBUG OFF
/* Debugging information in this range is not output. */
.DEBUG ON
B Relationships with Startup Options
The .DEBUG instruction is enabled only if -g is specified.

If -g is not specified or is canceled by -Xg, the .DEBUG instruction is disabled; no debugging information
isoutput at all.

186 PART 2 SYNTAX



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.8 Library File Specification Instruction

The library file specification instruction specifies a library file.

B Library File Specification Instruction
Only one library file specification instruction is available, which is:
« LIBRARY: Specifiesalibrary file.

B .LIBRARY Instruction
[Format]

.LIBRARY "library-file-name"

[Description]
The .LIBRARY instruction specifies the name of alibrary file that the linker will search for.
To specify more than one library file, there must be a.LIBRARY instruction for each library.
[Examples]
.LIBRARY "liblo.lib"
.LIBRARY "libstd.lib"

PART 2 SYNTAX 187



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.9  List Output Control Instructions

The list output control instructions specify the output format of assembly lists.

B List Output Control Instructions
There are six different list output control instructions:

¢ .FORM............ Specifies the number of lines per page and the number of character positions per line.
e« TITLE........ Specifies atitle.

¢ .HEADING..... Specifies or changes atitle.

o LIST.oin. Specifies details of the output format of assembly source lists.

« PAGE............. Specifies that the page be gected.

« .SPACE........... Specifies that a blank line be output.

188 PART 2 SYNTAX



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.9.1 .FORM Instruction

The .FORM instruction specifies the number of lines per assembly list page and the
number of character positions per line on the assembly list.

The number of lines per page can range between 20 and 255. If 0 is specified, no page
eject occurs.

The number of character positions per line can range between 80 and 1023.

The initial values are specified as follows: .FORM LIN=60,COL=100

B .FORM Instruction

[Format]

.FORM specification[,specification]
specification: { number-of-linesjnumber-of-character-positions}
number-of-lines: LIN=expression(absol ute-expression){ 0|20 to 255}
number-of-character-positions. COL =expressi on(absol ute-expression)80 to 1023

[Description]

The .FORM instruction specifies the number of lines per assembly list page and the number of character
positions per line in the assembly list.

The .FORM instruction may be used in a source program any number of times; it is valid whenever it
appears.
The expressions specified in the .FORM instruction must be absolute expressions.

The number of lines per page can range between 20 and 255. If O is specified, no page gject occurs.
The number of character positions per line can range between 80 and 1023.
The initial values are specified asfollows: .FORM LIN=60,COL=100

The assembler outputs, with a margin, a list within the specified number of lines and numbers of
character positions.

[Example]

Source program Assemble list

.FORM LIN=60, COL=80 4
80 ——— b

A

B Relationships with Startup Options
- pl invalidates the specification of a number of lines.

- pw invalidates the specification of a number of character positions.

PART 2 SYNTAX 189



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.9.2 .TITLE Instruction

The .TITLE instruction specifies a title, which will be displayed as a comment in the
header on each page of the assembly list.

The specified title text is output to all pages, including the first one.

The .TITLE instruction can be written in a source program only once.

B .TITLE Instruction
[Format]

TITLE “title-text”

[Description]
The .TITLE instruction specifies atitle, which will be displayed as a comment in the header on each page
of the assembly list.
The specified title text is output to al pages, including the first one.
The .TITLE instruction can be written in a source program only once.
Thetitle can be up to 60 characters.
[Example]

Source program Assembly list

TITLE "TEST PROGRAM" | TEST PROGRAM
| TEST PROGRAM
TEST PROGRAM

190 PART 2 SYNTAX



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.9.3 .HEADING Instruction

The .HEADING instruction specifies a title, which will be displayed as a comment in the
header on each page of the assembly list.

The .HEADING instruction ejects the page and outputs the specified title text to a new
page.

The .HEADING instruction may be written in a source program any number of times; it is
valid whenever it appears.

B .HEADING Instruction
[Format]

.HEADING "title-text"

[Description]
The .HEADING instruction specifies atitle, which will be displayed as a comment in the header on each
page of the assembly list.
The .HEADING instruction gjects the page and outputs the specified title text to a new page.
If the .HEADING instruction corresponds to the first line of a page, it outputs the specified title to this

page.
When the .HEADING instruction is issued, if .LIST OFF has been specified, no title is output. The title
specified in the .HEADING instruction is output to the first line of the page after .LIST ON is specified.

The .HEADING instruction may be written in a source program any number of times; it is valid
whenever it appears.

Thetitle can be up to 60 characters.
[Examples]

Source program Assembly list

.HEADING "PROGRAM=TEST1\"V1.0L2.0\"" | PROGRAM=TEST3 "V1.0L2.0"
.HEADING "PROGRAM=TEST2\"V1.0L2.0\"" PROGRAM=TEST1 "V1.0L2.0"

| PROGRAM=TEST?2 "V1.0L2.0"

.HEADING "PROGRAM=TEST3\"V1.0L2.0\""

PART 2 SYNTAX 191



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.9.4

.LIST Instruction

The .LIST instruction specifies details of the output format of the assembly list.
The .LIST instruction may be written in a source program any number of times; it is
valid whenever it appears.

If the .LIST instruction specifies ON or OFF, this instruction itself is not output.
The initial value is .LIST ON,CALL,COND,DEF,EXPOBJ,INC.

B LIST Instruction

192

[Format]
LIST specification[,specification] ...
Specification: {ON|OFF} .......ccoooovivrcnnene Specifies whether to output an assembly source list.
{CALLINOCALL} ............ Specifies whether to output macro cal instructions to the
assembly list.
{COND|NOCOND} ........... Specifies whether to output nontext portions to the assembly
list.
{DEF|NODEF} ..........ccc..... Specifies whether to output macro instructions and definitions
to the assembly list.
{EXPINOEXP|IEXPOBJ} .... Specifies whether to output macro-expanded text to the
assembly list.
{INC|NOINC} .....cccooveurnne Specifies whether to output include file text to the assembly
list.
{STR|INOSTR} .....cccecvrenene Specifies whether to output expansion text of structure
control instruction to the assembly list.
[Description]

The .LIST instruction specifies details of the output format of the assembly list.
The .LIST instruction may be written in a source program any number of times; it is valid whenever it

appears.

If the .LIST instruction specifies ON or OFF, this instruction is not a target for listing.
Theinitial valueis.LIST ON,CALL,COND,DEF,EXPOBJ,INC,STR.
The specifications of the .LIST instruction have the following meanings:

« ON:

« OFF:
 CALL:

« NOCALL:

+ COND:

¢ NOCOND:
+ DEF:

¢« NODEF:

« EXP:

¢ NOEXP:

+ EXPOBJ

Specifiesto list an assembly source.

Specifies not to list an assembly source.

Specifies to output macro call instructions to the assembly source list.
Specifies not to output macro call instructions to the assembly source list.

Specifies to output nontext portions* to the assembly source list.

Specifies not to output nontext portions to the assembly source list.

Specifies to output macro definitions and instructions to the assembly source list.
Specifies not to output macro definitions and instructions to the assembly source list.
Specifies to output macro-expanded text to the assembly source list.

Specifies not to output macro-expanded text to the assembly source list.

Specifies not to output macro-expanded text to the assembly source list, but specifies to
output object code.

PART 2 SYNTAX



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

* INC: Specifies to output include file text to the assembly source list.
* NOINC: Specifies not to output include file text to the assembly source list.
« STR: Specifies to output expansion text of structure control instruction to the assembly source
list.
* NOSTR: Specifies not to output expansion text of structure control instruction to the assembly
source list.
[Examples]
.LIST ON
/* This portion is listed. */
.LIST OFF
/* This portion is not listed. */
.LIST ON

*:The term "nontext portion” refersto theif clause portion that is not atarget for assembly.
B Relationships with Startup Options

@ If -linc ON is specified
The INC/NOINC specification is disabled, and include file text is always listed.

@ If -linc OFF is specified
The INC/ONINC specification is disabled, and include file text is not listed at all.

@ If -lexp ON is specified
The EXP/INOEXP/EXPOBJ specification is disabled, and macro-expanded text is always listed.

@ If -lexp OFF is specified
The EXP/INOEXP/EXPOBJ specification is disabled, and macro-expanded text is not listed at all.

@ If -lexp OBJ is specified

The EXP/INOEXP/EXPOBJ specification is disabled, and only the object of macro-expanded text is always
listed.

PART 2 SYNTAX 193



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

10.9.5 .PAGE Instruction

The .PAGE instruction updates the page number, and starts outputting the next page of

the assembly list.

If the .PAGE instruction is on the first line of a page, it is disabled.
The .PAGE instruction itself is not listed.

B .PAGE Instruction
[Format]

.PAGE

[Description]

The .PAGE instruction updates the page number, and starts outputting the next page of the assembly list.

If the .PAGE instruction is on the first line of a page, it is disabled.
The .PAGE instruction itself is not listed.

[Examples]

Source program

.DATA
.DATA
.PAGE
.DATA
.DATA

194

10
20

30
40

Assembly list

.DATA
.DATA

10
20

.DATA
.DATA

30
40

Page n

Page n+1

PART 2 SYNTAX



10.9.6 .SPACE Instruction

CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

The .SPACE instruction outputs a specified number of blank lines.
The number of blank lines to be output can range between 0 and 255.

The .SPACE instruction itself is not listed, but is included in the line count.

Bl .SPACE Instruction
[Format]

SPACE

number-of-blank-lines

number-of-blank-lines: Expression (absolute expression)

[Description]

The .SPACE instruction outputs as many blank lines as specified in the number-of-blank-lines operand.
The expression specified in the .SPACE instruction must be an absolute expression.
The number of blank lines to be output can range between 0 and 255.

If the instruction specifies more blank lines than the page size, the excessive blank lines are not output.
The .SPACE instruction itself is not listed, but isincluded in the line count.

[Examplé]
.SPACE 4

PART 2 SYNTAX

195



CHAPTER 10 ASSEMBLER PSEUDO-INSTRUCTIONS

196 PART 2 SYNTAX



CHAPTER 11
PREPROCESSOR
PROCESSING

Preprocessor processing provides text processing
functions such as macro expansion, repeat expansion,
conditional assembly, macro replacement, and file
reading.

These functions allow effective coding of assembly
programs, in which similar blocks of text are often used
repeatedly.

Each preprocessor instruction conforms to the C
compiler preprocessor specifications so that it can be
easily assimilated to C.

Some instructions, such as #macro, are unique to the
assembler, not found in the C compiler.

This chapter explains the functions of the preprocessor
as well as each instruction.

11.1 Preprocessor

11.2 Basic Preprocessor Rules
11.3 Preprocessor Expressions
11.4 Macro Definitions

11.5 Macro Call Instructions
11.6 Repeat Expansion

11.7 Conditional Assembly Instructions
11.8 Macro Name Replacement
11.9 #include Instruction

11.10 #line Instruction

11.11 #error Instruction

11.12 #pragma Instruction
11.13 No-operation Instruction
11.14 Defined Macro Names

11.15 Differences from the C Preprocessor

PART 2 SYNTAX 197



CHAPTER 11 PREPROCESSOR PROCESSING

11.1  Preprocessor

A preprocessor is generally called a preprocessing program. It is used to process text
before it is actually assembled.
This preprocessor provides four main functions:

Macro definition
Conditional assembly
Macro name replacement
File reading

B Preprocessor

@ Macro definition
There are cases in which the programmer wishes to execute multiple instructions or a certain unit of
processing with a single instruction.
In these cases, macro definition is useful.
Thetext of the instruction string that is to be defined is called the macro body.
When amacro call is made, the macro is expanded into the macro body.

In the macro body, the programmer can write not only machine instructions, pseudo-instructions, and
macro names, but formal arguments, #local instructions, and local symbols.

[Example]

#macro get_timer addr, reg

#local loop

loop:
LDI #addr, RO _—

Macro body Macro definition

LD @RO, reg
CMP #0, reg
BEQ loop

#endm

/* get_timer is a macro call instruction */
/* addr reg are formal arguments*/

/* loop is a local symbol */

get_timer 0x100, R1/* Macro call */

__0000000001l00p:
LDI #0x100, RO
LD @RO, R1 .
Macro expansion
CMP #0, R1
BEQ __0000000001l00p

198 PART 2 SYNTAX



CHAPTER 11 PREPROCESSOR PROCESSING

@ Conditional assembly

When, for example, an instruction is to be executed if a condition is true and another instruction is to be
executed if it isfalse, code asfollows:

#if CPU_TYPE=1
text-1
#else
text-2
#endif

Inthisexample, if CPU_TYPE isequal to 1, text-1 is selected and assembl ed.

If CPU_TYPE isnot equal to 1, text-2 is selected and assembled.

Theinstructions used for conditional assembly are called conditional assembly instructions.

The conditional assembly instructions are #if, #ifdef, #ifndef, #elif, #else, and #endif instructions.

@ Macro name replacement

An important function of the preprocessor is macro name replacement.
For example, if a constant value isto be used, it can be written directly asfollows:

LDI #OXFF, RO
Alternatively, OxFF can be defined for some descriptive name as follows:

#define IOMASK, OxFF
LDI #IOMASK, RO
The latter is easier to understand.

The function that replaces the name IOMASK with OXFF is called macro replacement.

@ File reading
It is useful if the variables and macro names to be shared are stored in a separate file so that the file can be
included by another file when necessary.
[Example]
Fileiodef.h

#define IOMASK O0XFF /* I/0 mask value */

#define SETCMD 1 /* Set data command */
File com.asm
#include "iodef.h" /* Read defined values */

LDI #IOMASK,RO

AND RO,R2 /* Mask the data */

LDI #SETCMD, RO

ST r0,@R7 /* Send the Set Data command */

PART 2 SYNTAX 199



CHAPTER 11 PREPROCESSOR PROCESSING

11.2 Basic Preprocessor Rules

This section explains how to write programs using preprocessor instructions and
explains preprocessor rules.

B Preprocessor Instruction Format
Each preprocessor instruction must be preceded by a# symbol.

The preprocessor instructions are listed below:

#macro #local #exitm #endm
#repeat #if #ifdef #ifndef
#elif #telse #endif #define
#set #undef #purge #include
#line #terror #pragma #

B Comments
A comment can begin in any column.
A semicolon (;) or two slashes (//) start aline comment.
A comment can also be enclosed by /* and */, asin C.
A comment enclosed by /* and */ can appear anywhere.
B Continuation of a Line
A backslash (\) at the end of aline means that the line continues on the next line.

It is assumed that the beginning of the next line starts at the location of the backslash (\) indicating
continuation.

If the backslash (\) is followed by a character other than the line-feed character, the line cannot be
continued.

B Integer Constants

Four types of integer constants are available: binary, octal, decimal, and hexadecimal.
B Character Constants

A character constant must be enclosed in single quotation marks ().

B Macro Names

Each time a macro name appears in text, the macro name is expanded or replaced by the character string
defined for it.

B Formal Arguments

A formal argument is defined by a macro definition (#macro instruction). A macro cal instruction can be
used to set an argument for the formal argument.

B Local Symbols
A symbol symbol automatically generates a unique name at macro expansion.

Thus, if ajump symbol, for example, is defined in a macro body as alocal symbol, the symbol will never
be defined multiple times no matter how many times the macro is expanded.

200 PART 2 SYNTAX



CHAPTER 11 PREPROCESSOR PROCESSING

11.2.1  Preprocessor Instruction Format

Each preprocessor instruction must be preceded by a # symbol.
Blanks and comments can be written between column 1 and a preprocessor instruction.
When aline comment is written, it is regarded as continuing until the end of the line.

B Preprocessor Instruction Format

[Format]

#preprocessor-instruction [parameter ...]

[Description]
Each preprocessor instruction must be preceded by a# symbol.
Blanks and comments can be written between column 1 and a preprocessor instruction.
When aline comment iswritten, it is regarded as continuing until the end of the line.
Preprocessor instructions, preceded by a#, are not processed by macro replacement.
The preprocessor instructions are listed below:

#macro #local
#exitm #endm
#repeat #if
#ifdef #ifndef
#elif #else
#endif #define
#set #undef
#purge #include
#line #error
#pragma #
[Examples]

#define LINEMAX 255

#ifndef OFF

/* OFF */ #define OFF 0

/* ON */ #define ON -1 /* Not 1 */
#endif

PART 2 SYNTAX 201



CHAPTER 11 PREPROCESSOR PROCESSING

11.2.2 Comments

Comments are classified as line comments and range comments.

A line comment begins with a semicolon (;) or two slashes (//).

A comment can also be enclosed by /* and */, as in C. This type of comment is called a
range comment.

B Comments
[Format]

/* Range comment */
// Line comment
;  Line comment

[Description]
A comment can begin in any column.
Comments are classified as line comments and range comments.
A line comment begins with a semicolon (;) or two slashes (//).
A comment can also be enclosed by /* and */, asin C. Thistype of comment is called a range comment.
A range comment can appear anywhere.

[Examples]
/-k _________________
Comments
___________________ */
#define STRLEN 10; Character length
/* testl *./ #if TEST== // Test mode 1

/* test2 */ #elif TEST==2 /* Special test */

/* end */ #endif

202 PART 2 SYNTAX



CHAPTER 11 PREPROCESSOR PROCESSING

11.2.3 Continuation of a Line

When a backslash (\) is placed at the end of a line, the line is assumed to continue to

the next line.

It is also assumed that the beginning of the next line follows the backslash (\) indicating

continuation.

If the backslash (\) is followed by a character other than the line-feed character, the line
cannot be continued.

B Continuation of Line

[Format]

\Line feed character

[Description]

Placing a backslash (\) at the end of aline means that the line continues on the next line.
It is assumed that the beginning of the next line starts at the position of the backdash (\) indicating
continuation.
If the backslash (\) is followed by a character other than the line-feed character, the line cannot be
continued.
A backslash can also be used to indicate the continuation of comments, character constants, and character
strings.
[Examples]

PART 2 SYNTAX

.DATA

. SDATA

0x01, 0x02, 0x03, \

0x04, 0x05, 0x06, ; Comment \
0x07, 0x08, 0x09
"abcdefghijklmnopgrstuvwxyz \

ABCDEFGHIJKLMNOPQRSTUVWXYZ" /* Continuation of a character string */

203



CHAPTER 11 PREPROCESSOR PROCESSING

11.2.4 Integer Constants

Four types of integer constants are available: binary, octal, decimal, and hexadecimal.
Integer constants are exactly the same as the numeric constants in the assembly
phase.

B Integer Constants
Four types of integer constants are available: binary, octal, decimal, and hexadecimal.

The long-type specification (such as 123L) and the unsigned-type specification (such as 123U) in C are
supported.

@ Binary constants

A binary constant is an integer constant represented in binary notation.

It must be preceded by a prefix (B' or Ob) or suffix (B).

The prefix (B' or Ob) and suffix (B) can be either uppercase or lowercase.
[Examples]

B’0101 0b0101 0101B

@ Octal constants

An octal constant is an integer constant represented in octal notation.
It must be preceded by a prefix (Q' or 0) or suffix (Q).

The prefix (Q') and suffix (Q) can be either uppercase or lowercase.
[Examples]

Q"377 0377 377Q

@ Decimal constants

A decimal constant is an integer constant represented in decimal notation.
It is preceded by a prefix (D) or suffix (D).

The prefix and suffix for decimal constants can be omitted.

The prefix (D') and suffix (D) can be either uppercase or lowercase.
[Examples]

D’1234567 1234567 1234567D

@ Hexadecimal constants

A hexadecimal constant is an integer constant represented in hexadecimal notation.
It must be preceded by a prefix (H' or 0x) or suffix (H).

The prefix (H' or 0x) and suffix (H) can be either uppercase or lowercase.
[Examples]

H'ff OxXFF OFFH

204 PART 2 SYNTAX



CHAPTER 11 PREPROCESSOR PROCESSING

11.2.5 Character Constants

A character constant represents a character value.

In a character constant, a character constant element must be enclosed in single
guotation marks (').

Character constants are exactly the same as those in the assembly phase.

B Character Constants
In acharacter constant, a character constant element must be enclosed in single quotation marks ().

Character constant elements can be characters, extended representations, octal representations, and
hexadecimal representations.

A character constant element can be up to four characters.
Character constants are handled in base-256 notation.
B Character Constant Elements

@ Characters

All characters (including the blank) except the backdash (\) and single quotation mark () can be
independent character constant elements.

[Examples]
I P I I @AI I OAI n
@ Extended representations
A specific character preceded by a backdash (\) can be a character constant element.

Thisformis called an extended representation.
Table 11.2-1 lists the extended representations.

Table 11.2-1 Extended Representations

Character Character constant element Value
Line feed character \n O0x0A
Horizontal tab character \t 0x09
Backspace character \b 0x08
Carriage return character \r 0x0D
Line feed character \f 0x0C
Backslash \\ 0x5C
Single quotation mark \ 0x27
Double quotation mark \" 0x22
Alarm character \a 0x07
Vertical tab character \v 0x0B
Question mark \? Ox3F

Note:
The characters used in extended representations must be lowercase.

PART 2 SYNTAX 205



CHAPTER 11 PREPROCESSOR PROCESSING

[Examples]
4 \I'l' 14 \u 4 \II\\I
@ Octal representations

The bit pattern of a character code iswritten directly to represent single-byte data.
An octal representation is one to three octal digits preceded by a backslash (\).

[Examples]
Character constant element Bit pattern
" \0’ b’00000000
" \377' br11111111
© \53’ b’00101011
r\0123" b’00001010 --> ' Divided into ' \012' and '3’

@ Hexadecimal representations

The hit pattern of a character code is written directly to represent single-byte data.

A hexadecimal representation is character x (lowercase) and one or two hexadecimal digits preceded by a

backslash (\).
[Examples]
Character constant element Bit pattern
" \x0’ b’ 00000000
rO\XEE’ b’11111111
" \x2B’ b’ 00101011
' \x0A5' b’00001010 --> ' Divided into ' \x0A’ and ’'5’

206 PART 2 SYNTAX



CHAPTER 11 PREPROCESSOR PROCESSING

11.2.6 Macro Names

Each time a macro name appears in text, the macro name is expanded or replaced by
the character string defined for it.
In C, a macro name can also be called an identifier.

B Macro Name Rules
* A macro name must begin with an alphabetic character or an underscore ().
» The second and subsequent characters of a macro name must be alphanumeric characters or underscores

Q).
* Macro name characters are case-sensitive.
[Examples]
A Zabcde PpTRUE 123456789

B Macro Name Types

@ Defined macro

Refers to a macro name defined by the #define or #set instruction.

A defined macro name can appear anywhere in text. Each time it appears, it is replaced by the character
string defined for it.

[Examples]
#define TRUE 1
#define FALSE 0

#define add(a,b) (a)+(b)
/* TRUE, FALSE, and add are macro names */

@ Macro call instruction

Refers to a macro name defined by the #macro instruction.

Only blanks and comments can be written between the beginning of aline and a macro call instruction.
If aline comment is written, the comment continues until the end of the line.

A macro call instruction is expanded into the defined text.

[Example]

#macro max a,b,c

#endm

/* max is a macro name */

PART 2 SYNTAX 207



CHAPTER 11 PREPROCESSOR PROCESSING

11.2.7 Formal Arguments

A formal argument is defined by a macro definition (the #macro instruction). A macro
call instruction is used to set an argument for the formal argument.

B Formal Argument Naming Rules

Formal arguments must conform to the macro naming rules given in Section "11.2.6 Macro Names".
B Formal Argument Replacement Rules

Formal arguments can be replaced in a macro body only.

Formal arguments have no effect after macro expansion ends.

[Example]

#macro mv
ST
MOV
#endm
mv
ST
MOV

LD

208

regl, reg2

reg2, @-SP
92.@ Macro body
regl, reg2

R1, R2  /* Macro call */

R2, @-SP )
Macro expansion
R1, R2 :I P
@+SP,regl [* Because this is outside the macro body, regl is not */

/* treated as a formal argument and is therefore not */
/* replaced. */

PART 2 SYNTAX



CHAPTER 11 PREPROCESSOR PROCESSING

11.2.8 Local Symbols

A local symbol automatically generates a unigue name at macro expansion.
Thus, if a jump symbol, for example, is defined in a macro body as a local symbol, the
symbol will never be defined multiple times no matter how many times the macro is

expanded.

B Local Symbol Naming Rules

Local symbols must conform to the macro naming rules given in Section "11.2.6 Macro Names".

B Local Symbol Replacement Rules
Loca symbols can be replaced in a macro body only.

A local symbol is generated in the following format:

__nnnnnnnnnn local-symbol

A local symbol begins with two underscores (), which are followed by a 10-digit number.
The 10-digit number is incremented by 1 in the range from 0000000001 to 4294967295 each time a macro

cal ismade.

The 10-digit number is followed by a user-specified local symbol hame.

A loca symbol has no effect after the macro expansion ends.

[Example]

#macro get_timer addr, reg

#local loop
loop:
LDI
LD
CMP
BEQ
#endm

loop is defined as a local symbol by the #loop

instruction.
#addr, RO

Macro body
@RO, reg
#0, reg
loop

get_timer 0x100, R1/* Macro call */

_0000000001l00p:

LDI
LD

CMP
BEQ

BRA

PART 2 SYNTAX

#0x100, RO

@RO, R1 Macro expansion

#0, R1 The loop portion is replaced by
__0000000001loop __0000000001lo00p.

loop /* Because this is outside the macro body, loop is not treated */

/* as a local symbol and is therefore not replaced. */

209



CHAPTER 11 PREPROCESSOR PROCESSING

11.3

Preprocessor Expressions

Preprocessor expressions are used with the #if, #elif, #set, and #repeat instructions.
The operators used in expressions conform to constant expressions in C.

B Preprocessor Expressions

The following terms can be used in an expression:

e Integer constants

e Character constants

* Macro names

» Formal arguments (in macro bodies only)

Macro names and formal arguments are replaced before being used as terms.

If an expression contains an undefined macro name, it is evaluated with the macro name being replaced by
0.

Preprocessor expressions can be constant expressions only.

The relative symbols, absolute symbols, EQU symbols, and section symbols in the assembly phase cannot
be used.

[Example]
#if (MODE & Oxff) + 1 > 3

#endif

B Preprocessor Expression Operation Precision

Expression operation is used 32-bit. Operation exceeding 32 bits is not guaranteed (no error results,
however).

Relational and equivalence expressions are regarded as equal to 1 if evaluated as true and O if evaluated as
false.

B Preprocessor Operators

210

Operators are used in an expression.

The operators that can be used in an expression are as follows:

@ Unary operators

! Logical NOT Used in true/false decision
~ NOT Used in bit decision

+ Positive

- Negative

PART 2 SYNTAX



@Binary operators

*

/
%
+

<<

>>

&&
[

Multiplication
Division

Remainder
Addition
Subtraction

Left arithmetic shift
Right arithmetic shift
Relational operator
Relational operator
Relational operator
Relational operator
Relational operator
Relational operator
Bit AND

Bit XOR

Bit OR

Logica AND
Logical OR

CHAPTER 11 PREPROCESSOR PROCESSING

Less than

Lessthan or equal to

Greater than

Greater than or equal to

Equal to
Not equal to

B Preprocessor Operator Precedence
Table 11.3-1 indicates the preprocessor operator precedence.

Table 11.3-1 Preprocessor Operator Precedence

Precedence Operator Associativity Applicable expression
1 O Left Parentheses
2 I ~+- Right Unary-operator expression
3 * /% Left Multiplication expression
4 +- Left Addition expression
5 << >> Left Shift expression
6 <<=>>= Left Relational expression
7 === L eft Equivalence expression
8 & Left Bit AND expression
9 n Left Bit XOR expression
10 | Left Bit OR expression
11 && L eft Logical AND expression
12 Il Left Logical OR expression

PART 2 SYNTAX

211



CHAPTER 11 PREPROCESSOR PROCESSING

11.4 Macro Definitions

A macro definition consists of a #macro instruction, macro body, and #endm
instruction.

When a macro call is made, the specified macro name is expanded into the macro body
defined by the macro definition.

B Macro Definitions

[Format]

#macro macro-name, [formal-argument[, formal-argument] ... ]
Macro body
#endm

[Description]
A macro definition consists of a#macro instruction, macro body, and #endm instruction.
The text between the #macro and #endm instructionsis called the macro body.

The macro body is registered in a macro description, with the macro name as a keyword. When the
macro hame appears, the macro name is expanded into the corresponding macro body.

The macro name used as a keyword is called the macro call instruction.
Expansion into amacro body is called macro expansion.
B Macro Definition Rules
Defining another macro in a macro body is not possible.

[Example]
#macro mac reg, data
LDI #data, RO
LD @RO, reg :| Macro body Macro definition
MOV reg, RO
#endm

mac R2,label /* Macro call instruction */
LDI #label, RO

LD @RO, R2 :| Macro expansion
MOV R2, RO

212 PART 2 SYNTAX



11.4.1 #macro Instruction

CHAPTER 11 PREPROCESSOR PROCESSING

The #macro instruction declares the beginning of a macro definition and defines a

macro name and formal argument(s).

B #macro Instruction
[Format]

#macro macro-name,

[formal-argument [, formal-argument] ... ]

[Description]

The #macro instruction declares the beginning of a macro definition and defines a macro name and

formal arguments.

The macro name specified with the #macro instruction is used as a macro call instruction.
When the macro call instruction is used, the macro name is expanded into the defined macro body.

B #macro Instruction Rules

» The definition that starts with the #macro instruction must end with the #endm instruction.
* Two or more formal arguments with the same name cannot be specified with the #macro instruction.
» The formal arguments specified with this instruction are valid within the corresponding macro body

only.

«  When a pattern that isthe same as aformal argument is found, it isimmediately replaced.
« If aforma argument is the same as a macro name or local symbol, the replacement of the formal

argument has precedence.
« Formal arguments are optional.
[Example]

#macro mac
LDI
LD
MOV
#endm

mac
LDI
LD
MOV

PART 2 SYNTAX

rl, r2, data

#data, r2

@r2,r1 :| Macro body

rl, r2

R2, R7, label /* Macro call instruction */

#label, R7
@R7, R2 :| Macro expansion

R2, R7

213



CHAPTER 11 PREPROCESSOR PROCESSING

11.4.2 #local Instruction

The symbol generated by the #local instruction is called a local symbol.
A local symbol automatically generates a unique name each time a macro call is made.

B #local Instruction
[Format]

#local local-gsymbol[, local-symbol]

[Description]
The #local instruction defines alocal symbal.
The symbol generated by the #local instruction is called alocal symbol.
A local symbol automatically generates a unique name each time a macro call is made.
A local symbol generates a unique name so that it is not defined multiple times.
For an explanation of the local symbol generation rules, see Section "11.2.8 Loca Symbols'.
B #local Instruction Rules
« The#local instruction can be used in a macro body only.
« Any number of local symbols can be specified.
e Two or morelocal symbolswith the same name cannot be specified.
e Thelocal symbols defined by the #local instruction are valid in that macro body only.
*  When the same pattern as alocal symbol isfound, a unique name isimmediately generated.

e If aloca symbol is the same as a macro name or forma argument, the replacement of the formal
argument has precedence.

[Example]

#macro  bitchk data

#local label
LDI #data, RO
label: Macro body
BTSTL #0x01, @RO
BEQ label
#endm
bitchk CH1 [* Macro call instruction */
LDI #CH1, RO
__0000000001label: )
Macro expansion
BTSTL  #0x01, @RO
BEQ __0000000001label

214 PART 2 SYNTAX



CHAPTER 11 PREPROCESSOR PROCESSING

11.4.3 #exitm Instruction

The #exitm instruction forcibly terminates macro or repeat expansion.

B #exitm Instruction

[Format]

#exitm

[Description]
The #exitm instruction forcibly terminates macro or repeat expansion.
B #exitm Instruction Rules
e The#exitm instruction can be used in amacro body only.
« The#exitm instruction has no effect on a conditional assembly instruction.

* If macro or repeat expansions are nested, each #exitm instruction terminates the corresponding
expansion only; it does not terminate the other expansions.

« Any number of #exitm instructions can be used in a macro body.

[Exampl €]

#macro mac cnt
NOP

#if cnt>=5

#exitm Macro body

#endif
LDI #cnt, R1

#endm
mac 4 /* Macro call instruction */
NOP
LDI #4, R1 :I Macro expansion
mac 5 /* Macro call instruction */
NOP —— Macro expansion

PART 2 SYNTAX 215



CHAPTER 11 PREPROCESSOR PROCESSING

11.4.4 #endm Instruction

The #endm instruction declares the end of a macro definition.
The #endm instruction also terminates the expansion text of repeat expansion.

B #endm Instruction
[Format]

#endm

[Description]
The #endm instruction declares the end of a macro definition.
The #endm instruction al so terminates the expansion text of repeat expansion.
Thus, the #endm instruction must always be used together with the #macro or #repeat instruction.

[Example]

#macro mac a,b
.DATA a,b

#endm

#repeat 3
NOP

#endm
NOP
NOP :| Repeat expansion
NOP

216 PART 2 SYNTAX




CHAPTER 11 PREPROCESSOR PROCESSING

11.5 Macro Call Instructions

When the macro name defined by the #macro instruction is found, the macro name is
expanded.
This function is called a macro call. The macro name is called a macro call instruction.

B Macro Call Instruction

[Format]

macro-call-instruction [argument [,argument] ... ]

[Description]
When the macro name defined by the #macro instruction is found, the macro is expanded.
Thisfunction is called amacro call. The macro nameis caled amacro cal instruction.

B Macro Call Instruction Rules

« Enter the macro name used as a macro call in the instruction field.

e Themacro instruction must be defined before it can be used.

« If an argument contains acomma (,), it must be enclosed in parentheses () or angle brackets <>.

- If an argument is enclosed in parentheses, the parentheses are treated as part of the argument.

- If an argument is enclosed in angle brackets, the brackets are not treated as part of the argument.

e The number of arguments specified with a macro call instruction must be equal to the number of
arguments in the corresponding macro definition. If the arguments specified with the macro call
instruction are fewer, null characters are assumed for the missing arguments.

* To specify anull character as an argument, write two commas (,,) or write a pair of angle brackets <>.

[Examples]
#macro mac a, b
LD a,b
CALL @b
#endm
mac @R3, R1 /* Macro call instruction */
LD R3, R1
@ :I Macro expansion
CALL @R1
mac @(R14, 16), R1 [* Macro call instruction */
LD R14, 16), R1 .
o ) :I Macro expansion
CALL @R1
mac <@(20, SP)>, R5  /* Macro call instruction */
LD @(20, SP), R5 .
( ) :I Macro expansion
CALL @R5

PART 2 SYNTAX 217



CHAPTER 11 PREPROCESSOR PROCESSING

11.6 Repeat Expansion

Repeat expansion contains the #repeat and #endm instructions.

In expansion text, write the text to be repeated.

Immediately after the #endm instruction, repeat expansion repeats the expansion text
the number of times specified by the iteration.

B Repeat Expansion
[Format]

#repeat iteration
expansion-text
#endm

iteration: Preprocessor expression

[Description]
Repeat expansion contains the #repeat and #endm instructions.
For expansion-text, write the text to be repeated.

Immediately after the #endm instruction, repeat expansion repeats the expansion text the number of times
specified by the iteration.

The text between the #repeat and #endm instructions is handled the same way as a macro definition.
Repeat expansion is handled the same way as macro expansion.

If, therefore, the output of a macro definition is controlled with alist control instruction, repeat expansion
is processed the same way.

The #local instruction cannot be used in expansion text.
[Example]

#repeat 1+2

LD @R2, R4 . Handled the same way as a
Expansion text -
ST R4, @R2 macro definition

#endm
LD @R2, R4
ST R4, @R2

LD @R2,R4 Repeat expansion (handled the same way as
ST R4, @R2 macro definition)
LD @R2, R4

ST R4, @R2

218 PART 2 SYNTAX



CHAPTER 11 PREPROCESSOR PROCESSING

W #repeat instruction

[Format]

#repeat Repeat expansion

iteration: Preprocessor expression
[Description]
The #repeat instruction declares the beginning of expansion text.
The expansion text is repeated the number of times specified by the iteration.
W #repeat Instruction Rules
« A definition that starts with the #repeat instruction must end with the #endm instruction.
e If theiteration is 0 or less, nothing is repeated.
[Example]

#repeat  1+2
DATA 1 _
DATA ) :I Expansion text

#endm
.DATA
.DATA
.DATA
.DATA
.DATA
.DATA

Repeat expansion (handled the same way as
macro definition)

N B N N P

PART 2 SYNTAX 219



CHAPTER 11 PREPROCESSOR PROCESSING

11.7 Conditional Assembly Instructions

The conditional assembly instructions are used to select, on the basis of a condition,
the text that is to be assembled.

Between the #if, #ifdef, or #ifndef instruction and the #endif instruction is an if clause.
The if clause contains the text subject to conditional assembly.

B Conditional Assembly Instructions
[Format]

#if instruction|#ifdef instruction|#ifndef instruction
text

[#else instruction|#elif instruction]
text

#endif instruction

[Description]
Between the #if, #ifdef, or #ifndef instruction and the #endif instruction is an if clause. The if clause
contains the text subject to conditional assembly.
The #else or #elif instruction can be used in theif clause.
An if clause can contain another if clause, afeature referred to as nesting of if clauses.
Six conditional assembly instructions are available:

« #if instruction

« #ifdef instruction

e #ifndef instruction

« #elseinstruction

« #elif instruction

« #endif instruction

220 PART 2 SYNTAX



CHAPTER 11 PREPROCESSOR PROCESSING

11.7.1 #1f Instruction

The #if instruction declares the beginning of an if clause.

If the conditional expression is true, the text between this instruction and the next
conditional assembly instruction is assembled.

If the conditional expression is false, the text between this instruction and the
corresponding #else, #elif, or #endif instruction is not assembled.

B #if Instruction
[Format]

#if conditional-expression

conditional-expression: Preprocessor expression
[Description]
The #if instruction declares the beginning of an if clause.
The conditional expression isfalseif it isequal to 0, and trueif not equal to 0.

If the conditional expression is true, the text between this instruction and the next conditional assembly
instruction is assembled.

If the conditional expression is false, the text between this instruction and the corresponding #else, #elif,
or #endif instruction is not assembl ed.

An if clause that starts with the #if instruction must end with the #endif instruction. Thus, the #if and
#endif instructions must always be paired.

[Examples]
#define ABC 1
#if ABC ==
.DATA 0
#endif

/* Because the conditional expression of the #if instruction is true, */
/* .DATA 0 is assembled. */
#if 0

.DATA 100
#endif
/* Because the conditional expression of the #if instruction is false, */
/* .DATA 100 is not assembled. */

PART 2 SYNTAX 221



CHAPTER 11 PREPROCESSOR PROCESSING

11.7.2 #ifdef Instruction

The #ifdef instruction declares the beginning of an if clause.

The if clause is true if the macro name has been defined and false if it has not been
defined.

If the if clause is true, the text between this instruction and the next conditional
assembly instruction is assembled.

If the if clause is false, the text between this instruction and the corresponding #else,
#elif, or #endif instruction is not assembled.

B #ifdef Instruction

[Format]

#ifdef macro-name

[Description]
The #ifdef instruction declares the beginning of an if clause.

Theif clauseistrueif the macro name has been defined and falseif it has not been defined.

If the if clause is true, the text between this instruction and the next conditional assembly instruction is
assembl ed.

If the if clause is false, the text between this instruction and the corresponding #else, #€lif, or #endif
instruction is not assembled.

An if clause that starts with the #ifdef instruction must end with the #endif instruction. Thus, the #ifdef
and #endif instructions must always be paired.

[Examples]
#define ON
#ifdef ON
.DATA 0
#endif

/* Because the macro name (ON) specified with the #ifdef instruction has been defined, */
/* .DATA 0 is assembled. */
#ifdef OFF
.DATA 100
#endif
/* Because the macro name (OFF) specified with the #ifdef instruction has not been */
/* defined, .DATA 100 is not assembled. */

222 PART 2 SYNTAX



CHAPTER 11 PREPROCESSOR PROCESSING

11.7.3 #ifndef Instruction

The #ifndef instruction declares the beginning of an if clause.

The if clause is false if the macro name has been defined and true if it has not been
defined.

If the if clause is true, the text between this instruction and the next conditional
assembly instruction is assembled.

If the if clause is false, the text between this instruction and the corresponding #else,
#elif, or #endif instruction is not assembled.

The true/false decision of the #ifndef instruction is the opposite from that of the #ifdef
instruction.

B #ifndef Instruction

[Format]

#ifndef macro-name

[Description]
The #ifndef instruction declares the beginning of an if clause.
Theif clauseisfalse if the macro name has been defined and true if it has not been defined.

If the if clause is true, the text between this instruction and the next conditional assembly instruction is
assembl ed.

If the if clause is false, the text between this instruction and the corresponding #else, #elif, or #endif
instruction is not assembled.

The true/false decision of the #ifndef instruction is the opposite from that of the #ifdef instruction.

An if clause that starts with the #ifndef instruction must end with the #endif instruction. Thus, the
#ifndef and #endif instructions must always be paired.

[Examples]
#define ON
#ifndef ON
.DATA 0
#endif

/* Because the macro name (ON) specified with the #ifndef instruction has been */
/* defined, .DATA 0 is not assembled. */
#ifndef OFF
.DATA 100
#endif
/* Because the macro name (OFF) specified with the #ifndef instruction has not been */
/* defined, .DATA 100 is assembled. */

PART 2 SYNTAX 223



CHAPTER 11 PREPROCESSOR PROCESSING

11.7.4 #else Instruction

The #else instruction can be used in an if clause.
The #else instruction inverts previous assembly condition.

M #else Instruction
[Format]

#else

[Description]

The #else instruction can be used in an if clause.
The #el se instruction inverts previous assembly condition.

If the condition specified in the if clause with the #if #ifdef,or#ifndef is true, it becomes the inverted false
and the text between thisinstruction and the corresponding #endif instruction is not assembled.

If the condition specified in the if clause with the #if #ifdef,or#ifndef is false, it becomes the inverted true
and the text between thisinstruction and the corresponding #endif instruction is assembled.

[Examples]
#define
#if

#telse

#endif
#ifdef

#else

#endif
#ifndef

#telse

#endif

224

NUM

NUM ==

.SDATA

.SDATA

NUM
.SDATA

.SDATA

NUM
.SDATA

.SDATA

3
n ABC n

n DEF n

Mk k%N

n NO n

n OKII

/* This is assembled. */

/* This is assembled. */

/* This is assembled. */

PART 2 SYNTAX



11.7.5 #elif Instruction

CHAPTER 11 PREPROCESSOR PROCESSING

The #elif instruction can be used in an if clause.
The #elif instruction has the same function as that of the #else and #if instructions used

together.

Thus, the #elif instruction is valid only if the assembly condition is false.

B #elif Instruction
[Format]

#elif conditional-expression

conditional-expression: Preprocessor expression

[Description]

The #lif instruction can be used in an if clause.
The #dlif instruction has the same function as that of the #else and #if instructions used together.
Thus, the #dlif instruction is valid only if the assembly condition is false.

@ If the assembly condition is true

The text between this instruction and the corresponding #endif instruction is not assembled.

@ If the assembly condition is false

The conditional expression is evaluated and assembly condition is determined again.

If the expression is true, the text between this instruction and the next conditional assembly instruction is

assembled.

If the expression is false, the text between this instruction and the corresponding #else, #elif or #endif
instruction is not assembled.

Multiple #elif instructions can be written in the if clause.

[Examples]
#define
#if
#elif
#elif

#elif

#endif
#ifdef

#elif

PART 2 SYNTAX

NUM

NUM==1
.SDATA
NUM==2
.SDATA
NUM==3
.SDATA
NUM==4
.SDATA

NUM

.SDATA
NUM==3
.SDATA

I|ABC n

n DEF n

n GHI n

n JKL n

Nkxxl

/* This is assembled */

/* This is assembled */

225



CHAPTER 11 PREPROCESSOR PROCESSING

#endif
#ifndef NUM
.SDATA "NO"
#elif NUM==3
.SDATA "OK" /* This is assembled */
#endif
/* If the conditions are false, as shown below, nothing is assembled */
#if NUM==10
.SDATA 222220
#elif NUM==20
.SDATA  "$S$SSSs™
#endif

226 PART 2 SYNTAX



11.7.6 #endif Instruction

CHAPTER 11 PREPROCESSOR PROCESSING

The #endif instruction indicates the end of conditional assembly.
If conditional assembly is nested, each #endif instruction is valid for the corresponding

#if, #ifdef, or #ifndef instruction only.

B #endif Instruction

[Format]

#endif

[Description]

The #endif instruction indicates the end of conditional assembly.

If conditional assembly is nested, each #endif instruction is valid for the corresponding #if, #ifdef, or
#fndef instruction only.

[Examples]
#ifndef
#define
#define
#if
#define
#elif
#define
#elif
#define
#endif
#ifdef
#undef
#endif
#define
#endif

PART 2 SYNTAX

_IODEF_
_IODEF_
VER
VER == 1
TOBUFNUM
VER == 2
TOBUFNUM
VER == 3
TOBUFNUM
TOCH
IOCH
IOCH

10

15

22

/*
/*

/*

/*

/*
/*

This is assembled */

This is assembled */

This is assembled */

Indicates the end of "#if VER == 1" *x/

Indicates the end of #ifdef IOCH */

This is assembled */

/* Indicates the end of #ifndef TIODEF *

227



CHAPTER 11 PREPROCESSOR PROCESSING

11.8 Macro Name Replacement

The #define instruction defines a macro name. Each time the macro name appears, it is
replaced by the character string defined for it.

The #set instruction defines a numeric value for a macro name. The result of evaluating
an expression is set.

The #undef instruction deletes a macro name.

B Macro Name Replacement

Each time a macro name appears in text, the macro name is replaced by the character string defined for it.
Thisisreferred to as macro replacement.

Macro replacement is valid for any macro names defined by the #define and #set instructions when the
mMacro names appear in text.

B Macro Replacement Rules
Formal argument and local symbol replacement also conforms to these rules:

¢ Macro replacement is not valid for the following:
- Preprocessor instruction names

- Charactersin comments

- Charactersin character strings

[Examples]

#define ABC define

#ABC NUM 10 /* #ABC is not replaced by #define */

#define MSG SOFTUNE

/* MSG */ /* MSG is not replaced by SOFTUNE */

.SDATA"MSG" /* .SDATA "MSG" is not replaced by .SDATA "SOFTUNE" */
« A macro name can be indicated explicitly by placing a backslash (\) in front of it. Usualy, the
backslash (\) can be omitted.

[Examples]

#define MD FPU

#define SYM start

.PROGRAM MD /* Replaced by .PROGRAM FPU */
MD\SYM: /* Replaced by FPUstart: */

e If the character string resulting from macro replacement contains another macro name, macro
replacement is repeated. Macro replacement can be repeated up to 255 times.

[Example]
#define NUM 10
#define ANUM (NUM+2)
#define BNUM ANUM* 3

.DATA BNUM /* Replaced by .DATA(10+2)*3 */

228 PART 2 SYNTAX



CHAPTER 11 PREPROCESSOR PROCESSING

11.8.1 #define Instruction

The #define instruction defines a character string for a macro name.

When the macro name is found in text, the macro name is immediately replaced by the
defined character string.

Two types of #define instruction are available: argument-less #define instruction and
parameter-attached #define instruction.

B Argument-less #define Instruction
[Format]

#define macro-name character-string-to-be-defined

[Description]
The argument-less #define instruction defines a macro name without an argument.
The character string is defined for the macro name.

When the macro name is found in text, the macro name isimmediately replaced by the defined character
string.

If no character string is specified, anull character is defined.

The #define instruction cannot change a character string that has already been defined for a macro name.

[Examples]
#define DB .DATA.B
#define DW .DATA.W
DB 0,2
DW OXfEEFFEEE
B Argument-attached #define Instruction
[Format]

#define macro-name (formal-argument [, formal-argument] ... )
character-string-to-be-defined

[Description]
The argument-attached #define instruction defines a macro name with an arguments.

The macro name must be immediately followed by a left parenthesis "(". There must be no blanks or
comments between the macro name and the left parenthesis.

The parenthesis must be followed by the formal arguments and by aright parenthesis )", and finally by
the character string that is being defined.

When the macro name is found in text, a format check is performed first, then the formal arguments are
replaced by the corresponding arguments and the macro name is expanded.

A macro name with argumentsis replaced in the following format:

macro-name (argument, [argument] ...)

The number of arguments must be equal to the number of formal arguments.

If no character string is specified, anull character is defined.

The #define instruction cannot change a character string that has already been defined for a macro name.

PART 2 SYNTAX 229



CHAPTER 11 PREPROCESSOR PROCESSING

[Examples]
#define NUM 10
#define eq(a, b) a==b

#define ne(a, b) al=b

.DATA eq (NUM, 10) /* Replaced by .DATA (10==10) */
.DATA ne (5, NUM) /* Replaced by .DATA (5!=10) * /
.DATA eq (ne (5,NUM) , 1) /* Replaced by .DATA ((5!=10)==1) */

230 PART 2 SYNTAX



CHAPTER 11 PREPROCESSOR PROCESSING

11.8.2 Replacing Formal Macro Arguments by Character
Strings (# Operator)

The # operator replaces the argument corresponding to a formal argument with a
character string.

B Replacing Formal Macro Arguments with Character Strings (# Operator)
[Format]

#formal-argument

[Description]

The # operator can be used in the character string to be defined in a parameter-attached #define

instruction.

The # operator replaces the argument corresponding to aformal argument with a character string.

Any blanks before and after the argument are deleted before being replaced by the character string.
[Examplé]

#define MDL (name) #name
.SDATA MDL (test) /* Replaced by .SDATA "test" */

PART 2 SYNTAX 231



CHAPTER 11 PREPROCESSOR PROCESSING

11.8.3 Concatenating the Characters to be Replaced by Macro
Replacement (## operator)

The ## operator concatenates the characters before and after it.

B Concatenating the Characters to be Replaced by Macro Replacement (## Operator)

[Format]

character##fcharacter

[Description]
The ## operator can be used in the character string defined in a#define instruction.

In macro replacement, when the ## operator appears in character string that is being defined, the
characters before and after the ## operator are concatenated, and the ## operator removed.

With the argument-attached #define instruction, if the ## operator isimmediately preceded or succeeded
by a formal argument in the character string, the formal argument is replaced by the corresponding real
argument before being concatenated.

The character string resulting from concatenation by the ## operator is subject to macro replacement.

[Example]
#define abcd 10
#define val ab##cd
.DATA val /* Replaced by .DATA 10 */
#define val2 (x) x##cd
.DATA val2 (ab) /* Replaced by .DATA 10 */

232 PART 2 SYNTAX



CHAPTER 11 PREPROCESSOR PROCESSING

11.8.4 #set Instruction

The #set instruction evaluates an expression and defines the result for a macro name as
a decimal constant.

B #set Instruction
[Format]

#set macro-name expression

expression: Preprocessor expression
[Description]
The #set instruction evaluates an expression and defines the result for a macro name as a decimal
constant.
The #set instruction can be executed for the same macro name as many times as necessary.
The difference from the #define instruction is that the #set instruction allows the macro name to be used

asavariable.
[Examples]
#set CNT 1
#repeat 3
.DATA CNT
#set CNT CNT+1
#endm
.DATA 1
.DATA 2 :| Repeat expansion
.DATA 3

If the second #set instruction is replaced by a #define instruction (#define CNT CNT+1), CNT cannot be
replaced correctly by macro replacement, causing an error.

PART 2 SYNTAX 233



CHAPTER 11 PREPROCESSOR PROCESSING

11.8.5 #undef Instruction

The #undef instruction deletes the specified macro name.

B #undef Instruction
[Format]

#undef macro-name

[Description]
The #undef instruction del etes the specified macro name.
Thisinstruction is not valid for formal arguments and local symbols.
Once amacro name is deleted, it can be redefined by the #define instruction.

[Example]
#define ABC 100*2
-DATA  ABC /* Replaced by .DATA 100%*2 */
#undef ABC
#define ABC Wk k ok ARC K Kk 1
.SDATA ABC /* Replaced by .SDATA "***ABC***" */

234 PART 2 SYNTAX



11.8.6  #purge Instruction

CHAPTER 11 PREPROCESSOR PROCESSING

#purge instruction deletes all macro names.

B #purge Instruction
[Format]

#purge

[Description]

#purge instruction deletes al macro names.
Thisinstruction is not valid for formal arguments and local symbols.
Once the macro names are deleted, they can be redefined by the #define instruction.

[Example]

#define ABC

#define DEF
.DATA
.DATA

#purge

#define ABC
.SDATA

PART 2 SYNTAX

100*2

200*3

ABC /* Replaced by .DATA 100%*2 */

DEF /* Replaced by .DATA 200*3 */
II***ABC***II

ABC /* Replaced by .SDATA "***ABC*x*" */

235



CHAPTER 11 PREPROCESSOR PROCESSING

11.9 #include Instruction

The #include instruction reads the specified file to include it in the source program.

B #include Instruction

[Format]
#include <file-names> [Format 1]
#include "file-name" [Format 2]
#include file-name [Format 3]
[Description]

The #include instruction reads the specified file to include it in the source program.

Thefileincluded by the #include instruction is called an includefile.

An include file can include another file using the #include instruction, a feature called nesting files.
Nesting is possible up to eight levels.

Depending on the format used, the #include statement searches for afile through different directories.

Note:

If the file name specified with the #include instruction is a relative path name, it is handled as being
reference to the directory containing the source file.

B File Search for Format 1
If format 1 is used, the instruction searches for the file through the following directories in the indicated
order until thefileis found:
1. Directory specified by the -| start-time option
2. Directory specified by the INC911 environment variable
3. Include directory in the development environment
- %FETOOL%\LIB\911\INCLUDE
B File Search for Formats 2 and 3
If format 2 or 3 is used, the instruction searches for the file through the following directories in the
indicated order until thefileisfound:
1. First, an attempt is made to access the file with the specified file name.
2. Directory specified by the -l start-time option
3. Directory specified by the INC911 environment variable
4. Include directory in the devel opment environment
- %FETOOL%\LIB\911\INCLUDE

[Examples]
#include <stdio.h>
#include "stype.h"
#include stype.h
#include <sys\iodef.h>
#include ", . \lodef.h"
#include \usr\localliodef.h

236 PART 2 SYNTAX



CHAPTER 11 PREPROCESSOR PROCESSING

11.10 #line Instruction

The #line instruction changes the line number of the next line to the specified line
number.

M #line Instruction
[Format]

#line line-number [file-name]

file-name: Character string

[Description]
The #line instruction changes the line number of the next line to the specified line number.
If afile nameis specified, the file name is also changed to thisfile name.

[Example]

#line 1000 "test.asm"
/* As a result, the line number of the line following the #line instruction line is
changed to 1000, and the file name is changed to "test.asm" */

PART 2 SYNTAX 237



CHAPTER 11 PREPROCESSOR PROCESSING

11.11 #error Instruction

The #error instruction sends the specified message to the standard output as an error
message.
After the #error instruction has been executed, no processing is performed.

B #error Instruction

[Format]

#terror error-message

[Description]
The #error instruction sends the specified message to the standard output as an error message.
After the #error instruction has been executed, no processing is performed.

[Examplé]

#error Test program miss!

238 PART 2 SYNTAX



CHAPTER 11 PREPROCESSOR PROCESSING

11.12 #pragma Instruction

The #pragma instruction does nothing.

B #pragma Instruction
[Format]

#pragma character-string

[Description]
The #pragma instruction is provided for compatibility with the C preprocessor.
Thisinstruction has no effect on the assembler, and the assembler performs no action.

PART 2 SYNTAX 239



CHAPTER 11 PREPROCESSOR PROCESSING

11.13 No-operation Instruction

The no-operation instruction does nothing.

B No-operation Instruction
[Format]

#

[Description]
The # symbol istreated as a no-operation instruction provided it is followed by aline-feed character only.
The no-operation instruction performs no action.
[Examples]
#
#

#
.SECTION CODE

240 PART 2 SYNTAX



CHAPTER 11 PREPROCESSOR PROCESSING

11.14 Defined Macro Names

Defined macro names are reserved.
They cannot be deleted by the #undef instructions.

B Defined Macro Names

® LINE__

This macro name is replaced by the decimal line number of the current source line.
[Example] If the current source line number is 101
.DATA __ LINE /* Replaced by .DATA 101 */

® FILE

This macro name is replaced by the current source file name in the character string.
[Exampl €] If the current source file nameistl.asm

.SDATA __ FILE _/* Replaced by .SDATA "tl.asm" */

® DATE

This macro name is replaced by the date of assembly in the following format:
"Mmm dd yyyy"
where Mmm is an abbreviation for the month name, dd is the day, and yyyy is the year.
[Example] Assembled in August 7, 1966
.SDATA __ DATE /* Replaced by .SDATA "Aug 7 1966" */

® TIME__

This macro name is replaced by the time of assembly in the following format:
"hh:mm:ss"
where hh is hours, mm is minutes, and ssis seconds.
[Example] Assembled at 12:34:56
.SDATA TIME  /* Replaced by .SDATA "12:34:56" */

® FASM__

This macro name is replaced by the decimal constant 1.
[Exampl€]
.DATA __ FASM__ /* Replaced by .DATA 1 */

PART 2 SYNTAX 241



CHAPTER 11 PREPROCESSOR PROCESSING

® CPUFR__

This macro name is replaced by the decimal constant 1.
It is effective only when MB number of FR family is specified as the -cpu option.

® CPU FRSO__

This macro name is replaced by the decimal constant 1.
It is effective only when MB number of FR80 family is specified as the -cpu option.

B Defined Macro Name

@ defined (macro-name)

This macro name is replaced by the decimal constant 1 if the specified macro name has been defined, and
by the decimal constant O if the macro name has not been defined.

[Examples]
.DATA defined (ABC) /* .Replaced by .DATAQ */
#define ABC
.DATA defined (ABC) /* .Replaced by .DATAl */
Note:
The character "__" means two underscores (_).

242 PART 2 SYNTAX



CHAPTER 11 PREPROCESSOR PROCESSING

11.15 Differences from the C Preprocessor

This section explains the differences between the assembler's preprocessor and the C
preprocessor.

B Differences from the C Preprocessor
The following eight functions are provided by the assembler's preprocessor, but not by the C preprocessor:
e #macro instruction
e #local instruction
e #exitm instruction
e #endm instruction
 #repeat instruction
e #setinstruction
e #purge instruction
e  FASM__ defined macros
The function that is not the same in the assembl er's preprocessor and the C preprocessor is.
e #pragmainstruction
- Assembler's preprocessor: Does nothing.

- C preprocessor: See the C language manual.

Note:
The character "__" means two underscores (_ ).

PART 2 SYNTAX 243



CHAPTER 11 PREPROCESSOR PROCESSING

244 PART 2 SYNTAX



CHAPTER 12

ASSEMBLER PSEUDO
MACHINE INSTRUCTIONS

The assembler supports the use of assembler pseudo
machine instructions.

A set of machine instructions for each MCU can be
specified as a single machine instruction. This type of
instruction is called an assembler pseudo machine
instruction.

This chapter describes the formats and functions of the
assembler pseudo machine instructions.

12.1 Assembler Pseudo Machine Instructions

PART 2 SYNTAX 245



CHAPTER 12 ASSEMBLER PSEUDO MACHINE INSTRUCTIONS

12.1  Assembler Pseudo Machine Instructions

Table 12.1-1 lists the assembler pseudo machine instructions.

B Assembler Pseudo Machine Instructions
Table 12.1-1 contains the following items:

@ Mnemonic

Mnemonics of assembler pseudo machine instructions are listed.

@ Machine cycles

The number of machine cycles for each instruction is listed.

e a Thisindicates amemory access cycle that may be prolonged with the Ready function.

e b: Thisindicates a memory access cycle that may be prolonged with the Ready function. When the
next instruction refers a register that will be used for an LD operation, however, an interlock is applied,

and the number of execution cyclesisincremented by 1.

¢ ¢:. When the next instruction reads from or write to R15, the SSP, or the USP, an interlock is applied,

and the number of execution cyclesisincremented by 1 and became 2.

e d: When the next instruction refers the MDH/MDL, an interlock is applied, and the number of
execution cyclesisincremented by 1 and became 2.

The minimum number of cyclesis one for each of a, b, ¢, and d.

@ Flag change

Flag change Flag meaning
C Change N Negative flag
- No change Z Zero flag
0 Clear v Overflow flag
1 Set C Carry flag

@ Operation

Instruction operations are listed.

246

PART 2 SYNTAX



CHAPTER 12 ASSEMBLER PSEUDO MACHINE INSTRUCTIONS

Table 12.1-1 Assembler Pseudo Machine Instructions (1/6)

. Machine Flag change .
Mnemonic cveles Operation
y NZVC

ADD #s5, Ri 1 CCcCC Ri + s5 — Ri
When s5 is a negative value, the ADD2 instruction is
specified.

ADDN #s5, Ri 1 - - - - Ri + s5 — Ri
When s5 is anegative value, the ADDN2 instruction is
specified.

CMP #s5, Ri 1 CCcCcC Ri - s5
When s5 is a negative value, the CM P2 instruction is
specified.

BAND #us, @Ri - - - - - [Ri] &=u8
Either of the following instructionsis generated,
depending on the value of u8.
if((uB& Ox0F)!=0x0F) The BANDL instructionis
generated.
if((uB& OxF0)!=0xF0) The BANDH instructionis
generated.

BOR #us, @Ri1 - ---- [Ri] |=u8
Either of the following instructions is generated,
depending on the value of u8.
if((u8& 0x0F)!'=0) The BORL instruction is generated.
if((u8& 0xF0)!'=0) The BORH instruction is generated.

BEOR #us8, @Ri - - - - - [Ri] ®=u8
Either of the following instructionsis generated,
depending on the value of u8.
if((u8B& Ox0F)!=0) The BEORL instruction is
generated.
if((u8& OxF0)!=0) The BEORH instruction is
generated.

DIV Ri - -C-C MDL/Ri — MDL, MDL%Ri — MDH
DIVOS, 32 DIV1s, DIV2, DIV3, and DIV4 are
generated. The code length is 72 bytes.

DIVU Ri - -C-C MDL/Ri — MDL, MDL%Ri — MDH Unsigned
DIVOU and 32 DIV 1sare generated. The code length
iS 66 bytes.

LSL #u5, Ri 1 CC-C Ri << u5 — Ri Logical shift
When u5 is 16 or greater, the LSL2 instruction is
specified.

LSR #u5, Ri 1 CC-C Ri >> u5 — Ri Logical shift

When u5 is 16 or greater, the LSR2 instruction is
specified.

PART 2 SYNTAX

247




CHAPTER 12 ASSEMBLER PSEUDO MACHINE INSTRUCTIONS

Table 12.1-1 Assembler Pseudo Machine Instructions (2/6)

. Flag change
Mnemonic Machine Operation

cycles NZVC

ASR #u5, Ri 1 CC-C Ri >> s5 — Ri Arithmetic shift
When u5 is 16 or greater, the ASR2 instruction is
specified.

LDI #{is|i20|i32}, Ri - -- - - {is|i20|i32} — Ri
When the value is an absolute value, the assembler
selectsi8, 120, or 132 as an optimum choice.
In this case, however, the following conditions apply:
1)symbols are included in the same section, or in any
section other than a code section.
2)The expression format is one of the following:
symbol
symbol+offset value
symbol-offset value
Only when both of conditions 1) and 2) are met isthe
optimization function activated, and the optimum
instruction format selected by the assembler.
Otherwise, 132 is selected.
When the value is arelative value, external reference
value, or section value, i32 is selected.
One of the following instructionsis specified with i8,
i20, or i32:
When i8 is selected:
LDI:8 #18, Ri
When i20 is selected:
LDI:20 #i20, Ri
When i32 is selected:
LDI:32 #132, Ri

LDM (reglist) - - - - [R15++] — reglist

Load multiple registers (RO to R15)
Either of the following instructionsis generated,
depending on the registers specified with reglist.
RO to R7: The LDMO instruction is generated.
R8 to R15:The LDM1 instruction is generated.

STM (reglist) - ---- reglist — [--R15]

Store multiple registers (RO to R15)
Either of the following instructions is generated,
depending on the registers specified with reglist.

RO to R7: The STMO instruction is generated.
R8 to R15: The STM1 instruction is generated.

248 PART 2 SYNTAX



CHAPTER 12 ASSEMBLER PSEUDO MACHINE INSTRUCTIONS

Table 12.1-1 Assembler Pseudo Machine Instructions (3/6)

Mnemonic

Machine
cycles

Flag change

NzZVC

Operation

CALL20 label20, Ri

Next instruction address — RP, label20 — PC
Instructions are generated as shown below:
1) Label20-$-2 — disp
2) -0x800 <= disp <= +0x7FE
CALL label20
3)When the value is out of the range shownin 1) and
2) or contains an external reference:
LDI:20 #label20, Ri
JMP @R1

BRA20 label20, Ri

Label20 — PC Ri: Work register
Instructions are generated as shown below:
1) Label20-$-2 — disp
2) -0x100 <= disp <= +0XFE
BRA label20
3)When the value is out of the range shownin 1) and
2) or contains an external reference:
LDI:20 #label20, Ri
JMP @R1

Bcc20 label20, Ri

label20 — PC
Ri: Work register
For information about the condition specification (cc),
see Section "5.1.4 Optimization of Branch
Instructions" in Part 1.
Instructions are generated as shown below:
1) label20-$-2 — disp
2) -0x100 <= disp <= +0XFE
Bcc label20
3)When the valueis out of therange shownin 1) and 2)
or contains an external reference:
Bxcc false
LDI:20 #label20, Ri
JMP @Ri
false:
Note: xcc and cc are mutually exclusive.

if (condition)

CALL20:D 1label20, Ri1i

Next instruction address — RP,
label20 — PC
Instructions are generated as shown below:
1) Label20-$-2 — disp
2) -0x800 <= disp <= +0x7FE
CALL:D 1label20
3)When the value is out of therange shownin 1) and 2)
or contains an external reference:
LDI:20 #label20, Ri
CALL:D @Ri

PART 2 SYNTAX

249




CHAPTER 12 ASSEMBLER PSEUDO MACHINE INSTRUCTIONS

Table 12.1-1 Assembler Pseudo Machine Instructions (4 /6)

Mnemonic

Machine
cycles

Flag change

NZVC

Operation

BRA20:D label20, Ri

Label20 — PC Ri: Work register
Instructions are generated as shown below:
1) Label20-$-2 — disp
2) -0x100 <= disp <= +0XFE
BRA:D label20
3)When the valueisout of therange shownin 1) and 2)
or contains an external reference:
LDI:20 #label20, Ri
JMP:D @R1

Bcc20:D label20, Ri

if (condition) label20 — PC
Ri: Work register
For information about the condition specification (cc),
see Section "5.1.4 Optimization of Branch
Instructions', in Part 1.
Instructions are generated as shown below:
1) Label20-$-2 — disp
2) -0x100 <= disp <= +0XFE
Bcc:D label20
3)When the value is out of therange shownin 1) and 2)
or contains an external reference:

Bxcc false

LDI:20 #label20, Ri

JMP:D @Ri
false:
Note: xcc and cc are mutually exclusive.

CALL32 label32, Ri

Next instruction address — RP,
label32 — PC
Instructions are generated as shown below:
1) Label32-$-2 — disp
2) -0x800 <= disp <= +0x7FE
CALL label32
3)When the value is out of the range shown in 1) and
2) or contains an external reference:
LDI:32 #label32, Ri
CALL @Ri

BRA32 label32, Ri

Label32 — PC Ri: Work register
Instructions are generated as shown below:
1) Label32-$-2 — disp
2) -0x100 <= disp <= +0XFE
BRA label32
3)When the value is out of the range shown in 1) and
2) or contains an external reference:
LDI:32 #label32, Ri
JMP @R1

250

PART 2 SYNTAX




CHAPTER 12 ASSEMBLER PSEUDO MACHINE INSTRUCTIONS

Table 12.1-1 Assembler Pseudo Machine Instructions (5/6)

Mnemonic

Machine
cycles

Flag change

NzZVC

Operation

Bcc32 label32,

Ri

if (condition) label32 — PC
Ri: Work register
For information about the condition specification (cc),
see Section "5.1.4 Optimization of Branch
Instructions', in Part 1.
Instructions are generated as shown below:
1) Label32-$-2 — disp
2) -0x100 <= disp <= +0XFE
Bcc label32
3) When the value is out of the range shownin 1) and
2) or contains an external reference:
Bxcc false
LDI:32 #label32, Ri
JMP @R1i
false:
Note:xcc and cc mutually are exclusive.

CALL32:D label32,

Ri

Next instruction address — RP,
label32 — PC
Instructions are generated as shown below:
1) Label32-$-2 — disp
2) -0x800 <= disp <= +0x7FE
CALL:D label32
3)When the value is out of therange shownin 1) and 2)
or contains an external reference:
LDI:32 #label32, Ri
CALL:D @Ri

BRA32:D label32,

Ri

Label32 — PC Ri: Work register
Instructions are generated as shown below:
1) Label32-$-2 — disp
2) -0x100 <= disp <= +0XFE
BRA:D label32
3)When the value is out of therange shownin 1) and 2)
or contains an external reference:
LDI:32 #label32, Ri
JMP:D  @Ri

PART 2 SYNTAX

251




CHAPTER 12 ASSEMBLER PSEUDO MACHINE INSTRUCTIONS

Table 12.1-1 Assembler Pseudo Machine Instructions (6/6)

: Flag change
Mnemonic Machine Operation

cycles NZVC

Bce32:D label32, Ri - - - - - if (condition) label32 — PC
Ri: Work register
For information about the condition specification (cc),
see Section "5.1.4 Optimization of Branch
Instructions’, in Part 1.
Instructions are generated as shown below:
1) Label32-$-2 — disp
2) -0x100 <= disp <= +0XFE
Bcec:D label32
3) When the valueis out of the range shownin 1) and
2) or contains an external reference:
Bxcc false
LDI:32 #label32, Ri
JMP:D @R1
false:
Note: xcc and cc are mutually exclusive.

252 PART 2 SYNTAX



APPENDIX

The two appendixes explain error messages and note
restrictions that must be observed.

APPENDIX A Error Messages
APPENDIX B Restrictions

253



APPENDIX A Error Messages

APPENDIX A Error Messages

The assembler displays the error messages below.

B Format of Error Messages

| xx101A |Expression too complex

v v

Error ID Error message
xX101A

t Tool identifier A: Assembler
Error number (three digits)

Error level
W1: Warning level
E4: Syntax error
Fo: Fatal error (abnormal termination of assembly)

Note:
Supplementary explanations are provided underneath some error messages.

M Error Messages

E4101A Expression too complex

[Program action]

Stops the expression eval uation.

E4102A Missing expression(s)

[Program action]

Stops the expression evaluation.

W1103A Divide by zero

[Program action]

Stops the expression eval uation.

254



APPENDIX A Error Messages

E4104A No termsin parentheses

[Program action]

Stops the expression evaluation.

W1105A Illegal term in expression

[Program action]

Stops the expression eval uation.

E4106A Unbalanced parentheses in expression

[Program action]

Stops the expression evaluation.

E4107A Syntax error

[Program action]

Ignores the instruction.

E4109A Nothing macro-name

[Program action]

Ignores the instruction.

E4110A Nothing include file-name

[Program action]

Ignores the instruction.

E4111A Cannot open include file

[Program action]

Ignores the instruction.

E4112A Nested include file exceeds 8

The number of nested include files must not exceed 8.

[Program action]

Ignores the instruction.

255



APPENDIX A Error Messages

E4114A Nested macro-call exceeds 255

The number of nested macro calls must not exceed 255.
[Program action]

Ignores the instruction.

E4115A Changed level exceeds 255

The number of nested replaced levels must not exceed 255.
[Program action]

Replaced the macro names to null characters.

E4116A Invalid value

The integer constant includesillegal characters.
[Program action]

Ignores only theillegal characters.

E4117A Macro name duplicate definition

[Program action]

Ignores the instruction.

W1118A Argument duplicate definition

[Program action]

Ignores the argument.

W1119A Local-symbol duplicate definition

[Program action]

Ignores this definition of the local symbol.

W1120A Too many arguments

[Program action]

Ignores the extra arguments.

256



APPENDIX A Error Messages

W1121A Not enough arguments

[Program action]

Creates as many null-character arguments as are required.

E4122A Missing '('

[Program action]

Ignores the instruction.

E4123A Unterminated macro-name ")’

[Program action]

Ignores the instruction.

E4124A Unterminated comment

[Program action]

Appends */ to the comment.

W1125A Unterminated '

[Program action]

Ends the character constant at the end of the line.

W1126A Unterminated "

[Program action]

Ends the character string at the end of the line.

W1127A Unterminated ">'

[Program action]

Appends > to theinclude file.

W1128A Value overflow

The specified number exceeds 32 bitsin length.
[Program action]

Accepts only the lower 32 bits.

257



APPENDIX A Error Messages

W1134A M eaningless description

[Program action]

Ignores the description.

E4135A Has no #if-statement

[Program action]

Ignores the instruction.

E4136A Has no #macro-statement

[Program action]

Ignores the instruction.

W1137A #endif expected

[Program action]

Assumes that a #endif statement has been written.

E4138A #endm expected

[Program action]

Assumes that a#endm statement has been written.

E4140A Not used macro-statement

[Program action]

Ignores the instruction.

W1142A Meaningless .CASE

[Program action]

Ignores the .CASE instruction.

W1143A Meaningless . DEFAULT

[Program action]

Ignoresthe .DEFAULT instruction.

258



APPENDIX A Error Messages

W1144A .CASE statement not permitted here

[Program action]

Ignores the .CASE instruction.

W1145A .ENDSW without .CASE statement

[Program action]

Continues processing assuming that the .CASE instruction has not been written.

W1146A #PURGE not permitted here

[Program action]

Ignores the #PURGE instruction.

W1147A Datawidth is not permitted to indicate to last item. Ignored this suffix

[Program action]

Ignores the specification.

E4148A .BREAK not in structured block

[Program action]

Ignores the specification.

E4149A .CONTINUE not in structured block

[Program action]

Ignores the specification.

E4150A Missing angle bracket

[Program action]

Ignores the specification.

E4151A Conditional expression overflow

[Program action]

Ignores the specification.

259



APPENDIX A Error Messages

E4152A & & and || conditional expression exist

[Program action]

Ignores the specification.

E4153A Illegal structured block order

[Program action]

Ignores the specification.

E4154A Source item and destination item is the same

[Program action]

Ignores the specification.

E4155A Number of item is overflowed

[Program action]

Ignores the specification.

E4501A Missing expression(s)

[Program action]

Ignores the instruction.

E4502A Out of section

[Program action]

Creates a section defined by ".SECTION CODE,CODE,ALIGN=2".

E4503A Invalid directive (instruction-name)

[Program action]

Ignores the instruction.

E4504A Invalid word (detailed information)

[Program action]

Ignores the coding up to the next delimiter.

260



APPENDIX A Error Messages

E4506A Missing string terminator (")

[Program action]

Ends the character string at the end of the line.

E4507A Expression too complex

[Program action]

Stops the expression eval uation.

E4510A Vaue overflow (detailed information)

The specified number exceeds 32 bhitsin length.
[Program action]

Accepts only the lower 32 bits.

E4511A Missing string terminator ()

[Program action]

Ends the character constant at the end of the line.

E4512A Divide by zero

[Program action]

Assigns 0 to the value of the expression.

E4513A Expression too complex

[Program action]

Stops the expression evaluation.

E4514A Register not permitted in expression (register-name)

[Program action]

Stops the expression eval uation.

E4515A No termsin parentheses

[Program action]

Stops the expression evaluation.

261



APPENDIX A Error Messages

262

E4516A Illegal term in expression (detailed information)

[Program action]

Stops the expression evaluation.

E4517A Unbalanced parentheses in expression

[Program action]

Stops the expression eval uation.

E4518A Cannot out this operator (detailed information)

[Program action]

Assigns 0 to the value of the expression.

E4519A Register list symbol not permitted in expression (detailed information)

[Program action]

Stops the expression eval uation.

E4521A Structured definitions. Invalid directive

[Program action]

Ignores the pseudo-instruction.

E4522A Structured definitions. Invalid instruction

[Program action]

Ignores the machine instruction.

E4524A Duplicate declaration (symbol-name)

The symbol has already been declared by a .GLOBAL, .EXPORT, or .IMPORT instruction.
[Program action]

Ignores this declaration.

E4525A Duplicate definition (symbol-name or section-name)

[Program action]

Ignores the symbol definition.



APPENDIX A Error Messages

E4526A Cannot declare (symbol-name)

A symbol cannot be declared by a.GLOBAL, .EXPORT, or .IMPORT instruction.
[Program action]

Ignores the declaration.

W1527A Undefined symbol:treats as an external reference symbol (symbol-name)

[Program action]

Treats the symbol as an external reference symbol.

E4528A Terms other than the section symbol are described in the size operator (symbol-name)

[Program action]

Stops the expression eval uation.

External reference symbol is described in the size operator: Please make and deal with an

E4529A empty section by the name (symbol-name)

[Program action]

Stops the expression evaluation.

E4530A Invalid symbol field (detailed information)

[Program action]

Ignores the specification up to the end of theline.

E4531A Not an absolute expression

The expression includes an external reference symbol or absolute symbol.
[Program action]

Ignores the instruction.

E4532A Not complex relocatable expression

The expression includes multiple external reference symbols or absolute symbols.
[Program action]

Ignores the instruction.

263



APPENDIX A Error Messages

E4533A Forward reference symbol is described in expression

A forward reference symbol cannot be used in an expression of an instruction.
[Program action]

Ignores the instruction.

E4534A Syntax error in operand (detailed information)

[Program action]

Ignores the instruction.

W1535A M eaningless description (detailed information)

[Program action]

Ignores the meaningless specification.

E4536A Duplicate directive (detailed information)

[Program action]

Uses the first specified instruction.

E4537A Reserved word cannot define symbol (detailed information)

[Program action]

Ignores the specification up to the end of theline.

E4538A Reserved word cannot be used as a section name (detailed information)

[Program action]

Ignores the instruction.

E4539A Size operator is described in expression

A size operator cannot be used in an expression of an instruction.
[Program action]

Ignores the instruction.

E4540A Conflicting section attribute (parameter-name)

[Program action]

Ignores only the parameter name.

264



APPENDIX A Error Messages

W1541A Value out of range

[Program action]
The program masks an operational result (value) of a equation described in the operand, in accordance
with the operand size.
See section "7.11 Expressions' for details.
The assembler outputs object files.
[Supplementary Explanation]

When alist file output specification option (-) is specified, the assembler outputs alist file.

The operand code generate the list file is a value obtained by masking the operation result in accordance
with the operand size.

This message appears when the result of the operational result of the equation described in the operand
exceeds that operand size, when the -OVFW is specified.

See section "7.11.2 Range of Operand Value' for details.

E4541A Value out of range

[Program action]

The program masks an operational result (value) of a equation described in the operand, in accordance
with the operand size.
See section "7.11 Expressions' for details.
The assembler does not output object files.
[Supplementary Explanation]

When alist file output specification option (-1) is specified, the assembler outputs alist file.

The operand code output to the list file is a value obtained by masking the operation result in accordance
with the operand size.

This message appears when the result of the operational result of the equation described in the operand
exceeds that operand size, when the -XOVFW is specified

E4542A Invalid keyword (keyword-name)

[Program action]

Ignores only the specified keyword.

E4543A Invalid kind of register

[Program action]

Ignores the instruction.

265



APPENDIX A Error Messages

266

E4544A Invalid register list (detailed information)

[Program action]

Ignores the instruction.

W1545A Meaningless symbol field (detailed information)

[Program action]

Ignores the symbol field.

W1546A Duplication in the specification of the register list (register name)

[Program action]
The program ignores duplication registers and continues processing.
[Supplementary Explanation]
This message appears when registers are specified redundantly to the register list.
This message appears when the -reglst_check option is specified.
See section "4.8.11 -reglist_check, -Xreglst_check" for details on -reglst_check.

E4548A Missing keyword

[Program action]

Ignores the instruction.

E4550A Location counter overflow

[Program action]

Continues processing.

W1551A Missing .END directive

[Program action]

Assembles the program up to the end of thefile.

E4552A Invallid value

[Program action]

Ignores the instruction.



APPENDIX A Error Messages

E4553A

Missing (=) behind keyword (keyword-name)

[Program action]

Ignores only the specified keyword.

E4554A

Duplicate keyword (keyword-name)

[Program action]

Usesthe first specified keyword.

E4556A

Missing symbol field

[Program action]

Ignores the instruction.

E4557A

Starting address out of section

[Program action]

Ignores the starting address.

W1558A

Starting address not in code section

[Program action]

Ignores the starting address for dummy sections. For other sections, the assembler sets the starting

address.

E4559A

Conflicting size-suffix (detailed information)

The operand sizeis different from the operation size.
[Program action]

Uses the operation size.

E4561A

Floating value underflow (detailed information)

[Program action]

Sets the floating-point constant to +0.

E4562A

Floating value overflow (detailed information)

[Program action]

Sets the floating-point constant to the maximum value that can be represented with the precision, and that
has the specified sign.

267



APPENDIX A Error Messages

E4565A Not a power of 2

[Program action]

Accepts the specification.

W1566A Bigger than alignment size of .SECTION directive

[Program action]

Accepts the specified value.

E4567A Not enough operands

[Program action]

Ignores the instruction.

W1568A Invalid word in module name

The module nameisinvalid.
[Program action]

Replaces each of theillegal characters with an underline ().

E4570A Invalid section name (section-name)

[Program action]

Ignores the instruction.

Smaller value than beginning address set with LOCATE value of .SECTION directive

EAS7IA cannot be set

[Program action]

Ignores the instruction.

Bigger value than boundary value set with ALIGN value of .SECTION directive cannot

E4572A be set

[Program action]

Ignores the instruction.

268



APPENDIX A Error Messages

E4573A Has no statement

[Program action]

Ignores the instruction.

It cannot be guaranteed to arrange in a proper boundary. :Please set ALIGN value of

WI574A .SECTION directivein 2 or more

[Program action]

Ignores the instruction.

It cannot be guaranteed to arrange in a proper boundary. :Please set ALIGN value of

WI575A .SECTION directivein 4 or more

[Program action]

Ignores the instruction.

It cannot be guaranteed to arrange in a proper boundary. :Please set ALIGN value of

W1576A .SECTION directivein 8 or more

[Program action]

Ignores the instruction.

E4600A Invalid operation mnemonic (instruction-name)

[Program action]

Ignores the instruction and creates a NOP instruction.

E4601A Unusable operation mnemonic with common object (instruction-name)

[Program action]

Ignores the instruction and creates a NOP instruction.
[Supplementary Explanation]

This error occurs by the instruction shown in the Table A-1, when specification of output FR/FR80
common object option (-CO).

Please see Section "4.8.12 -CO" for the method of outputting FR/FR80 common object.

269



APPENDIX A Error Messages

270

Table A-1 Incompatibility of FR and FR80 Instructions

Instructions Incompatibility

n
Py

FR80

LDRES @Ri+,#u4

X

STRES #u4,@Ri

COPOP #u4,#CC,CRj,CRi

COPLD #u4#CC,Rj,CRi

COPST #u4,#CC,CRj Ri

COPSV #u4,#CC,CRj Ri

SRCHORI

SRCH1Ri

SRCHC Ri

X| X| X| O O] O] O| O] O

O] O] O] X| X| X| X| X

O: Compatible X: Incompatible

E4605A Invalid Operation-suffix

[Program action]

Ignores the subsequent operation fields.

E4606A Invalid Option-suffix in operation field (detailed information)

[Program action]

Ignores only the instruction option.

W1608A Conflicting Option-suffix in operation field (detailed information)

[Program action]

Uses the first specified instruction option.

E4616A Not enough operands

[Program action]

Ignores the instruction and creates a NOP instruction.

E4617A Too many operands (detailed information)

[Program action]

Ignores the extra operands.




APPENDIX A Error Messages

E4619A Unbalanced parentheses (in operand (number))

[Program action]

Ignores the instruction and creates a NOP instruction.

E4622A Format-suffix not permitted (detailed information)

[Program action]

Ignores the specified format.

E4625A Invalid Size-suffix (character-string)

[Program action]

Ignores the specification.

E4626A Size-suffix not permitted

[Program action]

Ignores the specified size.

E4629A Syntax error (operand-number, detailed information)

[Program action]

Ignores the instruction and creates a NOP instruction.

E4639A Addressing mode not permitted (in operand (number))

[Program action]

Ignores the instruction and creates a NOP instruction.

E4651A Floating point data too short (in operand (number))

[Program action]

Adds as many Os as required to the data.

E4652A Floating point data too long (in operand (number))

[Program action]

Ignores the extra data.

271



APPENDIX A Error Messages

272

E4654A Illegal instruction start address (detailed information)

Theinstruction start address is an odd address.
[Program action]

Changes the instruction start address to an even address.

Note: Specify an even address as an instruction start address.

E4656A Nothing operand (detailed information)

[Program action]

Ignores the instruction and creates a NOP instruction.

E4698A Number of include files exceeds 32766

[Program action]

Stops assembly..

W1701A Cannot optimize for insufficient memory

[Program action]
The assembler does not optimize normal branch instructions.

E4703A Cannot put machine-code

[Program action]

Continues processing.

W1704A It is possible to optimize. : The back and forth instruction is replaced.

[Program action]

Changes the sequence of this and the preceding instructions.

W1705A It is possible to optimize. :Changes to another instruction.

[Program action]

Changes the instruction to the optimum instruction.

W1706A It is possible to optimize. :Theinstruction is deleted.

[Program action]
Deletes the instruction.



APPENDIX A Error Messages

W1707A It is possible to optimize. :The instruction is newly generated.

[Program action]

Creates anew instruction.

W1710A Instruction is written after .END

[Program action]

Ignores the code following the .END instruction.

W1711A L ocation address backed by .ORG

[Program action]

Continues processing with the specified address.

W1712A This structure field cannot initialized

[Program action]

Ignores the specification.

W1713A Too many initialize data

[Program action]

Ignores the extrainitialization data.

W1714A Section type error

[Program action]

Ignores the symbol attribute and creates an instruction.

E4715A Section type error

[Program action]

Ignores the specification.

E4716A .ENDS expected

[Program action]

Terminates abnormally.

273



APPENDIX A Error Messages

W1717A Mismatch .ENDS

[Program action]

Ignores the specification.

E4756A Invalid address modifier

[Program action]

Ignores the specification.

W1800A Not 2 bytes attribute

[Program action]

Sets the lowest bit of the value to O.

W1801A Not 4 bytes attribute

[Program action]

Sets the lower two bits of the value to 0.

E4802A Invalid register

[Program action]

Ignores the instruction and creates a NOP instruction.

E4803A Fixed point of double precision is not supported

[Program action]

Ignores the instruction and creates a NOP instruction..

W1854A Conflicting operands in thisinstruction

[Program action]
Ignores and creates a code.

W1855A Not implemented register

[Program action]
Ignores and creates a code.

274



APPENDIX A Error Messages

FO860A CPU information not found (CPU-name)

[Program action]

Stop the assembly process.

Note: CPU information specified by the -cpu option is not registered in the CPU information file.

Check the CPU MB number specified by the -cpu option again.
If there is no mistake in the specification, contact Fujitsu Microelectronics Limited.

F9861A Mismatch CPU information file version

[Program action]

Stop the assembly process.

Note: The CPU information file version that was read is old, and then the information required by
this assembler is not included.

Re-install the Assembler Pack.

FO901A Insufficient memory (error-1D)

[Program action]
Terminates abnormally.

Note: Increase memory capacity.

F9902A Internal error (error-1D)
The error is due to acontradiction in the internal processing of the assembler.
[Program action]

Terminates abnormally.

Note: Make a note of the error ID, and contact our development section.

F9903A File Write Error (file-type)

[Program action]
Terminates abnormally.

Note: Check that the disk capacity is sufficient, and that the file is not write-protected.

275



APPENDIX A Error Messages

FO904A File read error (file-type)

Some of the source files or work files cannot be read.
[Program action]

Terminates abnormally.

Note: Check that no source files or work files have been forcibly deleted during assembly.

F9905A Cannot open message file

[Program action]
Terminates abnormally.

Note: Set an environmental variable, or check for a message file.

F9951A Source filename not specified

[Program action]

Terminates abnormally.

F9952A Cannot open file (file-name)

[Program action]
Terminates abnormally.

FO953A Invalid option name (option-name)

[Program action]

Terminates abnormally.

F9954A Invalid value (option-name)

[Program action]

Terminates abnormally.

FO955A Invalid sub-option name (option-name)

[Program action]

Terminates abnormally.

276



APPENDIX A Error Messages

FO956A

Invalid option description (option-name)

[Program action]

Terminates abnormally.

FO959A

Nested option file exceeds 8 (detailed information)

[Program action]

Terminates abnormally.

FO960A

Too many file

Multiple files cannot be assembled.
[Program action]

Terminates abnormally.

FO961A

-Cpu option not specified

[Program action]

Terminates abnormally.

W1999A

If use thisinstruction about 1/O or FIFO port. May be get problem

[Program action]

Assumes that the instruction will not cause afailure, and continues processing.

277



APPENDIX B Restrictions

APPENDIX B Restrictions

The following restrictions apply when the assembler is used.

B Restrictions Related to Preprocessor Processing
*  The number of nested include files must not exceed 8.
» The number of nested macro calls must not exceed 256.
e The number of dummy arguments specified in amacro definition must not exceed 32,767.

« An unlimited number of macro names can be registered (The maximum number depends on the size of
the available memory area).

B Restrictions Related to Assembly Processing

* An unlimited number of symbol can be registered (The maximum number depends on the size of the
available memory area).

B Restrictions on Option Files
e Thenumber of characters contained on one line in an option file must not exceed 4095.
*  The number of nested option files must not exceed 8.
B Other Restrictions
e Themain file name of a source file must not be longer than 248 characters.
« No two-byte characters can be used in a module name.

278



INDEX

INDEX

The index follows on the next page.
This is listed in alphabetic order.

279



INDEX

Index
Symbols
# Operator

Replacing Formal Macro Arguments with Character

Strings (# Operator) .........coccvvveeevrunenen. 231

## Operator

Concatenating the Characters to be Replaced by

Macro Replacement (## Operator) ........ 232

#define

Argument-attached #define Instruction............... 229

Argument-less #define Instruction ..................... 229
#elif

#elif INSErUCION......ccoveei e 225
#else

#ElSE INSITUCLION......cccvviiiecieeee e 224
#endif

#endif Instruction .........ccoooevveviieeeeeeieeeeee 227
#endm

#endm INStrUCtioN..........eveeiiiiecee e 216
#error

#error INStruCtion..........cceveveieiiiiiin e 238
#exitm

HEXItM INSTUCLION .....covvviieieeeicee e 215

#exitm Instruction RUIES..........coeeveeeiiiviiiieeees 215
#if

T INSEIUCHION Lovvecccee e 221
#ifdef

#ifdef Instruction..........ccoooeeviiiiiiieee e 222
#ifndef

#ifndef Instruction...........ooooovvviieieeiiiiieee e 223
#include

#include InStruction..........cooovvvvieieiiiieeeeeeeees 236
#line

#ine INStruction..........coee v 237
#local

#local INStruction..........ccooeeeviiiiiieieeeieeieee e 214

#local Instruction RUIES ........covvveeieeiiiiiieeeee, 214
#macro

#Macro INStrUCtioNn..........coveeiviiviiiee e 213

#macro Instruction RUIES ......covvveeiieiiiiieeeee, 213
#pragma

#pragma lnstruction.............cevvvvvvvvviviiciiin e, 239
#purge

#pUrge INSLruCtion .........cccvvviiiiiiieiee e 235
#repeat

#repeat Instruction RUles..........cvvveeeeeiiiiiciiinne, 219
#set

HSE INSITUCHTION. ... 233

280

#undef

#undef INStruction.........ccoeeevvvvvieei e 234
ALIGN

ALIGN .o 94

ALIGN Instruction.......coeeeeeevvvieeieeeeeiiieeeeeeeen, 163
ASCII

ASCI i 102

ASCIH INSTUCLioN. .....cvveeeeeeeiiceee e 182
BYTE

[ 2 I = 97

BYTE INSrUction.........coooevevvvveeeieeeieie e 174
.DATA

DATA oo 97

DATA INSIrUCtion ........ooeeieiiiiiee e 174
DATAB

DATAB ....ooiiiiieeeeeeee e 98

.DATAB INStruction............cccveeeieeiieiiieieeeeeennn, 176
DEBUG

DEBUG .......co o 103

.DEBUG INStruction............ccevveeereereeviiiieeeeeennns 186
.DOUBLE

DOUBLE. ..o 99

.DOUBLE INStruction ..........cccoeeeveeveeviieieneeennnn 178
.END

END ..o 93

.END INStruction.........cccooeeveiiiiinieeiiiiie e 159
.ENDS

.STRUCT and .ENDS Instructions..................... 184
.EQU

EQU e 96

EQU Instruction...........cooovvvviviieeen 171
.EXPORT

EXPORT ..ottt 95

EXPORT INStruction ..........cccveeeieeiveiiiieeeeeenne, 167
FDATA

FDATA .o 99

FDATA INSIrUCLioN .....evveeiieiiiee e 177
.FDATAB

FDATAB 100

FDATAB InStruction..........cccveeeieeeveviiiieeeeeennn 179
.FLOAT

FLOAT ..o 99

FLOAT INSErUCHON ..ccvvveeeceeiiieeieeeeev e 177
FORM

FORM ..ot 105

FORM INStruction..............ooevvevevvevvvennninrinnnnnn. 189
.FRES

FRES. ... 101

FRESINStruction ........ccoeeeveviiiiiiieeceeiic e 181



.GLOBAL

GLOBAL ... 95

.GLOBAL INStruction............ccoeeeeeeverrurieeeeenennnns 168
.HALF

[ 1Y 97

HALF INSrUCtioN......veeeieeveiieeeeeeeeee e, 174
.HEADING

HEADING ... 105

HEADING Instruction.............ccocceeiiiiiinnnnn 191
IMPORT

IMPORT ..ottt e e eeeeeaaens 95

AMPORT INSrUCtION.......cccvvvieeieeieiiiie e, 169
.LIBRARY

LIBRARY . 104

.LIBRARY INStruction ..........ccecoeeevivvvvieneeenennnn. 187
.LIST

LIST oo 106

LIST InStruction........ceeeeeeveiien e, 192
LONG

LONG.....coittiieieietiiiei e e e e ee e eneanens 97

LONG INSLrUCtON ...ovveeeeeiiiiee e, 175
ORG

ORG ..ot 94

ORG INStrUCLION.....cvvveieieiiiiee e, 164
PAGE

PAGE .....oovvveeciciecee et 106

PAGE INStruction..........cccovviiiieeiiiiiiee e, 194
.PROGRAM

PROGRAM ...t 93

.PROGRAM INStruction .............ccoevvveeeeeerennnnnn. 158
.REG

] C R 96

REG INStrUCtion........oooeeeiveviieieeieeieee e, 172
.RES

RES ...ttt 101

RESINStruction........coooeeeeviiiiiiieeieeicee e, 180
SDATA

SDATA e 102

SDATA INSITUCLION ..., 182
SDATAB

SDATAB oo 102

SDATAB INStruction.........ccceeeeeeveivviieeeeeeeennnnn, 183
.SECTION

SECTION ... 93

SECTION INSLrUCLION.......cvvvvrvrririiiiiiieeeieneennn. 160
.SKIP

SKIP sttt ———— 94

SKIPINSIIUCON .., 165
SPACE

SPACE ...t 106

SPACE INSLIUCLION.......ccevvviriiiiiiiiiiieeeeeie e 195
.STRUCT

.STRUCT and .ENDS Instructions..................... 184

INDEX

.TITLE
I 105
TITLE INSrUCtioN. ...vvvvecieeviiee e, 190
WORD
WORD ... 97
\WORD INSITUCLION. ....eueeeiiiiiieeeeeeeeviee e, 175

281



INDEX

A
Absolute
AbsolUte ValUES.........covveieeiiiiiiieieeeeeeieee e 129
Address
Address Control INStructions.............c.eveeeeeenens 162
ALIGN
ALIGN ... 94
ALIGN INSEIUCLION ... 163
Area
Area Definition INStructions...............ccceeeeeeeens 173
Argument-attached
Argument-attached #define Instruction............... 229
Argument-less
Argument-less #define Instruction ..................... 229
Arithmetic
Arithmetic Operators.........cccuvveeeeeeieeeeeineiiies 132
ASCII
ASClH e 102
ASCH INSIUCLION .., 182
Assembler
Assembler Pseudo Machine Instructions............. 246
Assembly
Assembly Phase.........ooooiiiiiiiee, 4
Restrictions Related to Assembly Processing ...... 278
B
Backward
Forward Reference Symbols and Backward Reference
SYMDOIS ... 117
Binary
Binary Constants............ceevvvvviviereniiniiiiininieeenn 118
Bitwise
BitwWise Operators........coceeeieiiiviiiiieeeeieaeeee e 131
Boolean
Boolean ValUES..........coeeeevieeiiiieeiieiee e, 131
Branch
Optimization of Branch Instructions..................... 74
Optimization that Replaces Delayed Branch
INSLIUCLIONS.....cvviiieeieeiice e, 81
Optimization that Replaces Normal Branch
INSLIUCLIONS.....cvviieeieeeice e, 79
BYTE
0 A I T 97
BYTE INSrUCtion .......ccoovevevveiieeeieeieee e, 174
C
-C
e 46
C
Differences from the C Preprocessor .................. 243
Character
Character Constant Elements..........cccoeeevvvvvenn.... 205

282

Character Constants .........cccceeeeeeenee 120, 200, 205
Character SEt......cccuvvveiieieeeee e 114
Concatenating the Characters to be Replaced by
Macro Replacement (## Operator)......... 232
Replacing Formal Macro Arguments with Character
Strings (# Operator)........eeveeeeeeeeeencenens 231
Check
Check Levels and Optimization Code Check
ProCessing.....cccouvvveeeeiniieeeeniiiie e 71
Optimization Code Check Functions for the fasm911s
........................................................... 70
Preprocessor and Optimization Code Check
ProCesSiNgS . .ocevvvvveeeiiiiiieee e 90
-cif
O e 51
-cmsg
SCIMIST. ceeeeeeeeeeeteeeeeetesi e e e e e e e e e e e e e e e aaaaeeeeeeeeeeeee 58
Command
fasm911s Command LinesS........ccccceevvvvinivvvnnnnnn. 16
Comment
Comment Field........cooeeiviieiieii e 113
CommeNtS..........ccccvvviiiiiiiieee e 137, 200, 202
Comments Allowed in an Option File.................. 22

Components Omitted
Specifying a File Name with Components Omitted

..................................................... 18, 20
Composition
COMPOSITION.....ccciiiiiiiiiee e 84
Concatenated
Concatenated Linkage...........cceeeeeeeeeeveieevieeenns 146
Concatenating
Concatenating the Characters to be Replaced by
Macro Replacement (## Operator)......... 232
Conditional
Conditional Assembly Instructions.................... 220
Constant
Binary Constants.............ccoovvevveeeeveininiiiiinnnnnnnn 118
Character Constant Elements ................ccceeeees 205
Character Constants.........cccceeeeeeennnn. 120, 200, 205
Data Format of Double-precision Floating-point
COoNStANES ... 125
Data Format of Single-precision Floating-point
COoNStANES ... 125
Decimal Constants.............cocevvvvvvvvevievvennnnnnnnnn. 118
Hexadecimal Constants...............cuevvvvvvvvnnnnnnnnn. 118
Integer Constants.........ccovvvvevevvnnnnnnn. 118, 200, 204
Notation for Floating-point Constants................ 123
Octal CoNStantsS.........ueeeciiieieiiiieeeeeeeeeeeeeeeeeeeennns 118
Range of the Representable Floating-point
COoNStANES .. 126
Continuation
Continuation Field .......ccooeeviiiiiiiinies 113
Continuation of aLine..........ccceeeeeiiiiiiiiiiiininnns 200
Continuation of Line.....ccccooevviiiiiiiiiiiiiiieeeens 203



Counter
Location Counter Symbols..........cccceeeeveieeeiinnne 119
-cpu
L o LU PP PP PP PP 50
Cross-reference
Crossreference List .........cooeevvvviiiiieeeeeviiiiininnnns 108
-CwWno
SO0, 1ttt e e e e e e e e e e e e e e e e e eeeeeeaeebnbnbnn s 59
D
-D
D e —————— 43
Data
DATA oottt ee e eeeaaens 97
DATA INSIIUCLION ...ovveeceeeiiiee e, 174
Data Format of Double-precision Floating-point
ConstantS......coeevvvieeeiiiieceie e, 125
Data Format of Single-precision Floating-point
ConstantS......coeevvieeeiiiieceie e, 125
DATAB
DATAB ...oovtitiieicicieie et 98
.DATAB INStruction...........ccveeveeeiiiiiiieeeeeeeennnnn. 176
DEBUG
DEBUG ... 103
.DEBUG INStruCtioN..........ccvvvevieeiiiiiiieeeeeeeennnnn, 186
Debugging
Debugging Information Output Control Instruction
.......................................................... 186
Options Related to Objects and Debugging
...................................................... 29, 30
Decimal
Decimal CoNStantS.......coeeevevveeeeeeieeiiieeeeeeeenennn. 118
Default
Default Option File ..o, 23
define
Argument-attached #define Instruction............... 229
Argument-less #define Instruction ..................... 229
Defined
Defined Macro Name..........ccoeeeeeevvevviieeeeeeeennnnn. 242
Defined Macro Names.........ccoeeeeeevveviiieeeeeeeennnnn. 241
Definition
Area Definition INStructions..............ccceeeeveeenenn. 173
Macro Definition RUlES ..........ooeeiviiiiieieeeeieeinn, 212
Macro DEfiNitioNS.......ccooeevvevveeieeieeiee e, 212
Program Structure Definition Instructions .......... 157
Structure Area Definition...............ccoeevvvvivininnn, 184
Symbol Definition Instructions.............ccceeee..... 170
Development Environment
Directory Structure of the Development
Environment.........ccocooeeiiiiiiiiinnenein. 13
Differences
Differences from the C Preprocessor.................. 243

INDEX

Directory
Directory Structure of the Development Environment
............................................................ 13
DOUBLE
DOUBLE.......ciiiiiiiiiee et 99
.DOUBLE INSLrUCtiON ......ccoeviiiiiiiiiiiiiieeee e 178
Specification of Single or Double Precision......... 124
Double-precision
Data Format of Double-precision Floating-point
CoNSEANES....vvveeeie e 125
E
elif
#elif INStruction...........cooovvviccce e, 225
else
#elSe INSrUCtioN ...coeeee e 224
END
END .ot 93
END INSrUCHION .. 159
endif
#endif Instruction ..., 227
endm
#endm INSLrUCtioN.........oooeieiiieieecee e 216
EQU
EQU ..o 96
EQU INSITUCHION ..., 171
Error
HError INStruCtion...........ooovvvvvviviiiicceeee e, 238
Error Display .....ceeeeeeeiieeiiiiiiiieeieeee e 91
Error MESSAgES. .....ccvvvviiiiiiiiiiiiaae e 254
Format of Error Messages ..........ccuevveeveeeeennnnnnne 254
exitm
HEXItM INSLrUCiON.......oooieee e 215
#exitm Instruction RUIES.........ceevevvieieeiiiiiiiiee 215
EXPORT
EXPORT ...t 95
EXPORT INSrUCLiON......ccooiiiiiiiiiiecieee e 167
Expression
EXPresSsion SYNtaX .........ceeeeeieiiieiiiiieeeieaaea e 127
EXPreSSioN TYPES ..vveeeiieeeeeieiiiiiiiiiieee e e ae e 127
External
External Reference Values..........ccvvvvevveeeeeiinnns 129
F
-f
S 54
fasm911s
fasm911s Command Lines..........ccccvvvvviiiiieieeennn. 16
Optimization Code Check Functionsfor the
fasmOlls........cccovirii 70
FDATA
FDATA oo 99
FDATA INSIUCHION...cceiiiiiiieciiiiee e 177



INDEX

FDATAB
FDATAB. . 100
FDATAB INStruction...........c..cuvveeeieiieeniiiiiiins 179
FELANG
FELANG . ....oiiiiiiiiiiee et 9
FETOOL
FETOOL ...t 8
Field
Comment Field .........ceeveiieniiiniiiiieeeeeee 113
Continuation Field.........ccccccooiiiiiiiiiii, 113
Operand Field ..., 112
Operand Field Format............ooooiueiiiiieeniaanennnn. 153
Operation Field ..., 112
Symbol Field ... 112
File
Comments Allowed in an Option File................... 22
Default Option File.........c.covviiiiiiiieiiiieee e, 23
File Search for Format 1 ..........ccccvveiiiiiieeennnnnn. 236
File Search for Formats2and 3..............ccceeenneee. 236
Format for Specifying aFile Name................. 18, 19
INclude File.......vvveeeiii e 92
Library File Specification Instruction.................. 187
OPtiION FlE .. 21
Specifying aFile ... 17
Specifying a File Name with Components
OMitted......covvvveeeiiiieie e 18, 20
FLOAT
FLOAT oo 99
FLOAT INSLrUCKiON....coovveeee e 177
Floating-point
Data Format of Double-precision Floating-point
CONSEANES. ... 125
Data Format of Single-precision Floating-point
CONSEANES. ... 125
Notation for Floating-point Constants................. 123
Range of the Representable Floating-point Constants
.......................................................... 126
FORM
FORM ..ottt 105
FORM INSLrUCtioN ....ccooviiiiiieeiiiiiie e 189
Formal
Formal Argument Naming Rules....................... 208
Formal Argument Replacement Rules................ 208
Formal Arguments..........cccevveernreeneeinineeee e 200
Format
Data Format of Double-precision Floating-point
CONSEANES. ... 125
Data Format of Single-precision Floating-point
CONSEANES. ... 125
File Search for Format 1 ..........cuvvvieeeiiiiiinninnns 236
File Search for Formats2and 3..........ccccceeeennee 236
Format for Specifying aFile Name................. 18, 19
Format of Error Messages...........ceeveeeeeeeeenninnnnes 254
Header FOrmat ...........ccooviiiiiiiiiiiiiiee e 86
Machine Instruction Format ............cccccceeeiinnee 152

284

Operand Field Format ............ooovciviiiiieeeeneennnn. 153
Preprocessor Instruction Format ................ 200, 201
Section Description Format...........cceveeeveeeeeennn. 140
Statement FOrmat..........ooovvveiviiiiieiiiin e, 112
Forward
Forward Reference Symbol Optimization Function
........................................................... 72
Forward Reference Symbols and Backward Reference
SYMBOIS....oviiiiiiiiii e, 117
-FPU
SFPU 49
FPU Information Options (-FPU and -XFPU)........ 49
FRES
FRES .. .ottt 101
FRESInstruction ..., 181
G
-g
LS I PP PTPPRPIO 32
GLOBAL
GLOBAL vttt 95
.GLOBAL INStruction ..........cccueeeeeeeeeeeeninnninnnns 168
H
-H
Ho 45
HALF
HALF e 97
HALF Instruction............coooivvevveiee, 174
Header
Header FOrmat...........oooveiviiiiiiieiieee e 86
HEADING
HEADING ...t 105
.HEADING Instruction............ccccevvvvvvvvvvnvnnnnnnn. 191
-help
ShEID 60
Hexadecimal
Hexadecimal Constants .............eeeeeveeeeeninnniennns 118
I
-l
e 44
if
H#f InStruction............ccoiiii, 221
ifdef
#ifdef Instruction ... 222
ifndef
#fndef Instruction...............ooovvvvi, 223
IMPORT
IMPORT ...ttt 95
AMPORT INSrUCLiON .....evvveeiiiiiieee i 169



INC911
INCOLL....cooiiiiiieeeeeee e 11
Include
#include INStruction...........ccceeeeeeevievieeieeeeeeieennn, 236
INClUdE Rl ..vveeieeeee e, 92
Information
Information LiSt.........ccevvvvevvvevviiiriiiiieieeeenn, 85, 87
Initial-value
Transfer of Initial-value Data.............cccceeeee. 149
Instruction
#Helif INSErUCHiON ....ccvvveeeeieieee e, 225
HElSE INSITUCLION. ....covvveeeeieeee e, 224
#endif INStruction.......coooevvvevveeeieeieeee e, 227
#endm INSErUCION ....vvvecicieeee e, 216
Herror INStruCtion .......eeeeeiveeieee e, 238
HEXItM INSIrUCLION ....vvveecieeeee e, 215
#Hexitm Instruction RUIES........cooovvvivvieieeeeeeiene, 215
Hf INSETUCHION ..., 221
Hfdef INSIrUCtion ........coeeevvvevieeieiieeee e, 222
#ifndef INStruction..........ooovvvveeiiiiiiiee e, 223
#include INStruction............cceeeeeeevieviee e, 236
Hine INStrucCtion.........cooeeevvveiiieeieeeeeee e, 237
#local INStruction .......ooeeevivevvieeieeeeeeeeeee, 214
#local Instruction RUlES........veeviiiiiiiieieeeieiiian, 214
HMaCro INStrUCHION ......veeveeveieeeeeeeeee e, 213
#macro Instruction RUlES ........cooveivvvvieiieeiiienn, 213
#pragma lnstruction ..........ceevveieeeeiniiieee e, 239
APUrge INSLrUCtioN ......c.oovvveeeeeiiieee e 235
#repeat InStruction RUIES ... 219
HEt INSLIUCLION ..., 233
#undef INStruCtion .......ocoevvvvvveeieeieeee e, 234
ALIGN INStruction.....e.eececeeeve e 163
ASCH INSTUCLON. ..cvveeeceeeeeveeeeeeeee e, 182
BYTE INSrUCtion.......ccooovvevveeieiieeee e, 174
DATA INSIUCHION ....ovvvieieeiieiie e 174
.DATAB INStrUCtiON......ccoeeviviiiieeeeeeeiieee e 176
.DEBUG INStrUCtiON......ccoeevveviiieeeeeeiiiee e 186
.DOUBLE INStruction............coeeeeeevivevvieeeeeeeenns 178
.END INStruction........cooeeevvevveeieeieeiee e, 159
EQU INSLrUCiON. .. 171
EXPORT INStruCtion ..........ccvvvvieeeiiiiiiieneeeeeenne 167
FDATA INSTUCLION ...vvveeeeeeevi e 177
FDATAB INStruction..........ccvvveieeeiiiiiiieneeeeeenns 179
FLOAT INSErUCHON. ..vvveeeeeeee e 177
FORM INStruction.......cccooeevvvvve e 189
FRESINStrUCiON. ....vvveeeeeieeeieeeeeeeeeeeeeeeei 181
.GLOBAL INStruCtion...........ccveeieeeriiirrieneeeeeennns 168
HALF INSrUCtion.......eeeevveiiee e, 174
.HEADING InStruction..........ccceeeeeevivvvvieeeeeneenns 191
AMPORT INSTUCLION. ... e 169
.LIBRARY INStrUCtioN .........vvvvveiiieiieiieieeeeennnn. 187
LIST INSEIUCLION. .....cceveeeeveivvivcce e 192
LONG INSLUCLION .....ccvvvevrviriiiicee e 175
LORG INSLIUCLION.......ccvvvieriiireiiiiceeee e e 164
PAGE INSLrUCLiON.......cvvvviviiviiiicccceeeee e 194
.PROGRAM INSrUCLIiON .......vvvvveiiiiiieeiieeenenennnn. 158

REG INSEIUCHION. ...eeeeiieieeiiiiiiiiiieeeeee e 172
RES INSIrUCLION ... 180
SDATA INSIrUCLION.....coeeiiiiiiiiiiiiiieeee e 182
SDATAB INStruCtion ..........cooeiviiiiiiiieiieeeeeene 183
SECTION INStruction...........ccocevvvvieeeeeieenennnnnn. 160
SKIP INSEUCHON . 165
SPACE INSLIUCHON. ...ceevieeeeiiiiiiiiiieieeee e 195
.STRUCT and .ENDS Instructions...................... 184
TITLE INSrUCHON. e 190
WORD INStrUCtON....ccceiiiiiiiiiiiiiieieeecaee e 175
Address Control INnStructions..............cooeveevveeeee. 162
Area Definition INStructions...........eeeeeviiiinnes 173
Argument-attached #define Instruction ............... 229
Argument-less #define Instruction...................... 229
Assembler Pseudo Machine Instructions............. 246
Conditional Assembly Instructions..................... 220
Debugging Information Output Control
INSEPUCLION. ... 186
Library File Specification Instruction ................. 187
List Output Control INStructions.................coe.e. 188
Machine Instruction Format.............ccccceeeeeeeeenn. 152
Macro Call Instruction ............ccccvviiiiieeiiennnnnnnn. 217
Macro Call Instruction Rules.............ccceeeeeinnne. 217
No-operation INStruction ...........ccvevveeiieeeeennnnne 240
Optimization of Branch Instructions..................... 74
Optimization of LDI Instructions ............cc.cccee.e. 73
Optimization of LDI:20 and LDI:32 Instructions
............................................................ 76
Optimization that Replaces Delayed Branch
INSEPUCLIONS ... 81
Optimization that Replaces Normal Branch
INSEPUCLIONS ... 79
Preprocessor Instruction Format.................. 200, 201
Program Linkage Instructions.............ccccceeeenee 166
Program Structure Definition Instructions........... 157
Symbol Definition Instructions..............c.eeeeeee.... 170
Integer
Integer Constants............coeveveevevnennnes 118, 200, 204
Scope of Integer Constants Handled by
Pseudo-instructions.............oovveeeevnennee. 156
L
-l
| 34
-lcros
SlCrOS. et 37
LDI
Optimization of LDI INStructions ............cccceeeneee. 73
Optimization of LDI:20 and LDI:32 Instructions
............................................................ 76
-lexp
XD e 38
-If
e 34

285



INDEX

Library

LIBRARY oo 104

.LIBRARY INStruction..........cccceeevvvvvneieeeeeennnnnn. 187

Library File Specification Instruction................. 187
-linc

SlINC e 38
Line

HINe INStrUCtioN ...........oovvviveveiiicee e, 237

Continuation of aLine.......ccccooeviviviiiiineeeeeeinnnnn. 200

Continuation of Line..........ccooeveviiiiiiiiiieeeeeeinnnnn, 203
-linf

INf e 36
Linkage

Concatenated Linkage...........cooovvieeeeiniiieeeennee. 146

Program Linkage Instructions..............cccceeeenee. 166

Section Linkage Methods...........cccceeeviiieeennnee. 146

Shared Linkage..........cccovvieeiiiniiee e, 147
List

LIST e 106

LIST Instruction........coeeeeevevvieiieeeeeiee e, 192

Crossreference List.......oovvveevieiiieiiiiieeeeeeeiin, 108

Information List........coovvviiiiiiiiiiiiieeeeeeei, 85, 87

List Output Control Instructions.............cccceee..... 188

Register LiStS.....covvviiiiieieeeeevec e 136

= ol o I F P 107

SOUrCE LISt vveiieiiiiie e 89
Listing

Options Related to Listing.........cccvvvveeeeeenennn. 29, 33
Local

#local INStruCtion..........ccevviiiiieiiieieeeceeee e 214

#local Instruction RUIES .......ccevvveeieeiiiiiieeeee 214

Local Symbol Naming RuUles............cccccveeeennee. 209

Loca Symbol Replacement Rules...................... 209

Local Symbols.........cceeviiiiieiiiiiiie e 200
Location

Location Counter Symbols..........ccccceeeeveeeeininnnnn. 119
Logical

Logical OpErators........ceeeeeiieiiiiiiiiieeeeeeaee e e 131
LONG

LONG ... 97

LONG INSITUCLION ....vvveeeeiieiiee e, 175
-Isec

SISBC e 37
-Isrc

AISIC e 36
M
Machine

Machine Instruction Format ...........cccceeeeeeeeeennnn. 152
Macro

#mMacro INStruction.........coooeevvvviiin e 213

#macro Instruction RUIES ......ccovveiiiiiiiieeee, 213

Concatenating the Characters to be Replaced by

Macro Replacement (## Operator) ........ 232

286

Defined Macro Name..........cccceeeeeeeiieiiiiniiines 242
Defined Macro Names.............eeeeveeiiieeeiinniiinnns 241
Macro Call INStruction...............eeeeeeeeeeriinnninnns 217
Macro Call Instruction RUl€s...............cooeiuneene 217
Macro Definition RUlES ............eeeeeiiiiiiiiiiiiis 212
Macro Definitions. ... 212
Macro Name Replacement ..........ccccceeeeiiininnnens 228
Macro Name RUIES ...........ccvvviiiiieiiiieie 207
Macro Name TYPES.......ccovvieieiiiieiieeeieiiiiieee 207
MaCro NameES.........coooviiiiiiieeieeee e 200
Macro Replacement RUIES ...........ccoeeiiiiiiiiiiinns 228
Replacing Formal Macro Arguments with Character
Strings (# Operator)........eeveeeeeereeiicnnnns 231
Messages
Error Messages............cooovviviiiiiiieieieieiieen 254
Format of Error MeSsages...........cccovvvvveeennninnen. 254
Module
Obtaining the Size of a Section in Another
MOdUIE ... 134
Multiple
Multiple Descriptions of a Section..................... 148
N
Name
Name Classification..........cccocvvieviiieeeeeiiiniines 115
-name
SNBIME .ttt e e e e e e e e e e e e e e eeaeenes 56
Naming
Naming RUIES. .......c.ooooiiiiiiiiiieeeee s 115
No-operation
No-operation INSruCtion.............eeeevriiieienininnen. 240
Notation
Notation for Floating-point Constants................ 123
0]
-0
S0 e 48
-0
L0 T PP PPPPPPTTRPTRPPI 31
Objects
Options Related to Objects and Debugging
..................................................... 29, 30
Obtaining
Obtaining the Size of a Section in Another Module
......................................................... 134
Octal
Octal CoNStaNtS......cvvveiieiiieeeeeiiesiiiieeereee e 118
Operand
Operand Feld........c..ueveiieiiiiiiiieeee e, 112
Operand Field Format .............oooeeeeeeveiiiiieieees 153
Operation
Operation Field. ..., 112



Operators
Operators for Calculating Values from Names.... 132
OPT911
OPTOLL ..o 12
Optimization
Check Levels and Optimization Code Check
ProCessing.......cccovuvrerereeeeeesinsiiiinnnennnens 71
Forward Reference Symbol Optimization Function
............................................................ 72
Optimization Code Check Functions for the fasm911s
............................................................ 70
Optimization of Branch Instructions..................... 74
Optimization of LDI Instructions..............ccceeee... 73
Optimization of LDI:20 and LDI:32 Instructions
............................................................ 76
Optimization that Prevents Interlocks Caused by
Register Interference........ccceeeveeeeeeene.n. 77
Optimization that Replaces Delayed Branch
INSLFUCLIONS. ... 81
Optimization that Replaces Normal Branch
INSLFUCLIONS. ... 79
Preprocessor and Optimization Code Check
ProCESSINGS.....cevvvvviveiriiiiiiiineeieiereeeeens 90
Option
Comments Allowed in an Option File.................. 22
Default Option File ..o, 23
FPU Information Options (-FPU and -XFPU) ....... 49
OptioN File....coooiiiiiiii e, 21
Options Related to Listing ..........cooooevvvvvnneen. 29, 33
Options Related to Objects and Debugging
...................................................... 29, 30
Options Related to the Preprocessor ............... 29,40
Other OptioNnS.........coocvviiiiieeeeeee e 29,52
Relationship with Start-time Options.................... 84
Relationships with Startup Options
.......................................... 186, 189, 193
Restrictionson Option Files..........cccccccieeiiinnn. 278
Rulesfor Startup Options..............eeevveieeeriniiinnns 26
Startup OPLioNS........ooeceiiiiiiieeee e 27
Target-dependent Options...........ccceeeeeeennnee 29, 47
Order
Order of Operands..........cccovvvvveeeriiieeeeeiniieeeens 153
ORG
ORG ..ottt ettt 94
LORG INSEIUCHION......eeveiiieeeeiiiiiiiieieeee e 164
Other
Other OptioNnS.........cocceviiiiiieeeeeee e 29,52
Other ReStriCtions...........uveeeiiiieeiiiiiiiiiieeeennn 278
Overview
OVEIVIEIW ..ot 4,5
-OVFW
SOVIW et 62

INDEX

P
-P
P 42
P
o ST 41
PAGE
PAGE. ... 106
PAGE INSTUCHION ... 194
-Pf
P 42
Phase
Assembly Phase ... 4
Preprocessor Phase .........c.vvvveviiieeeciiiecc e 4
_p|
o) 35
pragma
#pragma INStruction ..........coeevviveveeniiiiiee e, 239
Precedence
Precedence of Operators...........ccvveeeviieeeenininnen. 135
Precision
Precision in Operations of Expressions............... 128
Preprocessor
Differences from the C Preprocessor .................. 243
Options Related to the Preprocessor ............... 29,40
PreprOCESSON . ....cccvieiiiiiiiiiiiie e 198
Preprocessor and Optimization Code Check
ProCessingS......cccvvveeeeieiieeeeee e 20
Preprocessor Expression Operation Precision...... 210
Preprocessor EXpressions........c..evvevveeveeeeeeeeeeee 210
Preprocessor Instruction Format.................. 200, 201
Preprocessor Operator Precedence...................... 211
Preprocessor OPErators .........eeveeeeeeeeeeaeeaaeeeeenn 210
Preprocessor PhaSe .........ooovviiiiiiiiiiieieeee e 4
Restrictions Related to Preprocessor
Processing.........cocuvvvieeeiieieeeeee s 278
Program
PROGRAM ...ooiiiiiiiiiiiiiiee e 93
.PROGRAM INStruction ...........ccccceeeriuvereernnnnen. 158
Program Linkage Instructions.............ccceeeeenee. 166
Program Structure Definition Instructions........... 157

Pseudo-instructions
Pseudo-instructions for which an Expression
Containing the Size Operator cannot

beSpecified.......cccocevviiiiiii e, 134
Scope of Integer Constants Handled by Pseudo-
INSLIUCLIONS ..o 156
purge
H#pUrge INSLrUCtioN.........oooeiiiiieieeeeee e 235
_pW
0 35

287



INDEX

R
Range
Range of Operand Values............cccccevveeeeeninnes 130
Range of the Representable Floating-point Constants
....................................................................... 126
REG
REG. ..ottt 96
REG INSErUCHION ... 172
Register
Optimization that Prevents Interlocks Caused by
Register Interference.........cccceeeeeeeeienennn. 77
Register LiStS.....oovvviiiiieeeeeeeve e 136
-reglst_check
-reglst CheCk ..o 65
Relational
Relational Operators...........vveevrivvereeiiiieeee e 131
Relationship
Relationship with Start-time Options.................... 84
Relationships with Startup Options
.................................. 158, 186, 189, 193
Relative
Relative ValUES.......ccoooeiiiiiiiiiiiiiieeeeeee e 129
Repeat
#irepeat Instruction RUles............coeiviiiieeiiiieen. 219
Repeat EXPanSioN.........oocvveeeeiniiieee e 218
Replacement
Concatenating the Characters to be Replaced by
Macro Replacement (## Operator) ........ 232
Formal Argument Replacement Rules................ 208
Loca Symbol Replacement Rules...................... 209
Macro Name Replacement ............cccceeeveeenieiennnn. 228
Macro Replacement RUles.............ccccvieieeieennnn. 228
Replacing
Replacing Formal Macro Arguments with Character
Strings (# Operator) .........eeeeeeeeeeeeniannnes 231
RES
RES ..o 101
RES INSrUCLION....cceviiiiieeiiiciiiiiieiee e 180
Reserved
Reserved WOrds.........ocooeeiiiiiiiiiiiiieiiieee e 116
Restrictions
Other ReSLIICHONS. ... .ccvviiieeiiiiiiiiieeeeeeee e 278
Restrictionson Option Files ... 278
Restrictions Related to Assembly Processing ...... 278

Restrictions Related to Preprocessor Processing..278
ROM

Setting ROM Storage Sections..........coovcveeeeennee. 149
Rules
Rules for Startup Options.............eeveeiiiiiininiereennn. 26

288

S
Scope
Scope of Integer Constants Handled by Pseudo-
INSIFUCLIONS......cevvvieiiiiccece e, 156
SDATA
SDATA s 102
SDATA INSrUCLION ..o 182
SDATAB
SDATAB .ot 102
SDATAB INStruction...........ccevveeeeeieeenninnnines 183
Search
File Searchfor Format 1............ccovvvvviviivnnnnnnnnn. 236
File Search for Formats2and 3..............cceveeeee. 236
SECTION
SECTION oottt 93
SECTION INStruction.........cccveveveeeeeeeenieniinnnns 160
Section Allocation Patterns...........ccceee....e. 141, 145
Section Description Format...........ccceeevvvveeeennns 140
Section Linkage Methods ...........ccceeeeiiineenenn, 146
SECtiON LiSt..ocvvviiiiiiiiiiiiiie i 107
Section Size Extraction (SIZEOF Operator) ....... 133
SECtiON TYPES...oo vt 140, 142
Section Types and Attributes...........ccccccvveeeeennn. 144
SectioN ValUES.......cvvviiiiiiieeee e 129
Section-location-format
Section-location-format .............ocovvveeevnnneeeennnns 160
Section-type
SECHON-TYPE ..ot 160
set
HSEt INSETUCLION .. 233
Setting
Setting ROM Storage Sections.............cccveveees 149
Shared
Shared Linkage..........cueeeiiiieiiiiiiiiiiiieeeeeeeeenn 147
Single
Specification of Single or Double Precision........ 124
Single-precision
Data Format of Single-precision Floating-point
CONSLANES ... 125
Size
SIZ€ OPEFatOr.......ceeevviieeeeeeae e 117
SIZEOF
Section Size Extraction (SIZEOF Operator) ....... 133
SKIP
SKIP. e 94
SKIPINSIUCHON e 165
Source
SOUMCE LiSt.ceviviiiiiiiiiiiiiiiie e 89
SPACE
SPACE ..o 106
SPACE INStrUCtion..........ccceviiiiiieeiiiiieee e 195
Specification
Specification of Single or Double Precision........ 124



Specifying

Format for Specifying aFile Name................ 18,19

Specifying aFile........cccoiiiiii e, 17

Specifying a File Name with Components Omitted

...................................................... 18, 20

Start-time

Relationship with Start-time Options.................... 84
Startup

Relationships with Startup Options

.................................. 158, 186, 189, 193

Rulesfor Startup Options...........cceeviviiiieeieieeeenn. 26

Startup OptioNS......ccooeeeeeeeeeeeen 27
Statement

Statement FOrmat...........ooooeeeiiiiiiiiiiiiiiieiiiiiee 112
Strings

SHINGS et 122
STRUCT

.STRUCT and .ENDS Instructions..................... 184
Structure

Structure Area Definition.............oooocviiiieeeenn. 184
Symbol

Symbol Definition Instructions.............cccccveeeen. 170

Symbol Field.......ooooiiiiiiiiii e 112
T
-tab

LA 39
Target-dependent

Target-dependent Options...........cccceeeeeeennnes 29, 47
Term

TeM TYPES.....coiiiiiiiieeeeee 129
Termination Code

Termination Code..........ccvvvvieiiiiieeeiinieee, 24
TITLE

TITLE. .o e 105

TITLE INSPUCHON e 190
TMP

TMP e 10
Transfer

Transfer of Initial-value Data...............ccccueveeee. 149

INDEX

U
-U

U e 43
-UDSW

SUDSW e 61
undef

#undef INSErUCtioN........cevvvveiiiiie e, 234
\%
-V

Y TP PUPPPRTPP 57
W
-w

LA U 55
WORD

WORD ..ottt 97

WORD INSIrUCION....ccceieiiiiiiiiiiiiieeecee e 175
X
-Xcmsg

S XCIMIST ettt e e e e e e e e e e e aeaeeeeeeeeeeeeee 58
-Xcwno

“XOWNO. ettt 59
-Xdof

SXAOF e 53
-XFPU

FPU Information Options (-FPU and -XFPU)........ 49

SXFPU L 49
-Xg

o0 TP 32
-Xl

X e 34
-Xo

o T TP PUPPPRRPT 31
-XOVFW

SXOVFW e 63
-Xreglst_check

-Xreglst_checK ... 66
-XUDSW

SXUDSW et 61
-XV

XV e 57

289



INDEX

290



CM71-00203-5E

FUJITSU MICROELECTRONICS « CONTROLLER MANUAL

FR FAMILY
SorFTuNe™ ASSEMBLER MANUAL

for V6

April 2008 the fifth edition

Published FUJITSU MICROELECTRONICS LIMITED

Edited Strategic Business Development Dept.







	PART1 OPERATION
	CHAPTER 1 OVERVIEW
	1.1 SOFTUNE Assembler
	1.2 Assembler Syntax

	CHAPTER 2 ENVIRONMENT VARIABLES AND DIRECTORY STRUCTURE OF THE DEVELOPMENT ENVIRONMENT
	2.1 FETOOL
	2.2 FELANG
	2.3 TMP
	2.4 INC911
	2.5 OPT911
	2.6 Directory Structure of the Development Environment

	CHAPTER 3 STARTUP METHOD
	3.1 fasm911s Commands
	3.2 Specifying a File
	3.3 Handling of File Names
	3.3.1 Format for Specifying a File Name
	3.3.2 Specifying a File Name with File Name Components Omitted

	3.4 Option File
	3.5 Comments Allowed in an Option File
	3.6 Default Option File
	3.7 Termination Code

	CHAPTER 4 STARTUP OPTIONS
	4.1 Rules for Startup Options
	4.2 Startup Option List
	4.3 Details of the Startup Options
	4.4 Options Related to Objects and Debugging
	4.4.1 -o, -Xo
	4.4.2 -g, -Xg

	4.5 Options Related to Listing
	4.5.1 -l, -lf, -Xl
	4.5.2 -pl, -pw
	4.5.3 -linf, -lsrc, -lsec, -lcros
	4.5.4 -linc, -lexp
	4.5.5 -tab

	4.6 Options Related to the Preprocessor
	4.6.1 -p
	4.6.2 -P, -Pf
	4.6.3 -D, -U
	4.6.4 -I
	4.6.5 -H
	4.6.6 -C

	4.7 Target-Dependent Options
	4.7.1 -O
	4.7.2 FPU Information Options (-FPU, -XFPU)
	4.7.3 -cpu
	4.7.4 -cif

	4.8 Other Options
	4.8.1 -Xdof
	4.8.2 -f
	4.8.3 -w
	4.8.4 -name
	4.8.5 -V, -XV
	4.8.6 -cmsg, -Xcmsg
	4.8.7 -cwno, -Xcwno
	4.8.8 -help
	4.8.9 -UDSW, -XUDSW
	4.8.10 -OVFW, -XOVFW
	4.8.11 -reglist_check, -Xreglst_check
	4.8.12 -CO


	CHAPTER 5 OPTIMIZATION CODE CHECK FUNCTIONS
	5.1 Optimization Code Check Functions of fasm911s
	5.1.1 Optimization Code Check Levels
	5.1.2 Forward Reference Symbol Optimization Function
	5.1.3 Optimization of LDI Instructions
	5.1.4 Optimization of Branch Instructions
	5.1.5 Optimization of LDI:20 and LDI:32 Instructions
	5.1.6 Optimization that Prevents Interlocks Caused by Register Interference
	5.1.7 Optimization that Replaces Normal Branch Instructions
	5.1.8 Optimization that Replaces Delayed Branch Instructions


	CHAPTER 6 ASSEMBLY LIST
	6.1 Composition
	6.2 Page Format
	6.3 Information List
	6.4 Source List
	6.4.1 Preprocessor and Optimization Code Check Processings
	6.4.2 Error Display
	6.4.3 Include File
	6.4.4 .END, .PROGRAM, .SECTION
	6.4.5 .ALIGN, .ORG, .SKIP
	6.4.6 .EXPORT, .GLOBAL, .IMPORT
	6.4.7 .EQU, .REG
	6.4.8 .DATA, .BYTE, .HALF, .LONG, .WORD, .DATAB
	6.4.9 .FDATA, .FLOAT, .DOUBLE, .FDATAB
	6.4.10 .RES, .FRES
	6.4.11 .SDATA, .ASCII, .SDATAB
	6.4.12 .DEBUG
	6.4.13 .LIBRARY
	6.4.14 .FORM, .TITLE, .HEADING, .LIST, .PAGE, .SPACE

	6.5 Section List
	6.6 Cross-reference List


	PART2 SYNTAX
	CHAPTER 7 BASIC LANGUAGE RULES
	7.1 Statement Format
	7.2 Character Set
	7.3 Names
	7.4 Forward Reference Symbols and Backward Reference Symbols
	7.5 Integer Constants
	7.6 Location Counter Symbols
	7.7 Character Constants
	7.8 Strings
	7.9 Floating-Point Constants
	7.10 Data Formats of Floating-Point Constants
	7.11 Expressions
	7.11.1 Terms
	7.11.2 Range of Operand Value
	7.11.3 Operators
	7.11.4 Values Calculated from Names
	7.11.5 Precedence of Operators

	7.12 Register Lists
	7.13 Comments

	CHAPTER 8 SECTIONS
	8.1 Section Description Format
	8.2 Section Types
	8.3 Section Types and Attributes
	8.4 Section Allocation Patterns
	8.5 Section Linkage Methods
	8.6 Multiple Descriptions of a Section
	8.7 Setting ROM Storage Sections

	CHAPTER 9 MACHINE INSTRUCTIONS
	9.1 Machine Instruction Format
	9.2 Operand Field Format

	CHAPTER 10 ASSEMBLER PSEUDO- INSTRUCTIONS
	10.1 Scope of Integer Constants Handled by Pseudo- Instructions
	10.2 Program Structure Definition Instructions
	10.2.1 .PROGRAM Instruction
	10.2.2 .END Instruction
	10.2.3 .SECTION Instruction

	10.3 Address Control Instructions
	10.3.1 .ALIGN Instruction
	10.3.2 .ORG Instruction
	10.3.3 .SKIP Instruction

	10.4 Program Linkage Instructions
	10.4.1 .EXPORT Instruction
	10.4.2 .GLOBAL Instruction
	10.4.3 .IMPORT Instruction

	10.5 Symbol Definition Instructions
	10.5.1 .EQU Instruction
	10.5.2 .REG Instruction

	10.6 Area Definition Instructions
	10.6.1 .DATA, .BYTE, .HALF, .LONG, and .WORD Instructions
	10.6.2 .DATAB Instruction
	10.6.3 .FDATA, .FLOAT, and .DOUBLE Instructions
	10.6.4 .FDATAB Instruction
	10.6.5 .RES Instruction
	10.6.6 .FRES Instruction
	10.6.7 .SDATA and .ASCII Instructions
	10.6.8 .SDATAB Instruction
	10.6.9 .STRUCT and .ENDS Instructions

	10.7 Debugging Information Output Control Instruction
	10.8 Library File Specification Instruction
	10.9 List Output Control Instructions
	10.9.1 .FORM Instruction
	10.9.2 .TITLE Instruction
	10.9.3 .HEADING Instruction
	10.9.4 .LIST Instruction
	10.9.5 .PAGE Instruction
	10.9.6 .SPACE Instruction


	CHAPTER 11 PREPROCESSOR PROCESSING
	11.1 Preprocessor
	11.2 Basic Preprocessor Rules
	11.2.1 Preprocessor Instruction Format
	11.2.2 Comments
	11.2.3 Continuation of a Line
	11.2.4 Integer Constants
	11.2.5 Character Constants
	11.2.6 Macro Names
	11.2.7 Formal Arguments
	11.2.8 Local Symbols

	11.3 Preprocessor Expressions
	11.4 Macro Definitions
	11.4.1 #macro Instruction
	11.4.2 #local Instruction
	11.4.3 #exitm Instruction
	11.4.4 #endm Instruction

	11.5 Macro Call Instructions
	11.6 Repeat Expansion
	11.7 Conditional Assembly Instructions
	11.7.1 #if Instruction
	11.7.2 #ifdef Instruction
	11.7.3 #ifndef Instruction
	11.7.4 #else Instruction
	11.7.5 #elif Instruction
	11.7.6 #endif Instruction

	11.8 Macro Name Replacement
	11.8.1 #define Instruction
	11.8.2 Replacing Formal Macro Arguments by Character Strings (# Operator)
	11.8.3 Concatenating the Characters to be Replaced by Macro Replacement (## operator)
	11.8.4 #set Instruction
	11.8.5 #undef Instruction
	11.8.6 #purge Instruction

	11.9 #include Instruction
	11.10 #line Instruction
	11.11 #error Instruction
	11.12 #pragma Instruction
	11.13 No-operation Instruction
	11.14 Defined Macro Names
	11.15 Differences from the C Preprocessor

	CHAPTER 12 ASSEMBLER PSEUDO MACHINE INSTRUCTIONS
	12.1 Assembler Pseudo Machine Instructions


	APPENDIX
	APPENDIX A Error Messages
	APPENDIX B Restrictions


