
FUJITSU MICROELECTRONICS
CONTROLLER MANUAL

FR FAMILY
SOFTUNETM C/C++ COMPILER

MANUAL
for V6

CM81-00206-5E

FR FAMILY
SOFTUNETM C/C++ COMPILER

MANUAL
for V6
FUJITSU MICROELECTRONICS LIMITED

PREFACE

■ Objective of This Manual and Target Readers

This manual describes the Softune C/C++ compiler (hereinafter referred to as the C/C++
compiler) usage procedures and libraries.

This manual is prepared for persons who use the above-mentioned compiler and create and
develop application programs in C and C++ language. Read this manual thoroughly before
starting.

This manual is to be read by persons who have a basic knowledge of each MCU (Micro
Controller Unit).

The compiler described in this manual conforms about C language to the American National
Standard for Information Systems Programming Language C, X3.159-1989, which is
abbreviated ANSI standard in this manual. Part of "ISO/IEC 14882:1998 Programming
languages -- C++" is used to explain C++.

FR, the abbreviation of FUJITSU RISC controller, is a line of products of FUJITSU
MICROELECTRONICS Limited.

■ Trademarks

SOFTUNE is a trademark of Fujitsu Microelectronics Limited.

Windows is a registered trademark of Microsoft Corporation in the USA and/or other countries.

UNIX is a registered trademark that X/Open Co., Ltd. has licensed in the United States and
other countries.

The company names and brand names herein are the trademarks or registered trademarks of
their respective owners.

■ Structure of This Manual

This manual consists of 10 chapters and an Appendix:

CHAPTER 1 SOFTUNE C/C++ COMPILER

This chapter outlines the C/C++ compiler.

CHAPTER 2 SETTING ENVIRONMENT VARIABLES IN SYSTEM BEFORE STARTING

This chapter describes environment variables in the system used to run the C/C++ compiler.
(For information on setting variables, refer to the manual for the respective operating
system.)

CHAPTER 3 C/C++ COMPILER OPERATION

This chapter describes the command function specifications.

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE

This chapter explains about the information necessary for program execution.

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS

This chapter explains about the extended language specifications supported by the compiler.
The limitations on compiler translation are also described in this chapter.
i

CHAPTER 6 EXECUTION ENVIRONMENT

This chapter describes the user program execution procedure to be performed in an
environment where no operating system exists.

CHAPTER 7 LIBRARY OVERVIEW

This chapter outlines the C libraries by describing the organization of files furnished by the
libraries and the relationship to the system into which the libraries are incorporated.

CHAPTER 8 LIBRARY INCORPORATION

This chapter describes the processes and functions for preparing for useing library.

CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS

This chapter describes the specifications that vary with the compiler. Descriptions are related
to JIS standard that are created based on ANSI standard.

CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY

This chapter describes how to use the simulator debugger low-level function library.

APPENDIX

The appendix gives a list of types, macros, functions and variables provided by the libraries
and describes the operations specific to the libraries (The APPENDIX A and APPENDIX B).

The list of the error message is described (The APPENDIX C).

The list of the reserved pragma directive is described (The APPENDIX D).

■ Grammar Books

For C or C++ language syntax and standard library functions, refer to commercially available
standard compliant reference books.
ii

■ Reference Books

THE C PROGRAMMING LANGUAGE
(Brian W.Kernighan & Dennis M.Ritchie)

Japanese edition entitled Programming Language C UNIX Type Programming Method and
Procedure
(Translated by Haruhisa Ishida; Kyoritsu Shuppan)

American National Standard for Information Systems - Programming Language
C, X3.159-1989

UNIX system User’s Manual system V
(Western Electric Company, Incorporated)

UNIX system V Programmer Reference Manual
(AT&T Bell Laboratories)

User Reference Manual UTS/5 Release 0.1
(Western Electric Company, Incorporated and Amdahl Corporation)

UTS Command Reference Manual UTS/5 Release 0.1
(Western Electric Company, Incorporated and Amdahl Corporation)

The Annotated Reference Manual
(Addison-Wesley Publishing Company, Inc.)

The Programing Language C++ Third Edition
(Addison-Wesley Publishing Company, Inc.)

ISO/IEC 14882:1998 Programming languages -- C++
iii

Copyright© 2003-2008, FUJITSU MICROELECTRONICS LIMITED All rights reserved.

• The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.

• The information, such as descriptions of function and application circuit examples, in this document are presented
solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS
device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use
based on such information. When you develop equipment incorporating the device based on such information, you
must assume any responsibility arising out of such use of the information. FUJITSU MICROELECTRONICS
assumes no liability for any damages whatsoever arising out of the use of the information.

• Any information in this document, including descriptions of function and schematic diagrams, shall not be
construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or
any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS
warrant non-infringement of any third-party's intellectual property right or other right by using such information.
FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or
other rights of third parties which would result from the use of information contained herein.

• The products described in this document are designed, developed and manufactured as contemplated for general
use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but
are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers
that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to
death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility,
aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control
in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial
satellite).
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any
claims or damages arising in connection with above-mentioned uses of the products.

• Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss
from such failures by incorporating safety design measures into your facility and equipment such as redundancy,
fire protection, and prevention of over-current levels and other abnormal operating conditions.

• Exportation/release of any products described in this document may require necessary procedures in accordance
with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control
laws.

• The company names and brand names herein are the trademarks or registered trademarks of their respective
owners.
iv

CONTENTS

CHAPTER 1 SOFTUNE C/C++ COMPILER ... 1
1.1 C/C++ Compiler Functions ... 2
1.2 Basic Process of Commands .. 3
1.3 C/C++ Compiler Basic Functions .. 4

CHAPTER 2 SETTING ENVIRONMENT VARIABLES IN SYSTEM BEFORE STARTING
 .. 7

2.1 FETOOL ... 8
2.2 LIB911 .. 9
2.3 OPT911 .. 10
2.4 INC911 .. 11
2.5 TMP .. 12
2.6 FELANG ... 13

CHAPTER 3 C/C++ COMPILER OPERATION ... 15
3.1 Command Line ... 16
3.2 Command Operands .. 17
3.3 File Names and Directory Names ... 18
3.4 Command Options .. 19

3.4.1 List of Command Options .. 20
3.4.2 List of Command Cancel Options .. 24

3.5 Details of Options ... 26
3.5.1 Translation Control Related Options ... 27
3.5.2 Preprocessing Related Options ... 29
3.5.3 Data Output Related Options .. 32
3.5.4 Language Specification Related Options .. 37
3.5.5 Optimization Related Options .. 42
3.5.6 Output Object Related Options .. 49
3.5.7 Debug Information Related Options .. 56
3.5.8 Command Related Options ... 57
3.5.9 Linkage Related Options ... 58
3.5.10 Option File Related Options .. 60

3.6 Option Files ... 61
3.7 Messages Generated in Translation Process ... 63

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE 65
4.1 Section Structure of fcc911s Command ... 66
4.2 Rules for Name Generation with the fcc911s ... 68
4.3 fcc911s Command Boundary Alignment .. 69
4.4 fcc911s Command Bit Field .. 70
4.5 fcc911s Command Structure/Union .. 72
4.6 fcc911s Command Function Call Interface ... 74
v

4.6.1 fcc911s Command Stack Frame ... 75
4.6.2 fcc911s Command Argument .. 77
4.6.3 fcc911s Command Argument Extension Format ... 80
4.6.4 fcc911s Command Calling Procedure ... 81
4.6.5 fcc911s Command Register .. 83
4.6.6 fcc911s Command Return Value ... 84

4.7 fcc911s Command Interrupt Function Call Interface .. 85
4.7.1 fcc911s Command Interrupt Stack Frame ... 86
4.7.2 fcc911s Command Interrupt Function Calling Procedure .. 87

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS .. 89
5.1 Assembler Description Functions ... 90
5.2 Interrupt Control Functions ... 93
5.3 I/O Area Access Function ... 96
5.4 In-line Expansion Specifying Function .. 97
5.5 Section Name Change Function ... 98
5.6 Interrupt Level Setup Function .. 101
5.7 Intrinsic Function ... 102

5.7.1 Integer Operation Intrinsic Function .. 103
5.8 Predefined Macros .. 115
5.9 Limitations on Compiler Translation ... 116
5.10 Re-include Prevention Function .. 118
5.11 Function for Controlling Instantiation of C++ Template .. 119

CHAPTER 6 EXECUTION ENVIRONMENT ... 121
6.1 Execution Process Overview .. 122
6.2 Startup Routine Creation .. 124

CHAPTER 7 LIBRARY OVERVIEW .. 125
7.1 File Organization ... 126
7.2 Relationship to Library Incorporating System ... 127

CHAPTER 8 LIBRARY INCORPORATION .. 129
8.1 Library Incorporation Overview ... 130
8.2 Initialization/Termination Process Necessary for Using Library .. 131
8.3 Low-level Function Types ... 133
8.4 Standard Library Functions and Required Processes/Low-level Functions 134
8.5 Low-level Function Specifications ... 135

8.5.1 open Function .. 136
8.5.2 close Function ... 137
8.5.3 read Function ... 138
8.5.4 write Function .. 139
8.5.5 lseek Function ... 140
8.5.6 isatty Function ... 141
8.5.7 sbrk Function ... 142
8.5.8 _exit Function .. 143
8.5.9 _abort Function .. 144
vi

8.6 Time Function Specifications .. 145
8.6.1 clock Function .. 146
8.6.2 time Function ... 147

CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS .. 149
9.1 Compiler-dependent C Language Specification Differentials ... 150
9.2 Type of Floating-point Data and Range of Representable Values ... 152
9.3 Floating-point Operation due to the Runtime Library Function ... 153
9.4 Dissimilarities between C++ Specifications for C/C++ Compiler and ISO 156
9.5 C++ Specifications for C/C++ Compiler and EC++ Specifications ... 157
9.6 Limitations on Use of C++ Template .. 158

CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY 159
10.1 Low-level Function Library Overview .. 160
10.2 Low-level Function Library Use .. 161
10.3 Low-level Func. Function .. 163
10.4 Low-level Function Library Change .. 165

APPENDIX ... 167
APPENDIX A List of Types, Macros, Functions, and Variables Provided by C Libraries 168
APPENDIX B Operations Specific to C Libraries ... 174
APPENDIX C Error Message ... 179
APPENDIX D Reserved Pragma Directive ... 401
APPENDIX E About Reentrancy of C Library Functions .. 402

INDEX... 407
vii

viii

CHAPTER 1
SOFTUNE C/C++ COMPILER

This chapter outlines the C/C++ compiler.
The C/C++ compiler is a language processor program
which translates source programs written in C or C++
language into the assembly language for Fujitsu-
provided various microcontroller units.

1.1 C/C++ Compiler Functions

1.2 Basic Process of Commands

1.3 C/C++ Compiler Basic Functions
PART 1 OPERATION 1

CHAPTER 1 SOFTUNE C/C++ COMPILER
1.1 C/C++ Compiler Functions

When a source file represented in C or C++ language is described, the C/C++ compiler
generates an assembler source file which is expressed in assembly language.

■ C/C++ Compiler Functions
The C/C++ compiler generates an assembler source file using the procedures described below.

● [Compilation]

Compiling is performed by the compiler (cpcoms). The compiler translates C or C++ source files into

assembler source files.

To operate the C/C++ compiler, use the fcc911s command. This command automatically sets the

environment of the C/C++ compiler (such as the setting of an include directory) and controls compiling of

C or C++ source files. Figure 1.1-1 shows the configuration of the C/C++ compiler.

Figure 1.1-1 Configuration of the C/C++ compiler

In the subsequent sections, the C/C++ compiler translation process is explained using commands. For the

details of the command function specifications, see "CHAPTER 3 C/C++ COMPILER OPERATION".

Source file

Compiler

Assembler file

Header file
2 PART 1 OPERATION

1.2 Basic Process of Commands
1.2 Basic Process of Commands

This section describes the basic function of commands used in the C/C++ compiler.
The C/C++ compiler uses the following command:

fcc911s ----- FR family command

■ Command Basic Process
The basic function of the command is to generate an absolute file from a C/C++ source file. The command

recognizes files with the .c extension as C source files, and files with the .cc, .cpp, or .cxx extension as C++

source files.

A command use example is given below. > is the command prompt.

[Example]

> fcc911s -cpu MB91F154 file.c

When the above entry is made, the command assumes that file.c is a C source file. As far as no error is

detected, an absolute file (file.abs) is generated in the current directory.

[Example]

> fcc911s -o outfile -cpu MB91F154 file.c

With the parameters set as indicated in the above example, the command generates an absolute file

"outfile". By specifying options such as -o, the command can control the file generation process.

■ Options for Compiling Process Control

● [-P option]

When the -P option is specified, the command calls up the compiler only and performs preprocessing to

generate a preprocessed C/C++ source file in the current directory. Files to be generated include files with

extensions changed to .i for C and with extensions changed to .ipp for C++.

● [-S option]

When the -S option is specified, the command calls up the compiler to compile and thus generate an

assembler source file in the current directory. The extension of the generated file is changed to .asm.

● [-c option]

When the -c option is specified, the command calls up the, compiler, and assembler and performs

compilation, and assembling to generate an object file in the current directory. The extension of the

generated file is changed to .obj.

● [-o option]

When the -o option is specified, the command generates the file specified in the command line as a result of

processing.
PART 1 OPERATION 3

CHAPTER 1 SOFTUNE C/C++ COMPILER
1.3 C/C++ Compiler Basic Functions

The C/C++ compiler three functions are described below.
1) Header file search
2) Coordination with symbolic debugger
3) Optimization
The symbolic debugger is a support tool for analyzing a program created in C language
or C++ language.

■ Header File Search
The header file can be acquired using the C or C++ program #include instruction. When the absolute

pathname is specified, the header file enclosed within angular brackets (<>) is searched for in the directory

defined by that pathname. When the absolute pathname is not specified, the compiler standard directory is

searched.

The standard header file is supplied by the C/C++ compiler.

The header file enclosed by double quotation marks (") is searched for in a directory specified by the

absolute pathname. If the absolute pathname is not specified, such a header file is searched for in a

directory having a file containing a #include line. If the header file is not found in a directory having a file

containing a #include line, the standard directory is searched next.

The -I option makes it possible to add a directory for header file search.

[Example]

> fcc911s -cpu MB91F154 -I ..\include file.c

When the above entry is made, the command searches for the header file enclosed within angular brackets

in the order indicated below.

1. ..\include

2. Compiler standard include file directory

The header file enclosed by double quotation marks is searched for in the order indicated below.

1. Current directory having a file containing a #include line

2. ..\include

3. Compiler standard include file directory

The -I option can be specified a desired number of times. When it is specified two or more times, search

operations are conducted in the specified order.
4 PART 1 OPERATION

1.3 C/C++ Compiler Basic Functions
■ Coordination with Symbolic Debugger

When the -g option is specified, the compiler generates the debug information to be used by the symbolic

debugger. When such information is generated, C/C++ language level debugging can be accomplished

within the symbolic debugger. Two types of symbolic debuggers are available; simulator debugger and

emulator debugger.

When the optimization option (-O[1-4]) is specified, debugging should be performed, noting the following

points. When the optimization option is specified, the compiler attempts to ensure good code generation by

changing the computation target position and eliminating computations that are judged to be unnecessary.

To minimize the amount of data exchange with memory, the compiler tries to retain data within a register.

It is therefore conceivable that a break point positioned in a certain line may fail to cause a break or that

currently monitored certain address data may fail to vary with the expected timing. It also well to

remember that the debug data will not be generated for an unused local variable or a local variable whose

area need not be positioned in a stack as a result of optimization.

Take the above point into considerations when debugging is conducted.

■ Optimization
When the -O option is specified, the compiler generates an object subjected to general-purpose

optimization.
PART 1 OPERATION 5

CHAPTER 1 SOFTUNE C/C++ COMPILER
6 PART 1 OPERATION

CHAPTER 2
SETTING ENVIRONMENT
VARIABLES IN SYSTEM

BEFORE STARTING

This chapter describes environment variables in the
system used to run the C/C++ compiler. (For
information on setting variables, refer to the manual for
the respective operating system.)
All environment variables can be omitted. For
information on the supply style, refer to the C/C++
Compiler Installation Manual.
See Section "3.3 File Names and Directory Names", for
details about the characters that can be used for the
directories to be set up as environment variables in the
Windows version.
[Setup Example]

set FETOOL=c:\Fujitsu MCU tool
For environment variable setup, do not use double
quotation marks (").

2.1 FETOOL

2.2 LIB911

2.3 OPT911

2.4 INC911

2.5 TMP

2.6 FELANG
PART 1 OPERATION 7

CHAPTER 2 SETTING ENVIRONMENT VARIABLES IN SYSTEM BEFORE STARTING
2.1 FETOOL

Specify the directory where the development environment is installed.

■ FETOOL
[General Format 1 For UNIX OS]

setenv FETOOL Installation directory

[General Format 2 For Windows]

set FETOOL = Installation directory

The driver accesses the compiler, message file, include file, and other items via the path specified by

FETOOL.

When FETOOL setup is not completed, the parent directory for the directory where the activated driver

exists (the /.. position of the directory where the driver exists) is regarded as the installation directory.

No more than one directory can be specified.

[Example For UNIX OS]

setenv FETOOL /usr/local/softune6

[Example For Windows]

set FETOOL=c:\softune6
8 PART 1 OPERATION

2.2 LIB911
2.2 LIB911

Specify the directory for the library as LIB911.

■ LIB911
[General Format 1 For UNIX OS]

setenv LIB911 library directory [:directory 2...]

[General Format 2 For Windows]

set LIB911 = library directory [; directory 2...]

Specify the directory for the library to which linking is effected by default.

When LIB911 is not set up, the directory placed at the respective location relative to the FETOOL directory

(%FETOOL%\lib\911) is regarded as the default library directory.

Two or more directories can be specified, separated by a delimiter. The delimiter is a colon ’:’ for the

UNIX OS, and a semicolon ’;’ for Windows.

[Example For UNIX OS]

setenv LIB911 /usr/local/softune6/lib/911

[Example For Windows]

set LIB911=c:\softune6\lib\911
PART 1 OPERATION 9

CHAPTER 2 SETTING ENVIRONMENT VARIABLES IN SYSTEM BEFORE STARTING
2.3 OPT911

Specify the directory for the default option file to be used by the fcc911s command as
OPT911.

■ OPT911
[General Format 1 For UNIX OS]

setenv OPT911 Default option file directory

[General Format 2 For Windows]

set OPT911 = Default option file directory

Specify the directory for the default option file to be used by the driver.

When OPT911 is not set up, the directory at the corresponding relative position with respect to the

FETOOL directory (%FETOOL%\lib\911) is regarded as the default option file directory.

No more than one directory can be specified.

[Example For UNIX OS]

setenv OPT911 /usr/local/softune6/lib/911

[Example For Windows]

set OPT911=c:\softune6\lib\911
10 PART 1 OPERATION

2.4 INC911
2.4 INC911

Specify the directory for standard header files as INC911.

■ INC911
[General Format 1 For UNIX OS]

setenv INC911 Standard include directory

[General Format 2 For Windows]

set INC911 = Standard include directory

Specify the directory for standard header files. The directory specified as INC911 is regarded as the

standard include-directory. When INC911 is not defined, the directory at the corresponding relative

position with respect to the FETOOL directory (%FETOOL%\lib\911\include) is regarded as the standard

header file directory.

Two or more directories can be specified, separated by a delimiter. The delimiter is a colon ’:’ for the

UNIX OS, and a semicolon ’;’ for Windows.

[Example For UNIX OS]

setenv INC911 /usr/local/softune6/lib/911/include

[Example For Windows]

set INC911=c:\softune6\lib\911\include
PART 1 OPERATION 11

CHAPTER 2 SETTING ENVIRONMENT VARIABLES IN SYSTEM BEFORE STARTING
2.5 TMP

Specify the directory for the temporary file to be used by the C compiler.

■ TMP
[General Format 1 For UNIX OS]

setenv TMP Temporary directory

[General Format 2 For Windows]

set TMP = Temporary directory

Specify the working directory for creating the temporary file to be used by the C compiler.

If TMP setup is not completed, the temporary file is created in the current directory.

No more than one directory can be specified.

[Example For UNIX OS]

setenv TMP /usr/tmp

[Example For Windows]

set TMP=c:\tmp
12 PART 1 OPERATION

2.6 FELANG
2.6 FELANG

Specify the code for messages.

■ FELANG
[General Format 1 For UNIX OS]

setenv FELANG Message code

[General Format 2 For Windows]

set FELANG = Message code

Specify the message code. The following codes can be specified.

ASCII:

Outputs messages in ASCII code. The generated messages are in English. Select this code for a system
without a Japanese language environment.

EUC:

Outputs messages in EUC code. The generated messages are in Japanese.

SJIS:

Outputs messages in SHIFT JIS code. The generated messages are in Japanese. If FELANG setup is not
completed, the ASCII code is considered to be selected.

[Example For UNIX OS]

setenv FELANG EUC

[Example For Windows]

set FELANG=SJIS
PART 1 OPERATION 13

CHAPTER 2 SETTING ENVIRONMENT VARIABLES IN SYSTEM BEFORE STARTING
14 PART 1 OPERATION

CHAPTER 3
C/C++ COMPILER

OPERATION

This chapter describes the command function
specifications.

3.1 Command Line

3.2 Command Operands

3.3 File Names and Directory Names

3.4 Command Options

3.5 Details of Options

3.6 Option Files

3.7 Messages Generated in Translation Process
PART 1 OPERATION 15

CHAPTER 3 C/C++ COMPILER OPERATION
3.1 Command Line

The command line format is shown below.
fcc911s [options] operands

■ Command Line
Options and operands can be specified in the command line. Options and operands can be specified at any

position within the command line. Two or more options and operands can be specified. Options can be

omitted.

Option and operand entries are to be delimited by a blank character string. The command recognizes the

options and operands in the order indicated below.

1. An entry beginning with a hyphen (-) is first recognized as an option. The subsequent character string is
interpreted to determine the option type.

2. As regards an option having an argument, the subsequent character string is regarded as the argument.

3. The remaining entries in the command line are recognized as operands.

[Example]

>fcc911s file1.c -S -I \home\myincs file2.c -cpu MB91F154

At first, -S and -I are regarded as options. Since the -I option has an argument, the subsequent character

string \home\myincs is regarded as the argument. The remaining entries (file1.c and file2.c) are regarded as

operands.

Options:

-S, -I \home\myincs

Operands:

file1.c, file2.c

■ Command Process

The command calls a compiler, assembler, and linker for each input file in the order they are specified to

compile, assemble, and link. The result of each module is output to a file having the same file name as an

input file name with its extension replaced by .obj.

The linking result, unless changed by the -o option, is output to files with .abs extensions to which the

extensions of the files first specified are changed.

[Example]

>fcc911s file1.c file2.c file3.c -cpu MB91F154

Files named file1.c, file2.c, and file3.c are subjected to compiling, assembling, and linking so that files

named file1.abs is generated.
16 PART 1 OPERATION

3.2 Command Operands
3.2 Command Operands

One or more input files can be specified as operands.

■ Command Operands
The command determines the file type according to the input file extension and performs an appropriate

process to suit the file type. The extension cannot be omitted.

File specifying:

C source files, preprocessed C source files, C++ source files, preprocessed C++ source files, assembler
source files, and object files.

File extension:

The relationship between input file extensions and command processes is shown in Table 3.2-1.

Note, however, that the associated process may be inhibited depending on the option specifying.

[Example]

>fcc911s file1.c file2.asm -cpu MB91F154

The file1.c file is compiled and assembled, and the file2.asm file is assembled. Linking is then performed

to generate the file1.abs file.

Table 3.2-1 Relationship between Extensions and Command Processes

Extension Command Process

.c Files having this extension are compiled and subjected to subsequent processes as
C source files.

.i Files having this extension are compiled and subjected to subsequent processes as
C source files that have been preprocessed.

.cc Regard files as the C++ source files to perform processing subsequent to
compiling.

.cpp Regard files as the C++ source files to perform processing subsequent to
compiling.

.cxx Regard files as the C++ source files to perform processing subsequent to
compiling.

.ipp Regard files as the preprocessed C++ source files to perform processing
subsequent to compiling.

.asm Files having this extension are assembled and subjected to subsequent processes
as assembler source files that have been compiled.

.obj Files having this extension are linked and subjected to subsequent processes as
object files that have been assembled.

.abs The file having this extension is regarded as a linked absolute file, and an error
output is generated. No absolute file can be specified.
PART 1 OPERATION 17

CHAPTER 3 C/C++ COMPILER OPERATION
3.3 File Names and Directory Names

The following characters are applicable to file names and directory names.

■ File Names and Directory Names

● Windows

Alphanumeric characters, symbols except \, /, :, *, ?, ", <, >, and |, Shift-JIS kanji codes, and Shift- JIS 1-

byte kana codes. Enclose a long file name in double quotation marks (") when the file is specified as an

option or operand. The double quotation marks, however, cannot be used when the file is specified as an

environment variable.

● UNIX OS

Underbar "_" and alphanumeric characters (However, the first character must be the underbar or

alphabetical character).

● Module name

A module name is generated from a file name. The characters that can be used for a module name are an

underbar "_" and alphanumeric characters. (The first character of the name must be an underbar "_" and an

alphabetic character.) When other characters are used for a file name, a character that cannot be used for a

module name is converted to an underbar "_". A file name that will be identical to a module name after

conversion should not be used.

[Example]

#abc.c and -abc.c will have the same module name (_abc).
18 PART 1 OPERATION

3.4 Command Options
3.4 Command Options

The command options are explained below.

■ Option Syntax
The option consists of a hyphen (-) and one or more characters following the hyphen. Some options have

an argument. A blank character string must be positioned between an option and an argument. The

command options cannot be grouped for purposes of specifying. Grouping is a technique of specifying

which, for instance, uses a -Sg form to specify both the -S option and -g option.

■ Multiple Specifying of Same Option

If the same option is specified more than one time, only the last-specified option in the command line is

assumed to be valid.

[Example]

>fcc911s -o outfile file.c -o outobj -cpu MB91F154

The name of a file to be output is outobj. The options listed below can be specified more than once for the

same command and are different in meaning each time.

● Options that are significant when specified more than one time

-D, -f, -I, -INF, -K, -L, -l, -ra, -ro, -sc, -T, -U, -x, -Y

When the above options are specified more than one time, see details of options.

■ Position within Command Line

The option’s position within the command line does not have a special meaning. Options are interpreted in

the same manner no matter where in the command line they are specified.

[Example]

1) >fcc911s -C -E file1.c file2.c -cpu MB91F154

2) >fcc911s file1.c -E file2.c -C -cpu MB91F154

The same processing operations are performed for cases 1 and 2.

■ Exclusiveness and Dependency

Options may be mutually exclusive or mutually dependent. For information on the exclusivity and

dependence of options, see option descriptions.

■ Case Sensitiveness

As regards the options, their upper-case and lower-case characters are different from each other. For

example, the -O option is different from the -o option. However, the upper- and lower-case characters of

suboptions are not differentiated from each other. For example, the -K eopt option is considered in the

same as the -K EOPT option. The suboptions are the character strings that follow the -K option or -INF

option.
PART 1 OPERATION 19

CHAPTER 3 C/C++ COMPILER OPERATION
3.4.1 List of Command Options

When executed without argument specifying, the command outputs an option list to the
standard output.
Table 3.4-1 and Table 3.4-2 list the command options. Options listed in the tables are
recognized by the command.

■ List of Command Options

Table 3.4-1 List of Command Options (1 / 3)

Specifying Format Function

-align {FUNC4 | FUNC8 } Specifies that branch labels are to be aligned.

-B Allow a C++-style comment //.

-C Leaves a comment in the preprocessing result.

-c Perform processing up to assembling and output the result to .obj.

-cif filename Specifies the CPU information file.

-cmsg Outputs the compiling process end message to the standard output.

-CO Generates the FR80-FR compatible object.

-cpu MB number Specify the MB number of the CPU used.

-cwno Set the end code for warning to 1.

-D name [= [tokens]] Defines the macro name.

-E Performs preprocessing only and outputs the result to the standard output.

-e name Specifies the entry of a program.

-f filename Specifies the option file.

-g Adds to the object the information necessary for debugging.

-H Outputs the acquired header file pathname to the standard output.

-HH Outputs the acquired header file pathname to the standard output and
generates the object.

-help Outputs the option list to the standard output.

-I dir Specifies the directory for head file search.

-INF LIST Generates the assemble list.

-INF LONGMESSAGE Details a message at translating.

-INF {SRCIN | LINENO} Insert the associated C source information as a comment into the assembler
source.
20 PART 1 OPERATION

3.4 Command Options
-INF STACK [=filename] Generates the stack use amount data.

-J {a | c | e} Specifies the specification level of the language to be interpreted by the
compiler.

-K {A1 | A4} Specifies the minimum boundary alignment value for static data.

-K EOPT Effects optimization for changing the arithmetic operation evaluation
procedure.

-K CNC Specifies the method of handling an external symbol at the CONST
section.

-K {DCONST | FCONST} Specifies the type of a real constant without a suffix.

-K REALOS Performs in-line expansion for the µITRON 3.0 system call function.

-K LIB Recognizes the standard function operation and implements in-line
expansion/substitution for other functions.

-K LONGLONG Treats the long long type as 8-byte integer type.

-K NOALIAS Effects optimization on the presumption that differing pointers do not
indicate the same area.

-K NOINTLIB Effects no in-line expansion for interrupt related functions.

-K NOUNROLL Inhibits loop unrolling.

-K NOVOLATILE Does not consider __io qualifier variables to be volatile.

-K {SIZE | SPEED} Selects optimization based on the size and execution speed.

-K MERGESTRING Merges the substance of the same character string literal.

-K {SCHEDULE |
NOSCHEDULE}

Specifies the recall of the scheduler.

-K {SARG | DARG} Specifies the method for argument area acquisition.

-K {SHORTADDRESS [=
{CODE | DATA}] |
LONGADDRESS [=
{CODE | DATA}] }

Specifies the method for handling external symbols.

-K {UCHAR | SCHAR} Specifies the mere char sign handling.

-K {UBIT | SBIT} Specifies the mere int bit field sign handling.

-kanji {SJIS | EUC} Specify the kanji code used in a program.

-L path1 [,path2...] Specifies the library path.

-l lib1 [, lib2...] Specifies the library file name.

-m Outputs a map file at the time of linking.

-O level Gives instructions for general-purpose optimization.

Table 3.4-1 List of Command Options (2 / 3)

Specifying Format Function
PART 1 OPERATION 21

CHAPTER 3 C/C++ COMPILER OPERATION
-o pathname Outputs the result to the pathname.

-P Performs preprocessing only and outputs the result to .i.

-ra name = start/end Specifies the RAM area.

-ro name = start/end Specifies the ROM area.

-S Performs processes up to compiling and outputs the result to .asm.

-s defname = newname
[, attr [, address]]

Changes the section name.

-sc param Specifies the section arrangement.

-startup file Specifies the startup file name.

-T item, arg1 [arg2...] Passes arguments to the tool.

-U name Cancels the macro name definition.

-V Outputs the executed compiler tool version information to the standard
output.

-varorder
{SORT|NORMAL}

Specify the allocation type of static variables.

-w level Specifies the warning message output level.

-Xdof Inhibits the default option file read operation.

-x func [, func2...] Specifies the in-line expansion of functions.

-xauto [size] Specifies the in-line expansion of the functions whose logical line count is
less than the value specified for the size line.

-Y item, dir Changes the item position to dir.

Table 3.4-1 List of Command Options (3 / 3)

Specifying Format Function
22 PART 1 OPERATION

3.4 Command Options
Table 3.4-2 List of Command Options (for C++ Source)

Specifying Format Function

-t {none | used | all | local} Specify the type of template instantiation.

--alternative_tokens Enable an alternative keyword.

--no_auto_instantiation Suppress automatic instantiation of a template.

--old_for_init Use the ANSI or earlier specifications for the scope of declaration in
the for initialize expression.

--for_init_diff_warning Control a warning on different interpretations between --old_for_init
and --new_for_init.

--suppress_vtbl Suppress definition of a virtual function table.

--force_vtbl Force definition of a virtual function table.
PART 1 OPERATION 23

CHAPTER 3 C/C++ COMPILER OPERATION
3.4.2 List of Command Cancel Options

The listed options are used to cancel command options on an individual basis. The
cancel options for the command are listed in Table 3.4-3 and Table 3.4-4.

■ List of Command Cancel Options

Table 3.4-3 List of Command Cancel Options (1 / 2)

Specifying Format Function

-Xalign Cancels the -align option.

-XB Cancels the -B option.

-XC Cancels the -C option.

-Xcmsg Cancels the -cmsg option.

-XCO Cancels the -CO option.

-Xcwno Cancels the -cwno option.

-Xe Cancels the -e option.

-Xf Cancels the -f option.

-Xg Cancels the -g option.

-XH Cancels the -H option.

-XHH Cancels the -HH option.

-Xhelp Cancels the -help option.

-XI Cancels the -I option.

-Xm Cancels the -m option.

-INF NOLINENO Cancels the LINENO suboption.

-INF NOLIST Cancels the LIST suboption.

-INF NOSRCIN Cancels the SRCIN suboption.

-INF NOSTACK Cancels the STACK suboption.

-INF SHORTMESSAGE Cancels the LONGMESSAGE suboption.

-K ALIAS Cancels the NOALIAS suboption.

-K INTLIB Cancels the NOINTLIB suboption.

-K NOCNC Cancels the CNC suboption.

-K NOREALOS Cancels the REALOS suboption.

-K NOEOPT Cancels the EOPT suboption.
24 PART 1 OPERATION

3.4 Command Options
-K NOLIB Cancels the LIB suboption.

-K NOLONGLONG Cancels the LONGLONG suboption.

-K UNROLL Cancels the NOUNROLL suboption.

-K VOLATILE Cancels the NOVOLATILE suboption.

-K NOMERGESTRING Cancels the MERGESTRING suboption.

-XL Cancels the -L option.

-Xo Cancels the -o option.

-Xra Cancels the -ra option.

-Xro Cancels the -ro option.

-Xs Cancels the -s option.

-Xsc Cancels the -sc option.

-Xstartup Cancels the -startup option.

-XT item Cancels the -T item specifying.

-XV Cancels the -V option.

-Xx Cancels the -x option.

-Xxauto Cancels the -xauto option.

-XY item Cancels the -Y item specifying.

Table 3.4-4 List of Command Cancel Options (For C++ Source)

Specifying Format Function

--no_alternative_tokens Cancels the --alternative_tokens option.

--auto_instantiation Cancels the --no_auto_instantiation option.

--new_for_int Cancels the --old_for_init option.

--no_for_int_diff_warning Cancels the --for_init_diff_warning option.

Table 3.4-3 List of Command Cancel Options (2 / 2)

Specifying Format Function
PART 1 OPERATION 25

CHAPTER 3 C/C++ COMPILER OPERATION
3.5 Details of Options

This section details the options.

■ Translation control related options
The translation control related options are related to preprocessing, compiler, assembler, and linker call

control.

■ Preprocessor related options

The preprocessor related options are related to preprocessing operations

■ Data output related options

The data output related options are related to the command, preprocessing, and compiler data outputs.

■ Language specification related options

The language specification related options are related to the specification of the language to be recognized

by the compiler.

■ Optimization related options

The optimization related options are related to the optimization to be effected by the compiler.

■ Output object related options

The output object related options are related to the output object format.

■ Debug information related options

The debug information related options are related to the debug information to be referenced by the

symbolic debugger.

■ Command related options

The command related options are related to the other tools recalled by commands.

■ Linkage related options

The linkage related options are related to linkage.

■ Option file related options

The option file related options are associated with option files.
26 PART 1 OPERATION

3.5 Details of Options
3.5.1 Translation Control Related Options

The translation control related options are related to preprocessor, compiler,
assembler, and linker call control.

■ Translation Control Related Options
The priorities of the translation control related options are defined as follows. They are not related to the

order of specifying.

-E > -P > -S > -c

The translation control related option exclusiveness is shown in Table 3.5-1.

If the -E and -P options are specified simultaneously, see the explanation below.

● -E Option

-E Option subjects all files to preprocessing and outputs the result to the standard output. The output result

contains the preprocessing instruction generated by the preprocessor, which is necessary for the compiler.

The information targets for the preprocessing instruction generated by the preprocessor are the #line and

#pragma instructions. If the -P option is specified together with the -E option, the preprocessing instruction

generated by the preprocessor is inhibited.

If the input file is not a C source file or C++ source file, the -E option does not process anything.

[Example]

>fcc911s -E -cpu MB91F154 sample.c

The sample.c preprocessing result is output to the standard output.

● -P Option

-P option subjects a C source file or C++ source file to preprocessing and outputs the result to the file

whose extension is changed to .i or .ipp. Unlike the cases where the -E option is specified, the output result

does not contain the preprocessing instruction generated by the preprocessing. If the input file is not a C

source file, the -P option does not process anything.

[Example]

>fcc911s -P -cpu MB91F154 sample.c

The sample.c preprocessing result is output to the sample.i.

Table 3.5-1 Translation Control Related Option Exclusiveness

Specified Option Option Invalidated

-E -S and -c

-P -S and -c

-S -c

-c None
PART 1 OPERATION 27

CHAPTER 3 C/C++ COMPILER OPERATION
[Example]

>fcc911s -P -cpu MB91F154 sample.cpp

The result of preprocessing for sample.cpp is output to sample.ipp.

● -S Option

-S option performs processes up to compiling and outputs the resultant assembler source to file extension

changed to .asm.

If the input file is neither a C source file nor a preprocessed C source file, the -S option does not process

anything.

[Example]

>fcc911s -S -cpu MB91F154 sample.c

The sample.c preprocessing and compiling process result are output to the sample.asm.

● -c Option

Performs processes up to assembling and outputs the resultant object to file extension changed to .obj. If

the input file is an object file, the -c option does not process anything.

[Example]

>fcc911s -c -cpu MB91F154 sample.c

The results of preprocessing, compiling, and assembling to sample.c are output to sample.obj.

The relationship among file types and processes for translation control related options is shown in Table

3.5-2.

P: Preprocessing
C: Compiling
A: Assembling

L: Linking

[Example]

>fcc911s -E file1.c file2.i -cpu MB91F154

Subjects files named file1.c to preprocessing and outputs the result to the standard output. No processing is

performed for file2.i.

>fcc911s -S file1.c file2.i file3.asm -cpu MB91F154

Subjects a file named file1.c to preprocessing and compiling and a file named file2.i to compiling.

Performs nothing for a file named file3.asm. As a result, files named file1.asm and file2.asm are generated

in the current directory.

Table 3.5-2 Relationship Among File Types and Processes for Translation Control Related Options

Option File Type -E -P -S -c Nothing Specified

C/C++ source file P P P and C P, C and A P, C, A and L

Preprocessed C/C++ source file - - C C and A C, A and L

Assembler source file - - - A A and L

Object file - - - - L
28 PART 1 OPERATION

3.5 Details of Options
3.5.2 Preprocessing Related Options

This section deals with the options related to preprocessing operations. If the
preprocessing is not called, the preprocessing related options are invalid.

■ Preprocessing Related Options
The preprocessing related options are detailed below.

● -B option and -XB option

The -B option regards items following // in the C source as comments.

The -XB option cancels the -B option. This option is ignored even if it is specified in the C++ source.

When the -Jc option is specified, -B option is disabled.

[Example]

Input: void func()

{

//empty function

}

Operation: fcc911s -S -B -cpu MB91F154 sample.c

● -C option and -XC option

-C options are all comments except those which are in the preprocessing instruction line and will be

retained as the preprocessing result. If the option is not specified, the comments are replaced by one blank

character.

The -XC option cancels the -C option.

[Example]

Input /* Comment */
void func(void) { }

Operation: fcc911s -C -E -cpu MB91F154 sample.c
Output # 1 "test5.c"

/* Comment */
void func(void) { }

● -D name [=[tokens]] Option

Defines the macro name with the tokens used as the macro definition. This option is equal to the following

#define instruction.

#define name tokens

If =tokens entry is omitted, the value "1" is given as the tokens value. If the tokens entry is omitted, the

specified lexis is deleted from the source file. The error related to the -D option is the same as the error

related to the #define instruction.
PART 1 OPERATION 29

CHAPTER 3 C/C++ COMPILER OPERATION
This option can be specified more than one time.

[Example]

>fcc911s -D os=m -D sys file.c -cpu MB91F154

In a file named file.c, processing is conducted on the assumption that the macro definitions for os and sys

are m and 1, respectively.

● -H option and -XH option

-H option outputs the header file pathnames acquired during preprocessing to the standard output. The

pathnames are sequentially output, one for each line, in the order of acquisition. If there are any two

exactly the same pathnames, only the first one will be output. When this option is specified, the command

internally sets up the -E option to subjects all files to preprocessing only. However, the preprocessing

result will not be output. The -XH option cancels the -H option.

[Example]

Input #include <stdio.h>

#include "head.h"

Operation: fcc911s -H -cpu MB91F154 sample.c

Output /usr/softune5/lib/911/include/stdio.h

./head.h

● -HH option and -XHH option

-HH option outputs the header file pathnames acquired during preprocessing to the standard output. The

pathnames are sequentially output, one for each line, in the order of acquisition. If there are any two exactly

the same pathnames, only the first one will be output. The -HH option differs from -H option, and generates

the object file according to the specification of translation control option (-E, -P, -S, -c). The -XHH option

cancels the -HH option.

[Example]

Input: #include <stdio.h>

#include "head.h"

Operation: fcc911s -HH -S -cpu MB91F154 sample.c

Output: /usr/softune6/lib/911/include/stdio.h

./head.h
30 PART 1 OPERATION

3.5 Details of Options
● -I dir option and -XI option

Changes the manner of header file search so that the directory specified by dir will be searched prior to the

standard directory.

The standard directory is ${INC911} for the fcc911s command.

This option can be specified more than one time. The search will be conducted in the order of specifying.

When this option is specified, the header file search will be conducted in the following directories in the

order indicated below.

[Header file enclosed within angular brackets (< >)]

1. Directory specified by the -I option

2. Standard directory

[Header file enclosed by double quotation marks (")]

1. Directory having a file containing the #include line

2. Directory specified by the -I option

3. Standard directory

If a header file is specified by specifying its absolute path name, only the directory specified by the

specified absolute path name will be searched. If any nonexistent directory is specified, this option is

invalid.

The -XI option cancels the -I option.

● -U name option

Cancels the macro name definition formulated by -D. This option is equivalent to the following #undef

instruction.

#undef name

If the same name is specified by the -D and -U options, the name definition will be canceled without regard

to the order of option specifying. This option can be specified more than one time.

The error related to the -U option is the same as the error related to the #undef instruction.

[Example]

>fcc911s -U m -D n -D m file.c -cpu MB91F154

This will cancel the macro m definition formulated by the -D option.
PART 1 OPERATION 31

CHAPTER 3 C/C++ COMPILER OPERATION
3.5.3 Data Output Related Options

This section deals with the options related to the command, preprocessor, and compiler
data outputs.

■ Data Output Related Options

● -cmsg Option

Outputs the compiling process completion message.

[Example]

Operation: fcc911s -cmsg -S -cpu MB91F154 sample.c

Output: COMPLETED C Compile, FOUND NO ERROR : sample.c

● -cwno Option

Set the end code to 1 when a warning-level error occurs. When this option is not given, the end code is 0.

● -help option and -Xhelp option

Outputs the option list to the standard output.

The -Xhelp option cancels the -help option.

[Example]

>fcc911s -help

Various command option lists are output to the standard output.

● -INF LINENO option and -INF NOLINENO option

-INF LINENO option inserts C or C++ source file line numbers into the assembler source file as comments.

The LINENO suboption cannot be specified simultaneously with the SRCIN suboption.

The NOLINENO suboption cancels the LINENO suboption.
32 PART 1 OPERATION

3.5 Details of Options
[Example]

Input: void func(void) {)

Operation: fcc911s -INF lineno -S -cpu MB91F154 sample.c

Output _func:

ST RP, @-SP

ENTER #4

;;;; sample.c, line 1

L_func:

LEAVE

LD @-SP+, RP

RET

● -INF LIST option and -INF NOLIST option

-INF LIST option outputs the assemble list. Generates a file in the current directory. The name of the

generated file is determined by changing the source file name extension to .lst.

Since the assemble list is generated at assembling, it is not generated when assembling is not conducted.

For the details of the assemble list, refer to the Assembler Manual.

The NOLIST suboption cancels the LIST suboption.

[Example]

>fcc911s -INF list -c -cpu MB91F154 sample.c

The sample.c preprocessing, compiling, and assembling process result are output to the sample.obj, and the

resulting assemble list is output to the sample.lst.

● -INF SRCIN option and -INF NOSRCIN option

-INF SRCIN option inserts a C or C++ source file into the assembler source file as a comment. The

NOSRCIN suboption cancels the SRCIN suboption.

The SRCIN suboption cannot be specified simultaneously with the LINENO suboption.

[Example]

Input: void func(void) { }

Operation: fcc911s -INF srcin -S -cpu MB91F154 sample.c

Output: _func:

ST RP, @-SP

ENTER #4

;;;; void func(void) { }

L_func:

LEAVE

LD @-SP+, RP

RET
PART 1 OPERATION 33

CHAPTER 3 C/C++ COMPILER OPERATION
● -INF STACK [=file] option and -INF NOSTACK option

-INF STACK [=file] option outputs the stack use amount data. Generates the specified file in the current

directory and outputs the stack use amount data. If no file is specified, the information in all the

simultaneously compiled files is output into files whose names are determined by changing the source file

extensions to .stk.

For stack use amount data utilization procedures and data file specifications, refer to the SOFTUNE C/C++

analyzer Manual.

The NOSTACK suboption cancels the STACK suboption.

[Example]

Input: extern void sub(void);

void func(void){sub();}

Operation: fcc911s -INF stack -S -cpu MB91F154 sample.c

Output: @sample.c

E=Extern S=Static I=Interrupt

{Stack} {E|S|I} {function name} [A]

-> {E|S} {call function}

...

#

8 E _func

-> E _sub

● -o pathname option and -Xo option

-o pathname option uses the pathname as the output file name. If this option is not specified, the default for

the employed file format is complied with.

The -Xo option cancels the -o option.

[Example]

>fcc911s -o output.asm -S -cpu MB91F154 sample.c

The sample.c preprocessing and compiling process result are output to the output.asm.

● -V option and -XV option

-V option outputs the version information about each executed compiler tool to the standard output. The -

XV option cancels the -V option.

[Example]

FR Family SOFTUNE C/C++ Compiler V60L01

ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED
34 PART 1 OPERATION

3.5 Details of Options
● -w [level] option

-w [level] option specifies the output level of warning-type diagnostic messages. The level can be specified

between 0 and 8 but there is no difference between levels 1 and 8. This level specification is provided to

ensure compatibility between the SOFTUNE C compiler and option.

When level 0 is specified, no warning messages will be generated. If the level description is omitted, level

0 is assumed. When the -w [level] option itself is omitted, -w 1 is applied.

For the details of diagnostic messages, see section "3.7 Messages Generated in Translation Process".

[Example]

Input: const unsigned int a=-1;

Operation: fcc911s -INF srcin -S -cpu MB91F154 sample.c

Output: *** sample.c(1) W1068B: warning: integer conversion resulted in a change of sign

Operation: fcc911s -w -S -cpu MB91F154 sample.c

Output: (none)

● --for_init_diff_warning option and --no_for_init_diff_warning option

The --for_init_diff_warning option is valid only when the input file is a C++ source file. This option is

ignored when the --old_for_init option is specified. The --for_init_diff_warning option specifies that a

warning message is output if the initialize statement in the for statement is interpreted differently between

the old and new C++ specifications.

The --no_for_init_diff_warning option cancels the --for_init_diff_warning option.

[Example]

Input:

void func(int);

int i;

main()

{

for(int i=0; i<10; i++)

func(i);

func(i);

}

Operation: fcc 911s -S -cpu MB91F154 --for_init_diff_warning sample.cpp

Output: *** sample. cpp(7) W1780B: warning: reference is to variable "i"(declared at line 2)

-- under old for-init scoping rules it would have been variable "i"(declared at line 5)
PART 1 OPERATION 35

CHAPTER 3 C/C++ COMPILER OPERATION
● -INF LONGMESSAGE option and -INF SHORTMESSAGE option

The -INF LONGMESSAGE option details the diagnostic message of the compiler. The ’^’ mark indicates

where an error occurs. Note that an incorrect location may be indicated depending the error type. It should

also be noted that if the diagnostic message is displayed in a proportional font, the indicated location seems

displaced.

The -INF SHORTMESSAGE option cancels the -INF LONGMESSAGE option.

[Example]

Input:

int a b;

void func()

{

}

Operation: fcc911s -S -cpu MB91F154 -INF LONGMESSAGE sample.c

Output: *** sample.c(1) E4065B: expected a ";"

int a b;

^

36 PART 1 OPERATION

3.5 Details of Options
3.5.4 Language Specification Related Options

This section deals with the options related to the specifications of the language to be
recognized by the compiler.

■ Language Specification Related Options

● -J {a | c | e} Option

Specifies the language specification level to be interpreted by the compiler (preprocessor included).

When -Ja is specified, interpretation is conducted in compliance with the ANSI standard including expansion

specifications.

When -Jc is specified, interpretation is conducted in strict compliance with the ANSI standard. In response

to the expansion specifications, a warning message is output.

Moreover, the following functions was disabled.

-B option (Allow a C++-style comment //)

When the -Je option is specified, the C++ source file is interpreted as being based on the EC++ language

specifications. In addition to a normal warning, a warning message is output at description of

specifications outside the range of the EC++ language specifications. The C source file has exactly the

same meaning as that when the -Ja option is specified.

If this option is not specified, -Je applies.

● -K {DCONST|FCONST}Option

When the FCONST suboption is specified, a floating-point constant whose suffix is not specified will be

handled as a float type. When the DCONST suboption is specified, a floating-point constant whose suffix

is not specified will be handled as a double type. If neither of the above two suboptions is specified, -K

DCONST applies.

[Example]

Input: extern float f1,f2;

void func(void) { f1=f2+1.0;}

Operation: fcc911s -K fconst -cpu MB91F154 -S sample.c

Output: _func:

ST RP, @-SP

ENTER #4

LDI:32 #_f2, R12

LD @R12, R4

LDI #H'3F800000, R5

CALL32 _ _addf, R12

LDI:32 #_f1, R12

ST R4,@R12

L_func:
PART 1 OPERATION 37

CHAPTER 3 C/C++ COMPILER OPERATION
LEAVE

LD @SP+, RP

RET

● -K NOINTLIB option and -K INTLIB option

The NOINTLIB suboption calls a normal function without effecting in-line expansion of an interrupt

related function (__DI(), __EI(), __set_il()). The INTLIB suboption cancels the NOINTLIB suboption.

[Example]

Input: void func(void){ _ _DI();}

Operation: fcc911s -K nointlib -cpu MB91F154 -S sample.c

Output: _func:

ST RP, @-SP

ENTER #4

CALL32 _ _ _DI, R12

L_func:

LEAVE

LD @SP+, RP

RET

● -K NOVOLATILE option and -K VOLATILE option

The NOVOLATILE suboption does not recognize a __io qualifier attached variable as a volatile type.

Therefore, __io qualifier attached variables will be optimized. The VOLATILE suboption cancels the

NOVOLATILE suboption.

[Example]

>fcc911s -K novolatile -S -O -cpu MB91F154 sample.c

When an __io qualifier attached variable is processed in sample.c, it is not handled as a volatile qualifier

attached variable, but is treated as the optimization target.
38 PART 1 OPERATION

3.5 Details of Options
● -K {UCHAR|SCHAR}option

-K {UCHAR|SCHAR}option specifies whether or not to treat the char type most significant bit as a sign

bit. When the UCHAR suboption is specified, the most significant bit will not be treated as a sign bit.

When the SCHAR suboption is specified, the most significant bit will be treated as a sign bit.

If neither of the above two suboptions is specified, -K UCHAR applies.

[Example]

Input: extern int data;

char c= -1;

void func (void) {data=c;}

Operation: fcc911s -K schar -cpu MB91F154 -S sample.c

Output: LDI:32 #_c,R12

LDUB @R12,R0

EXTSB R0 ;Code-extended

LDI:32 #_data,R12

ST R0,@R12

● -K REALOS option and -K NOREALOS option

The REALOS suboption effects in-line expansion of the µITRON 3.0 system call function.

It can be used in cases where a program running under REALOS is to be prepared. For the µITRON 3.0

system call function, refer to the REALOS/FR Kernel Manual.

When specifying the REALOS suboption, be sure to include the system call declaration header file

furnished by the REALOS.

If the REALOS suboption is specified without including the system call declaration header file and system

call inline expansion is initiated, the operation is not guaranteed, because it is possible that an adequate

argument-type check has not been completed.

The NOREALOS suboption cancels the REALOS suboption.

[Example]

Input: #include "itron.h

#include "realos.h"

void func(void) { ext_tsk(); }

Operation: fcc911s -K realos -cpu MB91F154 -S sample.c

Output: LDI:8 #-21, R12

EXTSB R12

INT #64
PART 1 OPERATION 39

CHAPTER 3 C/C++ COMPILER OPERATION
● -K {UBIT|SBIT} option

Specifies whether or not to treat the most significant bit as a sign bit in situations where the char, short int,

or long int type is selected as the bit field. When the UBIT suboption is specified, the most significant bit

will not be treated as a sign bit. When the SBIT suboption is specified, the most significant bit will be

treated as a sign bit.

If neither of the above two suboptions is specified, -K UBIT applies.

[Example]

Input extern int data;

struct tag{ int bf:1;} st = {-1};

void func(void) { data = st.bf;}

Operation: fcc911s -K sbit -cpu MB91F154 -S sample.c

Output: LDI32 #_st, R12

LDUB @R12, R0

EXTSB R0 ; Code-extended

ASR #7, R0

LDI:32 #_data, R12

ST R0, @R12

● -kanji {SJIS|EUC} option

If Japanese are entered in a program, the code system for the used Japanese is specified.

Japanese including 1-byte kana can be entered in program comments and character strings. The compiler

identifies the code system for Japanese description based on this option. SJIS means that the Shift JIS code

system is used, and EUC means that the EUC code system is used. When this option is omitted, -kanji

EUC is used for Solaris, and -kanji SJIS is used for HP-UX and Windows.

● -K LONGLONG option and -K NOLONGLONG option

The LONGLONG suboption treats the following type as 8-byte integer type.

long long int

signed long long int

unsigned long long int

Moreover, the following specification is effective.

• Pre-defined macro __LONGLONG__ is defined as 1.

• In lib/911/include/limits.h, the macro of LONG_LONG_MIN, LONG_LONG_MAX, and
ULONG_LONG_MAX is effective.

• In lib/911/include/builtin.h, intrinsic function __muls() and __mulu() is effective.

The following limitation is in 8-byte integer type.

• __io type qualifier cannot be specified for the variable of 8-byte integer type.

• 8-byte integer type cannot be specified for bit field member's type.

The NOLONGLONG suboption cancels the LONGLONG suboption.
40 PART 1 OPERATION

3.5 Details of Options
● --alternative_tokens option and --no_alternative_tokens option

The --alternative_tokens option enables alternative representation. For the specifications for alternative

representation, refer to ISO/ICE 14882:1998.

The --no_alternative_tokens option cancels the --alternative_tokens option.

● --old_for_init option and --new_for_init option

The --old_for_init option makes a change so that the scope of variables declared in the initialize statement

in the for statement is interpreted as being within the old specifications.

The --new_for_init option cancels the --old_for_init option.

[Example]

Input:

extern void func(int);

int main()

{

for(int i=0; i<10; i++)

func(i);

func(i); // Possible only for old specifications

return 0;

}

Operation: fcc911s -S --old_for_init sample.cpp -cpu MB91F154
PART 1 OPERATION 41

CHAPTER 3 C/C++ COMPILER OPERATION
3.5.5 Optimization Related Options

This section deals with the options related to optimization by the compiler.

■ Optimization Related Options

● -K SIZE option

Selects an appropriate optimization combination with emphasis placed upon the object size. The selected

options in the fcc911s command are indicated below.

• -O 3

• -K EOPT

• -K NOUNROLL

• -K SHORTADDRESS

To change the above combination, specify, for example, the -O1 option following the -SIZE sub-option.

The -K SIZE option not only offers the optimization combination selection function, but also makes it

possible to issue a generation instruction for object size minimization and effect object pattern switching.

● -K SPEED option

Selects an appropriate optimization combination with emphasis placed upon the generated object execution

speed. The selected options in the fcc911s command are indicated below.

• -O 4

• -K SHORTADDRESS

• -align FUNC4

To change the above combination, specify, for example, the -K LONGADDRESS option following the

SPEED sub-option.

The -K SPEED option not only offers the optimization combination selection function, but also makes it

possible to issue a generation instruction for execution speed maximization and effect object pattern

switching.

The following features operate when the -K SPEED option is specified, and neither the -K DARG option

nor the -K REALOS option are specified.

• Improvement of register allocation

• Improvement of assembler level optimization

• Inlining expansion of µITRON4.0 service call

• Merging the area of the same character string literal(-K MERGESTRING option)

• Supplementary comment output to assembler file
42 PART 1 OPERATION

3.5 Details of Options
● -O [level]option

-O [level] specifies the optimization level. Levels 0, 1, 2, 3, and 4 can be specified. The higher the

optimization level, the shorter the generated object execution time but the longer the compilation time.

Note that each optimization level contains lower optimization level functions.

One of the following levels is to be specified. When no level is specified, -O2 applies.

• 0(Optimization level 0): No optimization will be effected. This level is equivalent to cases where the -
O is not specified.

• 1(Optimization level 1): Optimization will be effected in accordance with detailed analyses of a
program flow. In addition, the instruction scheduling will be conducted.

• 2(Optimization level 2): The following optimization feature is exercised in addition to the feature
provided by optimization level 1.

• Loop unrolling: Loop unrolling is performed to increase the execution speed by decreasing the loop
count when loop- count detection is possible. However, it tends to increase object size. Therefore, this
optimization should not be used in situations where object size is important.

[Example]

(Before unrolling)

for(i=0;i<3;i++) { a[i]=0;}

(After unrolling)

a[0]=0;

a[1]=0;

a[2]=0;

• 3(Optimization level 3): The following optimization features are exercised in addition to the features
provided by optimization level 2.

• Loop unrolling (extended): Loops, including branch instructions, that have not been the
target of optimization level-2 loop unrolling, are the target of this extended loop unrolling.

• Optimization function repeated execution: In optimization function repeated execution, the
optimization features except the loop unrolling feature will be repeatedly executed until no
more optimization is needed. However, the translation time will increase.

• 4(Optimization level 4): The following optimization features are exercised in addition to the features
provided by optimization level 3.

• Arithmetic operation evaluation type change (same as effected by -K EOPT specifying):
Performs optimization to change arithmetic operation evaluation type at compilation stage.
When this option is specified, there may be side effects on the execution results.

• Standard function expansion/change (same as effected by -K LIB specifying): Switches to
a higher-speed standard function that recognizes standard function operations, performs
standard function inline expansion, and performs identical operations. When this option is
specified, there may be side effects on the execution results. Since standard function inline
expansion is implemented, the code size may increase.
PART 1 OPERATION 43

CHAPTER 3 C/C++ COMPILER OPERATION
● -K EOPT option and -K NOEOPT option

The EOPT suboption effects optimization by changing the arithmetic operation evaluation type at the

compilation stage. When this option is specified, side effects may occasionally be produced on the

execution results. This option takes effect only when an optimization level of 1 or higher is specified by the

-O option. The NOEOPT suboption cancels the EOPT suboption.

[Example]

Input; extern int i;

void func(int a, int b){

i=a-100+b+100;

}

Operation: fcc911s -K eopt -0 - cpu MB91F154 -S sample.c

Output: ADD R5, R4 ; Order of arithmetic operation replaced

LDI;32 #_i, R12

ST R4, @R12

● -K LIB option and -K NOLIB option

The LIB suboption recognizes the standard function operation and replaces the standard function with a

higher-speed standard function which effects standard function in-line expansion and performs the same

operation as the original standard function. When this option is specified, side effects may be produced on

the execution results. Since standard function inline expansion is implemented, the code size may increase.

This option takes effect only when an optimization level of 1 or higher is specified by the -O option.

The NOLIB suboption cancels the LIB suboption.

[Example]

Input: extern int i;

void func(void) {

i=strlen("ABC");

}

Operation: fcc911s -K lib -O -cpu MB91F154 -S sample.c

Output: LDI #3,R0 ; Processing equivalent to strlen expanded

LDI:32 #_i, R12

ST R0, @R12
44 PART 1 OPERATION

3.5 Details of Options
● -K {LONGADDRESS [= {CODE|DATA}] | SHORTADDRESS [= {CODE|DATA}]}option

The SHORTADDRESS suboption generates code on the presumption that the (address) of a symbol to be

loaded within the program is within the 20-bit expression range.

When CODE or DATA is specified, only the symbols of the section allocated in the ROM (CODE or

CONST) or the symbols of the section allocated in the RAM (DATA or INIT) are to be processed. If the

address exceeds the range that can be expressed by 20 bits, an error occurs during linking. Operation is

normal even if symbols other than those loaded in the program are positioned outside the range of the

addresses that can be expressed by 20 bits. The LONGADDRESS suboption enables handling symbol

addresses as 32-bit addresses. If the SHORTADDRESS suboption or LONGADDRESS suboption is

omitted, -K LONGADDRESS is applied.

[Example]

Input: extern int i;

extern void sub(void);

void func(void) {

i=10;

sub();

}

Operation: fcc911s -K shortaddress -O -S -cpu MB91F154 sample.c

Output: LDI:20 #_i, R12 ; 20-bit symbol used

LDI #10, R0

ST R0, @R12

CALL20 _sub, R12 ; 20-bit symbol used

● -K CNC option and -K NOCNC option

CNC suboption specifies the symbol (address) of CONST section to contrary of CODE section specified by

-K LONGADDRESS option or -K SHORTADDRESS option. As a result, the symbol size of the CODE

section, the CONST section, and the DATA section (included INIT section) can be individually set. Table

3.5-3 shows the symbol size when options are specified.

The NOCNC suboption cancels the CNC suboption.

Table 3.5-3 The symbol bit size when options are specified

Specified Option
-K longaddress=CODE -K shortaddress=CODE

-K CNC -K NOCNC -K CNC -K NOCNC

The symbol size for the
CODE section

32 bits 32 bits 20 bits 20 bits

The symbol size for the
CONST section

20 bits 20 bits 32 bits 20 bits
PART 1 OPERATION 45

CHAPTER 3 C/C++ COMPILER OPERATION
● -K NOALIAS option and -K ALIAS option

The NOALIAS suboption optimizes the data specified by the pointer on the assumption that the pointer

does not specify the same area of different pointers.

These options are enabled only when level 1 or more optimization is specified in the -O option. The

language specification permits different pointers to include the same area. Therefore, when using this

option, check the program carefully.

The ALIAS suboption cancels the NOALIAS suboption.

[Example]

Input extern int i;

extern int j;

void func9(int *p) {

*p=i+1;

j=i+1;

}

Operation: fcc911s -K noalias -O -cpu MB91F154 -S sample.c

Output: LDI:32 #_i, R12

LD @R12, R0

LDI:32 #_j, R12

ADD #1, R0

ST R0, @4

ST R0, @12 ; Value of *p=i+1 reused

● -K {SCHEDULE|NOSCHEDULE} option

-K {SCHEDULE|NOSCHEDULE} option specifies whether or not to implement instruction scheduling.
When the SCHEDULE suboption is specified for the fcc911s command, instruction scheduling will be
conducted. When the NOSCHEDULE suboption is specified, the command will not conduct instruction
scheduling. If this option is omitted, the operation conforms to the contents specified in the -O option.
When an optimization level of 1 or higher is specified by the -O option, -K SCHEDULE is assumed to be
specified.

The SCHEDULE suboption cancels the NOSCHEDULE suboption.

● -K NOUNROLL option and -K UNROLL option

The NOUNROLL suboption inhibits loop unrolling optimization. Use this option when loop unrolling
optimization is to be inhibited with the -O2 to -O4 options specified. The UNROLL suboption cancels the
NOUNROLL suboption. When -O0 or O1 is specified, these options are invalid because loop unrolling is
not optimized.
46 PART 1 OPERATION

3.5 Details of Options
● -x function name 1 [, function name 2,...]option and -Xx option

The -x option effects in-line expansion, instead of function calling, of functions defined by a C source.
However, recursively called functions will not be subjected to in-line expansion. It should also be noted
that functions may not be subjected to in-line expansion depending on asm statement use, structure/union
type argument presence, setjmp function calling, and other conditions. The -x option takes effect only
when level 1 or more optimization is specified simultaneously with the -O option.

The -Xx option cancels the -x option.

[Example]

Input: extern int a;

static void sub(void) { a=1; }

void func(void) { sub(); }

Operation: fcc911s -cpu MB91F154 -O -x sub -S sample.c

Output: _func:

LDI #1, R0

LDI:32 #_a, R12

RET:D

ST R0, @R12

● -xauto [size]option and -Xxauto option

The -xauto option effects in-line expansion, instead of function calling, of functions whose logical line

count is not less than size. However, recursively called functions will not be subjected to in-line expansion.

It should also be noted that functions may not be subjected to in-line expansion depending on asm

statement use, structure/union type argument presence, setjmp function calling, and other conditions. If the

size entry is omitted, the value "30" is assumed to be specified. The values from 1 to 127 are valid for size.

The -xauto option takes effect only when level 1 or more optimization is specified simultaneously with the

-O option.

The -Xxauto option cancels the -xauto option.

[Example]

Input: extern int a;

static void sub(void){ a=1; }

void func(void) { sub(); }

Operation: fcc911s -cpu MB91F154 -O -xauto -S sample.c

Output _func:

LDI #1, R0

LDI:32 #_a, R12

RET:D

ST R0,@R12
PART 1 OPERATION 47

CHAPTER 3 C/C++ COMPILER OPERATION
● -K MERGESTRING option and -K NOMERGESTRING option

The MERGESTRING suboption merges the substance of the same character string literal. The

MERGESTRING suboption takes effect only when the -K SPEED option is specified and -K REALOS and

-K DARG options are not specified.

The NOMERGESTRING suboption cancels MERGESTRING suboption.

[Example]

Input: char *a = "abcdef";

char *b = "abcdef";

Operation: fcc911s -cpu MB91101 -S sample.c -K SPEED -K MERGESTRING

Output: .section INIT, DATA, align=4

.global _b

.align 4

_b:

.word LS_0

.global _a

_a:

.word LS_0

.section CONST, CONST, align=4

.align 4

LS_0:

.ascii "abcdef\000"

.datab.b 1,0
48 PART 1 OPERATION

3.5 Details of Options
3.5.6 Output Object Related Options

This section describes the options related to output object formats.

■ Output Object Related Options

● -align {FUNC4|FUNC8} option and -Xalign option

The -align option aligns branch labels.

When the FUNC4 suboption is specified, the compiler suffixes CODE section names with _4, and selects 4

as the section boundary value. When the FUNC8 suboption is specified, the compiler suffixes CODE

section names with _8, and selects 8 as the section boundary value.

When the -s option or #pragma section is used to specify a section arrangement address, it overrides the -

align option.

The FUNC4 suboption aligns the beginnings of functions on 4-byte boundaries, while the FUNC8

suboption aligns them on 8-byte boundaries.

The -Xalign option disables the align value specified for labels. When both -align and -Xalign options are

omitted, the -Xalign option is used.

[Remarks]

With some CPU of the FR, instructions are fetched on 8-byte boundaries, in units of 4/8 bytes. If the
branch destination address is not 4/8-byte boundaries when a branch occurs, extra fetch cycles for 1 to 3
cycles are generated.

The -align option can be used to avoid this extra fetch cycle.

Note that branch labels aligned on boundaries increase the code size.

[Example]

Input: void foo(void){}

Operation: fcc911s -cpu MB91F154 -O -S sample.c -align func8

Output: .SECTION CODE_8, CODE, ALIGN=8 ;The section name is changed.

.ALIGN 8 ;;8-byte boundary alignment.

.GLOBAL _foo

_foo:

RET

● -cpu MB number option

Specifies MB number of CPU to be used. This option cannot be omitted.

[Example]

>fcc911s -S -cpu MB91F154 sample.c
PART 1 OPERATION 49

CHAPTER 3 C/C++ COMPILER OPERATION
● -cif filename option

The -cif option specifies the CPU information file name for filename. The CPU information describes the

information about the CPU that has the MB number specified in the -cpu option.

[Example]

>fcc911s -S -cpu MB91F154 -cif lib\911\911.csv sample.c

● -s defname = newname [, attr [, address]] option and -Xs option

Changes the compiler output section name from defname to newname, and changes section type to attr. An

arrangement address can be specified in the address option.

For compiler output section names, see section "4.1 Section Structure of fcc911s Command". For

selectable section types, refer to the Assembler Manual.

If the arrangement address is specified, the arrangement address cannot be specified relative to the

associated section at linking.

The -Xs option cancels the -s option.

[Example]

Input: void func(void) { }

Operation: fcc911s -s CODE=PROGRAM, CODE, 0x1000 -S -cpu MB91F154 sample.c

Output .SECTION PROGRAM, CODE, LOCATE=H'00001000

;-------begin_of_function

.GLOBAL _func

_func:

ST RP, @-SP

ENTER #4

L_main:

LEAVE

LD @SP+, RP

RET
50 PART 1 OPERATION

3.5 Details of Options
● -K {A1|A4} option

Specifies the minimum allocation boundary for external and static variables. The A4 suboption selects the

4-byte minimum allocation boundary.

When the 4-byte minimum allocation boundary is used, more efficient code may be generated through

inline expansion of a character string manipulation function when -K lib is specified. This code

malfunctions if boundary alignment is incorrect. Therefore, objects for which different allocation

boundaries are specified must not be linked. If such objects are linked, unnecessary areas are generated as

a result of consistent boundary alignment, causing an increase in the number of objects. The A1 suboption

selects the 1-byte minimum allocation boundary.

When this option is omitted, -K A1 is used.

[Example]

Input: char c1, c2;

Operation: fcc911s -K A4 -S -cpu MB91F154 sample.c

Output: .SECTION DATA, DATA, ALIGN=4

.GLOBAL _c2

_c2: .RES.B 4 ; Positioned at 4-byte boundary

.GLOBAL _c1

_c1: .RES.B 4 ; Positioned at 4-byte boundary
PART 1 OPERATION 51

CHAPTER 3 C/C++ COMPILER OPERATION
● -K {SARG|DARG} option

Specifies type of acquisition of area required for argument delivery to function.

When the DARG suboption is specified, dynamic allocation is achieved at function calling. This

effectively decreases the stack consumption.

On the other hand, when the SARG suboption is specified, allocation is performed at the beginning of the

caller function. In this case, the code size generally decreases with an increase in execution speed.

However, stack use tends to increase.

If this option is not specified, -K SARG is applied.

[Example]

Input: extern void sub(int, int, int, int, int);

void func(void) {sub(1, 2, 3, 4, 5);}

Operation: fcc911s -K darg -S -cpu MB91F154 sample.c

Output: LDI #1, R4

LDI #2, R5

LDI #3, R6

LDI #4, R7

LDI #5, R0

ST R0, @-SP ; The argument area is allocated dynamically.

CALL32 _sub, R12

ADDSP #4 ; The argument area is allocated dynamically.
52 PART 1 OPERATION

3.5 Details of Options
● -varorder {sort|normal} option

The -varorder normal option causes static variables to be stored in memory in the order in which they are

described in the source. Variables with an initial value and those without initial value are stored in

different sections, so description with these sections mixed prevents the variables from being arranged in

the order in which they are described in the source.

The -varorder sort option sorts the order of storing static variables in memory according to the order of

variable alignment. Specifying this option reduces the size of unused static variable areas.

[Example]

Input: long a;

char b;

long c;

char d;

Operation: fcc911s -S -varorder normal -cpu MB91F154 sample.c

Output:

.ALIGN 4

.GLOBAL _a

_a:

.RES.B 4

.ALIGN 1

.GLOBAL _b

_b:

.RES.B 1

.ALIGN 4

.GLOBAL _c

_c:

.RES.B 4

.ALIGN 1

.GLOBAL _d

_d:

.RES.B 1

● -CO option and -XCO option

The -CO option generates the object that can be used for both FR and FR80 executable format. When the -

CO option is not specified, the object of the executable format for the architecture specified by the -cpu

option is generated.

The -XCO option cancels the -CO option.
PART 1 OPERATION 53

CHAPTER 3 C/C++ COMPILER OPERATION
● -t {none|used|all|local} option

This option is valid only for the C++ source. It specifies the type of template instantiation.

When the -t none option is specified with the --no-auto_instantiation option, any template instantiation is

not generated. When this option is specified with the --auto_instantiation option, all instantiation is

automatically generated.

The -t used option instantiates only the parameter-type template functions and template member functions

used in the module.

The -t all option instantiates even unused member functions if they are of parameter type and template class

used in the module.

The -t local option generates template functions and template member functions used in the module as the

in-module local functions when the -t local is specified, --auto_instantiation option is invalid.

Note that overlapping instantiation by the used and all options is not allowed when more than one module

is linked.

For information on the template, see section "9.6 Limitations on Use of C++ Template".

The default is -t none.

● --no_auto_instantiation option and --auto_instantiation option

These options are valid only for the C++ source.

When the --auto_instantiation option is specified, the template instantiation is automatically done.

The --no_auto_instantiation option provides manual template instantiation. Instantiation must be controlled

by the -t {used |all| local} option, #pragma, or declaration explicitly.

For information on using #pragma to control instantiation, see section "5.11 Function for Controlling

Instantiation of C++ Template".
54 PART 1 OPERATION

3.5 Details of Options
● --suppress_vtbl option and --force_vtbl option

These options are valid only for the C++ source. They change the generation type of a virtual function

table.

The --suppress_vtbl option causes the virtual function table to be referenced from other modules without

being generated in a module.

The --force_vtbl option causes the virtual function table to be generated in a module for reference from

other modules.

These options are valid only when the member functions specified as being virtual are in the class and all of

them are defined inline. If these options are not given under this condition, a virtual function table is

generated locally for each module.

[Example] Cases for option

class FOO {

int a;

public:

FOO() {a=0;}

virtual void memfunc(int x) {a=x;}

}; //All the member functions are defined inline.

The --force_vtbl option must be specified for at least one module. Note that overlapping table definition is

not allowed when specifying the option for more than one module.
PART 1 OPERATION 55

CHAPTER 3 C/C++ COMPILER OPERATION
3.5.7 Debug Information Related Options

This section describes the options related to the debug information to be referenced by
the symbolic debugger.

■ Debug Information Related Options

● -g option and -Xg option

-g option adds debugging information to the object file. The -Xg option cancels -g option.

When optimization options are specified, please note the following issues.

• The breakpoint might not be able to be set.

Because the line might be moved or deleted, the breakpoint might not be able to be set.

• Plural breakpoints might be set at once.

Because the lines from which the instructions are deleted might be consecutive, plural breakpoints might
be set at once.

• It might not stop at the breakpoint.

Because the line might be moved or deleted, it might not stop at the breakpoint.

• The value of the variable displayed in the watch window might not be correct.

Because the instruction that stores the value of the variable might be moved, the timing to be updated
might not correspond to the order of the C source.
Because one register might be assigned to two or more variables, the timing to be updated might not
correspond to the order of the C source.

• The local variable and the parameter might not be able to be referred to by the debugger.

The optimized local variable and parameter might not be able to be referred to by the debugger.

• The CALL STACK function and the STEP OUT function might not be able to be used by the debugger.

When the prologue/epilogue code of the function is optimized, the CALL STACK function (SHOW
CALLS command) and the STEP OUT function (GO /RETURN command) cannot be used by the
debugger.

• When the function inlining (-x func or -xauto option) is specified, the C source displayed in the source
window might not be correct.
56 PART 1 OPERATION

3.5 Details of Options
3.5.8 Command Related Options

This section describes the options related to the other tools called by the command.

■ Command Related Options

● -Y item, dir option and -XY option

Changes the item position to the dir directory. The -XY option cancels the -Y option. The item is one of

the following.

• p: Left for compatibility with the previous version but does not provide anything.

• c: Changes the compiler pathname to dir.

• a: Changes the assembler pathname to dir.

• l: Changes the linker pathname to dir.

[Example]

>fcc911s file.c -Y c, \home\newlib -cpu MB91F154

Calls the compiler as \home\newlib\cpcoms.

● -T item, arg1 [, arg2...]option and -XT option

Passes arg to item as an individual compiler tool argument. The -XT option cancels the -T option.

Use a comma to separate arguments. To describe a comma as an argument, position a backslash (\)

immediately before the comma. The comma positioned after the backslash will not be interpreted as a

delimiter. To write a blank as an argument, describe a comma in place of a blank.

For the options for various commands, refer to the associated manuals. The following can be specified as

the item.

• a: Assembler

• l: Linker

[Example]

>fcc911s -T a, -lf, asmlist file.c -cpu MB91F154

Sequentially passes arguments "-lf " and "asmlist" to the assembler. Therefore, the assemble list asmlist

will be generated as a result of command execution.
PART 1 OPERATION 57

CHAPTER 3 C/C++ COMPILER OPERATION
3.5.9 Linkage Related Options

The linkage related options are related to linkage.

■ Linkage Related Options

● -e name option and -Xe option

The -e option sets the entry symbol to name at linking. The -Xe option cancels the -e option. Since the

option definition is usually provided in the startup routine, this option does not have to be specified.

For details of the option, refer to the Linkage Kit Manual.

● -L path1 [, path2...] option and -XL option

The -L option adds path to the library path used at linking to search for a library to be linked. If the option

is not specified, ${LIB911} is selected in the fcc911s command automatically.

The -XL option cancels the -L option.

For details of the option, refer to the Linkage Kit Manual.

● -l lib 1 [, lib 2...] option and -Xl option

The -l option specifies the name (lib) of the library to be linked at linking.

If the extension entry is omitted, the .lib extension is added automatically.

The -Xl option cancels the -l option.

For the objects output by the compiler, by default, in fcc911s command lib911.lib is set as the names of the

libraries to be linked.

For the details of the option, refer to the Linkage Kit Manual.

● -m option and -Xm option

The -m option generates a map file at linking.

A map file output with a file name with the .map extension is generated in the current directory.

The -Xm option cancels the -m option.

● -ra name = start/end option and -Xra option

The -ra option specifies the RAM area at linking. The -Xra option cancels the -ra option. For details of the

option, refer to the Linkage Kit Manual.

● -ro name = start/end option and -Xro option

The -ro option specifies the ROM area at linking. The -Xro option cancels the -ro option. For details of the

option, refer to the Linkage Kit Manual.
58 PART 1 OPERATION

3.5 Details of Options
● -sc param option and -Xsc option

The -sc option specifies the section arrangement at linking.

The -Xsc option cancels the -sc option.

If the option is not specified, -sc IOPORT=0,*=0x1000 is selected automatically.

For details of the option, refer to the Linkage Kit Manual.

● -startup filename option and -Xstartup option

The -startup option selects filename as the object file name of the startup routine to be linked at linking.

If this -startup option is not specified, %FETOOL%\lib\911\startup.obj is selected in the fcc911s command

automatically.

The -Xstartup option cancels the -startup option.

For details of the startup routine, see "CHAPTER 6 EXECUTION ENVIRONMENT".
PART 1 OPERATION 59

CHAPTER 3 C/C++ COMPILER OPERATION
3.5.10 Option File Related Options

This section describes the option file related options.

■ Option File Related Options

● -f filename option and -Xf option

-f option used to read the specified option file (filename). If the option file name does not have an

extension, an .opt extension will be added.

The command options can be written in an option file. For the details of an option file, see section "3.6

Option Files".

The -Xf option cancels the -f option.

● -Xdof option

-Xdof option specifies that the default option file will not be read.

For the default option file, see section "3.6 Option Files".
60 PART 1 OPERATION

3.6 Option Files
3.6 Option Files

This section explains option files for commands. By writing options in a file, a group of
options can be specified. This feature also permits you to put startup options to be
specified in a file.

■ Option File
Option file reading takes place when an associated option is specified. This assures that the same result is

obtained as when an option is specified at the -f specifying position in the command line.

If the option file name is without an extension, an .opt extension will be added.

● Option File General Format

All entries that can be made in a command line can be written in an option file.

A line feed in an option file is replaced by a blank.

A comment in an option file is replaced by a blank.

[Example]

-I /usr/include # Include specifying

-D FR # Macro specifying

-g # Debug data generation specifying

-S # Execution of processes up to compiling

■ Option File Limitations

The -f option can be written in an option file. However, nesting is limited to 8 levels.

■ Acceptable Comment Entry in Option File

A comment can be started from any column.

A comment is to begin with a sharp (#). The entire remaining portion of the line serves as the comment.

In addition, the following comments can also be used.

• /* Comment */

• // Comment

• ; Comment

[Example]

-I /usr/include # Include specifying

-D FR /* Macro specifying */

-g // Debug data generation specifying

-S ; Execution of processes up to compiling
PART 1 OPERATION 61

CHAPTER 3 C/C++ COMPILER OPERATION
■ Default Option File

A preselected option file can be read to initiate command execution. The obtained result will be the same

as when an option is specified prior to another option specified in the command line.

The default option file name is predetermined as follows.

[For UNIX OS]

${OPT911}/fcc911.opt

[For Windows]

%OPT911%\fcc911.opt

The fcc911s command default option file name is fcc911.opt.

If the default option file does not exist in the specified directory, such a specifying is ignored.

To inhibit the default option file feature, specify the -Xdof option in the command line.
62 PART 1 OPERATION

3.7 Messages Generated in Translation Process
3.7 Messages Generated in Translation Process

When an error is found in a source program or a condition which does not constitute a
substantial error but requires attention is encountered, diagnostic messages may be
generated at the time of translation. For message outputs generated by tools other than
the compiler, refer to the respective manuals for the tool.

■ Messages Generated in Translation Process
A diagnostic message output example is shown in Figure 3.7-1.

Figure 3.7-1 Diagnostic Message Example

■ Tool Identifier

The tool identifier indicates the tool that has detected the error.

• D: Command

• B: Compiler

• S: Scheduler (Internal tool for compiler)

• A: Assembler

• L: Linker

E4020B:

*** test. c (4) E4020B: identifier "a" is undefined

Source file name

Source logical line number

Error level

Error number (4-digit)

Tool identifier
PART 1 OPERATION 63

CHAPTER 3 C/C++ COMPILER OPERATION
■ Error Level
The error level represents the diagnostic check result type.

Table 3.7-1 describes the relationship between various error levels and return codes and their meanings.

Table 3.7-1 Relationship between Error Levels and Return Codes

Error Level Return Code Meaning

I 0
Indicates a condition which does not constitute an error but
requires attention.

W 0
Indicates a minor error. Process execution continues without
being interrupted. The return code can be changed by the -cwno
option.

E 2 Indicates a serious error. Process execution stops.

F 3
Indicates a fatal error which is related to quantitative limitations
or system failure. Process execution stops.
64 PART 1 OPERATION

CHAPTER 4
fcc911s COMMAND OBJECT

PROGRAM STRUCTURE

This chapter explains about the information necessary
for program execution.

4.1 Section Structure of fcc911s Command

4.2 Rules for Name Generation with the fcc911s

4.3 fcc911s Command Boundary Alignment

4.4 fcc911s Command Bit Field

4.5 fcc911s Command Structure/Union

4.6 fcc911s Command Function Call Interface

4.7 fcc911s Command Interrupt Function Call Interface
PART 1 OPERATION 65

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE
4.1 Section Structure of fcc911s Command

The fcc911s command has the following seven sections:
• Code section
• Initialized section
• Constant section
• Data section
• I/O section
• Vector section
• C++ lnit section

■ fcc911s Command Section Structure
Table 4.1-1 shows the sections to be generated by the compiler and their meanings.

The purpose of each section use and the relationship to the C/C++ language are explained below.

● Code section

Code section stores machine codes. This section corresponds to the procedure section for the C language.

● Initialized section

Initialized section stores the initial value attached variable area. For the C language, this section

corresponds to the area for external variables without the const attribute, static external variables, and static

internal variables.

Table 4.1-1 fcc911s Command Section List

No. Section Type Section Name Type
Boundary
Alignment

[Byte]
Write Initial Value

1 Code section CODE CODE 2 Disabled Provided

2 Initialized section INIT DATA 4 Enabled Provided

3 Constant section CONST CONST 4 Disabled Provided

4 Data section DATA DATA 4 Enabled Not provided

5 I/O section IO IO 4 Enabled Not provided

6 Vector section INTVECT CONST 4 Disabled Provided

7 C++Init section EXT_CTOR_DTOR CONST 4 Disabled Provided
66 PART 1 OPERATION

4.1 Section Structure of fcc911s Command
● Constant section

Constant section stores the write-protected initial value attached variable area. For the C language, this

section corresponds to the area for const attribute attached external variables, static external variables, and

static internal variables.

● Data section

Data section stores the area for variables without the initial value. For the C language, this section

corresponds to the area for external variables (including those which are with the const attribute), static

external variables, and static internal variables.

● I/O section

I/O section stores the area for the __io-qualified variables. For the C language, this section corresponds to

the area for __io-qualified external variables (including those which are provided with the const attribute),

static external variables, and static internal variables.

The default section name is IO.

● Vector section

This section stores the interrupt vector tables. In the C language, a vector table is generated only when its

generation is specified in #pragma intvect. The default section name is INTVECT.

● C++ Init section

This section stores tables for indicating the entry of functions constituting and destroying static class

objects. It must be used at start-up. For information on specifying the startup program, see section "6.2

Startup Routine Creation".
PART 1 OPERATION 67

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE
4.2 Rules for Name Generation with the fcc911s

The rules for the names used by the fcc911s are explained below.

■ Rules for Name Generation with the fcc911s
Table 4.2-1 shows the relationship between the names generated by the compiler and the C language.

Note: The compiler internal generation number is placed at the no position.

Table 4.2-1 Label Generation Rules

C Language Counterpart Label Generated by Compiler

Function name -function name

External variable name -external variable name

Static variable name LI_no

Local variable name -

Virtual argument name -

Character string, derived type LS_no

Automatic variable initial value LS_no

Target location label L_no
68 PART 1 OPERATION

4.3 fcc911s Command Boundary Alignment
4.3 fcc911s Command Boundary Alignment

The standard data type and boundary alignment are explained below. Table 4.3-1 shows
the assignment rules.

■ fcc911s Command Boundary Alignment

Note: Some variables are aligned on 4-byte boundaries when the -K A4 option is specified. The -K A4
option does not affect structure/union member boundary alignment.

Table 4.3-1 fcc911s Command Variable Assignment Rules

Variable Type Assignment Size [Byte]
Boundary Alignment

[Byte]

char 1 1

signed char 1 1

unsigned char 1 1

short 2 2

unsigned short 2 2

int 4 4

unsigned int 4 4

long 4 4

unsigned long 4 4

float 4 4

double 8 4

long double 8 4

pointer/address 4 4

Structure/union/class Explained later Explained later
PART 1 OPERATION 69

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE
4.4 fcc911s Command Bit Field

The fcc911s command bit field data size and boundary alignment are explained below.
The bit field data is assigned to a storage unit that has an adequate size for bit field data
retention and is located at the smallest address.

■ fcc911s Command Bit Field
Consecutive bit field data are packed at consecutive bits having the same storage unit, without regard to the

type, beginning with the LSB and continuing toward the MSB. An example is shown in Figure 4.4-1.

Figure 4.4-1 fcc911s Command Bit Field Data Size and Boundary Alignment Example 1

If a field to be assigned lies over a bit field type boundary, its assignment is completed by aligning it with a

boundary suitable for the type. An example is shown in Figure 4.4-2.

Figure 4.4-2 fcc911s Command Bit Field Data Size and Boundary Alignment Example 2

When a bit field having a bit length of 0 is declared, it is forcibly assigned to the next storage unit. An

example is shown in Figure 4.4-3.

struct tag1{
int A:10;
short B:3;
char C:2;

};

31(MSB) 21 18 16 0(LSB)

A B C Unoccupied

struct tag2{
int A:12;
short B:5;
char C:5;

/* 4-byte boundary data */
/* 2-byte boundary data */
/* 1-byte boundary data */

31(MSB) 19 15 10 7 2 0(LSB)

A B C

};

Unoccupied Unoccupied Unoccupied
70 PART 1 OPERATION

4.4 fcc911s Command Bit Field
Figure 4.4-3 fcc911s Command Bit Field Data Size and Boundary Alignment Example 3

Unoccupied

Unoccupied

struct tag3{
int A:10;
int B:5;
int :0;
int C:6;

};
31(MSB) 25 21 16 0(LSB)

A B

C

PART 1 OPERATION 71

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE
4.5 fcc911s Command Structure/Union

The structure/union of fcc911s command data size and boundary alignment are
explained below. The structure/union data size is a multiple of the maximum boundary
alignment size of the members. Boundary alignment for the area itself is accomplished
by means of member maximum boundary alignment. The individual members are
subjected to boundary alignment in accordance with the member type.

■ fcc911s Command Structure/Union
Figure 4.5-1 to Figure 4.5-3 show examples concerning structure/union data size and boundary alignment.

Figure 4.5-1 fcc911s Command Structure/Union Data Size and Boundary Alignment Example 1

Figure 4.5-2 fcc911s Command Structure/Union Data Size and Boundary Alignment Example 2

Unoccupied

struct st1{ char A; }
struct st2{ short A; }
struct st3{ char A; short B; }
struct st4{ char A; int B; }

struct st3{
char A;
short B;

};
31(MSB) 15 0(LSB)

A B

sizeof(st1) = 1 BYTE
sizeof(st2) = 2 BYTE
sizeof(st3) = 4 BYTE
sizeof(st4) = 8 BYTE

23

Unoccupied

struct tag4{
char A;
int B;

};
31(MSB) 23 0(LSB)

A

B

72 PART 1 OPERATION

4.5 fcc911s Command Structure/Union
Figure 4.5-3 fcc911s Command Structure/Union Data Size and Boundary Alignment Example 3

struct tag5{
char A;
struct tag6{

short A;
char B;

}S6;
};

sizeof(tag5) = 6 BYTES
sizeof(tag6) = 4 BYTES

31(MSB) 23 15 0(LSB)

A

S6.B

S6.AUnoccupied

Unoccupied
PART 1 OPERATION 73

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE
4.6 fcc911s Command Function Call Interface

The general rules for control transfer between functions are established as standard
regulations for individual architectures and are called standard linkage regulations. A
module written in C language can be combined with a module written using a different
method (e.g., assembler language) when the standard linkage regulations are complied
with.

■ fcc911s Command Function Call Interface

● Stack frame

The stack frame construction is stipulated by the standard linkage regulations.

● Argument

Argument transfer relative to the callee function is effected via a stack or register.

● Argument extension format

When an argument is to be stored in a stack, the argument type is converted to an extended format in

accordance with the argument type.

● Calling procedure

The caller function initiates branching to the callee function after argument storage.

● Register

The register guarantee stated in the standard linkage regulations and the register setup regulations are

explained later.

● Return value

The return value interface stated in the standard linkage regulations is explained later.
74 PART 1 OPERATION

4.6 fcc911s Command Function Call Interface
4.6.1 fcc911s Command Stack Frame

The standard linkage regulations prescribe the stack frame construction.

■ fcc911s Command Stack Frame
The stack pointer (SP) always indicates the lowest order of the stack frame. Its address value always

represents the word boundary. Figure 4.6-1 and Figure 4.6-2 show the standard function stack frame status.

Figure 4.6-1 fcc911s Command Stack Frame (when the -K SPEED option is not specified)

Figure 4.6-2 fcc911s Command Stack Frame (when the -K SPEED option is specified)

(Low)
SP

FP

(High)

Argument area

Local variable area

Old FP

Return address storage area

Register save area

Hidden parameter save area

Argument register save area

Parameter area

(Low)
SP

(High)

Argument area

Local variable area

Old FP

Return address storage area

Register area

Hidden parameter save area

Argument register save area

Parameter area

FP
PART 1 OPERATION 75

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE
● Argument area/Parameter area

When a function is called, this area is used for argument transfer. This area is referred to an argument area

when the caller function is used to set up an argument and to a parameter area when the argument is

referenced by the callee function. This area is created when all arguments cannot be contained in an

argument register during the transfer of an argument.

For details, see section "4.6.2 fcc911s Command Argument".

● Local variable area

This is the area for local variables and temporary variables.

● Old FP

This area stores the frame pointer (FP) value of the caller function.

● Return address storage area

This area saves the RP. The RP stores the address of a return to the caller function for the purpose of

function calling.

● Register save area

This is a register save area that must be guaranteed for the caller function. This area is not secured when

the register save operation is not needed.

● Hidden parameter save area

This area stores the start address of the return value storage area for a structure/union return function.

When a structure/union is used as the return value, the caller function stores the return value storage area

start address in register R4 and passes it to the callee function.

The callee function interprets the address stored in the R4 as the return value storage area start address.

When register R4 needs to be saved into memory, the callee function saves it in the hidden parameter save

area. This area is not secured when the save operation is not needed.

● Argument register save area

This area saves the argument register. This area is not secured when the save operation is not needed.

For details, see section "4.6.2 fcc911s Command Argument".
76 PART 1 OPERATION

4.6 fcc911s Command Function Call Interface
4.6.2 fcc911s Command Argument

Arguments, the count of which equals the count of argument registers (4 words), are
positioned in registers R4 to R7 and delivered to the callee function. When a structure/
union return function is called, three argument registers (R5 to R7) are used because
the return value area address is stored in register R4. Arguments not placed in the
argument registers will be stored in the stack actual argument area for transfer
purposes. When an 8-byte type argument is to be delivered using registers, it is divided
into two and placed in two registers for transfer.

■ fcc911s Command Argument
When argument registers must be saved to memory, the callee function secures an argument register save

area in the stack. In this case, a continuous argument register save area must be established in the

parameter area. The argument register save area must be allocated as needed to cover the size of the

argument register to be saved.

If the function has a variable count of arguments, it saves all argument registers in the argument register

save area.

Caution

In a C++ program, arguments that do not appear in the source program may be passed. The order
and location in which arguments are stacked may or may not be as desired.

[Example 1]

double d;

sub(d); → The high-order words of d are delivered by R4,

and the low-order words of d are delivered by R5.

[Example 2]

int a, b, c;

double d;

sub(a, b, c, d); → a is delivered by R4, b by R5, and c by R6.

The high-order words of d are delivered by R7,

and the low-order words of d are delivered by

the stack.

When a structure/union is to be delivered as an argument, the caller copies the structure to the local variable

area and passes the address of that area to the callee. In this case, if the structure/union size is less than 4

bytes or is not divisible by 4, the less-than-4-byte fraction is handled as one 4-byte unit.
PART 1 OPERATION 77

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE
[Example 3]

[Example 4]

When a function receiving a variable count of arguments is to be called, the arguments are placed in

registers in the same manner as for transfer. The called function stores all the register-delivered arguments

in the argument register save area in the stack.

The argument area is allocated/deallocated by the caller function, whereas the argument register save area

is allocated/deallocated by the callee function.

Figure 4.6-3 and Figure 4.6-4 show the argument formats prescribed in the standard linkage regulations.

struct A st;

st

FP

(Low)

(High)

sub(st); R4

Unoccupied

struct A{ char a; }st;

st

-4

-3

-2

-1

FP

(Low)

(High)
78 PART 1 OPERATION

4.6 fcc911s Command Function Call Interface
Figure 4.6-3 fcc911s Command Argument Format Stated in Standard Linkage Regulations

Figure 4.6-4 Argument Format for fcc911s Command Structure/Union Return Function Calling

Fifth argument

n argumentth

Note:

First argument
Second argument
Third argument
Fourth argument

R4
R5
R6
R7

(Low)

(High)

Two argument registers are
required for 8-byte type arguments.

nth argument

Fourth argument

(High)

(Low)

Return value area address
First argument
Second argument
Third argument

R4
R5
R6
R7

Note: Two argument registers are required
for 8-byte type arguments.
PART 1 OPERATION 79

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE
4.6.3 fcc911s Command Argument Extension Format

When an argument is to be stored in the stack, its type is converted to an extended type
in accordance with the individual argument type. The argument is freed by the caller
function after the return from the callee function is made.

■ fcc911s Command Argument Extension Format
Table 4.6-1 shows the argument extension format.

*1: The extended type represents an extended type that is provided when no argument type is given. When

a prototype declaration is made, it is complied with.

*2: When a structure/union is to be delivered as an argument, the caller copies it to the local variable area

and delivers the address of that area.

*3: Passing of a class as an argument depends on the availability and contents of a copy constructor.

Without the copy constructor, the class is passed in the same manner as the structure.

Table 4.6-1 fcc911s Command Argument Extension Format

Actual Argument Type Extended Type *1 Stack Storage Size [Byte]

char int 4

signed char int 4

unsigned char int 4

short int 4

unsigned short int 4

int No extension 4

unsigned int No extension 4

long No extension 4

unsigned long No extension 4

float double 8

double No extension 8

long double No extension 8

pointer/address No extension 4

Structure/union - 4 *2

Class - 4 *3
80 PART 1 OPERATION

4.6 fcc911s Command Function Call Interface
4.6.4 fcc911s Command Calling Procedure

The caller function initiates branching to the callee function after argument storage.

■ fcc911s Command Calling Procedure
Figure 4.6-5 and Figure 4.6-6 show the stack frame prevailing at calling in compliance with the standard

linkage regulations.

Figure 4.6-5 Stack Frame Prevailing at Calling in Compliance with fcc911s Command Standard
Linkage Regulations (when the -K SPEED option is not specified)

Figure 4.6-6 Stack Frame Prevailing at Calling in Compliance with fcc911s Command Standard
Linkage Regulations (when the -K SPEED option is specified)

The callee function saves the caller function frame pointer (FP) in the stack and then stores the prevailing

stack pointer value in the stack as the new frame pointer value. Subsequently, the local variable area and

caller function register save area are acquired from the stack to save the caller register.

Figure 4.6-7 and Figure 4.6-8 show the stack frame that is created by the callee function in compliance with

the standard linkage regulations.

FP

(Low)

(High)

(Caller function)

(Caller function)

Argument area

Local variable area

SP

FP

(Low)

(High)

(Caller function)

(Caller function)

Argument area

Local variable area

SP

Register save area
PART 1 OPERATION 81

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE
Figure 4.6-7 Stack Frame Created by Callee Function in Compliance with fcc911s Command
Standard Linkage Regulations (when the -K SPEED option is not specified)

Figure 4.6-8 Stack Frame Created by Callee Function in Compliance with fcc911s Command
Standard Linkage Regulations (when the -K SPEED option is specified)

(Callee function) SP

FP

SP

FP

(Low)

(High)

(Callee function)

(Caller function)

(Caller function)

Argument area

Local variable area

Old FP

Return address storage area

Register save area

Hidden parameter save area

Argument register save area

Parameter area

Local variable area

(Callee function) SP

FP

SP

FP

(Low)

(High)

(Callee function)

(Caller function)

(Caller function)

Argument area

Local variable area

Old FP

Return address storage area

Register save area

Hidden parameter save area

Argument register save area

Parameter area

Local variable area
82 PART 1 OPERATION

4.6 fcc911s Command Function Call Interface
4.6.5 fcc911s Command Register

This section states the register guarantee and register setup regulations in the standard
linkage regulations.

■ fcc911s Command Register Guarantee
The callee function guarantees the following registers of the caller function.

• General-purpose registers R8 to R11, R14, and R15

The register guarantee is provided when the callee function acquires a new area from the stack and saves

the register value in that area. Note, however, that registers remaining unchanged within the function are

not saved. If such registers are altered using the ASM statement, etc., no subsequent operations will be

guaranteed.

■ fcc911s Command Register Setup

The register regulations for function call and return periods are indicated in Table 4.6-2.

*1: There are no stipulations for unused registers in situations where the argument is less than 4 words.

*2: There are no stipulations for situations where a function without the return value is called or a function

with a structure/union type return value is called.

*3: There are no stipulations for situations where the function to be called has a return value other than a

double or long double type.

Table 4.6-2 Register Regulations for fcc911s Command Function Call and Return Periods

Register Call Period Return period

R4 Argument/return value area address*1 Return value*2

R5 Argument register*1 Return value*3

R6 and R7 Argument register*1 Not stipulated

R0 to R3 Not stipulated Not stipulated

R12 and R13 Not stipulated Not stipulated

R8 to R11 Not stipulated Call period value guaranteed

R14 Frame pointer (FP) Call period value guaranteed

R15 Stack pointer (SP) Call period value guaranteed
PART 1 OPERATION 83

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE
4.6.6 fcc911s Command Return Value

The return value interface stated in the standard linkage regulations is indicated in
Table 4.6-3.

■ fcc911s Command Return Value

*1: The 4 high-order bytes of a total of 8 bytes are stored in R4 and the remaining 4 low-order bytes are stored in R5.

*2: When a structure/union is used as the return value, the caller function stores the start address of the return value storage

area into R4 and then passes it to the callee function. The callee function interprets R4 as the start address of the return

value storage area. When this address needs to be saved in memory, the callee function secures the hidden parameter

save area and saves the address in that area.

*3: Passing of a class as a return value depends on the availability and contents of a copy constructor. Without the copy

constructor, the class is passed in the same manner as the structure.

Table 4.6-3 fcc911s Command Return Value Interface Stated in Standard Linkage Regulations

Return Value Type Return Value Interface

void None

char R4

signed char R4

unsigned char R4

short R4

unsigned short R4

int R4

unsigned int R4

long R4

unsigned long R4

float R4

double R4 and R5 *1

long double R4 and R5 *1

Pointer/address R4

Structure/union R4 *2

Class R4 *3
84 PART 1 OPERATION

4.7 fcc911s Command Interrupt Function Call Interface
4.7 fcc911s Command Interrupt Function Call Interface

The interrupt function can be written using the __interrupt type qualifier. If the
interrupt function is called by a method other than an interrupt, no subsequent
operations will be guaranteed. The function call interface within the interrupt function
is the same as stated in the standard linkage regulations.

■ fcc911s Command Interrupt Function Call Interface

● Interrupt stack frame

When an interrupt occurs, the stack is changed to the interrupt stack.

● Argument

No argument can be specified for the interrupt function. If any argument is specified for the interrupt

function, no subsequent operations will be guaranteed.

● Interrupt function calling procedure

The interrupt function is called by an interrupt via the interrupt vector table. If the interrupt function is

called by any other method, no subsequent operations will be guaranteed.

● Register

As regards the interrupt function, all registers are guaranteed.

● Return value

Interrupt function does not usually have a return value.
PART 1 OPERATION 85

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE
4.7.1 fcc911s Command Interrupt Stack Frame

When an interrupt occurs, the stack is changed to the interrupt stack.

■ Interrupt Stack Frame
When an interrupt occurs, the stack pointer (SP) is replaced by the interrupt stack pointer (SSP). Within

the interrupt function, the interrupt stack pointer is used as the normal stack pointer.

Figure 4.7-1 shows the interrupt stack frame status prevailing immediately after interrupt generation.

Figure 4.7-1 fcc911s Command Interrupt Stack Frame

(Low)

(High)

SP(SSP)
PC prevailing at interrupt generation

PS prevailing at interrupt generation
86 PART 1 OPERATION

4.7 fcc911s Command Interrupt Function Call Interface
4.7.2 fcc911s Command Interrupt Function Calling Procedure

The interrupt function is called by an interrupt via the interrupt vector table. If the
interrupt function is called by any other method, no subsequent operations will be
guaranteed.

■ Interrupt Function Calling Procedure
Figure 4.7-2 shows an example of interrupt vector table.

Figure 4.7-2 fcc911s Command Interrupt Vector Table

When an interrupt is generated, the vector table corresponding to the interrupt vector number is referenced

according to the following calculation.

TBR + 0x3FC - (4 ✕ vector number)

Vector No.0

Vector No.1

(Low)

(High)

TBR
Interrupt function address 255

Interrupt function address 1

Interrupt function address 0

Vector No.255
PART 1 OPERATION 87

CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE
88 PART 1 OPERATION

CHAPTER 5
EXTENDED LANGUAGE

SPECIFICATIONS

This chapter explains about the extended language
specifications supported by the compiler. The
limitations on compiler translation are also described in
this chapter.

5.1 Assembler Description Functions

5.2 Interrupt Control Functions

5.3 I/O Area Access Function

5.4 In-line Expansion Specifying Function

5.5 Section Name Change Function

5.6 Interrupt Level Setup Function

5.7 Intrinsic Function

5.8 Predefined Macros

5.9 Limitations on Compiler Translation

5.10 Re-include Prevention Function

5.11 Function for Controlling Instantiation of C++ Template
PART 1 OPERATION 89

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
5.1 Assembler Description Functions

There are the following two assembler description functions.
1 asm statement
2 Pragma instruction

■ Description by asm Statement
When the asm statement is written, the character string literal is expanded as the assembler instruction.

This function makes it possible to write the asm statement inside and outside the function.

[General format]

_asm (Character string literal);

[Explanation]

When the asm statement is written inside the function, the assembler is expanded at the written position.

When the statement is written outside the function, it is expanded as an independent section. Therefore,
if the statement is to be written outside the function, be sure to write the section definition pseudo
instruction to define the section. If the section is not defined, no subsequent operations will be
guaranteed.

When using a general-purpose register within the asm statement in the function during fcc911s command
execution, the user is responsible for register saving and restoration. However, the user need not do the
register saving and restoretion to general-purpose registers R0 to R3, R12, and R13.

If the asm statement exists in a C/C++ source program, a part of optimization is stopped even when the -
O optimization option is specified.

[Example]

Input: /* When written inside the function */

extern int temp;

sample(){

_ _asm(" LDI #1, R0");

_ _asm(" LDI:32 #_temp, R12");

_ _asm(" ST R0, @R12");

}

/* When written outside the function */

_ _asm(" .SECTION DATA, DATA, ALIGN=4");

_ _asm(" .GLOBAL _a");

_ _asm("_a:");

_ _asm(" .RES.B 4");

Output: .SECTION CODE, CODE, ALIGN=2

;-------begin_of_function

.GLOBAL _sample

_sample:

ST RP, @-SP

ENTER #4

LDI #1, R0

LDI:32 #_temp, R12
90 PART 1 OPERATION

5.1 Assembler Description Functions
ST R0, @R12

L_sample:

LEAVE

LD @SP+, RP

RET

.SECTION DATA, DATA, ALIGN=4

.GLOBAL _a

_a:

.RES.B 4

■ Description by Pragma Instruction

The descriptions between "#pragma asm" and "#pragma endasm" are expanded directly as the assembler

instruction. This function makes it possible to write the statement inside and outside the function.

[General format]

[Explanation]

When the statement is written inside the function, the assembler is expanded at the written position.

When the statement is written outside the function, it is expanded as an independent section. Therefore,
if the statement is to be written outside the function, be sure to write the section definition pseudo
instruction to define the section. If the section is not defined, no subsequent operations will be
guaranteed.

When using a general-purpose register within the asm statement in the function during fcc911s command
execution, the user is responsible for register saving and restoration. However, the user need not do the
register saving and restoretion to general-purpose registers R0 to R3, R12, and R13.

If the assembler provided by #pragma asm/endasm exists in the C source program, a part of optimization
is stopped even when the -O optimization option is specified.

#pragma asm
Assembler description

#pragma endasm
PART 1 OPERATION 91

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
[Example]

Input: /* When written inside the function */

extern int temp;

sample(){

#pragma asm

LDI #1, R0

LDI:32 #_temp, R12

ST R0, @R12

#pragma endasm

}

/* When written outside the function */

#pragma asm

.SECTION DATA, DATA, ALIGN=4

.GLOBAL _a

_a:

.RES.B 4

#pragma endasm

Output: .SECTION CODE, CODE, ALIGN=2

;-------begin_of_function

.GLOBAL _sample

_sample:

ST RP, @-SP

ENTER #4

LDI #1, R0

LDI:32 #_temp, R12

ST R0, @R12

L_sample:

LEAVE

LD @SP+, RP

RET

.SECTION DATA, DATA, ALIGN=4

.GLOBAL _a

_a:

.RES.B 4
92 PART 1 OPERATION

5.2 Interrupt Control Functions
5.2 Interrupt Control Functions

There are the following five interrupt control functions.
1 Interrupt mask setup function
2 Interrupt mask disable function
3 Interrupt level setup function
4 Interrupt function description function
5 Interrupt vector table generation function

■ Interrupt Mask Setup Function
[General format]

void __DI(void);

[Explanation]

Expands the interrupt masking code.

[Example]

Input: _ _DI();

Output:

ANDCCR #0xef

■ Interrupt Mask Disable Function

[General format]

void __EI(void);

[Explanation]

Expands the interrupt masking disable code.

[Example]

Input: _ _EI();

Output:

ORCCR #0x10
PART 1 OPERATION 93

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
■ Interrupt Level Setup Function
[General format]

void __set_il(int level);

[Explanation]

Expands the code for changing the interrupt level to the specified level.

[Example]

Input: _ _set_il(2);

Output:

STILM #2

■ Interrupt Function Description Function

[General format1]

__interrupt void Interrupt function (void){ ... }

[General format2]

extern __interrupt void Interrupt function (void);

[Explanation]

The interrupt function can be written by specifying the __interrupt type qualifier. Since the interrupt
function is called by an interrupt, it is impossible to set up an argument or obtain a return value. If a
function declared or defined by the __interrupt type qualifier is called by performing the normal function
calling procedure, no subsequent operations will be guaranteed.

[Example]

Input: _ _interrupt void sample(void){ ... }

Output:

_func:

STM (R12, R13)

ST MDH, @-SP

ST MDL, @-SP

ST RP, @-SP

ENTER #4

....

L_func:

LEAVE

LD @SP+, RP

LD @SP+, MDL

LD @SP+, MDH

LDM (R12, R13)

RETI
94 PART 1 OPERATION

5.2 Interrupt Control Functions
■ Interrupt Vector Table Generation Function

[General format]

#pragma intvect [Interrupt function name |32-bit unsigned constant] Vector number

#pragma defvect Interrupt function name

[Explanation]

#pragma intvect generates an interrupt vector table for which the interrupt function is set.

For product that can set the reset mode, the reset mode can be specified by setting the mode value to
vector 1. Please see the LSI specification Manual for details of the reset mode.

#pragma defvect specifies the default interrupt function to be set for interrupt vectors not specified by
#pragma intvect.

The interrupt vector table is generated in an independent section named INTVECT.

All interrupt vector tables must be defined using the same translation unit (file). If #pragma intvect or
#pragma defvect is specified using two or more translation units, no subsequent operations will be
guaranteed.

The definition cannot be formulated two or more times for the same vector number. However, no error
occurs if the definitions are identical.

No value other than an integer constant may be specified as the vector number. Specify a vector number
between 0 and 255.

The reset vectors must always be assigned to 0xFFFFC. For this reason, to set TBR to other than
0xFFC00, use the asm statement to define reset vectors separately.

The mode value for the reset vector must always be assigned to 0xFFFF8. The vector number
corresponding to 0xFFFF8 is vector 1.

<Caution>

Please set the reset mode to the most significant byte of 32-bit constant value set to vector 1. The value
set to three subordinate position bytes is disregarded.

[Example]

Please describe the reset mode as follows when the reset mode is 5.

Input:

extern __interrupt void startup();

#pragma intvect startup 0 // The reset vector

#pragma intvect 0x05000000 1 // The reset mode

Output:

.SECTION INTVECT, CONST, ALIGN=4

.ALIGN 4

.DATAB.W 254, 0

.DATA.W 0x5000000 ;; The reset mode is 5

.DATA.W _startup ;; The reset vector
PART 1 OPERATION 95

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
5.3 I/O Area Access Function

The I/O area operation variable can be defined by specifying the __io type qualifier.

■ I/O Area Access Function
[General format]

__io Variable definition;

[Explanation]

The fcc911s command enables the definition of variables operating the I/O area defined between
addresses 0x00 and 0xff by specifying the __io type qualifier. The fcc911s command makes variables
available up to address 0x3ff, depending on their type. Since a highly efficient dedicated instruction is
provided for I/O area access, a higher-speed, more-compact object can be generated. This instruction
cannot be used for variables operating an I/O area positioned at addresses higher than 0xff. To define a
variable that accesses such an area, use the volatile type qualifier.

The initial value cannot be specified for variables for which the __io type qualifier is specified.

When the specified variable is for a structure or union, it is assumed that all members are positioned in
the I/O area. The variable cannot be specified for structure or union members. For the variable for which
the __io type qualifier is specified, compilation is conducted on the assumption that the volatile type
qualifier is specified.

When the -K NOVOLATILE option is specified, the volatile type qualifier is not assumed to be specified
for the variable for which the __io type qualifier is specified.

When the __io type qualifier is specified for an automatic variable, the variable is not treated as a
variable positioned in the I/O area but an automatic variable for which the volatile type qualifier is
specified.

[Example]

Input: #pragma section IO=IOA ,attr=IO ,locate=0x10
_ _io int a;

void func(void){ a=1;}
Output:

.SECTION IOA ,IO ,LOCATE=H'00000010

.GLOBAL _a
_a:

.RES.B 4

.SECTION CODE, CODE, ALIGN=2
;-------begin_of_function

.GLOBAL _func
_func:

ST RP, @-SP
ENTER #4
LDI #1, R0
MOV R0, R13
DMOV R13, @_a

L_func:
LEAVE
LD @SP+, RP
RET
96 PART 1 OPERATION

5.4 In-line Expansion Specifying Function
5.4 In-line Expansion Specifying Function

This function specifies the user definition function for in-line expansion. In-line
expansion can be specified with the -x option.

■ In-line Expansion Specifying Function
[General format]

#pragma inline Function name [, Function name...]

[Explanation]

Recursively called functions cannot be subjected to in-line expansion. It should also be noted that
functions may not be subjected to in-line expansion depending on asm statement use, structure/union type
argument presence, setjmp function calling, and other conditions.

When there are two or more descriptions for the same translation unit or in-line expansion is specified by
an option, all the specified function names are valid.

The in-line expansion specifying is invalid if the -O option is not specified.
PART 1 OPERATION 97

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
5.5 Section Name Change Function

This function is used to change the section name or section attribute and sets the
section arrangement address.

■ Section Name Change Function(#pragma section)
[General format]

#pragma section DEFSECT[=NEWNAME][,attr=SECTATTR][,locate=ADDR]

[Explanation]

Change the section name to be output by the compiler from DEFSECT to NEWNAME and the section
type to SECTATTR.

The locate address may also be specified as ADDR.

When "=NEWNAME" is omitted, the section name is not changed. Depending on DEFSECT, some
section type is invalid. Please do not put any blanks before and behind =.

For the section name to be output by the compiler, see section "4.1 Section Structure of fcc911s
Command"; for the section type that can be output, refer to the Assembler Manual.

When the locate address is given, it cannot be specified for the section at linking.

<Caution>

The #pragma section affects the entire source, regardless of the location. If DEFSECT is specified many
times, the last one is valid. If DEFSECT is specified by the -s option, it takes priority over the others.

The EXT_CTOR_DTOR section cannot be specified and its output is fixed.

[Example]

Input: #pragma section CODE=program,attr=CODE,locate=0xff

void main(void){}

Output:

.SECTION program, CODE, LOCATE=H'000000FF,

;-------begin_of_function

.GLOBAL _main

_main:

ST RP, @-SP

ENTER #4

L_main:

LEAVE

LD @SP+, RP

RET
98 PART 1 OPERATION

5.5 Section Name Change Function
■ Section Name Change Function(#pragma segment)
[General format]

#pragma segment DEFSECT[=NEWNAME][,attr=SECTATTR][,locate=ADDR]

[Explanation]

The section name output by the compiler is changed from DEFSECT to NEWNAME and the section
type is changed to SECTATTR.

When "=NEWNAME" is omitted, the section name is not changed. Depending on DEFSECT, some
section type is invalid. Please do not put any blanks before and behind =.

For the section name to be output by the compiler, see section "4.1 Section Structure of fcc911s
Command"; for the section type that can be output, refer to the Assembler Manual.

The #pragma segment acts on the function definition, the variable definition and the variable declaration
since the described line. This specification is effective until the #pragma segment of same next
DEFSECT is described. (The description of the #pragma segment that DEFSECT is different does not
influence mutually.)

When #pragma segment without NEWNAME is described, the section name of DEFSECT since the line
becomes the section name of default.

When neither the function definition, the variable definition nor the variable declaration on which it acts
since the line where the #pragma segment is described are defined, the #pragma segment is disregarded.

The #pragma section and -s option of the section alone not specified by the #pragma segment act when
the #pragma segment, the #pragma section or -s option is specified at the same time.

The INTVECT section cannot specify.
PART 1 OPERATION 99

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
[Example]

Input:
#pragma segment CODE=program1
void func1(void){}
#pragma segment DATA=ram1
int a1;
#pragma segment CODE=program2
void func2(void){}
#pragma segment DATA=ram2
int a2;

Output:
.SECTION ram2, DATA, ALIGN=4
.GLOBAL _a2

_a2:
.RES.B 4
.SECTION ram1, DATA, ALIGN=4
.GLOBAL _a1

_a1:
.RES.B 4
.SECTION program1, CODE, ALIGN=2
.GLOBAL _func1

_func1:
RET
.SECTION program2, CODE, ALIGN=2
.GLOBAL _func2

_func2:
RET

<Caution>

#pragma segment works on the position of the first variable definition/variable declaration in the file.

Please direct the variable declaration the change in the section name if there is a variable declaration
before the variable definition.

[Example]

Input:

#pragma segment CONST=const1,attr=CONST,locate=0xff00

extern const int var; //Variable declaration

#pragma segment CONST=const2,attr=CONST,locate=0xff10

const int var=10; //Variable definition

#pragma segment CODE=program1,attr=CODE,locate=0xff20

extern void func(void); //Function declaration

#pragma segment CODE=program2,attr=CODE,locate=0xff30

void func(void){} //Function definition

Output section of variable/function

Variable/function name Output section name

_var const1

_func program2
100 PART 1 OPERATION

5.6 Interrupt Level Setup Function
5.6 Interrupt Level Setup Function

This function is used to set the function interrupt level.

■ Interrupt Level Setup Function
[General format]

#pragma ilm(NUM)

#pragma noilm

[Explanation]

#pragma ilm specifies the interrupt level for the subsequently defined function.

#pragma noilm clears the interrupt level specifying.

When #progma ilm is described in the function, the interrupt level of the function is set. When #progma
noilm is described in the function, the interrupt level of the function is not set.

At fcc911s command, an integer constant between 0 and 31 can be specified in the NUM position. A
hexadecimal, octal, or decimal number can be described.

Although the interrupt level is changed at the beginning of the specified function, remember that the new
interrupt level does not revert to the previous level at completion of function execution.

Always specify #pragma ilm and #pragma noilm as a set. Nesting is not possible.

[Example]

Input: #pragma ilm(1)

void func(void){}

#pragma noilm

Output:

_func:

STILM #1

ST RP, @-SP

ENTER #4

L_func:

LEAVE

LD @SP+, RP

RET
PART 1 OPERATION 101

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
5.7 Intrinsic Function

The following intrinsic functions are available.
• __wait_nop
• Integer operation intrinsic function

■ __wait_nop Intrinsic Function
[General format]

void __wait_nop(void);

[Explanation]

To properly time I/O access and interrupt generation, formerly, the NOP instruction was inserted using
the asm statement. However, when such a method is used, the asm statement may occasionally inhibit
various forms of optimization and greatly degrade the file object efficiency.

When the __wait_nop() intrinsic function is written, the compiler outputs one NOP instruction to the
function call entry position. If the function call entry is performed a count of times until all the issued
NOP instructions are covered, timing control is exercised to minimize the effect on optimization.

[Example]

Input: void sample(void){__wait_nop();}

Output:

_sample:

ST RP, @-SP

ENTER #4

NOP

L_sample:

LEAVE

LD @SP+, RP

RET
102 PART 1 OPERATION

5.7 Intrinsic Function
5.7.1 Integer Operation Intrinsic Function

This function is used to the integer operation instructions supported by the FR family
CPU.
To use the integer operation intrinsic function, always include the header file (builtin.h)
for integer operation intrinsic function. When the header file is not included, the
function cannot be recognized as the intrinsic function.
• __mulsh (Signed 16-bit Multiply)
• __muluh (Unsigned 16-bit Multiply)
• __muls (Signed 32-bit Multiply)
• __mulu (Unsigned 32-bit Multiply)
• __divsb (Signed 8-bit Division)
• __divub (Unsigned 8-bit Division)
• __divsh (Signed 16-bit Division)
• __divuh (Unsigned 16-bit Division)
• __modsb (Signed 8-bit Modulo)
• __modub (Unsigned 8-bit Modulo)
• __modsh (Signed 16-bit Modulo)
• __moduh (Unsigned 16-bit Modulo)

■ __mulsh Intrinsic Function
[General Format]

long __mulsh(signed short a, signed short b);

[Explanation]

This intrinsic function multiplies signed 16-bit data by signed 16-bit data to return a signed 32-bit result.

It is possible to multiply it by CPU MULH instruction by the use of this intrinsic function.

[Example]

Input: #include <builtin.h>

extern signed short arg1, arg2;

extern long ans;

void sample(void) {

ans = __mulsh(arg1, arg2);

}

Output: LDI:32 #_arg1,R4

LDI:32 #_arg2,R3

LDUH @R4,R2 ; _arg1

LDUH @R3,R1 ; _arg2
PART 1 OPERATION 103

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
EXTSH R2

EXTSH R1

MULH R1,R2

LDI:32 #_ans,R2

MOV MDL,R12

ST R12,@R2

■ __muluh Intrinsic Function
[General Format]

unsigned long __muluh(unsigned short a, unsigned short b);

[Explanation]

This intrinsic function multiplies unsigned 16-bit data by unsigned 16-bit data to return an unsigned 32-
bit result.

It is possible to multiply it by CPU MULUH instruction by the use of this intrinsic function.

[Example]

Input: #include <builtin.h>

extern unsigned short arg1, arg2;

extern unsigned long ans;

void sample(void) {

ans = __muluh(arg1, arg2);

}

Output: LDI:32 #_arg1,R2

LDI:32 #_arg2,R1

LDUH @R2,R5 ; _arg1

LDUH @R1,R4 ; _arg2

LDI:32 #_ans,R0

MULUH R4,R5

MOV MDL,R12

ST R12,@R0
104 PART 1 OPERATION

5.7 Intrinsic Function
■ __muls Intrinsic Function
[General Format]

signed long long __muls(signed long a, signed long b);

[Explanation]

This intrinsic function multiplies signed 32-bit data by signed 32-bit data to return a signed 64-bit result.

It is possible to multiply it by CPU MUL instruction by the use of this intrinsic function.

This intrinsic function is expanded by specifying the -K LONGLONG option.

[Example]

Input: #include <builtin.h>

extern signed long arg1, arg2;

extern signed long long ans;

void sample(void) {

ans = __muls(arg1, arg2);

}

Output: LDI:32 #_arg1,R12

LD @R12,R0 ; _arg1

LDI:32 #_arg2,R12

LD @R12,R12 ; _arg2

MUL R12,R0

MOV MDL,R0

MOV MDH,R12

LDI:32 #_ans,R1

ST R12,@R1 ; _ans

LDI #4,R13

ST R0,@(R13,R1) ; _ans
PART 1 OPERATION 105

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
■ __mulu Intrinsic Function
[General Format]

unsigned long long __mulu(unsigned long a, unsigned long b);

[Explanation]

This intrinsic function multiplies unsigned 32-bit data by unsigned 32-bit data to return a unsigned 64-bit
result.

It is possible to multiply it by CPU MUL instruction by the use of this intrinsic function.

This intrinsic function is expanded by specifying the -K LONGLONG option.

[Example]

Input: #include <builtin.h>

extern unsigned long arg1, arg2;

extern unsigned long long ans;

void sample(void) {

ans = __mulu(arg1, arg2);

}

Output: LDI:32 #_arg1,R12

LD @R12,R0 ; arg1

LDI:32 #_arg2,R12

LD @R12,R12 ; _arg2

MUL R12,R0

MOV MDL,R0

MOV MDH,R12

LDI:32 #_ans,R1

ST R12,@R1 ; _ans

LDI #4,R13

ST R0,@(R13,R1) ; _ans
106 PART 1 OPERATION

5.7 Intrinsic Function
■ __divsb Intrinsic Function
[General Format]

signed short __divsb(signed char a, signed char b);

[Explanation]

This intrinsic function performs a division between signed 8-bit data and signed 8-bit data to return a
signed 16-bit result.

It is possible to divide by the step DIV instruction of CPU by the using this intrinsic function.

[Example]

Input: #include <builtin.h>

extern signed char arg1, arg2;

extern short ans;

void sample(void) {

ans = __divsb(arg1, arg2);

}

Output: LDI:32 #_arg1,R4

LDUB @R4,R1 ; _arg1

LDI:32 #_arg2,R3

EXTSB R1

LDUB @R3,R2 ; _arg2

LSL #24,R1

MOV R1,MDL

EXTSB R2

DIV0S R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV2 R2

DIV3

LDI:32 #_ans,R3

DIV4S

MOV MDL,R0

STH R0,@R3
PART 1 OPERATION 107

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
■ __divub Intrinsic Function
[General Format]

unsigned char __divub(unsigned char a, unsigned char b);

[Explanation]

This intrinsic function performs a division between unsigned 8-bit data and unsigned 8-bit data to return
an unsigned 8-bit result.

It is possible to divide by the step DIV instruction of CPU by the using this intrinsic function.

[Example]

Input: #include <builtin.h>

extern unsigned char arg1, arg2;

extern unsigned char ans;

void sample(void) {

ans = __divub(arg1, arg2);

}

Output: LDI:32 #_arg1,R3

LDUB @R3,R1 ; _arg1

LDI:32 #_arg2,R2

LSL #24,R1

LDUB @R2,R5 ; _arg2

MOV R1,MDL

DIV0U R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

LDI:32 #_ans,R2

MOV MDL,R0

STB R0,@R2
108 PART 1 OPERATION

5.7 Intrinsic Function
■ __divsh Intrinsic Function
[General Format]

signed long __divsh(signed short a, signed short b);

[Explanation]

This intrinsic function performs a division between signed 16-bit data and signed 16-bit data to return a
signed 32-bit result.

It is possible to divide by the step DIV instruction of CPU by the using this intrinsic function.

[Example]

Input: #include <builtin.h>

extern signed short arg1, arg2;

extern long ans;

void sample(void) {

ans = __divsh(arg1, arg2);

}

Output: LDI:32 #_arg1,R4

LDUH @R4,R1 ; _arg1

LDI:32 #_arg2,R3

EXTSH R1

LDUH @R3,R2 ; _arg2

LSL #16,R1

MOV R1,MDL

EXTSH R2

DIV0S R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV2 R2

DIV3

LDI:32 #_ans,R2

DIV4S

MOV MDL,R12
PART 1 OPERATION 109

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
ST R12,@R2

■ __divuh Intrinsic Function
[General Format]

unsigned short __divuh(unsigned short a, unsigned short b);

[Explanation]

This intrinsic function performs a division between unsigned 16-bit data and unsigned 16-bit data to
return an unsigned 16-bit result.

It is possible to divide by the step DIV instruction of CPU by the using this intrinsic function.

[Example]

Input: #include <builtin.h>

extern unsigned short arg1, arg2;

extern unsigned short ans;

void sample(void) {

ans = __divuh(arg1, arg2);

}

Output: LDI:32 #_arg1,R3

LDUH @R3,R1 ; _arg1

LDI:32 #_arg2,R2

LSL #16,R1

LDUH @R2,R5 ; _arg2

MOV R1,MDL

DIV0U R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

LDI:32 #_ans,R2

MOV MDL,R0

STH R0,@R2
110 PART 1 OPERATION

5.7 Intrinsic Function
■ __modsb Intrinsic Function
[General Format]

signed char __modsb(signed char a, signed char b);

[Explanation]

This intrinsic function performs a modulo operation between signed 8-bit data and signed 8-bit data to
return a signed 8-bit result.

It is possible to divide by the step DIV instruction of CPU by the using this intrinsic function.

[Example]

Input: #include <builtin.h>

extern signed char arg1, arg2;

extern signed char ans;

void sample(void) {

ans = __modsb(arg1, arg2);

}

Output: LDI:32 #_arg1,R4

LDUB @R4,R1 ; _arg1

LDI:32 #_arg2,R3

EXTSB R1

LDUB @R3,R2 ; _arg2

LSL #24,R1

MOV R1,MDL

EXTSB R2

DIV0S R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV2 R2

DIV3

LDI:32 #_ans,R3

DIV4S

MOV MDH,R0

STB R0,@R3
PART 1 OPERATION 111

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
■ __modub Intrinsic Function
[General Format]

unsigned char __modub(unsigned char a, unsigned char b);

[Explanation]

This intrinsic function performs a modulo operation between unsigned 8-bit data and unsigned 8-bit data
to return an unsigned 8-bit result.

It is possible to divide by the step DIV instruction of CPU by the using this intrinsic function.

[Example]

Input: #include <builtin.h>

extern unsigned char arg1, arg2;

extern unsigned char ans;

void sample(void) {

ans = __modub(arg1, arg2);

}

Output: LDI:32 #_arg1,R3

LDUB @R3,R1 ; _arg1

LDI:32 #_arg2,R2

LSL #24,R1

LDUB @R2,R5 ; _arg2

MOV R1,MDL

DIV0U R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

LDI:32 #_ans,R2

MOV MDH,R0

STB R0,@R2
112 PART 1 OPERATION

5.7 Intrinsic Function
■ __modsh Intrinsic Function
[General Format]

signed short __modsh(signed short a, signed short b);

[Explanation]

This intrinsic function performs a modulo operation between signed 16-bit data and signed 16-bit data to
return a signed 16-bit result.

It is possible to divide by the step DIV instruction of CPU by the using this intrinsic function.

[Example]

Input: #include <builtin.h>

extern signed short arg1, arg2;

extern signed short ans;

void sample(void) {

ans = __modsh(arg1, arg2);

}

Output: LDI:32 #_arg1,R4

LDUH @R4,R1 ; _arg1

LDI:32 #_arg2,R3

EXTSH R1

LDUH @R3,R2 ; _arg2

LSL #16,R1

MOV R1,MDL

EXTSH R2

DIV0S R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV1 R2

DIV2 R2

DIV3

LDI:32 #_ans,R3

DIV4S

MOV MDH,R0
PART 1 OPERATION 113

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
STH R0,@R3

■ __moduh Intrinsic Function
[General Format]

unsigned short __moduh(unsigned short a, unsigned short b);

[Explanation]

This intrinsic function performs a modulo operation between unsigned 16-bit data and unsigned 16-bit
data to return an unsigned 16-bit result.

It is possible to divide by the step DIV instruction of CPU by the using this intrinsic function.

[Example]

Input: #include <builtin.h>

extern unsigned short arg1, arg2;

extern unsigned short ans;

void sample(void) {

ans = __moduh(arg1, arg2);

}

Output: LDI:32 #_arg1,R3

LDUH @R3,R1 ; _arg1

LDI:32 #_arg2,R2

LSL #16,R1

LDUH @R2,R5 ; _arg2

MOV R1,MDL

DIV0U R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

DIV1 R5

LDI:32 #_ans,R2

MOV MDH,R0

STH R0,@R2
114 PART 1 OPERATION

5.8 Predefined Macros
5.8 Predefined Macros

Macro names predefined by the compiler are explained below.

■ Macros Stipulated by ANSI Standard
The ANSI standard stipulates the macros listed in Table 5.8-1.

In addition to the macros listed in Table 5.8-1, C++ has the macros listed in Table 5.8-2.

■ Macros Predefined by fcc911s Command

The fcc911s command predefines the following macros.

Table 5.8-1 Macros stipulated by the ANSI standard

Macro Description

__LINE__ Defines line number of current source line.

__FILE__ Defines source file name.

__DATE__ Defines source file translation date.

__TIME__ Defines source file translation time.

__STDC__ Macro indicating that the processing system meets requirements. When the -Ja
option is specified, 0 is selected as the definition. When the -Jc option is specified,
1 is selected as the definition.

Table 5.8-2 C++ macros (in addition to the macros stipulated by the ANSI standard)

Macro Description

__cplusplus 1 is defined.

c_plusplus 1 is defined. Nothing is defined when the -Jc option is specified.

__embedded_cplusplus 1 is defined only when the default -Je option is specified.

Table 5.8-3 Macros predefined by fcc911s command

Macro Description

__COMPILER_FCC911__ 1 is defined.

__CPU_ MB number__ 1 is defined. "MB number" of macro name is actually the MB
number specified by the -cpu option.

__CPU_FR__
__CPU_FR80__

Either of them is defined as 1, depending on the MB number
specified by the -cpu option.
PART 1 OPERATION 115

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
5.9 Limitations on Compiler Translation

Table 5.9-1 shows the translation limitations to be imposed when the compiler is used.
The table also indicates the minimum ANSI standard to be met.

■ Limitations on Compiler Translation

Table 5.9-1 List of Translation Limitations (1 / 2)

No. Function
ANSI

Standard
Compiler

1
Count of nesting levels for a compound statement, repetition
control structure, and selection control structure

15 infinity

2 Count of nesting levels for condition incorporation 8 infinity

3
Count of pointers, arrays, and function declarators (any
combinations of these) for qualifying one arithmetic type,
structure type, union type, or incomplete type in a declaration

12 infinity

4
Count of nests provided by parentheses for one complete
declarator

31 infinity

5
Count of nest expressions provided by parentheses for one
complete expression

32 infinity

6
Count of valid leading characters of internal identifier or macro
name

31 1024

7 Count of valid leading characters of external identifier 6 1024

8 Count of external identifiers of one translation unit 511 infinity

9 Count of identifiers having the block valid range in one block 127 infinity

10
Count of macro names that can be simultaneously defined by one
translation unit

1024 infinity

11 Count of virtual arguments in one function definition 31 infinity

12 Count of actual arguments for one function call 31 infinity

13 Count of virtual arguments in one macro definition 31 infinity

14 Count of actual arguments in one macro call 31 infinity

15 Maximum count of characters in one logical source line 509 infinity

16
Count of characters in a (linked) byte character string literal or
wide-angle character string literal (terminal character included)

509 infinity

17 Count of bytes of one arithmetic unit 32767 infinity

18 Count of nesting levels for #include file 8 infinity
116 PART 1 OPERATION

5.9 Limitations on Compiler Translation
The "infinity" in the above table indicates the dependence on the memory size available for the system.

19
Count of case name cards in one switch statement (excluding
nested switch statements)

257 infinity

20 Count of members of one structure or union 127 infinity

21 Count of enumerated type constants in one enumerated type 127 infinity

22
Count of structure or union nesting levels for one structure
declaration array

15 infinity

Table 5.9-1 List of Translation Limitations (2 / 2)

No. Function
ANSI

Standard
Compiler
PART 1 OPERATION 117

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
5.10 Re-include Prevention Function

The file can have #pragma once to prevent the header file from being re-included.

■ Re-include Prevention Function
The file can have #pragma once to prevent the header file from being re-included. The include file specified

by #include directive described after #progma once becomes the target of the re-include prevention.

[Example]

file1.h:

#pragma once

#include "file2.h"

file2.h:

#pragma once

#include "file1.h"

file3.c:

#include "file1.h" /* file1.h file2. h are included one each. */
118 PART 1 OPERATION

5.11 Function for Controlling Instantiation of C++ Template
5.11 Function for Controlling Instantiation of C++ Template

#pragma instantiate forces instantiation.
#pragma do_not_instantiate does not provide instantiation.

■ Function for Controlling Instantiation of C++ Template
Instantiation of a C++ template can be controlled depending on the following settings:

1 #pragma instantiate template name

2 #pragma do_not_instantiate template name

The types that can be specified as template names are given below:

1 Template class name: A<int>

2 Template class declaration: class A<int>

3 Member function name: A<int> : : f

4 Static data member name: A<int> : : i

5 Static data member declaration: int A<int> : : i

6 Member function declaration: void A<int> : : f (int, char)

7 Template function declaration: char *f(int, float)

● #pragma instantiate

The specified template is forcibly instantiated in the module.

Instantiation requires a complete template definition.

● #pragma do_not_instantiate

The specified template is not instantiated in the module.

Caution

When executing modules, #pragma instantiate is specified only for one template in one module. In
other modules, #pragma do_not_instantiate must be specified.
PART 1 OPERATION 119

CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
120 PART 1 OPERATION

CHAPTER 6
EXECUTION ENVIRONMENT

User programs are executed with or without the
existence of an operating system.
In an environment in which the operating system exists,
it is necessary to prepare the setup process suitable for
the environment.
This chapter describes the user program execution
procedure to be performed in an environment where no
operating system exists.

6.1 Execution Process Overview

6.2 Startup Routine Creation
PART 1 OPERATION 121

CHAPTER 6 EXECUTION ENVIRONMENT
6.1 Execution Process Overview

In an environment where no operating system exists, it is necessary to prepare the
startup routine which initiates user program execution.

■ Execution Process Overview
The main functions to be incorporated into the startup routine are as follows.

● Environment initialization necessary for program operation

This initialization must be described by the assembler and completed before user program execution.

● User program calling

The main function, which is normally used as the function that the startup routine calls in the program start

process, is to be called.

● Shutdown process

After a return from the user program is made, the shutdown process necessary for the system is to be

performed to accomplish program termination.

The relationship between the startup routine and user function calling is shown in Figure 6.1-1.

Figure 6.1-1 Relationship between Startup Routine and User Function Calling

The precautions to be observed in startup routine preparation are described below.

● Stack

When the user program is executed, the stack is used for return address, argument storage area, automatic

variable area, and register saving, etc. The stack must therefore be provided with an adequate space.

Startup routine

Environment initial setup

User program calling

Shutdown process

User program

Library

Main function
122 PART 1 OPERATION

6.1 Execution Process Overview
● Register

When the startup routine calls the user program, it is essential that stack pointer setup be completed. The

user program operates on the presumption that the stack top is set as the stack pointer. Further, when the

startup routine returns from the user program, the register status is as shown in Table 6.1-1. This is because

the employed interface is the same as for register guarantee at the time of function calling.

For register guarantee, see section "4.6.5 fcc911s Command Register". If the guarantee of a register is

called for by the system while the value of that register is not guaranteed by the user program, it is

necessary to guarantee the value by the startup routine to initiate calling.

Table 6.1-1 fcc911s Command Register Status Prevailing at Return from User Program

Register Value Guarantee at Return

R0 to R7 Not provided

R12 to R13 Not provided

R8 and R11 Provided

R14 (FP) Provided

R15 (SP) Provided
PART 1 OPERATION 123

CHAPTER 6 EXECUTION ENVIRONMENT
6.2 Startup Routine Creation

The processes necessary for startup routine creation are described below.

■ Startup Routine Creation
1. Register initial setup:

Set the stack pointer (SP) to the top of the stack (stack top).

2. Data area initialization:

The C and C++ language specification guarantees the initialization of external variables without the
initial value and static variables to 0. Therefore, initialize the DATA section to 0.

3. Initialization data area duplication:

When incorporating constant data or program into ROM, the data positioned in the ROM area needs to be
copied to the RAM area. However, this duplication step is unnecessary if such a data rewrite operation
will not performed within the user program. The area to be incorporated into ROM is usually positioned
in the INIT section. When incorporation into ROM is specified, the linker automatically generates the
following symbols for the specified section name.

ROM_specified section name

RAM_specified section name

The above symbols indicate the ROM and RAM area start addresses, respectively. An example
specifying of incorporation into ROM for the INIT section is shown below.

For the details of incorporation into ROM, refer to the Linkage Kit Manual

4. Library initial setup:

When using the libraries, open a file for standard input/output. For details, see section "8.2 Initialization/
Termination Process Necessary for Using Library", Initialization/Termination Process Necessary for
Library Use.

5. Initialization unique to C++:

In the C++ specifications, when external or static objects are used, a constructor must be called followed
by the main function. Because four-byte pointers to the main function are stored in the
EXT_CTOR_DTOR section, call a constructor sequentially from the lower address of the four addresses
in that section.

In a program requiring normal termination, use the atexit function to register the address of __call_dtors
function as the function to be called from the exit function. Then, call the exit function after the end of
the main function.

6. User program calling:

Call the user program.

7. Program shutdown process:

The close process must be performed for opened files. The normal end and abnormal end processes must
be prepared in accordance with the system.

> fcc911s -ro ROM=ROM address range -ra RAM=RAM address range
-sc @INIT=ROM ,INIT=RAM
124 PART 1 OPERATION

CHAPTER 7
LIBRARY OVERVIEW

This chapter outlines the C libraries by describing the
organization of files furnished by the libraries and the
relationship to the system into which the libraries are
incorporated.

7.1 File Organization

7.2 Relationship to Library Incorporating System
PART 1 OPERATION 125

CHAPTER 7 LIBRARY OVERVIEW
7.1 File Organization

This section describes the files furnished by the libraries.

■ File Organization
The following library files are provided:

● fcc911s command library files

The four fcc911s command library files below are provided.

• lib911.lib: Standard C library

• lib911if.lib: Simulator/debugger low-level function library

• lib911e.lib: EC++ library

• lib911p.lib: C++ library (having the same contents as lib911e.lib)

■ fcc911s Command Library Section Names

Table 7.1-1 shows the section names used by the fcc911s command libraries.

Table 7.1-1 fcc911s Command Library Section Names

Section Type Section name

Code section CODE

Data section DATA

Initialized section INIT

Constant section CONST
126 PART 1 OPERATION

7.2 Relationship to Library Incorporating System
7.2 Relationship to Library Incorporating System

This section describes the relationship between the libraries and library incorporating
system.

■ System-dependent Processes
File input/output, memory management, and program termination procedures are dependent on the system.

When such system-dependent processes are needed, the libraries call low-level functions (For the details of

low-level functions, see "CHAPTER 8 LIBRARY INCORPORATION").

When using the libraries, prepare such low-level functions in accordance with the system.

■ Low-level Function (System-dependent Process) Types

The low-level function types and their roles are summarized below. For the detailed feature descriptions of

low-level functions, see section "8.5 Low-level Function Specifications".

• open: Function for opening a file in the system

• close: Function for closing a file in the system

• read: Function for reading characters from a file

• write: Function for writing characters into a file

• lseek: Function for changing the file position

• isatty: Function for checking whether a file is a terminal file

• sbrk: Function for dynamically acquiring/changing the memory

• _exit: Function for normal program ending

• _abort: Function for abnormal program ending

■ Time Function (System-dependent Process) Types
The time function types and their roles are summarized below. For the detailed

descriptions of time functions, see section "8.6 Time Function Specifications".

• clock : Function for getting the processor time consumed

• time : Function for getting the current calendar time
PART 1 OPERATION 127

CHAPTER 7 LIBRARY OVERVIEW
128 PART 1 OPERATION

CHAPTER 8
LIBRARY INCORPORATION

This chapter describes the processes and functions for
preparing for useing library.

8.1 Library Incorporation Overview

8.2 Initialization/Termination Process Necessary for Using Library

8.3 Low-level Function Types

8.4 Standard Library Functions and Required Processes/Low-level
Functions

8.5 Low-level Function Specifications

8.6 Time Function Specifications
PART 1 OPERATION 129

CHAPTER 8 LIBRARY INCORPORATION
8.1 Library Incorporation Overview

This section outlines library incorporation.

■ Processes and Functions must be prepared for Using Library
File input/output, memory management, and program termination procedures are the processes dependent

on the system. Therefore, such processes are separated from the standard library, and whenever such

processes are needed, they will be called as a low-level function. Further, the stream area initialization and

other processes are necessary for using library.

The following processes and functions must be prepared for using library.

• Initialization of stream area

• The open and close processes of the standard input/output and standard error output file

• Definition of Low-level functions

• Definition of time functions

At the time of library incorporation, the above processes and functions must be prepared in accordance with

the system.
130 PART 1 OPERATION

8.2 Initialization/Termination Process Necessary for Using Library
8.2 Initialization/Termination Process Necessary for Using
Library

This section describes the initialization/termination process required for Using Library.

■ Initialization/Termination Process
Some standard library functions require the following processes.

• Initialization of stream area

• The open and close processes of the standard input/output and standard error output file

Detailed in this section (For required functions, see section "8.4 Standard Library Functions and Required

Processes/Low-level Functions".

■ Initialization of Stream Area

The _stream_init function initializes the stream area. This function must be called by the startup routine to

initialize the stream area.

void _stream_init(void);

■ The Open and Close Processes of the Standard Input/Output and Standard Error
Output File

Because the standard input/output and standard error output do not open or close files during the execution

of programs, files must be opened before the main function is called and must be closed when the main

function is completed.

Use the startup routine to perform the opening process before main function calling and the closing process

after main function execution.

However, the _stream_init function correlates the file numbers 0, 1, and 2 to the stdin, stdout, and stderr

streams. Therefore, the opening process need not be performed when the system’s standard input, standard

output, and standard error output are opened as the file numbers 0, 1, and 2.

If the system’s standard input/output and standard error output are not opened or the file numbers do not

match, perform the following process to open the system’s files.

• freopen("Standard input name", "r", stdin);

• freopen("Standard output name", "w", stdout);

• freopen("Standard error output name", "w", stderr);

Error detection concerning the above process should be conducted as needed.

Further, the file names specified by the open function must be written as the standard input/output and

standard error output names.

For the closing process, use the fclose function.
PART 1 OPERATION 131

CHAPTER 8 LIBRARY INCORPORATION
■ Time zone setting
Please set the time zone to global variable _TZ.

Please set 9*3600 for JST (Japan Standard Time) because the unit of the value set to _TZ is "second".

To set _TZ, please include time.h.

Please initialize _TZ when you use the mktime function, the ctime function and the localtime function.

In the mktime function, the ctime function and the localtime function, it is not considered that the value of

_TZ is modified while executing these functions. When _TZ is modified, the result is not guaranteed.
132 PART 1 OPERATION

8.3 Low-level Function Types
8.3 Low-level Function Types

This section outlines the standard library functions and necessary low-level functions.
The standard library functions require the following six types of low-level functions:
• File opening and closing (open, close)
• Input and output relative to file (read, write)
• File position change (lseek)
• File inspection (isatty)
• Memory area dynamic acquisition (sbrk)
• Program abnormal end and normal end (_abort, _exit)
The above processes are called from the associated standard libraries to manipulate
the system’s actual files or exercise program execution control.

■ Low-level Function Types

● File Opening and Closing

All functions that open the fopen function and other files call the open function to open an actual file on the

system. Similarly, all functions that close the fclose function and other files call the close function to close

an actual file on the system.

● Input and Output Relative to File

The scanf, printf, and other input/output functions perform input/output operations relative to the system’s

actual files when the read and write functions are called.

● File Position Change

The fseek and other file position manipulation functions acquire or change the system’s actual file positions

when the lseek function is called.

● File Inspection

The opened file is to be checked to see whether it is a terminal file.

● Memory Area Dynamic Acquisition

The malloc and other memory area dynamic acquisition functions acquire or free specific memory areas

when the sbrk function is called.

● Program Abnormal End and Normal End

The abort function and exit function call the _abort function and _exit function, respectively, as the

termination process.
PART 1 OPERATION 133

CHAPTER 8 LIBRARY INCORPORATION
8.4 Standard Library Functions and Required Processes/Low-
level Functions

This section describes the standard library functions and associated initialization/
termination processes and low-level functions.

■ Standard Library Functions and Required Processes/Low-level Functions
Table 8.4-1 lists the standard libraries that use low-level functions, related initialization and termination

processes, and low-level functions.

* : Then the abort function and exit function are called, they perform the closing process for open files. Therefore, the file
manipulation related low-level functions (open, close, read, write, lseek, and sbrk) and stream area initialization and like
processes are required.
In a program that is not using a file, the _abort function can be directly called instead of the abort function.
In a program for which function registration is not completed using the atexit function, the _exit function can be directly
called instead of the exit function while no file is being used.
In the above instances, file manipulation related low-level function use and stream area initialization are not required.

Table 8.4-1 Standard Library Functions and Required Processes/Low-level Functions

Standard Library Function Low-level Function Initialization/Termination Process

assert ()
abort () *

open ()
read ()
lseek ()
sbrk ()

close ()
write ()
isatty ()
_abort ()

Stream area initialization process standard input/
output and standard error output opening and closing

All stdio.h file operation
functions

open ()
read ()
lseek ()
sbrk ()

close ()
write ()
isatty ()

Stream area initialization process standard input/
output and standard error output opening and closing

calloc ()
malloc ()
realloc ()
free ()

sbrk ()

exit () * open ()
read ()
seek ()
sbrk ()

close ()
write ()
isatty ()
_exit ()

Stream area initialization process standard input/
output and standard error output opening and closing
134 PART 1 OPERATION

8.5 Low-level Function Specifications
8.5 Low-level Function Specifications

There are various low-level functions. The open, close, read, write, lseek, and isatty
functions provide file processing. The sbrk function provides memory area dynamic
allocation. The _exit or _abort function is used to terminate a program by calling the
exit or abort function. These low-level functions must be created to suit the system.

■ Low-level Function Specifications
Create the low-level functions in compliance with the specifications stated in this section.
PART 1 OPERATION 135

CHAPTER 8 LIBRARY INCORPORATION
8.5.1 open Function

The open function should be generated according to the specifications in this section.
#include <fcntl.h>
int open(char *fname, int fmode, int p);

■ open Function
[Explanation]

In the mode specified by fmode, open the file having the name specified by fname. For fmode
specifying, a combination of the following flags (logical OR) is used. The value "0777" is always
delivered as p.

• O_RDONLY: Opens a read-only file.

• O_WRONLY: Opens a write-only file.

• O_RDWR: Opens a read/write file.

The above three flags are to be exclusively specified.

• O_CREAT: Create this flag when the specified file does not exist. If the specified file
already exists, ignore this flag.

• O_TRUNC: If any data remains in the file, discard such data to empty the file.

• O_APPEND: Selects the append mode for file opening. The file position prevailing at the
time of opening must be set so as to indicate the end of the file. When writing into a file
placed in this mode, start writing at the end of the file without regard to the current file
position.

• O_BINARY: Specifies a binary file. Therefore, the file opened must be treated as a binary
file. Files for which this is not specified must be treated as text files.

When the name for standard input/output and standard error output, which is determined for system

environment setup, is specified as the file name for the first argument, allocate the standard input/output

and standard error output to the file to be opened.

[Return value]

When file opening is successfully done, the file number must be returned. If file opening is not

successfully done, on the other hand, the value "-1" must be returned.
136 PART 1 OPERATION

8.5 Low-level Function Specifications
8.5.2 close Function

The close function should be generated according to the specifications in this section.
int close(int fileno);

■ close Function
[Explanation]

The closing process must be performed for the file specified by fileno.

[Return value]

When file closing is successfully done, the value "0" must be returned. If file closing is not successfully
done, the value "-1" must be returned.
PART 1 OPERATION 137

CHAPTER 8 LIBRARY INCORPORATION
8.5.3 read Function

The read function should be generated according to the specifications in this section.
int read(int fileno, char *buf, int size);

■ read Function
[Explanation]

From the file specified by fileno, size-byte data must be input into the area specified by buf.

If the text file new line character is other than \n in the system environment at this time, perform setup
with the new line character converted to \n by the read function.

[Return value]

When the input from the file is successfully done, the input character count must be returned. If the input
from the file is not successfully done, the value -1 must be returned. If the file ends in the middle of the
input sequence, a value smaller than size can be returned as the input character count.
138 PART 1 OPERATION

8.5 Low-level Function Specifications
8.5.4 write Function

The write function should be generated according to the specifications in this section.
int write (int fileno, char *buf, int size);

■ write Function
[Explanation]

To the file specified by fileno, size-byte data in the area specified by buf must be outputted. If the file is
opened in the append mode, the output must always be appended to the end of the file. If the text file
new line character is other than \n in the system environment at this time, the output must be generated
with the system environment new line character converted to \n by the write function.

[Return value]

When the output to the file is successfully done, the output character count must be returned. If it is not
successfully done, the value "-1" must be returned.
PART 1 OPERATION 139

CHAPTER 8 LIBRARY INCORPORATION
8.5.5 lseek Function

The lseek function should be generated according to the specifications in this section.
#include <unistd.h>
long int lseek(int fileno, off_t offset, int whence);

■ lseek Function
[Explanation]

The file specified by fileno must be moved to a position that is offset bytes away from the position
specified by whence. The file position is determined according to the byte count from the beginning of
the file. The following three positions are to be specified by whence.

• SEEK_CUR: Adds the offset value to the current file position.

• SEEK_END: Adds the offset value to the end of the file.

• SEEK_SET: Adds the offset value to the beginning of the file.

[Return value]

When the file position is successfully changed, the new file position must be returned. If it is not
successfully changed, -1L must be returned.
140 PART 1 OPERATION

8.5 Low-level Function Specifications
8.5.6 isatty Function

The isatty function should be generated according to the specifications in this section.
int isatty(int fileno);

■ isatty Function
[Explanation]

The file specified by fileno is to be checked to see whether it is a terminal file. When the file is a
terminal file, true must be returned. If not, false must be returned.

[Return value]

When the specified file is a terminal file, true must be returned. If not, false must be returned.
PART 1 OPERATION 141

CHAPTER 8 LIBRARY INCORPORATION
8.5.7 sbrk Function

The sbrk function should be generated according to the specifications in this section.
char *sbrk(int size);

■ sbrk Function
[Explanation]

The existing area must be enlarged by size bytes. If size is a negative quantity, the area must be reduced.

If the sbrk function has not been called, furnish a size-byte area.

The area varies as shown in Figure 8.5-1 by calling the sbrk function.

Figure 8.5-1 Area Change Brought About by sbrk Function Calling

[Return value]

When the area change is successfully made, the value to be returned must be determined by adding the
value "1" to the end address of the area prevailing before the area change. If the sbrk function has not
been called, the start address of the acquired area must be returned. If the area change is not successfully
made, the value (char)-1 must be returned.

Low

High

*1

Before change

Using area

After a change
effected by a
plus size value

After a change
effected by a
minus size value

size byte

size byte

Return value = *1 (the end address of the area prevailing before the area change) + 1
142 PART 1 OPERATION

8.5 Low-level Function Specifications
8.5.8 _exit Function

The _exit function should be generated according to the specifications in this section.
#include <stdlib.h>
void _exit (int status);

■ _exit Function
[Explanation]

The _exit function must bring the program to a normal end. When the status value is 0 or in the case of
EXIT_SUCCESS, the successful end state must be returned to the system environment. In the case of
EXIT_FAILURE, the unsuccessful end state must be returned to the system environment.

[Return value]

The _exit function does not return to the caller.
PART 1 OPERATION 143

CHAPTER 8 LIBRARY INCORPORATION
8.5.9 _abort Function

The _abort function should be generated according to the specifications in this section.
void _abort(void);

■ _abort Function
[Explanation]

The _abort function must bring the program to an abnormal end.

[Return value]

The _abort function does not return to the caller.
144 PART 1 OPERATION

8.6 Time Function Specifications
8.6 Time Function Specifications

In the time functions, there are clock function to get the processor time used and time
function to get current calendar time.
The clock function and the time function must be created to suit the system.

■ Time Function
Create the time functions in compliance with the specifications stated in this section.
PART 1 OPERATION 145

CHAPTER 8 LIBRARY INCORPORATION
8.6.1 clock Function

Create the clock function in compliance with the specifications stated in this section.
#include <time.h>
clock_t clock (void);

■ clock Function
[Explanation]

Please return the processor time used by the program.

Please adjust the return value to become seconds if it is divided by the value of macro
CLOCKS_PER_SEC.

[Return value]

When the processor time used is not available or its value cannot be represented, the function returns the
value (clock_t)-1.
146 PART 1 OPERATION

8.6 Time Function Specifications
8.6.2 time Function

Create the time function in compliance with the specifications stated in this section.
#include <time.h>
time_t time (timet *timer);

■ time Function
[Explanation]

Please return the seconds of the current calendar time from "January 1, 1970 00:00:00(UTC)".

[Return value]

When the current calendar time is not available, the return value (time_t)-1.

If timer is not null pointer, the return value is also assigned to the object it points to.
PART 1 OPERATION 147

CHAPTER 8 LIBRARY INCORPORATION
148 PART 1 OPERATION

CHAPTER 9
COMPILER-DEPENDENT

SPECIFICATIONS

This chapter describes the specifications that vary with
the compiler. Descriptions are related to JIS standard
that are created based on ANSI standard.

9.1 Compiler-dependent C Language Specification Differentials

9.2 Type of Floating-point Data and Range of Representable Values

9.3 Floating-point Operation due to the Runtime Library Function

9.4 Dissimilarities between C++ Specifications for C/C++ Compiler and
ISO

9.5 C++ Specifications for C/C++ Compiler and EC++ Specifications

9.6 Limitations on Use of C++ Template
PART 1 OPERATION 149

CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS
9.1 Compiler-dependent C Language Specification
Differentials

Table 9.1-1 lists the compiler-dependent C language specification differentials.

■ Compiler-dependent Language Specification Differentials

Table 9.1-1 Compiler-dependent Language Specification Differentials (1 / 2)

Specification Differentials
Related Section in
the JIS Standard

This Compiler

Japanese language process support and code
system

5.2.1 "Character sets"
6.1.2 "Identifiers"

No support
EUC or SJIS entries can be made in the
comment and string literals (cannot be mixed)

Recognized character count of an identifier
with an external binding

6.1.2 "Identifiers" 1024

Differentiation between upper- and lower-
case alphabetical characters of an identifier
with an external binding

6.1.2 "Identifiers" Treated as different characters

Character set element expression code
system

6.1.3 "Numerical
constants"

ASCII code

char type treatment and expressible value
range

6.2.1.1 "Character type
and integer type"

Unsigned (*1)
0 to 255

Floating-point data formats and sizes
float type
double/long double type

6.1.2.5 "Data types" IEEE type (*2)
4 bytes
8 bytes

Whether or not to treat the start bit as signed
bit when following types specified as bit
field

char, short, int, and long type

6.5.2.1, "Structure
specifier and union
specifier"

Not treated as a sign (*1)

Types that can be specified as bit field 6.5.2.1, "Structure
specifier and union
specifier"

char type
signed char type
unsigned char type
short type
unsigned short type
int type
unsigned int type
long type
unsigned long type
150 PART 1 OPERATION

9.1 Compiler-dependent C Language Specification Differentials
*1: Alterable through option use.
*2: See section Type of Floating-point Data and Range of Representable Values.

*3: The other registers can be used when they are saved and recovered by the user.

Structure or union member boundary
alignment value

char type
signed char type
unsigned char type
short int type
unsigned short int type
int type
unsigned int type
long int type
unsigned long int type
float type
double type
long double type
pointer type

6.5.2.1, "Structure
specifier and union
specifier" 1 byte

1 byte
1 byte
2 bytes
2 bytes
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes
8 bytes
8 bytes
4 bytes

Character constant expression code system
for preprocessor

6.8.1 Conditional
Include

ASCII code

Registers that can be specified within asm
statement

R0, R1, R2, R3, R12, R13 (*3)

ANSI-compliant standard library function
support

Refer to the APPENDIX A.

Table 9.1-1 Compiler-dependent Language Specification Differentials (2 / 2)

Specification Differentials
Related Section in
the JIS Standard

This Compiler
PART 1 OPERATION 151

CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS
9.2 Type of Floating-point Data and Range of Representable
Values

Table 9.2-1 lists the floating-point data types and the range of values that can be
expressed for each type.

■ Type of Floating-point Data and Range of Representable Values

Table 9.2-1 Type of Floating-point Data and Range of Representable Values

Type of floating-point data Range of Representable Values

float type The exponent part is a value between 126 and + 127. (Base 2)
The fractional portion of the mantissa (the integer portion is
normalized to 1) is binary and has 24-digit accuracy.

double type The exponent part is a value between 1022 and + 1023. (Base
2)
The fractional part of the mantissa (the integer part is
normalized to 1) is binary and has 53-digit accuracy.

long double type The exponent part is value between 1022 and + 1023. (Base 2)
The fractional part of the mantissa (the integer part is
normalized to 1) is binary and has 53-digit accuracy.
152 PART 1 OPERATION

9.3 Floating-point Operation due to the Runtime Library Function
9.3 Floating-point Operation due to the Runtime Library
Function

All floating-point operations, except for ones calculated in the compilation time, are
done by the runtime library functions. Although those functions are designed referring
to ANSI/IEEE Std754-1985, they do not completely conform to it.
This section describes the differences between the specification of the floating-point
runtime library functions and ANSI/IEEE Std754-1985.

■ Arithmetic operation (addition, subtraction, multiplication, and division)

● Rounding of the resultant mantissa part

Round-to-nearest mode, only.

● Denormalized number

If the left operand is a denormalized number, it is assumed to be zero with the same sign. If the right

operand is a denormalized number, it is assumed to be zero with the same sign, too. In some cases, the

denormalized number with the correct sign is returned rather than the strict zero.

● Resultant value under the underflow exception

It is assumed that the underflow exception occurs when the exponent value of true operation result is too

small to be represented as the normalized number. In that case, zero with the correct sign is returned.

● Resultant value under the overflow exception

Infinity with the correct sign is returned.

● Resultant value under the invalid operation exception

NaN (Not a number) is returned. In the floating-point runtime library, any routines do not distinguish

SNaN (Signaling NaN) and QNaN (Quiet NaN).

● Interrupt at operation exception.

No interrupt occur.

● Status flag

Not supported.

■ Comparison

● Denormalized number

The denormalized number is treated as zero with the same sign.
PART 1 OPERATION 153

CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS
● Comparison result under the invalid operation exception

The library function returns uncertain result.

● Interrupt at operation exception

No interrupt occur.

● Status flag

Not supported.

■ Type conversion (integer -> floating-point number)

● Rounding of the resultant mantissa part

Round-to-nearest mode, only.

● Interrupt at operation exception

No interrupt occur.

● Status flag

Not supported.

■ Type conversion (floating-point number -> integer)

● Resultant value under the invalid operation exception

Uncertain value is returned.

● Interrupt at operation exception

No interrupt occur.

● Status flag

Not supported.

■ Type conversion (floating-point number -> floating-point number)

● Rounding of the resultant mantissa part

Round-to-nearest mode, only.

● Denormalized number

If the converting value is a denormalized number, it is treated as zero with the same sign. In some cases,

the denormalized number is returned rather than the strict zero.

● Resultant value under the underflow exception

It is assumed that the underflow exception occurs when the exponent value of true operation result is too

small to be represented as the normalized number. In that case, zero with the correct sign is returned.
154 PART 1 OPERATION

9.3 Floating-point Operation due to the Runtime Library Function
● Resultant value under the overflow exception

Infinity with the correct sign is returned.

● Resultant value under the invalid operation exception

NaN (Not a Number) is returned. In the floating-point runtime library, any routines do not distinguish

SNaN (Signaling NaN) and QNaN (Quiet NaN).

● Interrupt at operation exception

No interrupt occur.

● Status flag

Not supported.
PART 1 OPERATION 155

CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS
9.4 Dissimilarities between C++ Specifications for C/C++
Compiler and ISO

This section explains the dissimilarities between the C++ specifications for the C/C++
compiler and ISO/IEC 14882:1998.

■ Modifications to C++ Specifications for C/C++ Compiler from ISO
Differences between the C++ specifications for the C/C++ compiler and ISO/IEC 14882:1998 are

explained below.

• Data in enumerated type cannot take the values exceeding the int type. The values exceeding the int type
values, if specified, would cause the diagnosis as warning and the data would be converted into the int
type data.

• There is no support for the name-solving function in [temp.res] (Section 14.6) and [temp.dep] (Section
14.6.2) mentioned in the ISO/IEC 14882:1998 Specification.

• There is no support for the template argument function in [temp.arg.template] (Section 14.3.3)
mentioned in the ISO/IEC 14882:1998 Specification.

• There is no support for the international character set function such as \uabcd.

• There is no support for the export keyword and export function.

• There is no support for the runtime type identification function including dynamic_cast and typeid
operators.

• There is no support for the exception handling function including try-catch and throw.

• Only the C standard and EC++ libraries are provided. Libraries containing templates such as STL are
not available.
156 PART 1 OPERATION

9.5 C++ Specifications for C/C++ Compiler and EC++ Specifications
9.5 C++ Specifications for C/C++ Compiler and EC++
Specifications

This section describes the C++ specifications for the C/C++ compiler and the EC++
specifications.

■ C++ Specifications for C/C++ Compiler and EC++ Specifications
At default, the C/C++ compiler operates to the EC++ specifications. A warning message is output at

description of specifications outside the EC++ range. To delete just this warning, specify the -Ja option

(including extended specifications) or the -Jc option (stringent specifications).

For details of the EC++ specifications, refer to http://www.caravan.net/ec2plus/.
PART 1 OPERATION 157

CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS
9.6 Limitations on Use of C++ Template

This section deals with the limitations on use of the C++ template.

■ Limitations on Use of C++ Template

● Options specified when using template

Specify the -Ja option or the -Jc option. If this option is not given, description of specifications is outside

the range of the EC++ specifications and the warning message is output.

● Limitations

When instantiation is not controlled by #pragma, or anything other than "local" (default: "none") is

selected in the -t option, the following limitations apply:

• Linking is impossible just with the generated object file. The source files and simultaneously generated
files with .ii extensions are needed in pairs.

• Do not move, delete or rewrite the generated files with .ii extensions.

• Do not change the directories and names of the generated object and source files and do not link object
files after deletion. In this case, always perform recompiling. Recompiling is needed for changes alone
between the UNIX and Windows environments.

• When the -S option is specified, always generate object files with .obj extensions with the same module
name in the same directories as those of the generated assembler files.

• Data in the assembler files generated by the -S option is not rewritten.

• Do not generate libraries with a librarian.

• For development by more than one operator, carry out tasks from compiling to linking at a single point.
Compiling at multiple points requires conformity in the positions of directories of source and object files
(including the name of a network drive when used), the environment variables related to the C/C++
compiler, and the directory where the C/C++ compiler is installed.

• When compiling at multiple points in the UNIX environment, the true directory name not including a
symbolic link must be the same.

• Linking is delayed depending on how to use a template.

• A warning of errors in the template syntax is issued at linking.

■ Circumventing limitations on the use of the C++ template
To circumvent the above problems, simply specify the -t local option for all the modules to perform

compilation. This specification causes template data in each module, resulting in an increased code size for

the runtime object.

To solve the code size problem, specify the --no_auto_instantiation option to embed #pragma in the source

program, thereby controlling template instantiation.

For information on using #pragma to control instantiation, see section "5.11 Function for Controlling

Instantiation of C++ Template".
158 PART 1 OPERATION

CHAPTER 10
SIMULATOR DEBUGGER

LOW-LEVEL FUNCTION
LIBRARY

The simulator debugger low-level function library is a
library of the low-level functions which are necessary
when the standard library is used with the simulator
debugger.
This chapter describes how to use the simulator
debugger low-level function library.

10.1 Low-level Function Library Overview

10.2 Low-level Function Library Use

10.3 Low-level Func. Function

10.4 Low-level Function Library Change
PART 1 OPERATION 159

CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY
10.1 Low-level Function Library Overview

The low-level function library is outlined below.

■ Low-level Function Library Overview
The low-level function library offers the functions that are necessary when the standard library is used with

the simulator debugger. The main functions are as follows.

• File manipulation functions based on I/O port simulation (open, close, read, write, lseek, isatty)

• Dynamic memory allocation function (sbrk)

In the simulator debugger, the program executed cannot terminate its own execution. Therefore, prepare

the _abort and _exit functions.

■ File System Overview

The low-level function library uses the I/O port simulation function of the simulator debugger to carry out

standard input/output operations and input/output operations relative to files. These operations are

completed by performing input/output operations relative to one I/O port area which is regarded as one file.

When the open function is called, it allocates a 1-byte area of the I/O port simulation area (I/O section)

defined by the low-level function library, and returns as the file number the offset from the beginning of the

allocated area.

The read function and write function perform input/output operations relative to the 1-byte area allocated

by the open function.

Input/output operations can be performed relative to the standard input/output and files when such standard

input/output and files are allocated to the above-mentioned area prior to program execution using simulator

debugger commands set inport and set outport.

The close function frees an already allocated area to render it reusable. Since the file position cannot be

changed in the simulator debugger, the value "-1" is always returned for the lseek function.

■ Area Management

An already acquired external variable area is used as the area returned by the sbrk function.

When the sbrk function is called, area allocation begins with the lowest address of the area.
160 PART 1 OPERATION

10.2 Low-level Function Library Use
10.2 Low-level Function Library Use

This section describes the load module creation and simulator debugger setup
procedures to be performed for low-level function library use.

■ Initialization
No initialization is required except for _stream_init function calling.

When creating the startup routine in accordance with the system, call the _stream_init function prior to

main function calling.

■ Load Module Creation
After completing creating of the necessary program, compile and link all the necessary modules. No

special option specifying is needed.

The following libraries and startup routine are linked.

• startup.obj

• Standard library (lib911.lib, lib911e.lib, lib911p.lib)

• Low-level function library (lib911ie.lib)

The sections are arranged at the following addresses.

• IOPORT: Address 0

• STACK: Address 0x100000

• Other: Address 0x1000

To change the IOPORT section arrangement, specify the -sc IOPORT=address option at compiling.

Describe the section arrangement address at the address position.
PART 1 OPERATION 161

CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY
■ Simulator Debugger Setup

[Setup for Standard Input/Output Use]

set inport/ascii IOPORT, 0xff, $TERMINAL

set outport/ascii IOPORT+1, 0xff, $TERMINAL

Enter the address where the IOPORT section was positioned at linking in the above IOPORT position. If

the -sc option is not specified at linking, the following results.

set inport/ascii 0, 0xff, $TERMINAL

set outport/ascii 1, 0xff, $TERMINAL

Since the first three areas of the IOPORT section are used for standard input, standard output, and standard

error output, the other files are allocated to the fourth and subsequent areas (The offset from the beginning

of the IOPORT section is 3).

In other words, allocation is performed sequentially in the order of file opening (offset 3, offset 4, etc.).

Therefore, perform setup accordingly using the set inport and set outport commands.

To open a.doc as the input file and then open b.doc as the output file, setup as indicated below.

set inport/ascii IOPORT+3, 0xff, "a.doc"

set outport/ascii IOPORT+4, 0xff, "b.doc"

<Example>

Create a program that displays the character string "Hello!!" and initiate execution with the simulator

debugger.

main()

{

printf("Hello!!\n");

}

Create a C-source file named test.c as indicated above.

Compile using the following command.

> fcc911s test.c -cpu MB91F154 -l lib911if.lib

At completion of the preceding step, test.abs is created. Execute the created file with the simulator

debugger.

After startup, input following commands.

> set inport/ascii 0x0, 0xff, $TERMINAL

> set outport/ascii 0x1, 0xff, $TERMINAL

> go, end

Since standard input is not involved in the above example, the set inport command can be omitted.
162 PART 1 OPERATION

10.3 Low-level Func. Function
10.3 Low-level Func. Function

This section describes the function specific to the simulator debugger low-level
functions.

■ Special I/O Port
As far as the low-level functions are concerned, the first three bytes of the I/O section are specified to

function as the standard input, standard output, and standard error output, respectively. For such bytes,

files No. 0, 1, and 2 are allocated. They are initialized to the opened state.

Table 10.3-1 shows the predefined I/O port.

The input from the standard input (file No. 0) is output to the standard output (file No. 1). The input to the

standard input (file No. 0) is discontinued if the new line character \n is entered. However, when the input

is fed from some other port, the input continues until the required number of characters are read.

■ open Function

The open function finds an unused I/O port area and then returns as the file number the area’s offset from

the beginning of the I/O section. In such an instance, the file name and open mode are not to be specified.

Even if files are opened using the same file name, differing file numbers are assigned to them. Files No. 0,

1, and 2 are initialized to the opened state. Therefore, the open function begins allocation with file No. 3

unless files 0, 1, and 2 are subjected to the close process.

■ read Function

The read function reads data from the I/O port area specified by the address which is determined by adding

the specified file number to the I/O section start address. The input from file No. 0 is treated as a line input.

When the new line character \n is entered, the read function terminates even if the required character count

is not reached. Further, this input is output to the standard output (file No. 1). The input from a file

numbered other than 0 is treated as a block input. Reading continues until the required character count is

reached.

■ write Function

The write function writes data to the I/O port area specified by the address which is determined by adding

the specified file number to the I/O section start address. Unlike the input, the operation does not vary with

the I/O port area address

■ lseek Function

The file position cannot be specified in the simulator debugger. Therefore, the value -1, which indicates an

unsuccessful file position change, is always returned.

Table 10.3-1 Predefined I/O Port

Address File Number File Type

IOPORT 0 Standard input

IOPORT+1 1 Standard output

IOPORT+2 2 Standard error output
PART 1 OPERATION 163

CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY
■ isatty Function

In the case of file No. 0, 1, or 2, true is returned. In the other cases, false is returned.

■ close Function

The close function releases the port related to the specified file number.

■ sbrk Function

The simulator debugger does not provide a means of dynamic memory allocation. Therefore, the sbrk

function acquires a fixed area and uses it. To change the area or its size, create an alternative function and

substitute it for the sbrk function with a librarian. For details, see section "10.4 Low-level Function

Library Change".
164 PART 1 OPERATION

10.4 Low-level Function Library Change
10.4 Low-level Function Library Change

This section shows how to change the dynamic allocation area.

■ fcc911s Command Source Program List of sbrk Function
The source program required for changing the dynamic area is shown below. The file name must be

__STD_LIB_sbrk.c.

#define HEEP_SIZE 16*1024

static long brk_siz = 0;

#if HEEP_SIZE

typedef int _heep_t;

#define ROUNDUP(s) (((s)+sizeof(_heep_t)-1)&~(sizeof(_heep_t)-1))

static _heep_t _heep[ROUNDUP(HEEP_SIZE)/sizeof(_heep_t)];

#define _heep_size ROUNDUP(HEEP_SIZE)

#else

extern char *_heep;

extern long _heep_size;

#endif

extern char *sbrk(int size)

{

if (brk_siz + size > _heep_size || brk_siz + size < 0)

return((char*)-1);

brk_siz += size;

return((char *)_heep + brk_siz - size);

}

■ Dynamic Allocation Area Change
Locate the following line in the source program list of sbrk function. Change the value in this line to the

dynamic allocation area size (in bytes).

#define HEEP SIZE 16*1024

Use the following commands to compile and update the library.

#define HEEP_SIZE 16*1024

> fcc911s -O -c __STD_LIB_sbrk.c -cpu MB91F154

> flibs -r __STD_LIB_sbrk.obj lib911if.lib -cpu MB91F154

When the above change is made, the dynamic allocation area is secured as the __STD_LIB_sbrk.c static

external variable without being positioned at the beginning of the stack.
PART 1 OPERATION 165

CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY
166 PART 1 OPERATION

APPENDIX

The appendix gives a list of types, macros, functions
and variables provided by the libraries and describes
the operations specific to the libraries (The APPENDIX A
and APPENDIX B).
The list of the error message is described (The
APPENDIX C).
The list of the reserved pragma directive is described
(The APPENDIX D).
Reentrancy of C library function is described (The
APPENDIX E).

APPENDIX A List of Types, Macros, Functions, and Variables Provided
by C Libraries

APPENDIX B Operations Specific to C Libraries

APPENDIX C Error Message

APPENDIX D Reserved Pragma Directive

APPENDIX E About Reentrancy of C Library Functions
PART 1 OPERATION 167

APPENDIX A List of Types, Macros, Functions, and Variables Provided by C Libraries
APPENDIX A List of Types, Macros, Functions, and Variables
Provided by C Libraries

The types, macros, functions, and variables provided by the C libraries are listed below.

■ assert.h

● Function

assert

■ ctype.h

● Macros

■ errno.h

● Macros

EDOM ERANGE

● Variable

errno

isalnum isalpha iscntrl isdigit isgraph

islower isprint ispunct isspace isupper

isxdigit tolower toupper
168 PART 1 OPERATION

APPENDIX A List of Types, Macros, Functions, and Variables Provided by C Libraries
■ float.h

● Macros

■ limits.h

● Macros

FLT_RADIX FLT_ROUNDS FLT_MANT_DIG DBL_MANT_DIG

LDBL_NANT_DIG FLT_DIG DBL_DIG LDBL_DIG

FLT_MIN_EXP DBL_MIN_EXP LDBL_MIN_EXP FLT_MIN_10_EXP

DBL_MIN_10_EXP LDBL_MIN_10_EXP FLT_MAX_EXP DBL_MAX_EXP

LDBL_MAX_EXP FLT_MAX_10_EXP DBL_MAX_10_EXP LDBL_MAX_10_EXP

FLT_MAX DBL_MAX LDBL_MAX FLT_EPSILON

DBL_EPSILON LDBL_EPSILON FLT_MIN DBL_MIN

LDBL_MIN

MB_LEN_MAX CHAR_BIT SCHAR_MIN SCHAR_MAX UCHAR_MAX

CHAR_MIN CHAR_MAX INT_MIN INT_MAX UINT_MAX

SHRT_MIN SHRT_MAX USHRT_MAX LONG_MIN LONG_MAX

ULONG_MAX LONG_LONG_MIN LONG_LONG_MAX ULONG_LONG_MAX LLONG_MIN

LLONG_MAX ULLONG_MAX
PART 1 OPERATION 169

APPENDIX A List of Types, Macros, Functions, and Variables Provided by C Libraries
■ math.h

● Macros

● Function

■ setjmp.h

● Type

jmp_buf

● Macros

setjmp

● Function

longjmp

■ stdarg.h

● Type

va_list

● Macros

va_start va_arg va_end

■ stddef.h

● Type

ptrdiff_t size_t

HUGE_VAL EDOM ERANGE

acos asin atan atan2 cos

sin tan cosh sinh tanh

exp frexp ldexp log log10

modf pow sqrt ceil fabs

floor fmod
170 PART 1 OPERATION

APPENDIX A List of Types, Macros, Functions, and Variables Provided by C Libraries
● Macros

NULL offsetof

■ stdio.h

● Type

● Macros

● Function

■ stdlib.h

● Type

● Macros

ptrdiff_t size_t FILE fpos_t

NULL EOF SEEK_SET SEEK_CUR SEEK_END

_IONBF _IOLBF _IOFBF BUFSIZ stdin

stdout stderr putchar putc getchar

getc offsetof

putchar putc getchar getc fclose

fflush fopen freopen setbuf setvbuf

fprintf fscanf printf scanf sprintf

sscanf vfprintf vprintf vsprintf fgetc

fgets fputc fputs gets puts

ungetc fread fwrite fgetpos fseek

fsetpos ftell rewind clearerr feof

ferror

ptrdiff_t size_t div_t ldiv_t

NULL offsetof EXIT_FAILURE EXIT_SUCCESS RAND_MAX
PART 1 OPERATION 171

APPENDIX A List of Types, Macros, Functions, and Variables Provided by C Libraries
● Function

■ string.h

● Type

● Macros

● Function

■ fcntl.h

● Macros

■ unistd.h

● Macros

atof atoi atol strtod strtol

strtoul rand srand calloc free

malloc realloc abort atexit exit

bsearch qsort abs div labs

ldiv

ptrdiff_t size_t

NULL offsetof

memcpy memmove strcpy strncpy strcat

strncat memcmp strcmp strncmp memchr

strchr strcspn strpbrk strrchr strspn

strstr strtok memset strlen

O_RDONLY O_WRONLY O_RDWR O_APPEND O_CREAT

O_TRUNC O_BINARY

SEEK_SET SEEK_CUR SEEK_END
172 PART 1 OPERATION

APPENDIX A List of Types, Macros, Functions, and Variables Provided by C Libraries
■ sys/types.h

● Type

off_t

■ time.h

● Type

● Macros

● Variable

● Function

clock_t time_t struct tm

CLOCKS_PER_SEC

_TZ

asctime() ctime() difftime() gmtime() localtime()

mktime() strftime()
PART 1 OPERATION 173

APPENDIX B Operations Specific to C Libraries
APPENDIX B Operations Specific to C Libraries

The operations specific to the C libraries are described below.

■ Operations Specific to C Libraries

● Diagnostic information printed out by the assert function and assert function termination operation

[Diagnostic information]

Diagnostic information is output to stdout in the following form.

< Program Diagnosis *** information of fail expression >

file : File name expanded by __FILE__

line : Line number expanded by __LINE__

expression: Expression

[Termination operation]

Same as the abort function calling.

● Inspection character sets for isalnum, isalpha, iscntrl, islower, isprint, and isupper functions

• isalnum: ’0’ to ’9’, ’a’ to ’z’, or ’A’ to ’Z’

• isalpha: ’a’ to ’z’ or ’A’ to ’Z’

• iscntrl: ’\100’ to ’\037’, or ’\177’

• islower: ’a’ to ’z’

• isprint: ’\040’ to ’\176’

• isupper: ’A’ to ’Z’

● Mathematical function return value upon domain error occurrence

• q N a N

● Whether the mathematical function sets up the macro ERANGE value for errno upon underflow

condition occurrence

• ERANGE

• The detectable result value must be +0 or -0.

• The undetectable result value is undefined. It depends on the function.

● When the second argument for the fmod function is 0, the domain error must occur or the value 0 must

be returned

• The domain error must occur.

● File buffering characteristics

[Input file buffering characteristics]

• IOLBF, IOFBF: Full buffering

• IONBF: No buffering
174 PART 1 OPERATION

APPENDIX B Operations Specific to C Libraries
[Output file buffering characteristics]

• IOFBF: Full buffering

• IOLBF: Line buffering

• IONBF: No buffering

[Full buffering]

Buffering is conducted using all the preset buffer areas. When the input function is called at the time of
input from a file, any data remaining in the buffer is returned as the input from the file. If the buffer is
emptied of data or does not have sufficient data, the input from the file is received until the buffer is filled
up and then only the necessary amount is returned as the input. At the time of output to a file, the output
function writes into the buffer instead of outputting into the file. When the buffer is filled up by the write
operation, the buffer outputs its entire contents to the file.

[Line buffering]

Buffering is conducted for each output line.

[No buffering]

File input/output is implemented in compliance with the input/output request made by input/output
function calling. Unlike the other buffering operations, no data will be saved into the memory.

● %p format conversion output format for fprintf function

• The number of digits is less than 8 at 8-digit hexadecimal notation, preceding 0s are padded. Uppercase
alphabetical characters are used.

● %p format conversion input format for fscanf function

If less then 8 digits in hexadecimal notation are used (in upper- or lower-case alphabetic characters), the

leading 0s are padded. If the specified number of digits is exceeded, only the low-order part is valid.

● Length of string literal that can be treated by %s format conversion in printf function, fprintf function,

vprintf function and vprintf function

512 characters (value of BUFSIZ macro defined in stdio.h)

● Interpretation of a single "-" character appearing at a position other than the start and end of the scan-

list relative to %[format conversion]

A string of consecutive characters beginning with the character placed to the left of "-" and ending with the

character placed to the right of "-" is handled.

[Example]

%[a-c] is equal to [abc].

● abort function operation relative to an open file

Closing takes place after flushing of all streams.

● Status returned by the exit function when the argument value is other than 0, EXIT_SUCCESS, and

EXIT_FAILURE

The status to be returned is the same as for EXIT_FAILURE.
PART 1 OPERATION 175

APPENDIX B Operations Specific to C Libraries
● Floating-point number limit values

FLT_MAX 7F7F FFFF

DBL_MAX 7FEF FFFF FFFF FFFF

FLT_EPSILON 3400 0000

DBL_EPSILON 3CB0 0000 0000 0000

FLT_MIN 0080 0000

DBL_MIN 0010 0000 0000 0000

● Limitations on setjmp function and longjmp function

The interrupt environment is not supported by the libraries. Therefore, the interrupt handler cannot achieve

environment saving and the return to the interrupt handler cannot be made.

● Limitations on va_start macro

Do not use the following variable definitions for va_start macro second argument.

• char type, unsigned char type, short type, or unsigned short type (however, the pointer type for these
types can be used)

• Type having the register storage area class

• Function type

• Array type

• Type different from the type derived from existing argument extension

● File types

Files that can be handled by the libraries are divided into two types; text files and binary files. The libraries

treat the text files and binary files in the same manner except for the difference in the second argument of

the open function called upon file opening. When a binary file is specified, O_BINARY is added to the

second argument of the open function. For the open function argument, see section "8.5.1 open Function".

● div_t type and ldiv_t type

It is equivalent to an undermentioned structural body.

div_t: struct {

int quot;

int rem;

}:

ldiv_t: struct {

long int quot;

long int rem;

};

● abort function operations

When the abort function is called, all the open output streams are flushed and then all the open streams are

closed. Finally, the _abort function is called.
176 PART 1 OPERATION

APPENDIX B Operations Specific to C Libraries
● Maximum count of functions that can be registered by the atexit function

Up to 32 functions can be registered.

● exit function operations

When the exit function is called, all the functions registered by the atexit function are called in the reverse

order of registration, all the open output streams are flushed, and then all the open streams are closed.

Finally, the _exit function is called with the status value, which is delivered as the argument, retained.

When the status value is 0 or EXIT_SUCCESS, it indicates successful termination. When the status value

is EXIT_FAILURE, it indicates the unsuccessful termination.

● about accuracy of mathematical functions

The following 16 functions of mathematical functions declared in standard header file math.h calculate the

return value by the approximate calculation. Therefor, enough accuracy might not be obtained.

acos asin atan atan2 cos

sin tan cosh sinh tanh

exp log log10 pow sqrt

fmod

● The Date and Time library

When the Date and Time library is used, specify the -K LONGLONG option.

● clock_t type

The clock_t type is defined as long long int type.

Please adjust the value to become seconds if it is divided by the value of macro CLOCKS_PER_SEC.

● time_t type

The clock_t type and the time_t type are defined as long long int type.

The range of the date that can be used in the library is as follows.

Because the long long int type is used, it is not possible to connect directly with IO.

When a negative value is used to indicate before 1970, the result of the library function is not guaranteed.

The starting point January 1, 1970 00:00:00(UTC)

Minimum unit 1 second

Maximum years About 292.4 billion years.
PART 1 OPERATION 177

APPENDIX B Operations Specific to C Libraries
● About clock function and time function

Because the clock() and the time() are functions that depend on the system, it is not included in the standard

library. Please make these functions referring to "8.6 Time Function Specifications".

● About time zone

Please set the time zone to global variable _TZ.

Please set 9*3600 for JST (Japan Standard Time) because the unit of the value set to _TZ is "second".

To set _TZ, please include time.h.

Please initialize _TZ when you use the mktime function, the ctime function and the localtime function.

Please do not change the value of _TZ while executing the mktime function, the ctime function, and the

localtime function. The result when _TZ is changed is not guaranteed. Please change after executing these

functions when you change _TZ.

● About the Daylight Saving Time

There is no means to obtain information on whether the Daylight Saving Time is used. Therefore, when

using functions which use the value of the Daylight Saving Time flag, it is necessary to correct tm_isdst

which is a member of the struct tm type.

The operation of the function that uses the tm_isdst is shown as follows.

 - The localtime function sets -1 to the value of tm_isdst.

 - The ctime function returns the string literal that does not use the Daylight Saving Time.

 - The operation of the mktime function is assumed that tm_isdst is a correct value.

 - When the value of tm_isdst is -1, the mktime function doesn't use the Daylight Saving Time.

 - The mktime function doesn't modify the value of tm_isdst.

● Locale that can be used by strftime function

Only "C" locale.
178 PART 1 OPERATION

APPENDIX C Error Message
APPENDIX C Error Message

The compiler displays the error messages below.

■ Format of error messages

option -cpu is not definedE4001D

Error ID Error message
E4001D

D : Driver
B : Compiler

Tool identifier

Error Level I : Information message
W : Warning message
E : Error message
F : Fatal error message

Error number (4 digits)
PART 1 OPERATION 179

APPENDIX C Error Message
[Explanation]

Not support this option on this version.

[Explanation]

Not specified OPT911.

[Explanation]

Option -cpu is not defined.

[Explanation]

Not support C++ source file.

[Explanation]

Illegal cpu name.

[Explanation]

CPU information file not found.

[Explanation]

CPU information not found.

W1001D Not support this option on this version

W1002D Not specified OPT911

E4001D option -cpu is not defined

E4002D Not support C++ source file

E4003D illegal cpu name

E4004D CPU information file not found

E4005D CPU information not found
180 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Not exist file.

[Explanation]

Source filename not specified.

[Explanation]

Illegal option-name.

[Explanation]

Illegal value.

[Explanation]

Illegal sub-option.

[Explanation]

Illegal parameter description.

[Explanation]

Cannot open option-file.

E4006D Not exist file

F9001D source filename not specified

F9002D illegal option-name

F9003D illegal value

F9004D illegal sub-option

F9005D illegal parameter description

F9006D cannot open option-file
PART 1 OPERATION 181

APPENDIX C Error Message
[Explanation]

Nested option-file exceeds 8.

[Explanation]

Insufficient memory.

[Explanation]

Cannot open file.

[Explanation]

Illegal section specification.

[Explanation]

Illegal tool-item.

[Explanation]

Tool execute is failed.

[Explanation]

Illegal source file name.

F9007D nested option-file exceeds 8

F9008D insufficient memory

F9009D cannot open file

F9010D illegal section specification

F9011D illegal tool-item

F9012D tool execute is failed

F9013D illegal source file name
182 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Internal error.

[Explanation]

Receive SIGHUP signal.

[Explanation]

Receive SIGINT signal.

[Explanation]

Receive SIGBUS signal.

[Explanation]

Receive SIGSEGV signal.

[Explanation]

Receive SIGTERM signal.

[Explanation]

Mismatch CPU information file version.

F9014D internal error

F9015D SIGHUP

F9016D SIGINT

F9017D SIGBUS

F9018D SIGSEGV

F9019D SIGTERM

F9020D mismatch CPU information file version
PART 1 OPERATION 183

APPENDIX C Error Message
[Explanation]

Internal error.

[Explanation]

Insufficient memory.

[Explanation]

Illegal CPU information file format.

[Explanation]

Missing closing quote.

[Explanation]

"#" not expected here.

[Explanation]

Expected a ")".

[Explanation]

Type qualifier specified more than once.

F9021D internal error

F9022D insufficient memory

F9023D illegal CPU information file format

I0008B missing closing quote

I0010B "#" not expected here

I0018B expected a ")"

I0083B type qualifier specified more than once
184 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Non-void function "entity" should return a value.

[Explanation]

Expression must have pointer-to-object type.

[Explanation]

External/internal linkage conflict with previous declaration.

[Explanation]

Entity-kind "entity" was declared but never referenced.

[Explanation]

Argument is incompatible with formal parameter.

[Explanation]

Argument is incompatible with corresponding format string conversion.

[Explanation]

Zero used for undefined preprocessing identifier.

I0117B non-void function "entity" should return a value

I0142B expression must have pointer-to-object type

I0172B external/internal linkage conflict with previous declaration

I0177B entity-kind "entity" was declared but never referenced

I0180B argument is incompatible with formal parameter

I0181B argument is incompatible with corresponding format string conversion

I0193B zero used for undefined preprocessing identifier
PART 1 OPERATION 185

APPENDIX C Error Message
[Explanation]

Function declared implicitly.

[Explanation]

Trailing comma is nonstandard.

[Explanation]

Controlling expression is constant.

[Explanation]

Selector expression is constant.

[Explanation]

Explicit type is missing ("int" assumed).

[Explanation]

Access control not specified ("xxxx" by default).

[Explanation]

Duplicate friend declaration.

I0223B function declared implicitly

I0228B trailing comma is nonstandard

I0236B controlling expression is constant

I0237B selector expression is constant

I0260B explicit type is missing ("int" assumed)

I0261B access control not specified ("xxxx" by default)

I0324B duplicate friend declaration
186 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Value copied to temporary, reference to temporary used.

[Explanation]

Extra ";" ignored.

[Explanation]

Entity-kind "entity" has an operator new xxxx() but no default operator delete xxxx().

[Explanation]

Entity-kind "entity" has a default operator delete xxxx() but no operator new xxxx().

[Explanation]

Destructor for base class "type" is not virtual.

[Explanation]

Entity-kind "entity" is not used in declaring the parameter types of entity-kind "entity".

I0340B value copied to temporary, reference to temporary used

I0381B extra ";" ignored

I0399B entity-kind "entity" has an operator new xxxx() but no default operator delete xxxx()

I0400B entity-kind "entity" has a default operator delete xxxx() but no operator new xxxx()

I0401B destructor for base class "type" is not virtual

I0445B entity-kind "entity" is not used in declaring the parameter types of entity-kind
"entity"
PART 1 OPERATION 187

APPENDIX C Error Message
[Explanation]

Omission of "xxxx" is nonstandard.

[Explanation]

Entity-kind "entity" redeclared "inline" after being called.

[Explanation]

Inline entity-kind "entity" cannot be explicitly instantiated.

[Explanation]

Use of a local type to specify an exception.

[Explanation]

Redundant type in exception specification.

[Explanation]

Entity-kind "entity" was set but never used.

[Explanation]

"entity" is reserved for future use as a keyword.

I0451B omission of "xxxx" is nonstandard

I0479B entity-kind "entity" redeclared "inline" after being called

I0487B inline entity-kind "entity" cannot be explicitly instantiated

I0534B use of a local type to specify an exception

I0535B redundant type in exception specification

I0550B entity-kind "entity" was set but never used

I0560B "entity" is reserved for future use as a keyword
188 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Calling convention specified here is ignored.

[Explanation]

Calling convention is ignored for this type.

[Explanation]

Call of entity-kind "entity" (declared at line xxxx) cannot be inlined.

[Explanation]

Entity-kind "entity" cannot be inlined.

[Explanation]

Type qualifier on return type is meaningless.

[Explanation]

Entity-kind "entity" was never referenced.

[Explanation]

Support for placement delete is disabled.

I0650B calling convention specified here is ignored

I0652B calling convention is ignored for this type

I0678B call of entity-kind "entity" (declared at line xxxx) cannot be inlined

I0679B entity-kind "entity" cannot be inlined

I0815B type qualifier on return type is meaningless

I0826B entity-kind "entity" was never referenced

I0831B support for placement delete is disabled
PART 1 OPERATION 189

APPENDIX C Error Message
[Explanation]

Omission of explicit type is nonstandard ("int" assumed).

[Explanation]

Effect of this "#pragma pack" directive is local to entity-kind "entity".

[Explanation]

Exception specification ignored.

[Explanation]

A type qualifier cannot be applied to a function type.

[Explanation]

Return type "int" omitted in declaration of function "main".

[Explanation]

Missing return statement at end of non-void "entity".

[Explanation]

Affinity has shared type, not pointer to shared.

I0837B omission of explicit type is nonstandard ("int" assumed)

I0863B effect of this "#pragma pack" directive is local to entity-kind "entity"

I0866B exception specification ignored

I0925B a type qualifier cannot be applied to a function type

I0938B return type "int" omitted in declaration of function "main"

I0940B missing return statement at end of non-void "entity"

I0997B affinity has shared type (not pointer to shared)
190 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Affinity expression ignored in nested upc_forall.

[Explanation]

Bracketed expression is assumed to be a block size specification rather than an array

dimension.

[Explanation]

Last line of file ends without a newline.

[Explanation]

Last line of file ends with a backslash.

[Explanation]

Unrecognized token.

[Explanation]

Nested comment is not allowed.

[Explanation]

Unrecognized preprocessing directive.

I0998B affinity expression ignored in nested upc_forall

I0999B bracketed expression is assumed to be a block size specification rather than an array
dimension

W1001B last line of file ends without a newline

W1002B last line of file ends with a backslash

W1007B unrecognized token

W1009B nested comment is not allowed

W1011B unrecognized preprocessing directive
PART 1 OPERATION 191

APPENDIX C Error Message

[Explanation]

Parsing restarts here after previous syntax error.

[Explanation]

Extra text after expected end of preprocessing directive.

[Explanation]

Type qualifiers are meaningless in this declaration.

[Explanation]

Invalid hexadecimal number.

[Explanation]

Integer constant is too large.

[Explanation]

Invalid octal digit.

[Explanation]

Too many characters in character constant.

W1012B parsing restarts here after previous syntax error

W1014B extra text after expected end of preprocessing directive

W1021B type qualifiers are meaningless in this declaration

W1022B invalid hexadecimal number

W1023B integer constant is too large

W1024B invalid octal digit

W1026B too many characters in character constant
192 PART 1 OPERATION

APPENDIX C Error Message

[Explanation]

Character value is out of range.

[Explanation]

Floating constant is out of range.

[Explanation]

Expression must have arithmetic type.

[Explanation]

Directive is not allowed. An #else has already appeared.

[Explanation]

Expected an identifier.

[Explanation]

Operand types are incompatible ("type" and "type").

[Explanation]

#undef may not be used on this predefined name.

W1027B character value is out of range

W1030B floating constant is out of range

W1032B expression must have arithmetic type

W1038B directive is not allowed - an #else has already appeared

W1040B expected an identifier

W1042B operand types are incompatible ("type" and "type")

W1045B #undef may not be used on this predefined name
PART 1 OPERATION 193

APPENDIX C Error Message

[Explanation]

This predefined name may not be redefined.

[Explanation]

Incompatible redefinition of macro "entity" (declared at line xxxx).

[Explanation]

Too few arguments in macro invocation.

[Explanation]

Too many arguments in macro invocation.

[Explanation]

Integer operation result is out of range.

[Explanation]

Shift count is negative.

 [Explanation]

Shift count is too large.

W1046B this predefined name may not be redefined

W1047B incompatible redefinition of macro "entity" (declared at line xxxx)

W1054B too few arguments in macro invocation

W1055B too many arguments in macro invocation

W1061B integer operation result is out of range

W1062B shift count is negative

W1063B shift count is too large
194 PART 1 OPERATION

APPENDIX C Error Message

[Explanation]

Declaration does not declare anything.

[Explanation]

Expected a ";".

[Explanation]

Enumeration value is out of "int" range.

[Explanation]

Integer conversion resulted in a change of sign.

[Explanation]

Integer conversion resulted in truncation.

[Explanation]

Incomplete type is not allowed.

[Explanation]

Argument to macro is empty.

W1064B declaration does not declare anything

W1065B expected a ";"

W1066B enumeration value is out of "int" range

W1068B integer conversion resulted in a change of sign

W1069B integer conversion resulted in truncation

W1070B incomplete type is not allowed

W1076B argument to macro is empty
PART 1 OPERATION 195

APPENDIX C Error Message
 [Explanation]

This declaration has no storage class or type specifier.

 [Explanation]

A storage class may not be specified here.

[Explanation]

Storage class is not first.

[Explanation]

Type qualifier specified more than once.

[Explanation]

Invalid combination of type specifiers.

[Explanation]

Invalid storage class for a parameter.

[Explanation]

Invalid storage class for a function.

W1077B this declaration has no storage class or type specifier

W1080B a storage class may not be specified here

W1082B storage class is not first

W1083B type qualifier specified more than once

W1084B invalid combination of type specifiers

W1085B invalid storage class for a parameter

W1086B invalid storage class for a function
196 PART 1 OPERATION

APPENDIX C Error Message

 [Explanation]

A translation unit must contain at least one declaration.

[Explanation]

A declaration here must declare a parameter.

[Explanation]

"xxxx" has already been declared in the current scope.

 [Explanation]

Forward declaration of enum type is nonstandard.

[Explanation]

Zero-length bit field must be unnamed.

 [Explanation]

Signed bit field of length 1.

[Explanation]

Statement is unreachable.

W1096B a translation unit must contain at least one declaration

W1099B a declaration here must declare a parameter

W1101B "xxxx" has already been declared in the current scope

W1102B forward declaration of enum type is nonstandard

W1107B zero-length bit field must be unnamed

W1108B signed bit field of length 1

W1111B statement is unreachable
PART 1 OPERATION 197

APPENDIX C Error Message

 [Explanation]

Entity-kind "entity" was referenced but not defined.

[Explanation]

Non-void function "entity" should return a value.

[Explanation]

A void function may not return a value.

[Explanation]

Return value type does not match the function type.

[Explanation]

Expected a statement.

[Explanation]

Loop is not reachable from preceding code.

[Explanation]

A block-scope function may only have extern storage class.

W1114B entity-kind "entity" was referenced but not defined

W1117B non-void function "entity" should return a value

W1118B a void function may not return a value

W1120B return value type does not match the function type

W1127B expected a statement

W1128B loop is not reachable from preceding code

W1129B a block-scope function may only have extern storage class
198 PART 1 OPERATION

APPENDIX C Error Message

[Explanation]

Expression must be a modifiable lvalue.

[Explanation]

Taking the address of a register variable is not allowed.

[Explanation]

Taking the address of a bit field is not allowed.

[Explanation]

Too many arguments in function call.

[Explanation]

Expression must have pointer-to-object type.

 [Explanation]

A value of type "type" cannot be used to initialize an entity of type "type".

 [Explanation]

Declaration is incompatible with entity-kind "entity" (declared at line xxxx).

W1137B expression must be a modifiable lvalue

W1138B taking the address of a register variable is not allowed

W1139B taking the address of a bit field is not allowed

W1140B too many arguments in function call

W1142B expression must have pointer-to-object type

W1144B a value of type "type" cannot be used to initialize an entity of type "type"

W1147B declaration is incompatible with entity-kind "entity" (declared at line xxxx)
PART 1 OPERATION 199

APPENDIX C Error Message

[Explanation]

Conversion of nonzero integer to pointer.

[Explanation]

Old-fashioned assignment operator.

[Explanation]

Old-fashioned initializer.

[Explanation]

Declaration is incompatible with previous "entity" (declared at line xxxx).

[Explanation]

Unrecognized #pragma.

[Explanation]

Too few arguments in function call.

[Explanation]

Invalid floating constant.

W1152B conversion of nonzero integer to pointer

W1155B old-fashioned assignment operator

W1156B old-fashioned initializer

W1159B declaration is incompatible with previous "entity" (declared at line xxxx)

W1161B unrecognized #pragma

W1165B too few arguments in function call

W1166B invalid floating constant
200 PART 1 OPERATION

APPENDIX C Error Message

[Explanation]

Argument of type "type" is incompatible with parameter of type "type".

[Explanation]

Pointer points outside of underlying object.

[Explanation]

Invalid type conversion.

[Explanation]

External/internal linkage conflict with previous declaration.

[Explanation]

Floating-point value does not fit in required integral type

[Explanation]

Expression has no effect.

[Explanation]

Subscript out of range.

W1167B argument of type "type" is incompatible with parameter of type "type"

W1170B pointer points outside of underlying object

W1171B invalid type conversion

W1172B external/internal linkage conflict with previous declaration

W1173B floating-point value does not fit in required integral type

W1174B expression has no effect

W1175B subscript out of range
PART 1 OPERATION 201

APPENDIX C Error Message

[Explanation]

Entity-kind "entity" was declared but never referenced.

[Explanation]

"&" applied to an array has no effect.

[Explanation]

Right operand of "%" is zero.

[Explanation]

Argument is incompatible with formal parameter.

[Explanation]

Argument is incompatible with corresponding format string conversion.

[Explanation]

Type of cast must be integral.

[Explanation]

Dynamic initialization in unreachable code.

W1177B entity-kind "entity" was declared but never referenced

W1178B "&" applied to an array has no effect

W1179B right operand of "%" is zero

W1180B argument is incompatible with formal parameter

W1181B argument is incompatible with corresponding format string conversion

W1183B type of cast must be integral

W1185B dynamic initialization in unreachable code
202 PART 1 OPERATION

APPENDIX C Error Message

[Explanation]

Pointless comparison of unsigned integer with zero.

[Explanation]

Use of "=" where "==" may have been intended.

[Explanation]

Enumerated type mixed with another type.

[Explanation]

Type qualifier is meaningless on cast type.

[Explanation]

Unrecognized character escape sequence.

[Explanation]

The format string requires additional arguments.

[Explanation]

The format string ends before this argument.

W1186B pointless comparison of unsigned integer with zero

W1187B use of "=" where "==" may have been intended

W1188B enumerated type mixed with another type

W1191B type qualifier is meaningless on cast type

W1192B unrecognized character escape sequence

W1224B the format string requires additional arguments

W1225B the format string ends before this argument
PART 1 OPERATION 203

APPENDIX C Error Message

[Explanation]

Invalid format string conversion.

[Explanation]

Trailing comma is nonstandard.

[Explanation]

Bit field cannot contain all values of the enumerated type.

[Explanation]

Nonstandard type for a bit field.

[Explanation]

Declaration is not visible outside of function.

[Explanation]

Old-fashioned typedef of "void" ignored.

[Explanation]

Left operand is not a struct or union containing this field.

W1226B invalid format string conversion

W1228B trailing comma is nonstandard

W1229B bit field cannot contain all values of the enumerated type

W1230B nonstandard type for a bit field

W1231B declaration is not visible outside of function

W1232B old-fashioned typedef of "void" ignored

W1233B left operand is not a struct or union containing this field
204 PART 1 OPERATION

APPENDIX C Error Message

[Explanation]

Pointer does not point to struct or union containing this field.

[Explanation]

Controlling expression is constant.

[Explanation]

Duplicate specifier in declaration.

[Explanation]

Const entity-kind "entity" requires an initializer.

[Explanation]

Explicit type is missing ("int" assumed).

[Explanation]

Old-style parameter list (anachronism).

[Explanation]

NULL reference is not allowed.

W1234B pointer does not point to struct or union containing this field

W1236B controlling expression is constant

W1240B duplicate specifier in declaration

W1257B const entity-kind "entity" requires an initializer

W1260B explicit type is missing ("int" assumed)

W1267B old-style parameter list (anachronism)

W1284B NULL reference is not allowed
PART 1 OPERATION 205

APPENDIX C Error Message

[Explanation]

Copy constructor for class "type" is ambiguous.

[Explanation]

Invalid union member -- class "type" has a disallowed member function.

[Explanation]

Invalid use of non-lvalue array.

[Explanation]

Typedef name has already been declared (with same type).

[Explanation]

Default argument of type "type" is incompatible with parameter of type "type".

[Explanation]

Type qualifier is not allowed on this function.

[Explanation]

"inline" is not allowed.

W1290B copy constructor for class "type" is ambiguous

W1294B invalid union member -- class "type" has a disallowed member function

W1296B invalid use of non-lvalue array

W1301B typedef name has already been declared (with same type)

W1310B default argument of type "type" is incompatible with parameter of type "type"

W1313B type qualifier is not allowed on this function

W1326B "inline" is not allowed
206 PART 1 OPERATION

APPENDIX C Error Message

[Explanation]

Entity-kind "entity" is inaccessible.

[Explanation]

Class "type" has no suitable copy constructor.

[Explanation]

Linkage specification is not allowed.

[Explanation]

Linkage specification is incompatible with previous "entity" (declared at line xxxx).

[Explanation]

"operator xxxx" must be a member function.

[Explanation]

First parameter of deallocation function must be of type "void *".

[Explanation]

Base class name required -- "type" assumed (anachronism).

W1330B entity-kind "entity" is inaccessible

W1334B class "type" has no suitable copy constructor

W1335B linkage specification is not allowed

W1337B linkage specification is incompatible with previous "entity" (declared at line xxxx)

W1341B "operator" xxxx must be a member function

W1354B first parameter of deallocation function must be of type "void *"

W1358B base class name required -- "type" assumed (anachronism)
PART 1 OPERATION 207

APPENDIX C Error Message

[Explanation]

Assignment to "this" (anachronism).

[Explanation]

"overload" keyword used (anachronism).

[Explanation]

Entity-kind "entity" defines no constructor to initialize the following.

[Explanation]

Entity-kind "entity" has an uninitialized const field.

[Explanation]

Declaration requires a typedef name.

[Explanation]

Cast of bound function to normal function pointer (anachronism).

[Explanation]

Extra ";" ignored.

W1361B assignment to "this" (anachronism)

W1362B "overload" keyword used (anachronism)

W1368B entity-kind "entity" defines no constructor to initialize the following:

W1370B entity-kind "entity" has an uninitialized const field

W1375B declaration requires a typedef name

W1379B cast of bound function to normal function pointer (anachronism)

W1381B extra ";" ignored
208 PART 1 OPERATION

APPENDIX C Error Message

[Explanation]

Nonstandard member constant declaration (standard form is a static const integral

member).

[Explanation]

Delete array size expression used (anachronism).

[Explanation]

Single-argument function used for postfix "xxxx" (anachronism).

[Explanation]

Cast to array type is nonstandard (treated as cast to "type").

[Explanation]

Entity-kind "entity" has already been declared.

[Explanation]

Using nested entity-kind "entity" (anachronism).

[Explanation]

Delete of pointer to incomplete class.

W1382B nonstandard member constant declaration (standard form is a static const integral
member)

W1387B delete array size expression used (anachronism)

W1395B single-argument function used for postfix "xxxx" (anachronism)

W1398B cast to array type is nonstandard (treated as cast to "type")

W1403B entity-kind "entity" has already been declared

W1406B using nested entity-kind "entity" (anachronism)

W1414B delete of pointer to incomplete class
PART 1 OPERATION 209

APPENDIX C Error Message

[Explanation]

Dollar sign ("$") used in identifier.

[Explanation]

Temporary used for initial value of reference to non-const (anachronism).

[Explanation]

Qualified name is not allowed in member declaration.

[Explanation]

Enumerated type mixed with another type (anachronism).

[Explanation]

Returning reference to local temporary.

[Explanation]

Entity-kind "entity" is not used in declaring the parameter types of entity-kind "entity".

[Explanation]

The type "long long" is nonstandard.

W1425B dollar sign ("$") used in identifier

W1426B temporary used for initial value of reference to non-const (anachronism)

W1427B qualified name is not allowed in member declaration

W1428B enumerated type mixed with another type (anachronism)

W1430B returning reference to local temporary

W1445B entity-kind "entity" is not used in declaring the parameter types of entity-kind
"entity"

W1450B the type "long long" is nonstandard
210 PART 1 OPERATION

APPENDIX C Error Message

[Explanation]

Omission of "xxxx" is nonstandard.

[Explanation]

Argument of type "type" is incompatible with template parameter of type "type".

[Explanation]

Declaration of "xxxx" hides function parameter.

[Explanation]

Initial value of reference to non-const must be an lvalue.

[Explanation]

Tag kind of xxxx is incompatible with declaration of entity-kind "entity" (declared at line

xxxx).

[Explanation]

Member function typedef (allowed for cfront compatibility).

[Explanation]

Entity-kind "entity" is an inaccessible type (allowed for cfront compatibility).

W1451B omission of "xxxx" is nonstandard

W1458B argument of type "type" is incompatible with template parameter of type "type"

W1460B declaration of "xxxx" hides function parameter

W1461B initial value of reference to non-const must be an lvalue

W1469B tag kind of xxxx is incompatible with declaration of entity-kind "entity" (declared at
line xxxx)

W1472B member function typedef (allowed for cfront compatibility)

W1482B entity-kind "entity" is an inaccessible type (allowed for cfront compatibility)
PART 1 OPERATION 211

APPENDIX C Error Message

[Explanation]

Declaring a void parameter list with a typedef is nonstandard.

[Explanation]

Global entity-kind "entity" used instead of entity-kind "entity" (cfront compatibility).

[Explanation]

Declaration of "xxxx" hides template parameter.

[Explanation]

Nonstandard form for taking the address of a member function.

[Explanation]

Type qualifier on a reference type is not allowed.

[Explanation]

A value of type "type" cannot be assigned to an entity of type "type".

[Explanation]

Pointless comparison of unsigned integer with a negative constant.

W1494B declaring a void parameter list with a typedef is nonstandard

W1495B global entity-kind "entity" used instead of entity-kind "entity" (cfront compatibility)

W1497B declaration of "xxxx" hides template parameter

W1504B nonstandard form for taking the address of a member function

W1512B type qualifier on a reference type is not allowed

W1513B a value of type "type" cannot be assigned to an entity of type "type"

W1514B pointless comparison of unsigned integer with a negative constant
212 PART 1 OPERATION

APPENDIX C Error Message

[Explanation]

Const object requires an initializer.

[Explanation]

Nonstandard preprocessing directive.

[Explanation]

Initialization with "{...}" expected for aggregate object.

[Explanation]

Pointless friend declaration.

[Explanation]

"." used in place of "::" to form a qualified name (cfront anachronism).

[Explanation]

Non-const function called for const object (anachronism).

[Explanation]

Handler is potentially masked by previous handler for type "type".

W1516B const object requires an initializer

W1518B nonstandard preprocessing directive

W1520B initialization with "{...}" expected for aggregate object

W1522B pointless friend declaration

W1523B "." used in place of "::" to form a qualified name (cfront anachronism)

W1524B non-const function called for const object (anachronism)

W1533B handler is potentially masked by previous handler for type "type"
PART 1 OPERATION 213

APPENDIX C Error Message

[Explanation]

Omission of exception specification is incompatible with previous entity-kind "entity"

(declared at line xxxx).

[Explanation]

Use of a local type to declare a nonlocal variable.

[Explanation]

Use of a local type to declare a function.

[Explanation]

Transfer of control bypasses initialization of.

[Explanation]

Entity-kind "entity" is used before its value is set.

[Explanation]

Entity-kind "entity" was set but never used.

[Explanation]

Exception specification is not allowed.

W1541B omission of exception specification is incompatible with previous entity-kind "entity"
(declared at line xxxx)

W1544B use of a local type to declare a nonlocal variable

W1545B use of a local type to declare a function

W1546B transfer of control bypasses initialization of:

W1549B entity-kind "entity" is used before its value is set

W1550B entity-kind "entity" was set but never used

W1552B exception specification is not allowed
214 PART 1 OPERATION

APPENDIX C Error Message

[Explanation]

External/internal linkage conflict for entity-kind "entity" (declared at line xxxx).

[Explanation]

Entity-kind "entity" will not be called for implicit or explicit conversions.

[Explanation]

"entity" is reserved for future use as a keyword.

[Explanation]

Floating-point template parameter is nonstandard.

[Explanation]

This pragma must immediately precede a declaration.

[Explanation]

This pragma must immediately precede a statement.

[Explanation]

This pragma must immediately precede a declaration or statement.

W1553B external/internal linkage conflict for entity-kind "entity" (declared at line xxxx)

W1554B entity-kind "entity" will not be called for implicit or explicit conversions

W1560B "entity" is reserved for future use as a keyword

W1605B floating-point template parameter is nonstandard

W1606B this pragma must immediately precede a declaration

W1607B this pragma must immediately precede a statement

W1608B this pragma must immediately precede a declaration or statement
PART 1 OPERATION 215

APPENDIX C Error Message

[Explanation]

This kind of pragma may not be used here.

[Explanation]

Entity-kind "entity" does not match "entity". --virtual function override intended.

[Explanation]

Overloaded virtual function "entity" is only partially overridden in entity-kind "entity".

[Explanation]

Pointer-to-member-function cast to pointer to function.

[Explanation]

Struct or union declare no named members.

[Explanation]

Nonstandard unnamed field.

[Explanation]

Nonstandard unnamed member.

W1609B this kind of pragma may not be used here

W1610B entity-kind "entity" does not match "entity" -- virtual function override intended?

W1611B overloaded virtual function "entity" is only partially overridden in entity-kind "entity"

W1617B pointer-to-member-function cast to pointer to function

W1618B struct or union declare no named members

W1619B nonstandard unnamed field

W1620B nonstandard unnamed member
216 PART 1 OPERATION

APPENDIX C Error Message

[Explanation]

Precompiled header file "xxxx" is either invalid or not generated by this version of the

compiler.

[Explanation]

Precompiled header file "xxxx" was not generated in this directory.

[Explanation]

Header files used to generate precompiled header file "xxxx" have changed.

[Explanation]

The command line options do not match those used when precompiled header file "xxxx"

was created.

[Explanation]

The initial sequence of preprocessing directives is not compatible with those of

precompiled header file "xxxx".

[Explanation]

Memory usage conflict with precompiled header file "xxxx".

W1626B precompiled header file "xxxx" is either invalid or not generated by this version of
the compiler

W1627B precompiled header file "xxxx" was not generated in this directory

W1628B header files used to generate precompiled header file "xxxx" have changed

W1629B the command line options do not match those used when precompiled header file
"xxxx" was created

W1630B the initial sequence of preprocessing directives is not compatible with those of
precompiled header file "xxxx"

W1634B memory usage conflict with precompiled header file "xxxx"
PART 1 OPERATION 217

APPENDIX C Error Message

[Explanation]

Insufficient preallocated memory for generation of precompiled header file (xxxx bytes

required).

[Explanation]

Very large entity in program prevents generation of precompiled header file.

[Explanation]

"xxxx" is an unrecognized __declspec attribute.

[Explanation]

Calling convention specified here is ignored.

[Explanation]

The modifier "xxxx" is not allowed on this declaration.

[Explanation]

Transfer of control into a try block.

[Explanation]

Inline specification is incompatible with previous "entity" (declared at line xxxx).

W1639B insufficient preallocated memory for generation of precompiled header file (xxxx
bytes required)

W1640B very large entity in program prevents generation of precompiled header file

W1645B "xxxx" is an unrecognized __declspec attribute

W1650B calling convention specified here is ignored

W1655B the modifier "xxxx" is not allowed on this declaration

W1656B transfer of control into a try block

W1657B inline specification is incompatible with previous "entity" (declared at line xxxx)
218 PART 1 OPERATION

APPENDIX C Error Message

[Explanation]

Call of pure virtual function.

[Explanation]

"asm" function is nonstandard.

[Explanation]

Ellipsis with no explicit parameters is nonstandard.

[Explanation]

"&..." is nonstandard.

[Explanation]

Temporary used for initial value of reference to const volatile (anachronism).

[Explanation]

Initial value of reference to const volatile must be an lvalue.

[Explanation]

Using out-of-scope declaration of entity-kind "entity" (declared at line xxxx).

W1662B call of pure virtual function

W1667B "asm" function is nonstandard

W1668B ellipsis with no explicit parameters is nonstandard

W1669B "&..." is nonstandard

W1672B temporary used for initial value of reference to const volatile (anachronism)

W1674B initial value of reference to const volatile must be an lvalue

W1676B using out-of-scope declaration of entity-kind "entity" (declared at line xxxx)
PART 1 OPERATION 219

APPENDIX C Error Message

[Explanation]

"xxxx" not found on pack alignment stack.

[Explanation]

Empty pack alignment stack.

[Explanation]

Entity-kind "entity", required for copy that was eliminated, is inaccessible.

[Explanation]

Entity-kind "entity", required for copy that was eliminated, is not callable because

reference parameter cannot be bound to rvalue.

[Explanation]

Incrementing a bool value is deprecated.

[Explanation]

Expression must have bool type (or be convertible to bool).

[Explanation]

__based does not precede a pointer operator, __based ignored.

W1688B "xxxx" not found on pack alignment stack

W1689B empty pack alignment stack

W1691B entity-kind "entity", required for copy that was eliminated, is inaccessible

W1692B entity-kind "entity", required for copy that was eliminated, is not callable because
reference parameter cannot be bound to rvalue

W1708B incrementing a bool value is deprecated

W1711B expression must have bool type (or be convertible to bool)

W1715B __based does not precede a pointer operator, __based ignored.
220 PART 1 OPERATION

APPENDIX C Error Message

[Explanation]

Mutable is not allowed.

[Explanation]

Redeclaration of entity-kind "entity" is not allowed to alter its access.

[Explanation]

Nonstandard format string conversion.

[Explanation]

Use of alternative token "%:" appears to be unintended.

[Explanation]

Invalid combination of DLL attributes.

[Explanation]

Array with incomplete element type is nonstandard.

[Explanation]

Using-declaration ignored -- it refers to the current namespace.

W1719B mutable is not allowed

W1720B redeclaration of entity-kind "entity" is not allowed to alter its access

W1721B nonstandard format string conversion

W1723B use of alternative token "%:" appears to be unintended

W1729B invalid combination of DLL attributes

W1731B array with incomplete element type is nonstandard

W1737B using-declaration ignored -- it refers to the current namespace
PART 1 OPERATION 221

APPENDIX C Error Message

[Explanation]

Using-declaration of entity-kind "entity" ignored.

[Explanation]

Memory attribute ignored.

[Explanation]

Memory attribute specified more than once.

[Explanation]

Calling convention specified more than once.

[Explanation]

Conversion from pointer to smaller integer.

[Explanation]

Exception specification for implicitly declared virtual entity-kind "entity" is incompatible

with that of overridden entity-kind "entity".

[Explanation]

Use of alternative token "<:" appears to be unintended.

W1741B using-declaration of entity-kind "entity" ignored

W1745B memory attribute ignored

W1747B memory attribute specified more than once

W1748B calling convention specified more than once

W1767B conversion from pointer to smaller integer

W1768B exception specification for implicitly declared virtual entity-kind "entity" is
incompatible with that of overridden entity-kind "entity"

W1772B use of alternative token "<:" appears to be unintended
222 PART 1 OPERATION

APPENDIX C Error Message

[Explanation]

Reference is to entity-kind "entity" (declared at line xxxx) -- under old for-init scoping

rules it would have been entity-kind "entity" (declared at line xxxx).

[Explanation]

Empty comment interpreted as token-pasting operator "##".

[Explanation]

Specifying a default argument when redeclaring an unreferenced function template is

nonstandard.

[Explanation]

Omission of exception specification is incompatible with entity-kind "entity" (declared at

line xxxx).

[Explanation]

Const entity-kind "entity" requires an initializer -- class "type" has no explicitly declared

default constructor.

W1780B reference is to entity-kind "entity" (declared at line xxxx) -- under old for-init scoping
rules it would have been entity-kind "entity" (declared at line xxxx)

W1783B empty comment interpreted as token-pasting operator "##"

W1802B specifying a default argument when redeclaring an unreferenced function template is
nonstandard

W1806B omission of exception specification is incompatible with entity-kind "entity"
(declared at line xxxx)

W1811B const entity-kind "entity" requires an initializer -- class "type" has no explicitly
declared default constructor
PART 1 OPERATION 223

APPENDIX C Error Message

[Explanation]

Const object requires an initializer -- class "type" has no explicitly declared default

constructor.

[Explanation]

Type qualifier on return type is meaningless.

[Explanation]

Static data member declaration is not allowed in this class.

[Explanation]

"..." is not allowed.

[Explanation]

Virtual inline entity-kind "entity" was never defined.

[Explanation]

Entity-kind "entity" was never referenced.

W1812B const object requires an initializer -- class "type" has no explicitly declared default
constructor

W1815B type qualifier on return type is meaningless

W1817B static data member declaration is not allowed in this class

W1819B "..." is not allowed

W1825B virtual inline entity-kind "entity" was never defined

W1826B entity-kind "entity" was never referenced
224 PART 1 OPERATION

APPENDIX C Error Message

[Explanation]

Double used for "long double" in generated C code.

[Explanation]

Entity-kind "entity" has no corresponding operator deletexxxx (to be called if an

exception is thrown during initialization of an allocated object).

[Explanation]

Support for placement delete is disabled.

[Explanation]

Pointer or reference to incomplete type is not allowed.

[Explanation]

Returning reference to local variable.

[Explanation]

Omission of explicit type is nonstandard ("int" assumed).

W1829B double used for "long double" in generated C code

W1830B entity-kind "entity" has no corresponding operator deletexxxx (to be called if an
exception is thrown during initialization of an allocated object)

W1831B support for placement delete is disabled

W1833B pointer or reference to incomplete type is not allowed

W1836B returning reference to local variable

W1837B omission of explicit type is nonstandard ("int" assumed)
PART 1 OPERATION 225

APPENDIX C Error Message

[Explanation]

Expression must have arithmetic or enum type.

[Explanation]

Type of cast must be integral or enum.

[Explanation]

__declspec attributes ignored.

[Explanation]

Declaration of "size_t" does not match the expected type "type".

[Explanation]

Invalid multibyte character sequence.

[Explanation]

Type qualifier ignored.

W1848B expression must have arithmetic or enum type

W1850B type of cast must be integral or enum

W1860B __declspec attributes ignored

W1867B declaration of "size_t" does not match the expected type "type"

W1870B invalid multibyte character sequence

W1902B type qualifier ignored
226 PART 1 OPERATION

APPENDIX C Error Message

[Explanation]

Ambiguous class member reference -- entity-kind "entity" (declared at line xxxx) used in

preference to entity-kind "entity" (declared at line xxxx).

[Explanation]

A member with reference type is not allowed in a union.

[Explanation]

Redeclaration of "entity" alters its access.

[Explanation]

Return type "int" omitted in declaration of function "main".

[Explanation]

Missing return statement at end of non-void "entity".

[Explanation]

Duplicate using-declaration of "entity" ignored.

W1912B ambiguous class member reference -- entity-kind "entity" (declared at line xxxx) used
in preference to entity-kind "entity" (declared at line xxxx)

W1934B a member with reference type is not allowed in a union

W1936B redeclaration of "entity" alters its access

W1938B return type "int" omitted in declaration of function "main"

W1940B missing return statement at end of non-void "entity"

W1941B duplicate using-declaration of "entity" ignored
PART 1 OPERATION 227

APPENDIX C Error Message

[Explanation]

Enum bit-fields are always unsigned, but enum type includes negative enumerator.

[Explanation]

Name following "template" must be a member template.

[Explanation]

Name following "template" must have a template argument list.

[Explanation]

Nonstandard local-class friend declaration. -- no prior declaration in the enclosing

scope.

[Explanation]

Specifying a default argument when redeclaring an unreferenced function template is

nonstandard.

[Explanation]

Return type of function "main" must be "int".

W1942B enum bit-fields are always unsigned, but enum type includes negative enumerator

W1946B name following "template" must be a member template

W1947B name following "template" must have a template argument list

W1948B nonstandard local-class friend declaration. -- no prior declaration in the enclosing
scope

W1949B specifying a default argument when redeclaring an unreferenced function template is
nonstandard

W1951B return type of function "main" must be "int"
228 PART 1 OPERATION

APPENDIX C Error Message

[Explanation]

Declared size for bit-field is larger than the size of the bit-field-type.

[Explanation]

Use of a type with no linkage to declare a variable with linkage.

[Explanation]

Use of a type with no linkage to declare a function.

[Explanation]

Universal character name specifies an invalid character.

[Explanation]

A universal character name cannot designate a character in the basic character set.

[Explanation]

This universal character is not allowed in an identifier.

[Explanation]

The qualifier on this friend declaration is ignored.

W1959B declared size for bit-field is larger than the size of the bit-field-type.

W1961B use of a type with no linkage to declare a variable with linkage

W1962B use of a type with no linkage to declare a function

W1966B universal character name specifies an invalid character

W1967B a universal character name cannot designate a character in the basic character set

W1968B this universal character is not allowed in an identifier

W1970B the qualifier on this friend declaration is ignored
PART 1 OPERATION 229

APPENDIX C Error Message

[Explanation]

"inline" used as a function qualifier is ignored.

[Explanation]

typedef name has already been declared (with similar type).

[Explanation]

operator new and operator delete cannot be given internal linkage.

[Explanation]

extra braces are nonstandard.

[Explanation]

subtraction of pointer types %t1 and %t2 is nonstandard.

[Explanation]

%np2 is hidden by %no1. --virtual function override intended.

[Explanation]

A storage class may not be specified here.

W1973B "inline" used as a function qualifier is ignored

W1984B typedef name has already been declared (with similar type)

W1985B operator new and operator delete cannot be given internal linkage

W1992B extra braces are nonstandard

W1994B subtraction of pointer types %t1 and %t2 is nonstandard

W1998B %np2 is hidden by %no1 -- virtual function override intended?

W2001B a storage class may not be specified here
230 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

A using-declaration may not name a constructor or destructor.

[Explanation]

Invalid redeclaration of nested class.

[Explanation]

A variable with static storage duration cannot be defined within an inline function.

[Explanation]

An entity with internal linkage cannot be referenced within an inline function with

external linkage.

[Explanation]

Unrecognized STDC pragma.

[Explanation]

expected "ON", "OFF", or "DEFAULT".

W2013B a using-declaration may not name a constructor or destructor

W2028B invalid redeclaration of nested class

W2030B a variable with static storage duration cannot be defined within an inline function

W2031B an entity with internal linkage cannot be referenced within an inline function with
external linkage

W2039B unrecognized STDC pragma

W2040B expected "ON", "OFF", or "DEFAULT"
PART 1 OPERATION 231

APPENDIX C Error Message
[Explanation]

A STDC pragma may only appear between declarations in the global scope or before any

statements or declarations in a block scope.

[Explanation]

Floating-point value cannot be represented exactly.

[Explanation]

Conversion between real and imaginary yields zero.

[Explanation]

"imaginary *= imaginary" sets the left-hand operand to zero.

[Explanation]

Standard requires that %n be given a type by a subsequent declaration ("int" assumed).

[Explanation]

A definition is required for inline %n.

W2041B a STDC pragma may only appear between declarations in the global scope or before
any statements or declarations in a block scope

W2046B floating-point value cannot be represented exactly

W2048B conversion between real and imaginary yields zero

W2050B imaginary *= imaginary sets the left-hand operand to zero

W2051B standard requires that %n be given a type by a subsequent declaration ("int" assumed)

W2052B a definition is required for inline %n
232 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Conversion from integer to smaller pointer.

[Explanation]

Types cannot be declared in anonymous unions.

[Explanation]

Returning pointer to local variable.

[Explanation]

Returning pointer to local temporary.

[Explanation]

A declaration cannot have a label.

[Explanation]

Support for exported templates is disabled.

[Explanation]

Invalid attribute for parameter.

W2053B conversion from integer to smaller pointer

W2055B types cannot be declared in anonymous unions

W2056B returning pointer to local variable

W2057B returning pointer to local temporary

W2072B a declaration cannot have a label

W2073B support for exported templates is disabled

W2093B invalid attribute for parameter
PART 1 OPERATION 233

APPENDIX C Error Message
[Explanation]

There is no attribute %sq.

[Explanation]

The "packed" attribute is ignored in a typedef.

[Explanation]

 "goto *expr" is nonstandard.

[Explanation]

#warning directive: %s.

[Explanation]

The "transparent_union" attribute is ignored on incomplete types.

[Explanation]

%t cannot be transparent because %n does not have the same size as the union.

[Explanation]

%t cannot be transparent because it has a field of type %t which is not the same size as

the union.

W2097B there is no attribute %sq

W2100B the "packed" attribute is ignored in a typedef

W2102B "goto *expr" is nonstandard

W2105B #warning directive: %s

W2108B the "transparent_union" attribute is ignored on incomplete types

W2109B %t cannot be transparent because %n does not have the same size as the union

W2110B %t cannot be transparent because it has a field of type %t which is not the same size
as the union
234 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Declarations of local labels should only appear at the start of statement expressions.

[Explanation]

An asm name is ignored in a typedef.

[Explanation]

Modifier letter '%s' ignored in asm operand.

[Explanation]

The "template" keyword used for syntactic disambiguation may only be used within a

template.

[Explanation]

Attribute does not apply to non-function type %t.

[Explanation]

Arithmetic on pointer to void or function type.

W2114B declarations of local labels should only appear at the start of statement expressions

W2117B an asm name is ignored in a typedef

W2119B modifier letter '%s' ignored in asm operand

W2139B the "template" keyword used for syntactic disambiguation may only be used within a
template

W2142B attribute does not apply to non-function type %t

W2143B arithmetic on pointer to void or function type
PART 1 OPERATION 235

APPENDIX C Error Message
[Explanation]

%t1 would have been promoted to %t2 when passed through the ellipsis parameter; use

the latter type instead.

[Explanation]

Declaration aliased to unknown entity %sq.

[Explanation]

Declaration does not match its alias %n.

[Explanation]

Variable-length array field type will be treated as zero-length array field type.

[Explanation]

Nonstandard cast on lvalue ignored.

[Explanation]

The auto specifier is ignored here (invalid in standard C/C++).

[Explanation]

A reduction in alignment without the "packed" attribute is ignored.

W2145B %t1 would have been promoted to %t2 when passed through the ellipsis parameter;
use the latter type instead

W2152B declaration aliased to unknown entity %sq

W2153B declaration does not match its alias %n

W2155B variable-length array field type will be treated as zero-length array field type

W2156B nonstandard cast on lvalue ignored

W2159B the auto specifier is ignored here (invalid in standard C/C++)

W2160B a reduction in alignment without the "packed" attribute is ignored
236 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Excess initializers are ignored.

[Explanation]

Va_start should only appear in a function with an ellipsis parameter.

[Explanation]

An asm name is ignored on a non-register automatic variable.

[Explanation]

Inline function also declared as an alias; definition ignored.

[Explanation]

Unrecognized UPC pragma.

[Explanation]

Function returning shared is not allowed.

[Explanation]

Argument of upc_blocksizeof is a pointer to a shared type (not shared type itself).

W2162B excess initializers are ignored

W2163B va_start should only appear in a function with an ellipsis parameter

W2168B an asm name is ignored on a non-register automatic variable

W2169B inline function also declared as an alias; definition ignored

W2170B unrecognized UPC pragma

W2178B function returning shared is not allowed

W2185B argument of upc_blocksizeof is a pointer to a shared type (not shared type itself)
PART 1 OPERATION 237

APPENDIX C Error Message
[Explanation]

Null (zero) character in input line ignored.

[Explanation]

Null (zero) character in string or character constant.

[Explanation]

Null (zero) character in header name.

[Explanation]

Declaration in for-initializer hides a declaration in the surrounding scope.

[Explanation]

The hidden declaration is %p.

[Explanation]

The prototype declaration of %nfd is ignored after this unprototyped redeclaration.

[Explanation]

Attribute ignored on typedef of class or enum types.

W2192B null (zero) character in input line ignored

W2193B null (zero) character in string or character constant

W2194B null (zero) character in header name

W2195B declaration in for-initializer hides a declaration in the surrounding scope

W2196B the hidden declaration is %p

W2197B the prototype declaration of %nfd is ignored after this unprototyped redeclaration

W2198B attribute ignored on typedef of class or enum types
238 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Variable declaration hides declaration in for-initializer.

[Explanation]

Call of zero constant ignored.

[Explanation]

Parameter %sq may not be redeclared in a catch clause of function try block.

[Explanation]

The initial explicit specialization of %n must be declared in the namespace containing the

template.

[Explanation]

"cc" clobber ignored.

[Explanation]

"template" must be followed by an identifier.

[Explanation]

Declaration of %sq hides handler parameter.

W2199B variable declaration hides declaration in for-initializer

W2202B call of zero constant ignored

W2203B parameter %sq may not be redeclared in a catch clause of function try block

W2204B the initial explicit specialization of %n must be declared in the namespace containing
the template

W2205B "cc" clobber ignored

W2206B "template" must be followed by an identifier

W2210B declaration of %sq hides handler parameter
PART 1 OPERATION 239

APPENDIX C Error Message
[Explanation]

Nonstandard cast to array type ignored.

[Explanation]

Field uses tail padding of a base class.

[Explanation]

GNU C++ compilers may use bit field padding.

[Explanation]

Use of "symbol" is deprecated.

[Explanation]

Unrecognized format function type "xxxx" ignored.

[Explanation]

Base class "symbol" uses tail padding of base class "symbol".

[Explanation]

Requested initialization priority is reserved for internal use.

W2211B nonstandard cast to array type ignored

W2213B field uses tail padding of a base class

W2214B GNU C++ compilers may use bit field padding

W2215B use of "symbol" is deprecated

W2217B unrecognized format function type "xxxx" ignored

W2218B base class "symbol" uses tail padding of base class "symbol"

W2220B requested initialization priority is reserved for internal use
240 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

This anonymous union/struct field is hidden by "symbol".

[Explanation]

Invalid error number.

[Explanation]

Invalid error tag.

[Explanation]

Expected an error number or error tag.

[Explanation]

Size of class is affected by tail padding.

[Explanation]

Nonstandard conversion between pointer to function and pointer to data.

[Explanation]

Potentially narrowing conversion when compiled in an environment where int, long, or

pointer types are 64 bits wide.

W2221B this anonymous union/struct field is hidden by "symbol"

W2222B invalid error number

W2223B invalid error tag

W2224B expected an error number or error tag

W2225B size of class is affected by tail padding

W2235B nonstandard conversion between pointer to function and pointer to data

W2257B potentially narrowing conversion when compiled in an environment where int, long,
or pointer types are 64 bits wide
PART 1 OPERATION 241

APPENDIX C Error Message
[Explanation]

Current value of pragma pack is xxxx.

[Explanation]

Arguments for pragma pack(show) are ignored.

[Explanation]

Earlier __declspec(align(...)) ignored.

[Explanation]

A throw expression may not have pointer-to-incomplete type.

[Explanation]

Alignment-of operator applied to incomplete type.

[Explanation]

Unrecognized attribute "xxxx".

[Explanation]

__interrupt is specified.

W2258B current value of pragma pack is xxxx

W2259B arguments for pragma pack(show) are ignored

W2262B earlier __declspec(align(...)) ignored

W2272B a throw expression may not have pointer-to-incomplete type

W2273B alignment-of operator applied to incomplete type

W2276B unrecognized attribute "xxxx"

W3007B __interrupt is specified
242 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

__interrupt do not operate on function declarator.

[Explanation]

__interrupt operate class member function.

[Explanation]

__io is specified.

[Explanation]

__io operate on function declarator.

[Explanation]

__io operate member.

[Explanation]

#pragma xxxx: too long identifier is specified.

[Explanation]

#pragma ilm: already exist.

W3008B __interrupt do not operate on function declarator

W3009B __interrupt operate class member function

W3010B __io is specified

W3011B __io operate on function declarator

W3012B __io operate member

W3016B #pragma xxxx: too long identifier is specified

W3032B #pragma ilm: already exist
PART 1 OPERATION 243

APPENDIX C Error Message
[Explanation]

The specification 'mutable' cannot be used in EC++.

[Explanation]

The function of the exceptional transaction cannot be used in EC++.

[Explanation]

The namespace cannot be used in EC++.

[Explanation]

The template cannot be used in EC++.

[Explanation]

The multiple inheritance cannot be used in EC++.

[Explanation]

The virtual inheritance cannot be used in EC++.

[Explanation]

The operator 'const_cast' cannot be used in EC++.

W3038B The specification 'mutable' cannot be used in EC++.

W3039B The function of the exceptional transaction cannot be used in EC++.

W3040B The namespace cannot be used in EC++.

W3041B The template cannot be used in EC++.

W3042B The multiple inheritance cannot be used in EC++.

W3043B The virtual inheritance cannot be used in EC++.

W3044B The operator 'const_cast' cannot be used in EC++.
244 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

The operator 'dynamic_cast' cannot be used in EC++.

[Explanation]

The operator 'static_cast' cannot be used in EC++.

[Explanation]

The operator 'reinterpret_cast' cannot be used in EC++.

[Explanation]

The operator 'typeid' cannot be used in EC++.

[Explanation]

xxxx is not recognized a builtin function for the media instruction.

[Explanation]

Value is immediately outside the range of the argument xxxx of xxxx (xxxx).

[Explanation]

Argument xxxx of xxxx should be an accumulator number defined by xxxx.

W3045B The operator 'dynamic_cast' cannot be used in EC++.

W3046B The operator 'static_cast' cannot be used in EC++.

W3047B The operator 'reinterpret_cast' cannot be used in EC++.

W3048B The operator 'typeid' cannot be used in EC++.

W3054B xxxx is not recognized a builtin function for the media instruction

W3056B value is immediately outside the range of the argument xxxx of xxxx (xxxx)

W3057B argument xxxx of xxxx should be an accumulator number defined by xxxx
PART 1 OPERATION 245

APPENDIX C Error Message
[Explanation]

Accumulator number of the argument xxxx of xxxx should be an even number.

[Explanation]

Accumulator number of the argument xxxx of xxxx should be a multiple of four.

[Explanation]

Last line of file ends without a newline.

[Explanation]

Last line of file ends with a backslash.

[Explanation]

Comment unclosed at end of file.

[Explanation]

Unrecognized token.

[Explanation]

Missing closing quote.

W3058B accumulator number of the argument xxxx of xxxx should be an even number

W3059B accumulator number of the argument xxxx of xxxx should be a multiple of four

E4001B last line of file ends without a newline

E4002B last line of file ends with a backslash

E4006B comment unclosed at end of file

E4007B unrecognized token

E4008B missing closing quote
246 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

"#" not expected here.

[Explanation]

Unrecognized preprocessing directive.

[Explanation]

Parsing restarts here after previous syntax error.

[Explanation]

Extra text after expected end of preprocessing directive.

[Explanation]

Expected a "]".

[Explanation]

Expected a ")".

[Explanation]

Extra text after expected end of number.

E4010B "#" not expected here

E4011B unrecognized preprocessing directive

E4012B parsing restarts here after previous syntax error

E4014B extra text after expected end of preprocessing directive

E4017B expected a "]"

E4018B expected a ")"

E4019B extra text after expected end of number
PART 1 OPERATION 247

APPENDIX C Error Message
[Explanation]

Identifier "xxxx" is undefined.

[Explanation]

Type qualifiers are meaningless in this declaration.

[Explanation]

Invalid octal digit.

[Explanation]

Integer constant is too large.

[Explanation]

Invalid octal digit.

[Explanation]

Quoted string should contain at least one character.

[Explanation]

Too many characters in character constant.

E4020B identifier "xxxx" is undefined

E4021B type qualifiers are meaningless in this declaration

E4022B invalid octal digit

E4023B integer constant is too large

E4024B Invalid octal digit

E4025B quoted string should contain at least one character

E4026B too many characters in character constant
248 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Character value is out of range.

[Explanation]

Expression must have a constant value.

[Explanation]

Expected an expression.

[Explanation]

Floating constant is out of range.

[Explanation]

Expression must have integral type.

[Explanation]

Expression must have arithmetic type.

[Explanation]

Expected a line number.

E4027B character value is out of range

E4028B expression must have a constant value

E4029B expected an expression

E4030B floating constant is out of range

E4031B expression must have integral type

E4032B expression must have arithmetic type

E4033B expected a line number
PART 1 OPERATION 249

APPENDIX C Error Message
[Explanation]

Invalid line number.

[Explanation]

The #if for this directive is missing.

[Explanation]

The #endif for this directive is missing.

[Explanation]

Directive is not allowed -- an #else has already appeared.

[Explanation]

Division by zero.

[Explanation]

Expected an identifier.

[Explanation]

Expression must have arithmetic or pointer type.

E4034B invalid line number

E4036B the #if for this directive is missing

E4037B the #endif for this directive is missing

E4038B directive is not allowed -- an #else has already appeared

E4039B division by zero

E4040B expected an identifier

E4041B expression must have arithmetic or pointer type
250 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Operand types are incompatible ("type" and "type").

[Explanation]

Expression must have pointer type.

[Explanation]

#undef may not be used on this predefined name.

[Explanation]

This predefined name may not be redefined.

[Explanation]

Incompatible redefinition of macro "entity" (declared at line xxxx).

[Explanation]

Duplicate macro parameter name.

[Explanation]

"##" may not be first in a macro definition.

E4042B operand types are incompatible ("type" and "type")

E4044B expression must have pointer type

E4045B #undef may not be used on this predefined name

E4046B this predefined name may not be redefined

E4047B incompatible redefinition of macro "entity" (declared at line xxxx)

E4049B duplicate macro parameter name

E4050B "##" may not be first in a macro definition
PART 1 OPERATION 251

APPENDIX C Error Message
[Explanation]

"##" may not be last in a macro definition.

[Explanation]

Expected a macro parameter name.

[Explanation]

Expected a ":".

[Explanation]

Too few arguments in macro invocation.

[Explanation]

Too many arguments in macro invocation.

[Explanation]

Operand of sizeof may not be a function.

[Explanation]

This operator is not allowed in a constant expression.

E4051B "##" may not be last in a macro definition

E4052B expected a macro parameter name

E4053B expected a ":"

E4054B too few arguments in macro invocation

E4055B too many arguments in macro invocation

E4056B operand of sizeof may not be a function

E4057B this operator is not allowed in a constant expression
252 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

This operator is not allowed in a preprocessing expression.

[Explanation]

Function call is not allowed in a constant expression.

[Explanation]

This operator is not allowed in an integral constant expression.

[Explanation]

Integer operation result is out of range.

[Explanation]

Shift count is negative.

[Explanation]

Shift count is too large.

[Explanation]

Declaration does not declare anything.

E4058B this operator is not allowed in a preprocessing expression

E4059B function call is not allowed in a constant expression

E4060B this operator is not allowed in an integral constant expression

E4061B integer operation result is out of range

E4062B shift count is negative

E4063B shift count is too large

E4064B declaration does not declare anything
PART 1 OPERATION 253

APPENDIX C Error Message
[Explanation]

Expected a ";".

[Explanation]

Enumeration value is out of "int" range.

[Explanation]

Expected a "}".

[Explanation]

Integer conversion resulted in truncation.

[Explanation]

Incomplete type is not allowed.

[Explanation]

Operand of sizeof may not be a bit field.

[Explanation]

Operand of "*" must be a pointer.

E4065B expected a ";"

E4066B enumeration value is out of "int" range

E4067B expected a "}"

E4069B integer conversion resulted in truncation

E4070B incomplete type is not allowed

E4071B operand of sizeof may not be a bit field

E4075B operand of "*" must be a pointer
254 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

This declaration has no storage class or type specifier.

[Explanation]

A parameter declaration may not have an initializer.

[Explanation]

Expected a type specifier.

[Explanation]

A storage class may not be specified here.

[Explanation]

More than one storage class may not be specified.

[Explanation]

Storage class is not first.

[Explanation]

Type qualifier specified more than once.

E4077B this declaration has no storage class or type specifier

E4078B a parameter declaration may not have an initializer

E4079B expected a type specifier

E4080B a storage class may not be specified here

E4081B more than one storage class may not be specified

E4082B storage class is not first

E4083B type qualifier specified more than once
PART 1 OPERATION 255

APPENDIX C Error Message
[Explanation]

Invalid combination of type specifiers.

[Explanation]

Invalid storage class for a parameter.

[Explanation]

Invalid storage class for a function.

[Explanation]

A type specifier may not be used here.

[Explanation]

Array of functions is not allowed.

[Explanation]

Array of void is not allowed.

[Explanation]

Function returning function is not allowed.

E4084B invalid combination of type specifiers

E4085B invalid storage class for a parameter

E4086B invalid storage class for a function

E4087B a type specifier may not be used here

E4088B array of functions is not allowed

E4089B array of void is not allowed

E4090B function returning function is not allowed
256 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Function returning array is not allowed.

[Explanation]

Identifier-list parameters may only be used in a function definition.

[Explanation]

Function type may not come from a typedef.

[Explanation]

The size of an array must be greater than zero.

[Explanation]

Array is too large.

[Explanation]

A translation unit must contain at least one declaration.

[Explanation]

A function may not return a value of this type.

E4091B function returning array is not allowed

E4092B identifier-list parameters may only be used in a function definition

E4093B function type may not come from a typedef

E4094B the size of an array must be greater than zero

E4095B array is too large

E4096B a translation unit must contain at least one declaration

E4097B a function may not return a value of this type
PART 1 OPERATION 257

APPENDIX C Error Message
[Explanation]

An array may not have elements of this type.

[Explanation]

A declaration here must declare a parameter.

[Explanation]

Duplicate parameter name.

[Explanation]

"xxxx" has already been declared in the current scope.

[Explanation]

Forward declaration of enum type is nonstandard.

[Explanation]

Class is too large.

[Explanation]

Struct or union is too large.

E4098B an array may not have elements of this type

E4099B a declaration here must declare a parameter

E4100B duplicate parameter name

E4101B "xxxx" has already been declared in the current scope

E4102B forward declaration of enum type is nonstandard

E4103B class is too large

E4104B struct or union is too large
258 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Invalid size for bit field.

[Explanation]

Invalid type for a bit field.

[Explanation]

Zero-length bit field must be unnamed.

[Explanation]

Expression must have (pointer-to-) function type.

[Explanation]

Expected either a definition or a tag name.

[Explanation]

Expected "while".

[Explanation]

Entity-kind "entity" was referenced but not defined.

E4105B invalid size for bit field

E4106B invalid type for a bit field

E4107B zero-length bit field must be unnamed

E4109B expression must have (pointer-to-) function type

E4110B expected either a definition or a tag name

E4112B expected "while"

E4114B entity-kind "entity" was referenced but not defined
PART 1 OPERATION 259

APPENDIX C Error Message
[Explanation]

A continue statement may only be used within a loop.

[Explanation]

A break statement may only be used within a loop or switch.

[Explanation]

Non-void function "entity" should return a value.

[Explanation]

A void function may not return a value.

[Explanation]

Cast to type "type" is not allowed.

[Explanation]

Return value type does not match the function type.

[Explanation]

A case label may only be used within a switch.

E4115B a continue statement may only be used within a loop

E4116B a break statement may only be used within a loop or switch

E4117B non-void function "entity" should return a value

E4118B a void function may not return a value

E4119B cast to type "type" is not allowed

E4120B return value type does not match the function type

E4121B a case label may only be used within a switch
260 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

A default label may only be used within a switch.

[Explanation]

Case label value has already appeared in this switch.

[Explanation]

default label has already appeared in this switch.

[Explanation]

Expected a "(".

[Explanation]

Expression must be an lvalue.

[Explanation]

Expected a statement.

[Explanation]

A block-scope function may only have extern storage class.

E4122B a default label may only be used within a switch

E4123B case label value has already appeared in this switch

E4124B default label has already appeared in this switch

E4125B expected a "("

E4126B expression must be an lvalue

E4127B expected a statement

E4129B a block-scope function may only have extern storage class
PART 1 OPERATION 261

APPENDIX C Error Message
[Explanation]

Expected a "{".

[Explanation]

Expression must have pointer-to-class type.

[Explanation]

Expression must have pointer-to-struct-or-union type.

[Explanation]

Expected a member name.

[Explanation]

Expected a field name.

[Explanation]

Entity-kind "entity" has no member "xxxx".

[Explanation]

Entity-kind "entity" has no field "xxxx".

E4130B expected a "{"

E4131B expression must have pointer-to-class type

E4132B expression must have pointer-to-struct-or-union type

E4133B expected a member name

E4134B expected a field name

E4135B entity-kind "entity" has no member "xxxx"

E4136B entity-kind "entity" has no field "xxxx"
262 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Expression must be a modifiable lvalue.

[Explanation]

Taking the address of a register variable is not allowed.

[Explanation]

Taking the address of a bit field is not allowed.

[Explanation]

Too many arguments in function call.

[Explanation]

Unnamed prototyped parameters not allowed when body is present.

[Explanation]

Expression must have pointer-to-object type.

[Explanation]

A value of type "type" cannot be used to initialize an entity of type "type".

E4137B expression must be a modifiable lvalue

E4138B taking the address of a register variable is not allowed

E4139B taking the address of a bit field is not allowed

E4140B too many arguments in function call

E4141B unnamed prototyped parameters not allowed when body is present

E4142B expression must have pointer-to-object type

E4144B a value of type "type" cannot be used to initialize an entity of type "type"
PART 1 OPERATION 263

APPENDIX C Error Message
[Explanation]

Entity-kind "entity" may not be initialized.

[Explanation]

Too many initializer values.

[Explanation]

Declaration is incompatible with entity-kind "entity" (declared at line xxxx).

[Explanation]

Entity-kind "entity" has already been initialized.

[Explanation]

A global-scope declaration may not have this storage class.

[Explanation]

A type name may not be redeclared as a parameter.

[Explanation]

A typedef name may not be redeclared as a parameter.

E4145B entity-kind "entity" may not be initialized

E4146B too many initializer values

E4147B declaration is incompatible with entity-kind "entity" (declared at line xxxx)

E4148B entity-kind "entity" has already been initialized

E4149B a global-scope declaration may not have this storage class

E4150B a type name may not be redeclared as a parameter

E4151B a typedef name may not be redeclared as a parameter
264 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Expression must have class type.

[Explanation]

Expression must have struct or union type.

[Explanation]

Expression must be an integral constant expression.

[Explanation]

Expression must be an lvalue or a function designator.

[Explanation]

Declaration is incompatible with previous "entity" (declared at line xxxx).

[Explanation]

Name conflicts with previously used external name "xxxx".

[Explanation]

Unrecognized #pragma.

E4153B expression must have class type

E4154B expression must have struct or union type

E4157B expression must be an integral constant expression

E4158B expression must be an lvalue or a function designator

E4159B declaration is incompatible with previous "entity" (declared at line xxxx)

E4160B name conflicts with previously used external name "xxxx"

E4161B unrecognized #pragma
PART 1 OPERATION 265

APPENDIX C Error Message
[Explanation]

Too few arguments in function call.

[Explanation]

Invalid floating constant.

[Explanation]

Argument of type "type" is incompatible with parameter of type "type".

[Explanation]

A function type is not allowed here.

[Explanation]

Expected a declaration.

[Explanation]

Invalid type conversion.

[Explanation]

External/internal linkage conflict with previous declaration.

E4165B too few arguments in function call

E4166B invalid floating constant

E4167B argument of type "type" is incompatible with parameter of type "type"

E4168B a function type is not allowed here

E4169B expected a declaration

E4171B invalid type conversion

E4172B external/internal linkage conflict with previous declaration
266 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Floating-point value does not fit in required integral type.

[Explanation]

Right operand of "%" is zero.

[Explanation]

Type of cast must be integral.

[Explanation]

Type of cast must be arithmetic or pointer.

[Explanation]

Expected an asm string.

[Explanation]

An asm function must be prototyped.

[Explanation]

An asm function may not have an ellipsis.

E4173B floating-point value does not fit in required integral type

E4179B right operand of "%" is zero

E4183B type of cast must be integral

E4184B type of cast must be arithmetic or pointer

E4194B expected an asm string

E4195B an asm function must be prototyped

E4196B an asm function may not have an ellipsis
PART 1 OPERATION 267

APPENDIX C Error Message
[Explanation]

Integral value does not fit in required floating-point type.

[Explanation]

Floating-point value does not fit in required floating-point type.

[Explanation]

Floating-point operation result is out of range.

[Explanation]

Macro recursion.

[Explanation]

Trailing comma is nonstandard.

[Explanation]

Nonstandard type for a bit field.

[Explanation]

Variable "xxxx" was declared with a never-completed type.

E4220B integral value does not fit in required floating-point type

E4221B floating-point value does not fit in required floating-point type

E4222B floating-point operation result is out of range

E4227B macro recursion

E4228B trailing comma is nonstandard

E4230B nonstandard type for a bit field

E4235B variable "xxxx" was declared with a never-completed type
268 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Invalid specifier on a parameter.

[Explanation]

Invalid specifier outside a class declaration.

[Explanation]

Duplicate specifier in declaration.

[Explanation]

A union is not allowed to have a base class.

[Explanation]

Multiple access control specifiers are not allowed.

[Explanation]

Class or struct definition is missing.

[Explanation]

Qualified name is not a member of class "type" or its base classes.

E4238B invalid specifier on a parameter

E4239B invalid specifier outside a class declaration

E4240B duplicate specifier in declaration

E4241B a union is not allowed to have a base class

E4242B multiple access control specifiers are not allowed

E4243B class or struct definition is missing

E4244B qualified name is not a member of class "type" or its base classes
PART 1 OPERATION 269

APPENDIX C Error Message
[Explanation]

A nonstatic member reference must be relative to a specific object.

[Explanation]

A nonstatic data member may not be defined outside its class.

[Explanation]

Entity-kind "entity" has already been defined.

[Explanation]

Pointer to reference is not allowed.

[Explanation]

Reference to reference is not allowed.

[Explanation]

Reference to void is not allowed.

[Explanation]

Array of reference is not allowed.

E4245B a nonstatic member reference must be relative to a specific object

E4246B a nonstatic data member may not be defined outside its class

E4247B entity-kind "entity" has already been defined

E4248B pointer to reference is not allowed

E4249B reference to reference is not allowed

E4250B reference to void is not allowed

E4251B array of reference is not allowed
270 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Reference entity-kind "entity" requires an initializer.

[Explanation]

Expected a ",".

[Explanation]

Type name is not allowed.

[Explanation]

Type definition is not allowed.

[Explanation]

Invalid redeclaration of type name "entity" (declared at line xxxx).

[Explanation]

Const entity-kind "entity" requires an initializer.

[Explanation]

"this" may only be used inside a nonstatic member function.

E4252B reference entity-kind "entity" requires an initializer

E4253B expected a ","

E4254B type name is not allowed

E4255B type definition is not allowed

E4256B invalid redeclaration of type name "entity" (declared at line xxxx)

E4257B const entity-kind "entity" requires an initializer

E4258B "this" may only be used inside a nonstatic member function
PART 1 OPERATION 271

APPENDIX C Error Message
[Explanation]

Constant value is not known.

[Explanation]

Not a class or struct name.

[Explanation]

Duplicate base class name.

[Explanation]

Invalid base class.

[Explanation]

Entity-kind "entity" is inaccessible.

[Explanation]

"entity" is ambiguous.

[Explanation]

Old-style parameter list (anachronism).

E4259B constant value is not known

E4262B not a class or struct name

E4263B duplicate base class name

E4264B invalid base class

E4265B entity-kind "entity" is inaccessible

E4266B "entity" is ambiguous

E4267B old-style parameter list (anachronism)
272 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Declaration may not appear after executable statement in block.

[Explanation]

Conversion to inaccessible base class "type" is not allowed.

[Explanation]

Improperly terminated macro invocation.

[Explanation]

Name followed by "::" must be a class or namespace name.

[Explanation]

Invalid friend declaration.

[Explanation]

A constructor or destructor may not return a value.

[Explanation]

Invalid destructor declaration.

E4268B declaration may not appear after executable statement in block

E4269B conversion to inaccessible base class "type" is not allowed

E4274B improperly terminated macro invocation

E4276B name followed by "::" must be a class or namespace name

E4277B invalid friend declaration

E4278B a constructor or destructor may not return a value

E4279B invalid destructor declaration
PART 1 OPERATION 273

APPENDIX C Error Message
[Explanation]

Declaration of a member with the same name as its class.

[Explanation]

Global-scope qualifier (leading "::") is not allowed.

[Explanation]

The global scope has no "xxxx".

[Explanation]

Qualified name is not allowed.

[Explanation]

NULL reference is not allowed.

[Explanation]

Initialization with "{...}" is not allowed for object of type "type".

[Explanation]

Base class "type" is ambiguous.

E4280B declaration of a member with the same name as its class

E4281B global-scope qualifier (leading "::") is not allowed

E4282B the global scope has no "xxxx"

E4283B qualified name is not allowed

E4284B NULL reference is not allowed

E4285B initialization with "{...}" is not allowed for object of type "type"

E4286B base class "type" is ambiguous
274 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Derived class "type" contains more than one instance of class "type".

[Explanation]

Cannot convert pointer to base class "type" to pointer to derived class "type" -- base class

is virtual.

[Explanation]

No instance of constructor "entity" matches the argument list.

[Explanation]

Copy constructor for class "type" is ambiguous.

[Explanation]

No default constructor exists for class "type".

[Explanation]

"xxxx" is not a nonstatic data member or base class of class "type".

[Explanation]

Indirect nonvirtual base class is not allowed.

E4287B derived class "type" contains more than one instance of class "type"

E4288B cannot convert pointer to base class "type" to pointer to derived class "type" -- base
class is virtual

E4289B no instance of constructor "entity" matches the argument list

E4290B copy constructor for class "type" is ambiguous

E4291B no default constructor exists for class "type"

E4292B "xxxx" is not a nonstatic data member or base class of class "type"

E4293B indirect nonvirtual base class is not allowed
PART 1 OPERATION 275

APPENDIX C Error Message
[Explanation]

Invalid union member -- class "type" has a disallowed member function.

[Explanation]

Invalid use of non-lvalue array.

[Explanation]

Expected an operator.

[Explanation]

Inherited member is not allowed.

[Explanation]

Cannot determine which instance of entity-kind "entity" is intended.

[Explanation]

A pointer to a bound function may only be used to call the function.

[Explanation]

Typedef name has already been declared (with same type).

E4294B invalid union member -- class "type" has a disallowed member function

E4296B invalid use of non-lvalue array

E4297B expected an operator

E4298B inherited member is not allowed

E4299B cannot determine which instance of entity-kind "entity" is intended

E4300B a pointer to a bound function may only be used to call the function

E4301B typedef name has already been declared (with same type)
276 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Entity-kind "entity" has already been defined.

[Explanation]

No instance of entity-kind "entity" matches the argument list.

[Explanation]

Type definition is not allowed in function return type declaration.

[Explanation]

Default argument not at end of parameter list.

[Explanation]

Redefinition of default argument.

[Explanation]

More than one instance of entity-kind "entity" matches the argument list.

[Explanation]

More than one instance of constructor "entity" matches the argument list.

E4302B entity-kind "entity" has already been defined

E4304B no instance of entity-kind "entity" matches the argument list

E4305B type definition is not allowed in function return type declaration

E4306B default argument not at end of parameter list

E4307B redefinition of default argument

E4308B more than one instance of entity-kind "entity" matches the argument list

E4309B more than one instance of constructor "entity" matches the argument list
PART 1 OPERATION 277

APPENDIX C Error Message
[Explanation]

Default argument of type "type" is incompatible with parameter of type "type".

[Explanation]

Cannot overload functions distinguished by return type alone.

[Explanation]

No suitable user-defined conversion from "type" to "type" exists.

[Explanation]

Type qualifier is not allowed on this function.

[Explanation]

Only nonstatic member functions may be virtual.

[Explanation]

The object has type qualifiers that are not compatible with the member function.

[Explanation]

Program too large to compile (too many virtual functions).

E4310B default argument of type "type" is incompatible with parameter of type "type"

E4311B cannot overload functions distinguished by return type alone

E4312B no suitable user-defined conversion from "type" to "type" exists

E4313B type qualifier is not allowed on this function

E4314B only nonstatic member functions may be virtual

E4315B the object has type qualifiers that are not compatible with the member function

E4316B program too large to compile (too many virtual functions)
278 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Return type is not identical to nor covariant with return type "type" of overridden

virtual function entity-kind "entity".

[Explanation]

Override of virtual entity-kind "entity" is ambiguous.

[Explanation]

Pure specifier ("= 0") allowed only on virtual functions.

[Explanation]

Badly-formed pure specifier (only "= 0" is allowed).

[Explanation]

Data member initializer is not allowed.

[Explanation]

Object of abstract class type "type" is not allowed.

[Explanation]

Function returning abstract class "type" is not allowed.

E4317B return type is not identical to nor covariant with return type "type" of overridden
virtual function entity-kind "entity"

E4318B override of virtual entity-kind ""entity"" is ambiguous

E4319B pure specifier ("= 0") allowed only on virtual functions

E4320B badly-formed pure specifier (only "= 0" is allowed)

E4321B data member initializer is not allowed

E4322B object of abstract class type "type" is not allowed

E4323B function returning abstract class "type" is not allowed
PART 1 OPERATION 279

APPENDIX C Error Message
[Explanation]

Inline specifier allowed on function declarations only.

[Explanation]

"inline" is not allowed.

[Explanation]

Invalid storage class for an inline function.

[Explanation]

Invalid storage class for a class member.

[Explanation]

Local class member entity-kind "entity" requires a definition.

[Explanation]

Entity-kind "entity" is inaccessible.

[Explanation]

Class "type" has no copy constructor to copy a const object.

E4325B inline specifier allowed on function declarations only

E4326B "inline" is not allowed

E4327B invalid storage class for an inline function

E4328B invalid storage class for a class member

E4329B local class member entity-kind "entity" requires a definition

E4330B entity-kind "entity" is inaccessible

E4332B class "type" has no copy constructor to copy a const object
280 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Defining an implicitly declared member function is not allowed.

[Explanation]

Class "type" has no suitable copy constructor.

[Explanation]

Linkage specification is not allowed.

[Explanation]

Unknown external linkage specification.

[Explanation]

Linkage specification is incompatible with previous "entity" (declared at line xxxx).

[Explanation]

More than one instance of overloaded function "entity" has "C" linkage.

[Explanation]

Class "type" has more than one default constructor.

E4333B defining an implicitly declared member function is not allowed

E4334B class "type" has no suitable copy constructor

E4335B linkage specification is not allowed

E4336B unknown external linkage specification

E4337B linkage specification is incompatible with previous "entity" (declared at line xxxx)

E4338B more than one instance of overloaded function "entity" has "C" linkage

E4339B class "type" has more than one default constructor
PART 1 OPERATION 281

APPENDIX C Error Message
[Explanation]

"operator xxxx" must be a member function.

[Explanation]

Operator may not be a static member function.

[Explanation]

No arguments allowed on user-defined conversion.

[Explanation]

Too many parameters for this operator function.

[Explanation]

Too few parameters for this operator function.

[Explanation]

Nonmember operator requires a parameter with class type.

[Explanation]

Default argument is not allowed.

E4341B "operator xxxx" must be a member function

E4342B operator may not be a static member function

E4343B no arguments allowed on user-defined conversion

E4344B too many parameters for this operator function

E4345B too few parameters for this operator function

E4346B nonmember operator requires a parameter with class type

E4347B default argument is not allowed
282 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

More than one user-defined conversion from "type" to "type" applies.

[Explanation]

No operator "xxxx" matches these operands.

[Explanation]

More than one operator "xxxx" matches these operands.

[Explanation]

First parameter of allocation function must be of type "size_t".

[Explanation]

Allocation function requires "void *" return type.

[Explanation]

Deallocation function requires "void" return type.

[Explanation]

First parameter of deallocation function must be of type void *.

E4348B more than one user-defined conversion from "type" to "type" applies

E4349B no operator "xxxx" matches these operands

E4350B more than one operator "xxxx" matches these operands

E4351B first parameter of allocation function must be of type "size_t"

E4352B allocation function requires "void *" return type

E4353B deallocation function requires "void" return type

E4354B first parameter of deallocation function must be of type void *
PART 1 OPERATION 283

APPENDIX C Error Message
[Explanation]

Type must be an object type.

[Explanation]

Base class "type" has already been initialized.

[Explanation]

Base class name required -- "type" assumed (anachronism).

[Explanation]

Entity-kind "entity" has already been initialized.

[Explanation]

Name of member or base class is missing.

[Explanation]

Assignment to "this" (anachronism).

[Explanation]

"overload" keyword used (anachronism).

E4356B type must be an object type

E4357B base class "type" has already been initialized

E4358B base class name required -- "type" assumed (anachronism)

E4359B entity-kind "entity" has already been initialized

E4360B name of member or base class is missing

E4361B assignment to "this" (anachronism)

E4362B "overload" keyword used (anachronism)
284 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Invalid anonymous union -- nonpublic member is not allowed.

[Explanation]

Invalid anonymous union -- member function is not allowed.

[Explanation]

Anonymous union at global or namespace scope must be declared static.

[Explanation]

Entity-kind "entity" provides no initializer for.

[Explanation]

Implicitly generated constructor for class "type" cannot initialize.

[Explanation]

Entity-kind "entity" has an uninitialized const or reference member.

[Explanation]

Class "type" has no assignment operator to copy a const object.

E4363B invalid anonymous union -- nonpublic member is not allowed

E4364B invalid anonymous union -- member function is not allowed

E4365B anonymous union at global or namespace scope must be declared static

E4366B entity-kind "entity" provides no initializer for

E4367B implicitly generated constructor for class "type" cannot initialize

E4369B entity-kind "entity" has an uninitialized const or reference member

E4371B class "type" has no assignment operator to copy a const object
PART 1 OPERATION 285

APPENDIX C Error Message
[Explanation]

Class "type" has no suitable assignment operator.

[Explanation]

Ambiguous assignment operator for class "type".

[Explanation]

Declaration requires a typedef name.

[Explanation]

"virtual" is not allowed.

[Explanation]

"static" is not allowed.

[Explanation]

Cast of bound function to normal function pointer (anachronism).

[Explanation]

Expression must have pointer-to-member type.

E4372B class "type" has no suitable assignment operator

E4373B ambiguous assignment operator for class "type"

E4375B declaration requires a typedef name

E4377B "virtual" is not allowed

E4378B "static" is not allowed

E4379B cast of bound function to normal function pointer (anachronism)

E4380B expression must have pointer-to-member type
286 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Extra ";" ignored.

[Explanation]

Nonstandard member constant declaration (standard form is a static const integral

member).

[Explanation]

No instance of overloaded "entity" matches the argument list.

[Explanation]

No instance of entity-kind "entity" matches the required type.

[Explanation]

Delete array size expression used (anachronism).

[Explanation]

"operator->" for class "type" returns invalid type "type".

[Explanation]

A cast to abstract class "type" is not allowed.

E4381B extra ";" ignored

E4382B nonstandard member constant declaration (standard form is a static const integral
member)

E4384B no instance of overloaded "entity" matches the argument list

E4386B no instance of entity-kind "entity" matches the required type

E4387B delete array size expression used (anachronism)

E4388B "operator->" for class "type" returns invalid type "type"

E4389B a cast to abstract class "type" is not allowed
PART 1 OPERATION 287

APPENDIX C Error Message
[Explanation]

Function "main" may not be called or have its address taken.

[Explanation]

A new-initializer may not be specified for an array.

[Explanation]

Member function "entity" may not be redeclared outside its class.

[Explanation]

Pointer to incomplete class type is not allowed.

[Explanation]

Reference to local variable of enclosing function is not allowed.

[Explanation]

Single-argument function used for postfix "xxxx" (anachronism).

[Explanation]

Implicitly generated assignment operator cannot copy.

E4390B function "main" may not be called or have its address taken

E4391B a new-initializer may not be specified for an array

E4392B member function "entity" may not be redeclared outside its class

E4393B pointer to incomplete class type is not allowed

E4394B reference to local variable of enclosing function is not allowed

E4395B single-argument function used for postfix "xxxx" (anachronism)

E4397B implicitly generated assignment operator cannot copy
288 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Entity-kind "entity" has already been declared.

[Explanation]

Function "main" may not be declared inline.

[Explanation]

Member function with the same name as its class must be a constructor.

[Explanation]

Using nested entity-kind "entity" (anachronism).

[Explanation]

A destructor may not have parameters.

[Explanation]

Copy constructor for class "type" may not have a parameter of type "type".

[Explanation]

Entity-kind "entity" returns incomplete type "type".

E4403B entity-kind "entity" has already been declared

E4404B function "main" may not be declared inline

E4405B member function with the same name as its class must be a constructor

E4406B using nested entity-kind "entity" (anachronism)

E4407B a destructor may not have parameters

E4408B copy constructor for class "type" may not have a parameter of type "type"

E4409B entity-kind "entity" returns incomplete type "type"
PART 1 OPERATION 289

APPENDIX C Error Message
[Explanation]

Protected entity-kind "entity" is not accessible through a "type" pointer or object.

[Explanation]

A parameter is not allowed.

[Explanation]

An "asm" declaration is not allowed here.

[Explanation]

No suitable conversion function from "type" to "type" exists.

[Explanation]

No suitable constructor exists to convert from "type" to "type".

[Explanation]

More than one constructor applies to convert from "type" to "type".

[Explanation]

More than one conversion function from "type" to "type" applies.

E4410B protected entity-kind "entity" is not accessible through a "type" pointer or object

E4411B a parameter is not allowed

E4412B an "asm" declaration is not allowed here

E4413B no suitable conversion function from "type" to "type" exists

E4415B no suitable constructor exists to convert from "type" to "type"

E4416B more than one constructor applies to convert from "type" to "type"

E4417B more than one conversion function from "type" to "type" applies
290 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

More than one conversion function from "type" to a built-in type applies.

[Explanation]

A constructor or destructor may not have its address taken.

[Explanation]

Dollar sign ("$") used in identifier.

[Explanation]

Temporary used for initial value of reference to non-const (anachronism).

[Explanation]

Qualified name is not allowed in member declaration.

[Explanation]

Enumerated type mixed with another type (anachronism).

[Explanation]

The size of an array in "new" must be non-negative.

E4418B more than one conversion function from "type" to a built-in type applies

E4424B a constructor or destructor may not have its address taken

E4425B dollar sign ("$") used in identifier

E4426B temporary used for initial value of reference to non-const (anachronism)

E4427B qualified name is not allowed in member declaration

E4428B enumerated type mixed with another type (anachronism)

E4429B the size of an array in "new" must be non-negative
PART 1 OPERATION 291

APPENDIX C Error Message
[Explanation]

"enum" declaration is not allowed.

[Explanation]

Qualifiers dropped in binding reference of type "type" to initializer of type "type".

[Explanation]

A reference of type "type" (not const-qualified) cannot be initialized with a value of type

"type".

[Explanation]

A pointer to function may not be deleted.

[Explanation]

Conversion function must be a nonstatic member function.

[Explanation]

Template declaration is not allowed here.

[Explanation]

Expected a "<".

E4432B "enum" declaration is not allowed

E4433B qualifiers dropped in binding reference of type "type" to initializer of type "type"

E4434B a reference of type "type" (not const-qualified) cannot be initialized with a value of
type "type"

E4435B a pointer to function may not be deleted

E4436B conversion function must be a nonstatic member function

E4437B template declaration is not allowed here

E4438B expected a "<"
292 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Expected a ">".

[Explanation]

Template parameter declaration is missing.

[Explanation]

Argument list for entity-kind "entity" is missing.

[Explanation]

Too few arguments for entity-kind "entity".

[Explanation]

Too many arguments for entity-kind "entity".

[Explanation]

Entity-kind "entity" is not used in declaring the parameter types of entity-kind "entity".

E4439B expected a ">"

E4440B template parameter declaration is missing

E4441B argument list for entity-kind "entity" is missing

E4442B too few arguments for entity-kind "entity"

E4443B too many arguments for entity-kind "entity"

E4445B entity-kind "entity" is not used in declaring the parameter types of entity-kind
"entity"
PART 1 OPERATION 293

APPENDIX C Error Message
[Explanation]

Two nested types have the same name: "entity" and "entity" (declared at line xxxx)

(cfront compatibility).

[Explanation]

Global "entity" was declared after nested "entity" (declared at line xxxx) (cfront

compatibility).

[Explanation]

More than one instance of entity-kind "entity" matches the required type.

[Explanation]

The type "long long" is nonstandard.

[Explanation]

Omission of "xxxx" is nonstandard.

[Explanation]

Return type may not be specified on a conversion function.

E4446B two nested types have the same name: "entity" and "entity" (declared at line xxxx)
(cfront compatibility)

E4447B global "entity" was declared after nested "entity" (declared at line xxxx) (cfront
compatibility)

E4449B more than one instance of entity-kind "entity" matches the required type

E4450B the type "long long" is nonstandard

E4451B omission of "xxxx" is nonstandard

E4452B return type may not be specified on a conversion function
294 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Excessive recursion at instantiation of entity-kind "entity".

[Explanation]

"xxxx" is not a function or static data member.

[Explanation]

Argument of type "type" is incompatible with template parameter of type "type".

[Explanation]

Initialization requiring a temporary or conversion is not allowed.

[Explanation]

Initial value of reference to non-const must be an lvalue.

[Explanation]

"template" is not allowed.

[Explanation]

"type" is not a class template.

E4456B excessive recursion at instantiation of entity-kind "entity"

E4457B "xxxx" is not a function or static data member

E4458B argument of type "type" is incompatible with template parameter of type "type"

E4459B initialization requiring a temporary or conversion is not allowed

E4461B initial value of reference to non-const must be an lvalue

E4463B "template" is not allowed

E4464B "type" is not a class template
PART 1 OPERATION 295

APPENDIX C Error Message
[Explanation]

"main" is not a valid name for a function template.

[Explanation]

Invalid reference to entity-kind "entity" (union/nonunion mismatch).

[Explanation]

A template argument may not reference a local type.

[Explanation]

Tag kind of xxxx is incompatible with declaration of entity-kind "entity" (declared at line

xxxx).

[Explanation]

The global scope has no tag named "xxxx".

[Explanation]

Entity-kind "entity" has no tag member named "xxxx".

[Explanation]

Entity-kind "entity" may be used only in pointer-to-member declaration.

E4466B "main" is not a valid name for a function template

E4467B invalid reference to entity-kind "entity" (union/nonunion mismatch)

E4468B a template argument may not reference a local type

E4469B tag kind of xxxx is incompatible with declaration of entity-kind "entity" (declared at
line xxxx)

E4470B the global scope has no tag named "xxxx"

E4471B entity-kind "entity" has no tag member named "xxxx"

E4473B entity-kind "entity" may be used only in pointer-to-member declaration
296 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

A template argument may not reference a non-external entity.

[Explanation]

Name followed by "::~" must be a class name or a type name.

[Explanation]

Destructor name does not match name of class "type".

[Explanation]

Type used as destructor name does not match type "type".

[Explanation]

Invalid storage class for a template declaration.

[Explanation]

Invalid explicit instantiation declaration.

[Explanation]

Entity-kind "entity" is not an entity that can be instantiated.

E4475B a template argument may not reference a non-external entity

E4476B name followed by "::~" must be a class name or a type name

E4477B destructor name does not match name of class "type"

E4478B type used as destructor name does not match type "type"

E4481B invalid storage class for a template declaration

E4484B invalid explicit instantiation declaration

E4485B entity-kind "entity" is not an entity that can be instantiated
PART 1 OPERATION 297

APPENDIX C Error Message
[Explanation]

Compiler generated entity-kind "entity" cannot be explicitly instantiated.

[Explanation]

Inline entity-kind "entity" cannot be explicitly instantiated.

[Explanation]

Pure virtual entity-kind "entity" cannot be explicitly instantiated.

[Explanation]

Entity-kind "entity" cannot be instantiated -- no template definition was supplied.

[Explanation]

Entity-kind "entity" cannot be instantiated -- it has been explicitly specialized.

[Explanation]

No instance of entity-kind "entity" matches the specified type.

[Explanation]

Template parameter "xxxx" may not be redeclared in this scope.

E4486B compiler generated entity-kind "entity" cannot be explicitly instantiated

E4487B inline entity-kind "entity" cannot be explicitly instantiated

E4488B pure virtual entity-kind "entity" cannot be explicitly instantiated

E4489B entity-kind "entity" cannot be instantiated -- no template definition was supplied

E4490B entity-kind "entity" cannot be instantiated -- it has been explicitly specialized

E4493B no instance of entity-kind "entity" matches the specified type

E4496B template parameter "xxxx" may not be redeclared in this scope
298 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Template argument list must match the parameter list.

[Explanation]

Extra parameter of postfix "operator xxxx" must be of type "int".

[Explanation]

An operator name must be declared as a function.

[Explanation]

Operator name is not allowed.

[Explanation]

Entity-kind "entity" cannot be specialized in the current scope.

[Explanation]

Nonstandard form for taking the address of a member function.

[Explanation]

Too few template parameters -- does not match previous declaration.

E4498B template argument list must match the parameter list

E4500B extra parameter of postfix "operator xxxx" must be of type "int"

E4501B an operator name must be declared as a function

E4502B operator name is not allowed

E4503B entity-kind "entity" cannot be specialized in the current scope

E4504B nonstandard form for taking the address of a member function

E4505B too few template parameters -- does not match previous declaration
PART 1 OPERATION 299

APPENDIX C Error Message
[Explanation]

Too many template parameters -- does not match previous declaration.

[Explanation]

Function template for operator delete(void *) is not allowed.

[Explanation]

Class template and template parameter may not have the same name.

[Explanation]

A template argument may not reference an unnamed type.

[Explanation]

Enumerated type is not allowed.

[Explanation]

Type qualifier on a reference type is not allowed.

[Explanation]

A value of type "type" cannot be assigned to an entity of type "type".

E4506B too many template parameters -- does not match previous declaration

E4507B function template for operator delete(void *) is not allowed

E4508B class template and template parameter may not have the same name

E4510B a template argument may not reference an unnamed type

E4511B enumerated type is not allowed

E4512B type qualifier on a reference type is not allowed

E4513B a value of type "type" cannot be assigned to an entity of type "type"
300 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Cannot convert to incomplete class "type".

[Explanation]

Const object requires an initializer.

[Explanation]

Object has an uninitialized const or reference member.

[Explanation]

Nonstandard preprocessing directive.

[Explanation]

Entity-kind "entity" may not have a template argument list.

[Explanation]

Initialization with "{...}" expected for aggregate object.

[Explanation]

Pointer-to-member selection class types are incompatible ("type" and "type").

E4515B cannot convert to incomplete class "type"

E4516B const object requires an initializer

E4517B object has an uninitialized const or reference member

E4518B nonstandard preprocessing directive

E4519B entity-kind "entity" may not have a template argument list

E4520B initialization with "{...}" expected for aggregate object

E4521B pointer-to-member selection class types are incompatible ("type" and "type")
PART 1 OPERATION 301

APPENDIX C Error Message
[Explanation]

Pointless friend declaration.

[Explanation]

A dependent statement may not be a declaration.

[Explanation]

A parameter may not have void type.

[Explanation]

This operator is not allowed in a template argument expression.

[Explanation]

Try block requires at least one handler.

[Explanation]

Handler requires an exception declaration.

[Explanation]

Handler is masked by default handler.

E4522B pointless friend declaration

E4525B a dependent statement may not be a declaration

E4526B a parameter may not have void type

E4529B this operator is not allowed in a template argument expression

E4530B try block requires at least one handler

E4531B handler requires an exception declaration

E4532B handler is masked by default handler
302 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Exception specification is incompatible with that of previous entity-kind "entity"

(declared at line xxxx)xxxx.

[Explanation]

Support for exception handling is disabled.

[Explanation]

Omission of exception specification is incompatible with previous entity-kind "entity"

(declared at line xxxx).

[Explanation]

Non-arithmetic operation not allowed in nontype template argument.

[Explanation]

Use of a local type to declare a nonlocal variable.

[Explanation]

Use of a local type to declare a function.

E4536B exception specification is incompatible with that of previous entity-kind "entity"
(declared at line xxxx)xxxx

E4540B support for exception handling is disabled

E4541B omission of exception specification is incompatible with previous entity-kind "entity"
(declared at line xxxx)

E4543B non-arithmetic operation not allowed in nontype template argument

E4544B use of a local type to declare a nonlocal variable

E4545B use of a local type to declare a function
PART 1 OPERATION 303

APPENDIX C Error Message
[Explanation]

Transfer of control bypasses initialization of.

[Explanation]

Transfer of control into an exception handler.

[Explanation]

Entity-kind "entity" cannot be defined in the current scope.

[Explanation]

Exception specification is not allowed.

[Explanation]

Tag kind of xxxx is incompatible with template parameter of type "type".

[Explanation]

Function template for operator new(size_t) is not allowed.

[Explanation]

Pointer to member of type "type" is not allowed.

E4546B transfer of control bypasses initialization of

E4548B transfer of control into an exception handler

E4551B entity-kind "entity" cannot be defined in the current scope

E4552B exception specification is not allowed

E4555B tag kind of xxxx is incompatible with template parameter of type "type"

E4556B function template for operator new(size_t) is not allowed

E4558B pointer to member of type "type" is not allowed
304 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Ellipsis is not allowed in operator function parameter list.

[Explanation]

"entity" is reserved for future use as a keyword.

[Explanation]

A template parameter may not have void type.

[Explanation]

Excessive recursive instantiation of entity-kind "entity" due to instantiate-all mode.

[Explanation]

A throw expression may not have void type.

[Explanation]

Parameter of abstract class type "type" is not allowed.

[Explanation]

Array of abstract class "type" is not allowed.

E4559B ellipsis is not allowed in operator function parameter list

E4560B "entity" is reserved for future use as a keyword

E4598B a template parameter may not have void type

E4599B excessive recursive instantiation of entity-kind "entity" due to instantiate-all mode

E4601B a throw expression may not have void type

E4603B parameter of abstract class type "type" is not allowed

E4604B array of abstract class "type" is not allowed
PART 1 OPERATION 305

APPENDIX C Error Message
[Explanation]

Floating-point template parameter is nonstandard.

[Explanation]

This pragma must immediately precede a declaration.

[Explanation]

This pragma must immediately precede a statement.

[Explanation]

This pragma must immediately precede a declaration or statement.

[Explanation]

This kind of pragma may not be used here.

[Explanation]

Specific definition of inline template function must precede its first use.

[Explanation]

Parameter type involves pointer to array of unknown bound.

E4605B floating-point template parameter is nonstandard

E4606B this pragma must immediately precede a declaration

E4607B this pragma must immediately precede a statement

E4608B this pragma must immediately precede a declaration or statement

E4609B this kind of pragma may not be used here

E4612B specific definition of inline template function must precede its first use

E4615B parameter type involves pointer to array of unknown bound
306 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Parameter type involves reference to array of unknown bound.

[Explanation]

Nonstandard unnamed field.

[Explanation]

Nonstandard unnamed member.

[Explanation]

"xxxx" is not a type name.

[Explanation]

"restrict" is not allowed.

[Explanation]

A pointer or reference to function type may not be qualified by "restrict".

[Explanation]

A calling convention modifier may not be specified here.

E4616B parameter type involves reference to array of unknown bound

E4619B nonstandard unnamed field

E4620B nonstandard unnamed member

E4624B "xxxx" is not a type name

E4643B "restrict" is not allowed

E4644B a pointer or reference to function type may not be qualified by "restrict"

E4646B a calling convention modifier may not be specified here
PART 1 OPERATION 307

APPENDIX C Error Message
[Explanation]

Conflicting calling convention modifiers.

[Explanation]

A calling convention may not be followed by a nested declarator.

[Explanation]

Declaration modifiers are incompatible with previous declaration.

[Explanation]

The modifier "xxxx" is not allowed on this declaration.

[Explanation]

Transfer of control into a try block.

[Explanation]

Closing brace of template definition not found.

[Explanation]

Invalid packing alignment value.

E4647B conflicting calling convention modifiers

E4651B a calling convention may not be followed by a nested declarator

E4654B declaration modifiers are incompatible with previous declaration

E4655B the modifier "xxxx" is not allowed on this declaration

E4656B transfer of control into a try block

E4658B closing brace of template definition not found

E4660B invalid packing alignment value
308 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Expected an integer constant.

[Explanation]

Invalid source file identifier string.

[Explanation]

A class template cannot be defined in a friend declaration.

[Explanation]

"asm" is not allowed.

[Explanation]

"asm" must be used with a function definition.

[Explanation]

"asm" function is nonstandard.

[Explanation]

Ellipsis with no explicit parameters is nonstandard.

E4661B expected an integer constant

E4663B invalid source file identifier string

E4664B a class template cannot be defined in a friend declaration

E4665B "asm" is not allowed

E4666B "asm" must be used with a function definition

E4667B "asm" function is nonstandard

E4668B ellipsis with no explicit parameters is nonstandard
PART 1 OPERATION 309

APPENDIX C Error Message
[Explanation]

"&..." is nonstandard.

[Explanation]

Invalid use of "&...".

[Explanation]

Temporary used for initial value of reference to const volatile (anachronism).

[Explanation]

A reference of type "type" cannot be initialized with a value of type "type".

[Explanation]

Initial value of reference to const volatile must be an lvalue.

[Explanation]

Expected __except or __finally.

[Explanation]

A __leave statement may only be used within a __try.

E4669B "&..." is nonstandard

E4670B invalid use of "&..."

E4672B temporary used for initial value of reference to const volatile (anachronism)

E4673B a reference of type "type" cannot be initialized with a value of type "type"

E4674B initial value of reference to const volatile must be an lvalue

E4681B expected __except or __finally

E4682B a __leave statement may only be used within a __try
310 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

"xxxx" not found on pack alignment stack.

[Explanation]

Empty pack alignment stack.

[Explanation]

Entity-kind "entity", required for copy that was eliminated, is inaccessible.

[Explanation]

Entity-kind "entity", required for copy that was eliminated, is not callable because

reference parameter cannot be bound to rvalue.

[Explanation]

<typeinfo> must be included before typeid is used.

[Explanation]

xxxx cannot cast away const or other type qualifiers.

E4688B "xxxx" not found on pack alignment stack

E4689B empty pack alignment stack

E4691B entity-kind "entity", required for copy that was eliminated, is inaccessible

E4692B entity-kind "entity", required for copy that was eliminated, is not callable because
reference parameter cannot be bound to rvalue

E4693B <typeinfo> must be included before typeid is used

E4694B xxxx cannot cast away const or other type qualifiers
PART 1 OPERATION 311

APPENDIX C Error Message
[Explanation]

The type in a dynamic_cast must be a pointer or reference to a complete class type, or

void *.

[Explanation]

The operand of a pointer dynamic_cast must be a pointer to a complete class type.

[Explanation]

The operand of a reference dynamic_cast must be an lvalue of a complete class type.

[Explanation]

The operand of a runtime dynamic_cast must have a polymorphic class type.

[Explanation]

An array type is not allowed here.

[Explanation]

Expected an "=".

E4695B the type in a dynamic_cast must be a pointer or reference to a complete class type, or
void *

E4696B the operand of a pointer dynamic_cast must be a pointer to a complete class type

E4697B the operand of a reference dynamic_cast must be an lvalue of a complete class type

E4698B the operand of a runtime dynamic_cast must have a polymorphic class type

E4701B an array type is not allowed here

E4702B expected an "="
312 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Expected a declarator in condition declaration.

[Explanation]

"xxxx", declared in condition, may not be redeclared in this scope.

[Explanation]

Default template arguments are not allowed for function templates.

[Explanation]

Expected a "," or ">".

[Explanation]

Expected a template parameter list.

[Explanation]

Bool type is not allowed.

[Explanation]

Offset of base class "entity" within class "entity" is too large.

E4703B expected a declarator in condition declaration

E4704B "xxxx", declared in condition, may not be redeclared in this scope

E4705B default template arguments are not allowed for function templates

E4706B expected a "," or ">"

E4707B expected a template parameter list

E4709B bool type is not allowed

E4710B offset of base class "entity" within class "entity" is too large
PART 1 OPERATION 313

APPENDIX C Error Message
[Explanation]

Expression must have bool type (or be convertible to bool).

[Explanation]

Entity-kind "entity" is not a variable name

[Explanation]

__based modifier is not allowed here.

[Explanation]

Variable in __based modifier must have pointer type.

[Explanation]

The type in a const_cast must be a pointer, reference, or pointer to member to an object

type.

[Explanation]

A const_cast can only adjust type qualifiers: it cannot change the underlying type.

[Explanation]

Mutable is not allowed.

E4711B expression must have bool type (or be convertible to bool)

E4713B entity-kind "entity" is not a variable name

E4714B __based modifier is not allowed here

E4716B variable in __based modifier must have pointer type

E4717B the type in a const_cast must be a pointer, reference, or pointer to member to an
object type

E4718B a const_cast can only adjust type qualifiers: it cannot change the underlying type

E4719B mutable is not allowed
314 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Redeclaration of entity-kind "entity" is not allowed to alter its access.

[Explanation]

Namespace definition is not allowed.

[Explanation]

Name must be a namespace name.

[Explanation]

Namespace alias definition is not allowed.

[Explanation]

Namespace-qualified name is required.

[Explanation]

A namespace name is not allowed.

[Explanation]

Entity-kind "entity" is not a class template.

E4720B redeclaration of entity-kind "entity" is not allowed to alter its access

E4724B namespace definition is not allowed

E4725B name must be a namespace name

E4726B namespace alias definition is not allowed

E4727B namespace-qualified name is required

E4728B a namespace name is not allowed

E4730B entity-kind "entity" is not a class template
PART 1 OPERATION 315

APPENDIX C Error Message
[Explanation]

Array with incomplete element type is nonstandard.

[Explanation]

Allocation operator may not be declared in a namespace.

[Explanation]

Deallocation operator may not be declared in a namespace.

[Explanation]

Entity-kind "entity" conflicts with using-declaration of entity-kind "entity".

[Explanation]

Using-declaration of entity-kind "entity" conflicts with entity-kind "entity" (declared at

line xxxx).

[Explanation]

A class-qualified name is required.

[Explanation]

Entity-kind "entity" has no actual member "xxxx".

E4731B array with incomplete element type is nonstandard

E4732B allocation operator may not be declared in a namespace

E4733B deallocation operator may not be declared in a namespace

E4734B entity-kind "entity" conflicts with using-declaration of entity-kind "entity"

E4735B using-declaration of entity-kind "entity" conflicts with entity-kind "entity" (declared
at line xxxx)

E4738B a class-qualified name is required

E4742B entity-kind "entity" has no actual member "xxxx"
316 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Incompatible memory attributes specified.

[Explanation]

Memory attribute may not be followed by a nested declarator.

[Explanation]

A type qualifier is not allowed.

[Explanation]

Entity-kind "entity" (declared at line xxxx) was used before its template was declared.

[Explanation]

Static and nonstatic member functions with same parameter types cannot be overloaded.

[Explanation]

No prior declaration of entity-kind "entity".

[Explanation]

A template-id is not allowed.

E4744B incompatible memory attributes specified

E4746B memory attribute may not be followed by a nested declarator

E4749B a type qualifier is not allowed

E4750B entity-kind "entity" (declared at line xxxx) was used before its template was declared

E4751B static and nonstatic member functions with same parameter types cannot be
overloaded

E4752B no prior declaration of entity-kind "entity"

E4753B a template-id is not allowed
PART 1 OPERATION 317

APPENDIX C Error Message
[Explanation]

A class-qualified name is not allowed.

[Explanation]

Entity-kind "entity" may not be redeclared in the current scope.

[Explanation]

Qualified name is not allowed in namespace member declaration.

[Explanation]

Entity-kind "entity" is not a type name.

[Explanation]

Explicit instantiation is not allowed in the current scope.

[Explanation]

Entity-kind "entity" cannot be explicitly instantiated in the current scope.

[Explanation]

Entity-kind "entity" explicitly instantiated more than once.

E4754B a class-qualified name is not allowed

E4755B entity-kind "entity" may not be redeclared in the current scope

E4756B qualified name is not allowed in namespace member declaration

E4757B entity-kind "entity" is not a type name

E4758B explicit instantiation is not allowed in the current scope

E4759B entity-kind "entity" cannot be explicitly instantiated in the current scope

E4760B entity-kind "entity" explicitly instantiated more than once
318 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Typename may only be used within a template.

[Explanation]

Nonstandard character at start of object-like macro definition.

[Explanation]

Exception specification for virtual entity-kind "entity" is incompatible with that of

overridden entity-kind "entity".

[Explanation]

"entity", implicitly called from entity-kind "entity", is ambiguous.

[Explanation]

"explicit" is not allowed.

[Explanation]

Declaration conflicts with "xxxx" (reserved class name).

[Explanation]

Only "()" is allowed as initializer for array entity-kind "entity".

E4761B typename may only be used within a template

E4765B nonstandard character at start of object-like macro definition

E4766B exception specification for virtual entity-kind "entity" is incompatible with that of
overridden entity-kind "entity"

E4769B "entity", implicitly called from entity-kind "entity", is ambiguous

E4771B "explicit" is not allowed

E4772B declaration conflicts with "xxxx" (reserved class name)

E4773B only "()" is allowed as initializer for array entity-kind "entity"
PART 1 OPERATION 319

APPENDIX C Error Message
[Explanation]

"virtual" is not allowed in a function template declaration.

[Explanation]

Invalid anonymous union -- class member template is not allowed.

[Explanation]

Template nesting depth does not match the previous declaration of entity-kind "entity".

[Explanation]

This declaration cannot have multiple "template <...>" clauses.

[Explanation]

"xxxx", declared in for-loop initialization, may not be redeclared in this scope.

[Explanation]

Definition of virtual entity-kind "entity" is required here.

[Explanation]

A storage class is not allowed in a friend declaration.

E4774B "virtual" is not allowed in a function template declaration

E4775B invalid anonymous union -- class member template is not allowed

E4776B template nesting depth does not match the previous declaration of entity-kind "entity"

E4777B this declaration cannot have multiple "template <...>" clauses

E4779B "xxxx", declared in for-loop initialization, may not be redeclared in this scope

E4782B definition of virtual entity-kind "entity" is required here

E4784B a storage class is not allowed in a friend declaration
320 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Template parameter list for "entity" is not allowed in this declaration.

[Explanation]

Entity-kind "entity" is not a valid member class or function template.

[Explanation]

Not a valid member class or function template declaration.

[Explanation]

A template declaration containing a template parameter list may not be followed by an

explicit specialization declaration.

[Explanation]

Explicit specialization of entity-kind "entity" must precede the first use of entity-kind

"entity".

[Explanation]

Explicit specialization is not allowed in the current scope.

E4785B template parameter list for "entity" is not allowed in this declaration

E4786B entity-kind "entity" is not a valid member class or function template

E4787B not a valid member class or function template declaration

E4788B a template declaration containing a template parameter list may not be followed by an
explicit specialization declaration

E4789B explicit specialization of entity-kind "entity" must precede the first use of entity-kind
"entity"

E4790B explicit specialization is not allowed in the current scope
PART 1 OPERATION 321

APPENDIX C Error Message
[Explanation]

Partial specialization of entity-kind "entity" is not allowed.

[Explanation]

Entity-kind "entity" is not an entity that can be explicitly specialized.

[Explanation]

Explicit specialization of entity-kind "entity" must precede its first use.

[Explanation]

Template parameter xxxx may not be used in an elaborated type specifier.

[Explanation]

Specializing entity-kind "entity" requires "template<>" syntax.

[Explanation]

Specializing entity-kind "entity" without "template<>" syntax is nonstandard.

[Explanation]

This declaration may not have extern "C" linkage.

E4791B partial specialization of entity-kind "entity" is not allowed

E4792B entity-kind "entity" is not an entity that can be explicitly specialized

E4793B explicit specialization of entity-kind "entity" must precede its first use

E4794B template parameter xxxx may not be used in an elaborated type specifier

E4795B specializing entity-kind "entity" requires "template<>" syntax

E4799B specializing entity-kind "entity" without "template<>" syntax is nonstandard

E4800B this declaration may not have extern "C" linkage
322 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

"xxxx" is not a class or function template name in the current scope.

[Explanation]

Specifying a default argument when redeclaring an unreferenced function template is

nonstandard.

[Explanation]

Specifying a default argument when redeclaring an already referenced function template

is not allowed.

[Explanation]

Cannot convert pointer to member of base class "type" to pointer to member of derived

class "type" -- base class is virtual.

[Explanation]

Exception specification is incompatible with that of entity-kind "entity" (declared at line

xxxx)xxxx.

E4801B "xxxx" is not a class or function template name in the current scope

E4802B specifying a default argument when redeclaring an unreferenced function template is
nonstandard

E4803B specifying a default argument when redeclaring an already referenced function
template is not allowed

E4804B cannot convert pointer to member of base class "type" to pointer to member of
derived class "type" -- base class is virtual

E4805B exception specification is incompatible with that of entity-kind "entity" (declared at
line xxxx)xxxx
PART 1 OPERATION 323

APPENDIX C Error Message
[Explanation]

Omission of exception specification is incompatible with entity-kind "entity" (declared at

line xxxx).

[Explanation]

The parse of this expression has changed between the point at which it appeared in the

program and the point at which the expression was evaluated -- "typename" may be

required to resolve the ambiguity.

[Explanation]

Default-initialization of reference is not allowed.

[Explanation]

Uninitialized entity-kind "entity" has a const member.

[Explanation]

Uninitialized base class "type" has a const member.

[Explanation]

Const entity-kind "entity" requires an initializer -- class "type" has no explicitly declared

default constructor.

E4806B omission of exception specification is incompatible with entity-kind "entity"
(declared at line xxxx)

E4807B the parse of this expression has changed between the point at which it appeared in the
program and the point at which the expression was evaluated -- "typename" may be
required to resolve the ambiguity

E4808B default-initialization of reference is not allowed

E4809B uninitialized entity-kind "entity" has a const member

E4810B uninitialized base class "type" has a const member

E4811B const entity-kind "entity" requires an initializer -- class "type" has no explicitly
declared default constructor
324 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Const object requires an initializer -- class "type" has no explicitly declared default

constructor.

[Explanation]

In a function definition a type qualifier on a "void" return type is not allowed.

[Explanation]

Static data member declaration is not allowed in this class.

[Explanation]

Template instantiation resulted in an invalid function declaration.

[Explanation]

"..." is not allowed.

[Explanation]

Extern inline entity-kind "entity" was referenced but not defined.

[Explanation]

Invalid destructor name for type "type".

E4812B const object requires an initializer -- class "type" has no explicitly declared default
constructor

E4816B in a function definition a type qualifier on a "void" return type is not allowed

E4817B static data member declaration is not allowed in this class

E4818B template instantiation resulted in an invalid function declaration

E4819B "..." is not allowed

E4821B extern inline entity-kind "entity" was referenced but not defined

E4822B invalid destructor name for type "type"
PART 1 OPERATION 325

APPENDIX C Error Message
[Explanation]

Destructor reference is ambiguous -- both entity-kind "entity" and entity-kind "entity"

could be used.

[Explanation]

Only one member of a union may be specified in a constructor initializer list.

[Explanation]

Support for "new[]" and "delete[]" is disabled.

[Explanation]

No appropriate operator delete is visible.

[Explanation]

Pointer or reference to incomplete type is not allowed.

[Explanation]

Invalid partial specialization -- entity-kind "entity" is already fully specialized.

[Explanation]

Incompatible exception specifications.

E4824B destructor reference is ambiguous -- both entity-kind "entity" and entity-kind "entity"
could be used

E4827B only one member of a union may be specified in a constructor initializer list

E4828B support for "new[]" and "delete[]" is disabled

E4832B no appropriate operator delete is visible

E4833B pointer or reference to incomplete type is not allowed

E4834B invalid partial specialization -- entity-kind "entity" is already fully specialized

E4835B incompatible exception specifications
326 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Omission of explicit type is nonstandard ("int" assumed).

[Explanation]

More than one partial specialization matches the template argument list of entity-kind

"entity".

[Explanation]

A template argument list is not allowed in a declaration of a primary template.

[Explanation]

Partial specializations may not have default template arguments.

[Explanation]

Entity-kind "entity" is not used in template argument list of entity-kind "entity".

[Explanation]

The type of partial specialization template parameter entity-kind "entity" depends on

another template parameter.

E4837B omission of explicit type is nonstandard ("int" assumed)

E4838B more than one partial specialization matches the template argument list of entity-kind
"entity"

E4840B a template argument list is not allowed in a declaration of a primary template

E4841B partial specializations may not have default template arguments

E4842B entity-kind "entity" is not used in template argument list of entity-kind "entity"

E4843B the type of partial specialization template parameter entity-kind "entity" depends on
another template parameter
PART 1 OPERATION 327

APPENDIX C Error Message
[Explanation]

The template argument list of the partial specialization includes a nontype argument

whose type depends on a template parameter.

[Explanation]

This partial specialization would have been used to instantiate entity-kind "entity".

[Explanation]

This partial specialization would have been made the instantiation of entity-kind "entity"

ambiguous.

[Explanation]

Expression must have integral or enum type.

[Explanation]

Expression must have arithmetic or enum type.

[Explanation]

Expression must have arithmetic, enum, or pointer type.

E4844B the template argument list of the partial specialization includes a nontype argument
whose type depends on a template parameter

E4845B this partial specialization would have been used to instantiate entity-kind "entity"

E4846B this partial specialization would have been made the instantiation of entity-kind
"entity" ambiguous

E4847B expression must have integral or enum type

E4848B expression must have arithmetic or enum type

E4849B expression must have arithmetic, enum, or pointer type
328 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Type of cast must be integral or enum.

[Explanation]

Type of cast must be arithmetic, enum, or pointer.

[Explanation]

Expression must be a pointer to a complete object type.

[Explanation]

A partial specialization of a member class template must be declared in the class of which

it is a member.

[Explanation]

A partial specialization nontype argument must be the name of a nontype parameter or a

constant.

[Explanation]

Return type is not identical to return type "type" of overridden virtual function entity-kind

"entity".

E4850B type of cast must be integral or enum

E4851B type of cast must be arithmetic, enum, or pointer

E4852B expression must be a pointer to a complete object type

E4853B a partial specialization of a member class template must be declared in the class of
which it is a member

E4854B a partial specialization nontype argument must be the name of a nontype parameter or
a constant

E4855B return type is not identical to return type "type" of overridden virtual function entity-
kind "entity"
PART 1 OPERATION 329

APPENDIX C Error Message
[Explanation]

A partial specialization of a class template must be declared in the namespace of which it

is a member.

[Explanation]

Invalid character in input line.

[Explanation]

Function returns incomplete type "type".

[Explanation]

xxxx is not a template.

[Explanation]

A friend declaration may not declare a partial specialization.

[Explanation]

Space required between adjacent ">" delimiters of nested template argument lists (">>" is

the right shift operator).

E4857B a partial specialization of a class template must be declared in the namespace of
which it is a member

E4861B invalid character in input line

E4862B function returns incomplete type "type"

E4864B xxxx is not a template

E4865B a friend declaration may not declare a partial specialization

E4868B space required between adjacent ">" delimiters of nested template argument lists
(">>" is the right shift operator)
330 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Template instantiation resulted in unexpected function type of "type" (the meaning of a

name may have changed since the template declaration -- the type of the template is

"type").

[Explanation]

Ambiguous guiding declaration -- more than one function template "entity" matches type

"type".

[Explanation]

Non-integral operation not allowed in nontype template argument.

[Explanation]

Embedded C++ does not support templates.

[Explanation]

Embedded C++ does not support exception handling.

[Explanation]

Embedded C++ does not support namespaces.

E4871B template instantiation resulted in unexpected function type of "type" (the meaning of
a name may have changed since the template declaration -- the type of the template is
"type")

E4872B ambiguous guiding declaration -- more than one function template "entity" matches
type "type"

E4873B non-integral operation not allowed in nontype template argument

E4875B Embedded C++ does not support templates

E4876B Embedded C++ does not support exception handling

E4877B Embedded C++ does not support namespaces
PART 1 OPERATION 331

APPENDIX C Error Message
[Explanation]

Embedded C++ does not support run-time type information.

[Explanation]

Embedded C++ does not support the new cast syntax.

[Explanation]

Embedded C++ does not support using-declarations.

[Explanation]

Embedded C++ does not support "mutable".

[Explanation]

Embedded C++ does not support multiple or virtual inheritance.

[Explanation]

Pointer-to-member representation "xxxx" has already been set for entity-kind "entity"

[Explanation]

"type" cannot be used to designate constructor for "type".

E4878B Embedded C++ does not support run-time type information

E4879B Embedded C++ does not support the new cast syntax

E4880B Embedded C++ does not support using-declarations

E4881B Embedded C++ does not support "mutable"

E4882B Embedded C++ does not support multiple or virtual inheritance

E4884B pointer-to-member representation "xxxx" has already been set for entity-kind "entity"

E4885B "type" cannot be used to designate constructor for "type"
332 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Invalid suffix on integral constant.

[Explanation]

Operand of __uuidof must have a class type for which __declspec(uuid("...")) has been

specified.

[Explanation]

Invalid GUID string in __declspec(uuid("...")).

[Explanation]

Variable length array with unspecified bound is not allowed.

[Explanation]

An explicit template argument list is not allowed on this declaration.

[Explanation]

An entity with linkage cannot have a variably modified type.

[Explanation]

A variable length array cannot have static storage duration.

E4886B invalid suffix on integral constant

E4887B operand of __uuidof must have a class type for which __declspec(uuid("...")) has
been specified

E4888B invalid GUID string in __declspec(uuid("..."))

E4890B variable length array with unspecified bound is not allowed

E4891B an explicit template argument list is not allowed on this declaration

E4892B an entity with linkage cannot have a variably modified type

E4893B a variable length array cannot have static storage duration
PART 1 OPERATION 333

APPENDIX C Error Message
[Explanation]

Entity-kind "entity" is not a template.

[Explanation]

Expected a template argument.

[Explanation]

Nonmember operator requires a parameter with class or enum type.

[Explanation]

Using-declaration of entity-kind "entity" is not allowed.

[Explanation]

Qualifier of destructor name "type" does not match type "type".

[Explanation]

Incorrect property specification; correct form is __declspec(property(get=name1,

put=name2)).

[Explanation]

Property has already been specified.

E4894B entity-kind "entity" is not a template

E4896B expected a template argument

E4898B nonmember operator requires a parameter with class or enum type

E4900B using-declaration of entity-kind "entity" is not allowed

E4901B qualifier of destructor name "type" does not match type "type"

E4905B incorrect property specification; correct form is __declspec(property(get=name1,
put=name2))

E4906B property has already been specified
334 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

__declspec(property) is not allowed on this declaration.

[Explanation]

Member is declared with __declspec(property), but no "get" function was specified.

[Explanation]

The __declspec(property) "get" function "xxxx" is missing.

[Explanation]

Member is declared with __declspec(property), but no "put" function was specified.

[Explanation]

The __declspec(property) "put" function "xxxx" is missing.

[Explanation]

Ambiguous class member reference -- entity-kind "entity" (declared at line xxxx) used in

preference to entity-kind "entity" (declared at line xxxx).

E4907B __declspec(property) is not allowed on this declaration

E4908B member is declared with __declspec(property), but no "get" function was specified

E4909B the __declspec(property) "get" function "xxxx" is missing

E4910B member is declared with __declspec(property), but no "put" function was specified

E4911B the __declspec(property) "put" function "xxxx" is missing

E4912B ambiguous class member reference -- entity-kind "entity" (declared at line xxxx) used
in preference to entity-kind "entity" (declared at line xxxx)
PART 1 OPERATION 335

APPENDIX C Error Message
[Explanation]

Missing or invalid segment name in __declspec(allocate("...")).

[Explanation]

__declspec(allocate) is not allowed on this declaration.

[Explanation]

A segment name has already been specified.

[Explanation]

Cannot convert pointer to member of derived class "type" to pointer to member of base

class "type" -- base class is virtual.

[Explanation]

A type qualifier cannot be applied to a function type.

[Explanation]

Incorrect use of va_start.

[Explanation]

Incorrect use of va_arg.

E4913B missing or invalid segment name in __declspec(allocate("..."))

E4914B __declspec(allocate) is not allowed on this declaration

E4915B a segment name has already been specified

E4916B cannot convert pointer to member of derived class "type" to pointer to member of
base class "type" -- base class is virtual

E4925B a type qualifier cannot be applied to a function type

E4928B incorrect use of va_start

E4929B incorrect use of va_arg
336 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Incorrect use of va_end.

[Explanation]

A member with reference type is not allowed in a union.

[Explanation]

"typedef" may not be specified here.

[Explanation]

Redeclaration of "entity" alters its access.

[Explanation]

A class or namespace qualified name is required.

[Explanation]

Return type "int" omitted in declaration of function "main".

[Explanation]

Pointer-to-member representation "xxxx" is too restrictive for "entity".

E4930B incorrect use of va_end

E4934B a member with reference type is not allowed in a union

E4935B "typedef" may not be specified here

E4936B redeclaration of "entity" alters its access

E4937B a class or namespace qualified name is required

E4938B return type "int" omitted in declaration of function "main"

E4939B pointer-to-member representation "xxxx" is too restrictive for "entity"
PART 1 OPERATION 337

APPENDIX C Error Message
[Explanation]

Missing return statement at end of non-void function "entity".

[Explanation]

Duplicate using-declaration of "entity" ignored.

[Explanation]

Name following "template" must be a member template.

[Explanation]

Name following "template" must have a template argument list.

[Explanation]

Nonstandard local-class friend declaration -- no prior declaration in the enclosing scope.

[Explanation]

Specifying a default argument when redeclaring an unreferenced function template is

nonstandard.

E4940B missing return statement at end of non-void function "entity"

E4941B duplicate using-declaration of "entity" ignored

E4946B name following "template" must be a member template

E4947B name following "template" must have a template argument list

E4948B nonstandard local-class friend declaration -- no prior declaration in the enclosing
scope

E4949B specifying a default argument when redeclaring an unreferenced function template is
nonstandard
338 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Return type of function "main" must be "int".

[Explanation]

A template parameter may not have class type.

[Explanation]

A default template argument cannot be specified on the declaration of a member of a

class template.

[Explanation]

A return statement is not allowed in a handler of a function try block of a constructor.

[Explanation]

Ordinary and extended designators cannot be combined in an initializer designation.

[Explanation]

The second subscript must not be smaller than the first.

E4951B return type of function "main" must be "int"

E4952B a template parameter may not have class type

E4953B a default template argument cannot be specified on the declaration of a member of a
class template

E4954B a return statement is not allowed in a handler of a function try block of a constructor

E4955B ordinary and extended designators cannot be combined in an initializer designation

E4956B the second subscript must not be smaller than the first
PART 1 OPERATION 339

APPENDIX C Error Message
[Explanation]

Type used as constructor name does not match type "type".

[Explanation]

Use of a type with no linkage to declare a variable with linkage.

[Explanation]

Use of a type with no linkage to declare a function.

[Explanation]

Return type may not be specified on a constructor.

[Explanation]

Return type may not be specified on a destructor.

[Explanation]

Incorrectly formed universal character name.

[Explanation]

Universal character name specifies an invalid character.

E4960B type used as constructor name does not match type "type"

E4961B use of a type with no linkage to declare a variable with linkage

E4962B use of a type with no linkage to declare a function

E4963B return type may not be specified on a constructor

E4964B return type may not be specified on a destructor

E4965B incorrectly formed universal character name

E4966B universal character name specifies an invalid character
340 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

A universal character name cannot designate a character in the basic character set.

[Explanation]

This universal character is not allowed in an identifier.

[Explanation]

The identifier __VA_ARGS__ can only appear in the replacement lists of variadic

macros.

[Explanation]

Array range designators cannot be applied to dynamic initializers.

[Explanation]

Property name cannot appear here.

[Explanation]

A variable-length array type is not allowed.

[Explanation]

A compound literal is not allowed in an integral constant expression.

E4967B a universal character name cannot designate a character in the basic character set

E4968B this universal character is not allowed in an identifier

E4969B the identifier __VA_ARGS__ can only appear in the replacement lists of variadic
macros

E4971B array range designators cannot be applied to dynamic initializers

E4972B property name cannot appear here

E4975B a variable-length array type is not allowed

E4976B a compound literal is not allowed in an integral constant expression
PART 1 OPERATION 341

APPENDIX C Error Message
[Explanation]

A compound literal of type "type" is not allowed.

[Explanation]

A template friend declaration cannot be declared in a local class.

[Explanation]

Ambiguous "?" operation: Second operand of type "type" can be converted to third

operand type "type", and vice versa.

[Explanation]

Call of an object of a class type without appropriate operator() or conversion functions to

pointer-to-function type.

[Explanation]

There is more than one way an object of type "type" can be called for the argument list.

[Explanation]

Loop in sequence of "operator->" functions starting at class "type".

E4977B a compound literal of type "type" is not allowed

E4978B a template friend declaration cannot be declared in a local class

E4979B ambiguous "?" operation: second operand of type "type" can be converted to third
operand type "type", and vice versa

E4980B call of an object of a class type without appropriate operator() or conversion functions
to pointer-to-function type

E4982B there is more than one way an object of type "type" can be called for the argument
list:

E4983B loop in sequence of "operator->" functions starting at class "type"
342 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Typedef name has already been declared (with similar type).

[Explanation]

Operator new and operator delete cannot be given internal linkage.

[Explanation]

Storage class "mutable" is not allowed for anonymous unions.

[Explanation]

Abstract class type %t is not allowed as catch type.

[Explanation]

A qualified function type cannot be used to declare a nonmember function or a static

member function.

[Explanation]

A qualified function type cannot be used to declare a parameter.

E4984B typedef name has already been declared (with similar type)

E4985B operator new and operator delete cannot be given internal linkage

E4986B storage class "mutable" is not allowed for anonymous unions

E4988B abstract class type %t is not allowed as catch type:

E4989B a qualified function type cannot be used to declare a nonmember function or a static
member function

E4990B a qualified function type cannot be used to declare a parameter
PART 1 OPERATION 343

APPENDIX C Error Message
[Explanation]

Cannot create a pointer or reference to qualified function type.

[Explanation]

Extra braces are nonstandard.

[Explanation]

Subtraction of pointer types %t1 and %t2 is nonstandard.

[Explanation]

An empty template parameter list is not allowed in a template template parameter

declaration.

[Explanation]

Eexpected "class".

[Explanation]

The "class" keyword must be used when declaring a template template parameter.

E4991B cannot create a pointer or reference to qualified function type

E4992B extra braces are nonstandard

E4994B subtraction of pointer types %t1 and %t2 is nonstandard

E4995B an empty template parameter list is not allowed in a template template parameter
declaration

E4996B expected "class"

E4997B the "class" keyword must be used when declaring a template template parameter
344 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

A qualified name is not allowed for a friend declaration that is a function definition.

[Explanation]

%n1 is not compatible with %n2.

[Explanation]

A storage class may not be specified here.

[Explanation]

Class member designated by a using-declaration must be visible in a direct base class.

[Explanation]

A template template parameter cannot have the same name as one of its template

parameters.

[Explanation]

Recursive instantiation of default argument.

E4999B a qualified name is not allowed for a friend declaration that is a function definition

E5000B %n1 is not compatible with %n2

E5001B a storage class may not be specified here

E5002B class member designated by a using-declaration must be visible in a direct base class

E5007B a template template parameter cannot have the same name as one of its template
parameters

E5008B recursive instantiation of default argument
PART 1 OPERATION 345

APPENDIX C Error Message
[Explanation]

A parameter of a template template parameter cannot depend on the type of another

template parameter.

[Explanation]

%n is not an entity that can be defined.

[Explanation]

Destructor name must be qualified.

[Explanation]

Friend class name may not be introduced with "typename".

[Explanation]

A using-declaration may not name a constructor or destructor.

[Explanation]

A qualified friend template declaration must refer to a specific previously declared

template.

E5009B a parameter of a template template parameter cannot depend on the type of another
template parameter

E5010B %n is not an entity that can be defined

E5011B destructor name must be qualified

E5012B friend class name may not be introduced with "typename"

E5013B a using-declaration may not name a constructor or destructor

E5014B a qualified friend template declaration must refer to a specific previously declared
template
346 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Invalid specifier in class template declaration.

[Explanation]

%n has no member class %sq.

[Explanation]

The global scope has no class named %sq.

[Explanation]

Recursive instantiation of template default argument.

[Explanation]

Access declarations and using-declarations cannot appear in unions.

[Explanation]

%no is not a class member.

[Explanation]

Nonstandard member constant declaration is not allowed.

E5015B invalid specifier in class template declaration

E5018B %n has no member class %sq

E5019B the global scope has no class named %sq

E5020B recursive instantiation of template default argument

E5021B access declarations and using-declarations cannot appear in unions

E5022B %no is not a class member

E5023B nonstandard member constant declaration is not allowed
PART 1 OPERATION 347

APPENDIX C Error Message
[Explanation]

Invalid redeclaration of nested class.

[Explanation]

Type containing an unknown-size array is not allowed.

[Explanation]

A variable with static storage duration cannot be defined within an inline function.

[Explanation]

An entity with internal linkage cannot be referenced within an inline function with

external linkage.

[Explanation]

Argument type %t does not match this type-generic function macro.

[Explanation]

Friend declaration cannot add default arguments to previous declaration.

[Explanation]

%n cannot be declared in this scope.

E5028B invalid redeclaration of nested class

E5029B type containing an unknown-size array is not allowed

E5030B a variable with static storage duration cannot be defined within an inline function

E5031B an entity with internal linkage cannot be referenced within an inline function with
external linkage

E5032B argument type %t does not match this type-generic function macro

E5034B friend declaration cannot add default arguments to previous declaration

E5035B %n cannot be declared in this scope
348 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

The reserved identifier %sq may only be used inside a function.

[Explanation]

This universal character cannot begin an identifier.

[Explanation]

Expected a string literal.

[Explanation]

Unrecognized STDC pragma.

[Explanation]

Expected "ON", "OFF", or "DEFAULT".

[Explanation]

A STDC pragma may only appear between declarations in the global scope or before any

statements or declarations in a block scope.

[Explanation]

Incorrect use of va_copy.

E5036B the reserved identifier %sq may only be used inside a function

E5037B this universal character cannot begin an identifier

E5038B expected a string literal

E5039B unrecognized STDC pragma

E5040B expected "ON", "OFF", or "DEFAULT"

E5041B a STDC pragma may only appear between declarations in the global scope or before
any statements or declarations in a block scope

E5042B incorrect use of va_copy
PART 1 OPERATION 349

APPENDIX C Error Message
[Explanation]

%s can only be used with floating-point types.

[Explanation]

Complex type is not allowed.

[Explanation]

Invalid designator kind.

[Explanation]

Complex floating-point operation result is out of range.

[Explanation]

An initializer cannot be specified for a flexible array member.

[Explanation]

Standard requires that %n be given a type by a subsequent declaration ("int" assumed).

[Explanation]

A definition is required for inline %n.

E5043B %s can only be used with floating-point types

E5044B complex type is not allowed

E5045B invalid designator kind

E5047B complex floating-point operation result is out of range

E5049B an initializer cannot be specified for a flexible array member

E5051B standard requires that %n be given a type by a subsequent declaration ("int" assumed)

E5052B a definition is required for inline %n
350 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

A floating-point type must be included in the type specifier for a _Complex or

_Imaginary type.

[Explanation]

Types cannot be declared in anonymous unions.

[Explanation]

Declaration of %n is incompatible with a declaration in another translation unit.

[Explanation]

The other declaration is %p.

[Explanation]

Detected during compilation of secondary translation unit %sq.

[Explanation]

Compilation of secondary translation unit %sq.

[Explanation]

A field declaration cannot have a type involving a variable length array.

E5054B a floating-point type must be included in the type specifier for a _Complex or
_Imaginary type

E5055B types cannot be declared in anonymous unions

E5061B declaration of %n is incompatible with a declaration in another translation unit

E5062B the other declaration is %p

E5063B detected during compilation of secondary translation unit %sq

E5064B compilation of secondary translation unit %sq

E5065B a field declaration cannot have a type involving a variable length array
PART 1 OPERATION 351

APPENDIX C Error Message
[Explanation]

Declaration of %n had a different meaning during compilation of %sq.

[Explanation]

Expected "template".

[Explanation]

"export" cannot be used on an explicit instantiation.

[Explanation]

"export" cannot be used on this declaration.

[Explanation]

A member of an unnamed namespace cannot be declared "export".

[Explanation]

A template cannot be declared "export" after it has been defined.

[Explanation]

A declaration cannot have a label.

E5066B declaration of %n had a different meaning during compilation of %sq

E5067B expected "template"

E5068B "export" cannot be used on an explicit instantiation

E5069B "export" cannot be used on this declaration

E5070B a member of an unnamed namespace cannot be declared "export"

E5071B a template cannot be declared "export" after it has been defined

E5072B a declaration cannot have a label
352 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Support for exported templates is disabled.

[Explanation]

%n already defined during compilation of %sq.

[Explanation]

%n already defined in another translation unit.

[Explanation]

A non-static local variable may not be used in a __based specification.

[Explanation]

A field with the same name as its class cannot be declared in a class with a user-declared

constructor.

[Explanation]

%n cannot be instantiated -- it has been explicitly specialized in the translation unit

containing the exported definition.

E5073B support for exported templates is disabled

E5075B %n already defined during compilation of %sq

E5076B %n already defined in another translation unit

E5077B a non-static local variable may not be used in a __based specification

E5081B a field with the same name as its class cannot be declared in a class with a user-
declared constructor

E5084B %n cannot be instantiated -- it has been explicitly specialized in the translation unit
containing the exported definition
PART 1 OPERATION 353

APPENDIX C Error Message
[Explanation]

Object type is: %s.

[Explanation]

The object has cv-qualifiers that are not compatible with the member %n.

[Explanation]

No instance of %n matches the argument list and object (the object has cv-qualifiers that

prevent a match).

[Explanation]

An attribute specifies a mode incompatible with %t.

[Explanation]

There is no type with the width specified.

[Explanation]

Invalid alignment value specified by attribute.

E5085B object type is: %s

E5086B the object has cv-qualifiers that are not compatible with the member %n

E5087B no instance of %n matches the argument list and object (the object has cv-qualifiers
that prevent a match)

E5088B an attribute specifies a mode incompatible with %t

E5089B there is no type with the width specified

E5090B invalid alignment value specified by attribute
354 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Invalid attribute for %t.

[Explanation]

Invalid attribute for %n.

[Explanation]

Attribute %sq does not take arguments.

[Explanation]

Expected an attribute name.

[Explanation]

Attributes may not appear here.

[Explanation]

Invalid argument to attribute %sq.

[Explanation]

"goto *expr" is nonstandard.

E5091B invalid attribute for %t

E5092B invalid attribute for %n

E5094B attribute %sq does not take arguments

E5096B expected an attribute name

E5098B attributes may not appear here

E5099B invalid argument to attribute %sq

E5102B "goto *expr" is nonstandard
PART 1 OPERATION 355

APPENDIX C Error Message
[Explanation]

Taking the address of a label is nonstandard.

[Explanation]

Attribute %sq is only allowed in a function definition.

[Explanation]

The "transparent_union" attribute only applies to unions, and %t is not a union.

[Explanation]

Only parameters can be transparent.

[Explanation]

The %sq attribute does not apply to local variables.

[Explanation]

Attributes are not permitted in a function definition.

[Explanation]

The second constant in a case range must be larger than the first.

E5103B taking the address of a label is nonstandard

E5106B attribute %sq is only allowed in a function definition

E5107B the "transparent_union" attribute only applies to unions, and %t is not a union

E5111B only parameters can be transparent

E5112B the %sq attribute does not apply to local variables

E5113B attributes are not permitted in a function definition

E5115B the second constant in a case range must be larger than the first
356 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

An asm name is not permitted in a function definition.

[Explanation]

Unknown register name "%s".

[Explanation]

Unknown asm constraint modifier '%s'.

[Explanation]

Unknown asm constraint letter '%s'.

[Explanation]

Asm operand has no constraint letter.

[Explanation]

An asm output operand must have one of the '=' or '+' modifiers.

[Explanation]

An asm input operand may not have the '=' or '+' modifiers.

E5116B an asm name is not permitted in a function definition

E5118B unknown register name "%s"

E5120B unknown asm constraint modifier '%s'

E5121B unknown asm constraint letter '%s'

E5122B asm operand has no constraint letter

E5123B an asm output operand must have one of the '=' or '+' modifiers

E5124B an asm input operand may not have the '=' or '+' modifiers
PART 1 OPERATION 357

APPENDIX C Error Message
[Explanation]

Too many operands to asm statement (maximum is 10).

[Explanation]

Too many colons in asm statement.

[Explanation]

Register "%s" used more than once.

[Explanation]

Register "%s" is both used and clobbered.

[Explanation]

Register "%s" clobbered more than once.

[Explanation]

Register "%s" has a fixed purpose and may not be used in an asm statement.

[Explanation]

Register "%s" has a fixed purpose and may not be clobbered in an asm statement.

E5125B too many operands to asm statement (maximum is 10)

E5126B too many colons in asm statement

E5127B register "%s" used more than once

E5128B register "%s" is both used and clobbered

E5129B register "%s" clobbered more than once

E5130B register "%s" has a fixed purpose and may not be used in an asm statement

E5131B register "%s" has a fixed purpose and may not be clobbered in an asm statement
358 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

An empty clobbers list must be omitted entirely.

[Explanation]

Expected an asm operand.

[Explanation]

Expected a register to clobber.

[Explanation]

"format" attribute applied to %n which does not have variable arguments.

[Explanation]

First substitution argument is not the first variable argument.

[Explanation]

Format argument index is greater than number of parameters.

[Explanation]

Format argument does not have string type.

E5132B an empty clobbers list must be omitted entirely

E5133B expected an asm operand

E5134B expected a register to clobber

E5135B "format" attribute applied to %n which does not have variable arguments

E5136B first substitution argument is not the first variable argument

E5137B format argument index is greater than number of parameters

E5138B format argument does not have string type
PART 1 OPERATION 359

APPENDIX C Error Message
[Explanation]

The "template" keyword used for syntactic disambiguation may only be used within a

template.

[Explanation]

A debug option must be specified on the command-line for the db_opt pragma to be used.

[Explanation]

Storage class must be auto or register.

[Explanation]

%t1 would have been promoted to %t2 when passed through the ellipsis parameter; use

the latter type instead.

[Explanation]

%sq is not a base class member.

[Explanation]

__super cannot appear after "::".

E5139B the "template" keyword used for syntactic disambiguation may only be used within a
template

E5140B a debug option must be specified on the command-line for the db_opt pragma to be
used

E5144B storage class must be auto or register

E5145B %t1 would have been promoted to %t2 when passed through the ellipsis parameter;
use the latter type instead

E5146B %sq is not a base class member

E5147B __super cannot appear after "::"
360 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

__super may only be used in a class scope.

[Explanation]

__super must be followed by "::".

[Explanation]

[%s instantiation contexts not shown.]

[Explanation]

Declaration does not match its alias %n.

[Explanation]

Entity declared as alias cannot have definition.

[Explanation]

Void return type cannot be qualified.

E5148B __super may only be used in a class scope

E5149B __super must be followed by "::"

E5150B [%s instantiation contexts not shown]

E5153B declaration does not match its alias %n

E5154B entity declared as alias cannot have definition

E5158B void return type cannot be qualified
PART 1 OPERATION 361

APPENDIX C Error Message
[Explanation]

A member template corresponding to %no is declared as a template of a different kind in

another translation unit.

[Explanation]

va_start should only appear in a function with an ellipsis parameter.

[Explanation]

Statement expressions are only allowed in block scope.

[Explanation]

From translation unit.

[Explanation]

Unrecognized UPC pragma.

[Explanation]

Shared block size does not match one previously specified.

E5161B a member template corresponding to %no is declared as a template of a different kind
in another translation unit

E5163B va_start should only appear in a function with an ellipsis parameter

E5166B statement expressions are only allowed in block scope

E5167B from translation unit

E5170B unrecognized UPC pragma

E5171B shared block size does not match one previously specified
362 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

The block size of a shared array must be greater than zero.

[Explanation]

Multiple block sizes not allowed.

[Explanation]

Strict or relaxed requires shared.

[Explanation]

THREADS not allowed in this context.

[Explanation]

Block size specified exceeds the maximum value of %s.

[Explanation]

Function returning shared is not allowed.

[Explanation]

Only arrays of a shared type can be dimensioned to a multiple of THREADS.

E5173B the block size of a shared array must be greater than zero

E5174B multiple block sizes not allowed

E5175B strict or relaxed requires shared

E5176B THREADS not allowed in this context

E5177B block size specified exceeds the maximum value of %s

E5178B function returning shared is not allowed

E5179B only arrays of a shared type can be dimensioned to a multiple of THREADS
PART 1 OPERATION 363

APPENDIX C Error Message
[Explanation]

One dimension of an array of a shared type must be a multiple of THREADS when the

number of threads is nonconstant.

[Explanation]

Shared type inside a struct or union is not allowed.

[Explanation]

Parameters may not have shared types.

[Explanation]

A dynamic THREADS dimension requires a definite block size.

[Explanation]

Shared variables must be static or extern.

[Explanation]

Branching into or out of a upc_forall loop is not allowed.

[Explanation]

Affinity expression must have a shared type or point to a shared type.

E5180B one dimension of an array of a shared type must be a multiple of THREADS when
the number of threads is nonconstant

E5181B shared type inside a struct or union is not allowed

E5182B parameters may not have shared types

E5183B a dynamic THREADS dimension requires a definite block size

E5184B shared variables must be static or extern

E5187B branching into or out of a upc_forall loop is not allowed

E5188B affinity expression must have a shared type or point to a shared type
364 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Shared void* types can only be compared for equality.

[Explanation]

The hidden declaration is %p.

[Explanation]

%npd must have external C linkage.

[Explanation]

Typedef %sq may not be used in an elaborated type specifier.

[Explanation]

Parameter %sq may not be redeclared in a catch clause of function try block.

[Explanation]

The initial explicit specialization of %n must be declared in the namespace containing the

template.

[Explanation]

"template" must be followed by an identifier.

E5190B shared void* types can only be compared for equality

E5196B the hidden declaration is %p

E5199B %npd must have external C linkage

E5201B typedef %sq may not be used in an elaborated type specifier

E5203B parameter %sq may not be redeclared in a catch clause of function try block

E5204B the initial explicit specialization of %n must be declared in the namespace containing
the template

E5206B "template" must be followed by an identifier
PART 1 OPERATION 365

APPENDIX C Error Message
[Explanation]

MYTHREAD not allowed in this context.

[Explanation]

Layout qualifier cannot qualify pointer to shared.

[Explanation]

Layout qualifier cannot qualify an incomplete array.

[Explanation]

Declaration of %sq hides handler parameter.

[Explanation]

This pragma cannot be used in a _Pragma operator (a #pragma directive must be used).

[Explanation]

An asm name is not allowed on a nonstatic member declaration.

[Explanation]

The "init_priority" attribute can only be used for namespace scope variables of class

types.

E5207B MYTHREAD not allowed in this context

E5208B layout qualifier cannot qualify pointer to shared

E5209B layout qualifier cannot qualify an incomplete array

E5210B declaration of %sq hides handler parameter

E5212B this pragma cannot be used in a _Pragma operator (a #pragma directive must be used)

E5216B an asm name is not allowed on a nonstatic member declaration

E5219B the "init_priority" attribute can only be used for namespace scope variables of class
types
366 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Labels can be referenced only in function definitions.

[Explanation]

Transfer of control into a statement expression is not allowed.

[Explanation]

Transfer of control out of a statement expression is not allowed.

[Explanation]

This statement is not allowed inside of a statement expression.

[Explanation]

A non-POD class definition is not allowed inside of a statement expression.

[Explanation]

Destructible entities are not allowed inside of a statement expression.

[Explanation]

A dynamically-initialized local static variable is not allowed inside of a statement

expression.

E5226B labels can be referenced only in function definitions

E5227B transfer of control into a statement expression is not allowed

E5228B transfer of control out of a statement expression is not allowed

E5229B this statement is not allowed inside of a statement expression

E5230B a non-POD class definition is not allowed inside of a statement expression

E5231B destructible entities are not allowed inside of a statement expression

E5232B a dynamically-initialized local static variable is not allowed inside of a statement
expression
PART 1 OPERATION 367

APPENDIX C Error Message
[Explanation]

A variable-length array is not allowed inside of a statement expression.

[Explanation]

A statement expression is not allowed inside of a default argument.

[Explanation]

Interface types cannot have virtual base classes.

[Explanation]

Interface types cannot specify "private" or "protected".

[Explanation]

Interface types can only derive from other interface types.

[Explanation]

"type" is an interface type.

[Explanation]

Interface types cannot have typedef members.

E5233B a variable-length array is not allowed inside of a statement expression

E5234B a statement expression is not allowed inside of a default argument

E5236B interface types cannot have virtual base classes

E5237B interface types cannot specify "private" or "protected"

E5238B interface types can only derive from other interface types

E5239B "type" is an interface type

E5240B interface types cannot have typedef members
368 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Interface types cannot have user-declared constructors or destructors.

[Explanation]

Interface types cannot have user-declared member operators.

[Explanation]

Interface types cannot be declared in functions.

[Explanation]

Cannot declare interface templates.

[Explanation]

Interface types cannot have data members.

[Explanation]

Interface types cannot contain friend declaration.

[Explanation]

Interface types cannot have nested classes.

E5241B interface types cannot have user-declared constructors or destructors

E5242B interface types cannot have user-declared member operators

E5243B interface types cannot be declared in functions

E5244B cannot declare interface templates

E5245B interface types cannot have data members

E5246B interface types cannot contain friend declaration

E5247B interface types cannot have nested classes
PART 1 OPERATION 369

APPENDIX C Error Message
[Explanation]

Interface types cannot be nested class types.

[Explanation]

Interface types cannot have member templates.

[Explanation]

Interface types cannot have static member functions.

[Explanation]

This pragma cannot be used in a __pragma operator (a #pragma directive must be used).

[Explanation]

Qualifier must be base class of "type".

[Explanation]

Declaration must correspond to a pure virtual member function in the indicated base

class.

E5248B interface types cannot be nested class types

E5249B interface types cannot have member templates

E5250B interface types cannot have static member functions

E5251B this pragma cannot be used in a __pragma operator (a #pragma directive must be
used)

E5252B qualifier must be base class of "type"

E5253B declaration must correspond to a pure virtual member function in the indicated base
class
370 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Integer overflow in internal computation due to size or complexity of "type".

[Explanation]

Integer overflow in internal computation.

[Explanation]

__w64 can only be specified on int, long, and pointer types.

[Explanation]

Invalid alignment specifier value.

[Explanation]

Expected an integer literal.

[Explanation]

Expected an argument value for the "xxxx" attribute parameter.

[Explanation]

Invalid argument value for the "xxxx" attribute parameter.

E5254B integer overflow in internal computation due to size or complexity of "type"

E5255B integer overflow in internal computation

E5256B __w64 can only be specified on int, long, and pointer types

E5260B invalid alignment specifier value

E5261B expected an integer literal

E5263B expected an argument value for the "xxxx" attribute parameter

E5264B invalid argument value for the "xxxx" attribute parameter
PART 1 OPERATION 371

APPENDIX C Error Message
[Explanation]

Expected a boolean value for the "xxxx" attribute parameter.

[Explanation]

A positional argument cannot follow a named argument in an attribute.

[Explanation]

Attribute "xxxx" has no parameter named "xxxx".

[Explanation]

Expected an argument list for the "xxxx" attribute.

[Explanation]

Expected a "," or "]".

[Explanation]

Attribute argument "xxxx" has already been given a value.

[Explanation]

A value cannot be assigned to the "xxxx" attribute.

E5265B expected a boolean value for the "xxxx" attribute parameter

E5266B a positional argument cannot follow a named argument in an attribute

E5267B attribute "xxxx" has no parameter named "xxxx"

E5268B expected an argument list for the "xxxx" attribute

E5269B expected a "," or "]"

E5270B attribute argument "xxxx" has already been given a value

E5271B a value cannot be assigned to the "xxxx" attribute
372 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

A throw expression may not have pointer-to-incomplete type.

[Explanation]

Alignment-of operator applied to incomplete type.

[Explanation]

"xxxx" may only be used as a standalone attribute.

[Explanation]

"xxxx" attribute cannot be used here.

[Explanation]

Unrecognized attribute "xxxx".

[Explanation]

Attributes are not allowed here.

[Explanation]

Invalid argument value for the "xxxx" attribute parameter.

E5272B a throw expression may not have pointer-to-incomplete type

E5273B alignment-of operator applied to incomplete type

E5274B "xxxx" may only be used as a standalone attribute

E5275B "xxxx" attribute cannot be used here

E5276B unrecognized attribute "xxxx"

E5277B attributes are not allowed here

E5278B invalid argument value for the "xxxx" attribute parameter
PART 1 OPERATION 373

APPENDIX C Error Message
[Explanation]

Too many attribute arguments.

[Explanation]

Conversion from inaccessible base class "type" is not allowed.

[Explanation]

Bad argument for #pragma int_to_unsigned.

[Explanation]

Argument for #pragma int_to_unsigned must return an unsigned type.

[Explanation]

Cannot preprocess encrypted file: "xxxx".

[Explanation]

__interrupt is specified.

[Explanation]

__io is specified.

E5279B too many attribute arguments

E5280B conversion from inaccessible base class "type" is not allowed

E6001B bad argument for #pragma int_to_unsigned

E6002B argument for #pragma int_to_unsigned must return an unsigned type

E6003B cannot preprocess encrypted file: "xxxx"

E6007B __interrupt is specified

E6010B __io is specified
374 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Entity-kind "entity" may not be initialized for __io.

[Explanation]

#pragma section or #pragma segment: syntax error: unknown specifier.

[Explanation]

#pragma section or #pragma segment: invalid section name specified.

[Explanation]

#pragma section or #pragma segment: invalid section attr specified.

[Explanation]

#pragma section or #pragma segment: syntax error: address is expected.

[Explanation]

#pragma section or #pragma segment: address is not integral constant expression.

[Explanation]

#pragma inline: syntax error: unknown specifier.

E6013B entity-kind "entity" may not be initialized for __io

E6014B #pragma xxxx: syntax error: unknown specifier

E6015B #pragma xxxx: invalid section name specified

E6017B #pragma xxxx: invalid section attr specified

E6018B #pragma xxxx: syntax error: address is expected

E6019B #pragma xxxx: address is not integral constant expression

E6020B #pragma inline: syntax error: unknown specifier
PART 1 OPERATION 375

APPENDIX C Error Message
[Explanation]

#pragma intvect: syntax error: unknown specifier.

[Explanation]

#pragma intvect: syntax error: vector number is expected.

[Explanation]

#pragma intvect: vector number is not integral constant expression.

[Explanation]

#pragma intvect: same vector number exist.

[Explanation]

#pragma intvect: invalid type of interrupt function.

[Explanation]

#pragma intvect: interrupt function is not found.

[Explanation]

#pragma defvect: syntax error: unknown specifier.

E6021B #pragma intvect: syntax error: unknown specifier

E6022B #pragma intvect: syntax error: vector number is expected

E6023B #pragma intvect: vector number is not integral constant expression

E6024B #pragma intvect: same vector number exist

E6025B #pragma intvect: invalid type of interrupt function

E6026B #pragma intvect: interrupt function is not found

E6027B #pragma defvect: syntax error: unknown specifier
376 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

#pragma defvect: duplicate defvect function.

[Explanation]

#pragma defvect: invalid type of interrupt function.

[Explanation]

#pragma defvect: interrupt function is not found.

[Explanation]

#pragma ilm: syntax error: interrupt level is expected.

[Explanation]

#pragma ilm: invalid constant for interrupt level value.

[Explanation]

#pragma ilm: interrupt level is out of range.

[Explanation]

#pragma noilm: `#pragma ilm' not exist.

E6028B #pragma defvect: duplicate defvect function

E6029B #pragma defvect: invalid type of interrupt function

E6030B #pragma defvect: interrupt function is not found

E6031B #pragma ilm: syntax error: interrupt level is expected

E6033B #pragma ilm: invalid constant for interrupt level value

E6034B #pragma ilm: interrupt level is out of range

E6035B #pragma noilm: `#pragma ilm' not exist
PART 1 OPERATION 377

APPENDIX C Error Message
[Explanation]

`#pragma noilm' expected.

[Explanation]

`#pragma endasm' expected.

[Explanation]

#pragma loop unroll: unroll count number is out of range.

[Explanation]

#pragma statement if: branch rate number is out of range.

[Explanation]

#pragma intvect: vector number is out of range.

[Explanation]

Argument xxxx of xxxx should be immediately a value.

[Explanation]

Argument xxxx of xxxx should be an accumulator number defined by media.h.

E6036B `#pragma noilm' expected

E6037B `#pragma endasm' expected

E6050B #pragma loop unroll: unroll count number is out of range

E6051B #pragma statement if: branch rate number is out of range

E6052B #pragma intvect: vector number is out of range

E6055B argument xxxx of xxxx should be immediately a value

E6057B argument xxxx of xxxx should be an accumulator number defined by media.h
378 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

#include file "xxxx" includes itself.

[Explanation]

Out of memory.

[Explanation]

Could not open source file "xxxx".

[Explanation]

Expected a file name.

[Explanation]

"xxxx" is not a valid source file name.

[Explanation]

#error directive: xxxx

[Explanation]

Program too large or complicated to compile.

F9001B #include file "xxxx" includes itself

F9002B out of memory

F9003B could not open source file "xxxx"

F9004B expected a file name

F9005B "xxxx" is not a valid source file name

F9006B #error directive: xxxx

F9007B program too large or complicated to compile
PART 1 OPERATION 379

APPENDIX C Error Message
[Explanation]

Could not open temporary file "xxxx".

[Explanation]

Name of directory for temporary files is too long ("xxxx").

[Explanation]

Could not open source file "xxxx" (no directories in search list).

[Explanation]

Error while writing xxxx file.

[Explanation]

Invalid intermediate language file.

[Explanation]

Error while deleting file "xxxx".

[Explanation]

Could not create instantiation request file "xxxx".

F9008B could not open temporary file "xxxx"

F9009B name of directory for temporary files is too long ("xxxx")

F9010B could not open source file "xxxx" (no directories in search list)

F9011B error while writing xxxx file

F9012B invalid intermediate language file

F9013B error while deleting file "xxxx"

F9014B could not create instantiation request file "xxxx"
380 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Unable to obtain mapped memory.

[Explanation]

Insufficient memory for PCH memory allocation.

[Explanation]

"xxxx" is not a valid directory.

[Explanation]

Cannot build temporary file name.

[Explanation]

Could not set locale "xxxx" to allow processing of multibyte characters.

[Explanation]

Invalid output file: "xxxx".

[Explanation]

Cannot open output file: "xxxx".

F9015B unable to obtain mapped memory

F9016B insufficient memory for PCH memory allocation

F9017B "xxxx" is not a valid directory

F9018B cannot build temporary file name

F9019B could not set locale "xxxx" to allow processing of multibyte characters

F9020B invalid output file: "xxxx"

F9021B cannot open output file: "xxxx"
PART 1 OPERATION 381

APPENDIX C Error Message
[Explanation]

Cannot open definition list file: "xxxx".

[Explanation]

Invalid message file.

[Explanation]

Invalid precompiled header file.

[Explanation]

Cannot open exported template file: "xxxx".

[Explanation]

Exported template file "xxxx" is corrupted.

[Explanation]

Mangled name is too long.

[Explanation]

Invalid export information file "xxxx" at line number "xxxx".

F9022B cannot open definition list file: "xxxx"

F9023B invalid message file

F9024B invalid precompiled header file

F9025B cannot open exported template file: "xxxx"

F9026B exported template file "xxxx" is corrupted

F9027B mangled name is too long

F9028B invalid export information file "xxxx" at line number "xxxx"
382 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Not support asm statement in function with covariant return type.

[Explanation]

Multiple global functions named xxxx.

[Explanation]

xxxx not supported by -Kcrossfile.

[Explanation]

 -Kpu requires =filename.

[Explanation]

Specified profile has invalid data.

[Explanation]

Invalid macro definition.

[Explanation]

Invalid macro undefinition.

F9029B not support asm statement in function with covariant return type

F9030B multiple global functions named xxxx.

F9031B xxxx not supported by -Kcrossfile.

F9032B -Kpu requires =filename.

F9033B specified profile has invalid data

F9099B [561] invalid macro definition

F9099B [562] invalid macro undefinition
PART 1 OPERATION 383

APPENDIX C Error Message
[Explanation]

Invalid preprocessor output file.

[Explanation]

Cannot open preprocessor output file.

[Explanation]

IL file name must be specified if input is.

[Explanation]

Invalid IL output file.

[Explanation]

Cannot open IL output file.

[Explanation]

Invalid C output file.

[Explanation]

Cannot open C output file.

F9099B [563] invalid preprocessor output file

F9099B [564] cannot open preprocessor output file

F9099B [565] IL file name must be specified if input is

F9099B [566] invalid IL output file

F9099B [567] cannot open IL output file

F9099B [568] invalid C output file

F9099B [569] cannot open C output file
384 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Error in debug option argument.

[Explanation]

Invalid option.

[Explanation]

Back end requires name of IL file.

[Explanation]

Could not open IL file.

[Explanation]

Invalid number.

[Explanation]

Incorrect host CPU id.

[Explanation]

Invalid instantiation mode.

F9099B [570] error in debug option argument

F9099B [571] invalid option

F9099B [572] back end requires name of IL file

F9099B [573] could not open IL file

F9099B [574] invalid number

F9099B [575] incorrect host CPU id

F9099B [576] invalid instantiation mode
PART 1 OPERATION 385

APPENDIX C Error Message
[Explanation]

Invalid error limit.

[Explanation]

Invalid raw-listing output file.

[Explanation]

Cannot open raw-listing output file.

[Explanation]

Invalid cross-reference output file.

[Explanation]

Cannot open cross-reference output file.

[Explanation]

Invalid error output file.

[Explanation]

Cannot open error output file.

F9099B [578] invalid error limit

F9099B [579] invalid raw-listing output file

F9099B [580] cannot open raw-listing output file

F9099B [581] invalid cross-reference output file

F9099B [582] cannot open cross-reference output file

F9099B [583] invalid error output file

F9099B [584] cannot open error output file
386 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Virtual function tables can only be suppressed when compiling C++.

[Explanation]

Anachronism option can be used only when compiling C++.

[Explanation]

Instantiation mode option can be used only when compiling C++.

[Explanation]

Automatic instantiation mode can be used only when compiling C++.

[Explanation]

Implicit template inclusion mode can be used only when compiling C++.

[Explanation]

Exception handling option can be used only when compiling C++.

[Explanation]

Strict ANSI mode is incompatible with K&R mode.

F9099B [585] virtual function tables can only be suppressed when compiling C++

F9099B [586] anachronism option can be used only when compiling C++

F9099B [587] instantiation mode option can be used only when compiling C++

F9099B [588] automatic instantiation mode can be used only when compiling C++

F9099B [589] implicit template inclusion mode can be used only when compiling C++

F9099B [590] exception handling option can be used only when compiling C++

F9099B [591] strict ANSI mode is incompatible with K&R mode
PART 1 OPERATION 387

APPENDIX C Error Message
[Explanation]

Strict ANSI mode is incompatible with cfront mode.

[Explanation]

Missing source file name.

[Explanation]

Output files may not be specified when compiling several input files.

[Explanation]

Too many arguments on command line.

[Explanation]

An output file was specified, but none is needed.

[Explanation]

IL display requires name of IL file.

[Explanation]

Strict ANSI mode is incompatible with allowing anachronisms.

F9099B [592] strict ANSI mode is incompatible with cfront mode

F9099B [593] missing source file name

F9099B [594] output files may not be specified when compiling several input files

F9099B [595] too many arguments on command line

F9099B [596] an output file was specified, but none is needed

F9099B [597] IL display requires name of IL file

F9099B [600] strict ANSI mode is incompatible with allowing anachronisms
388 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Local instantiation mode is incompatible with automatic instantiation.

[Explanation]

Invalid error tag in diagnostic control option.

[Explanation]

Invalid error number in diagnostic control option.

[Explanation]

Invalid precompiled header output file.

[Explanation]

Cannot open precompiled header output file.

[Explanation]

Cannot open precompiled header input file.

[Explanation]

Invalid PCH memory size.

F9099B [602] local instantiation mode is incompatible with automatic instantiation

F9099B [613] invalid error tag in diagnostic control option

F9099B [614] invalid error number in diagnostic control option

F9099B [622] invalid precompiled header output file

F9099B [623] cannot open precompiled header output file

F9099B [625] cannot open precompiled header input file

F9099B [635] invalid PCH memory size
PART 1 OPERATION 389

APPENDIX C Error Message
[Explanation]

PCH options must appear first in the command line.

[Explanation]

Precompiled header files may not be used when compiling several input files.

[Explanation]

Strict ANSI mode is incompatible with Microsoft mode.

[Explanation]

Cfront mode is incompatible with Microsoft mode.

[Explanation]

wchar_t keyword option can be used only when compiling C++.

[Explanation]

Invalid packing alignment value.

[Explanation]

SVR4 C compatibility option can be used only when compiling ANSI C.

F9099B [636] PCH options must appear first in the command line

F9099B [638] precompiled header files may not be used when compiling several input files

F9099B [648] strict ANSI mode is incompatible with Microsoft mode

F9099B [649] cfront mode is incompatible with Microsoft mode

F9099B [659] wchar_t keyword option can be used only when compiling C++

F9099B [660] invalid packing alignment value

F9099B [675] SVR4 C compatibility option can be used only when compiling ANSI C
390 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Strict ANSI mode is incompatible with SVR4 C mode.

[Explanation]

Invalid PCH directory.

[Explanation]

RTTI option can be used only when compiling C++.

[Explanation]

Bool option can be used only when compiling C++.

[Explanation]

Array new and delete option can be used only when compiling C++.

[Explanation]

Namespaces option can be used only when compiling C++.

[Explanation]

Special_subscript_cost option can be used only when compiling C++.

F9099B [677] strict ANSI mode is incompatible with SVR4 C mode

F9099B [680] invalid PCH directory

F9099B [690] RTTI option can be used only when compiling C++

F9099B [699] bool option can be used only when compiling C++

F9099B [712] array new and delete option can be used only when compiling C++

F9099B [736] namespaces option can be used only when compiling C++

F9099B [762] special_subscript_cost option can be used only when compiling C++
PART 1 OPERATION 391

APPENDIX C Error Message
[Explanation]

Typename option can be used only when compiling C++.

[Explanation]

Implicit typename option can be used only when compiling C++.

[Explanation]

Option "explicit" can be used only when compiling C++.

[Explanation]

Option to control the for-init scope can be used only when compiling C++.

[Explanation]

Option to control warnings on for-init differences can be used only when compiling C++.

[Explanation]

Option "old_specializations" can be used only when compiling C++.

[Explanation]

Option "implicit_extern_c_type_conversion" can be used only when compiling C++.

F9099B [763] typename option can be used only when compiling C++

F9099B [764] implicit typename option can be used only when compiling C++

F9099B [770] option "explicit" can be used only when compiling C++

F9099B [778] option to control the for-init scope can be used only when compiling C++

F9099B [781] option to control warnings on for-init differences can be used only when compiling
C++

F9099B [798] option "old_specializations" can be used only when compiling C++

F9099B [813] option "implicit_extern_c_type_conversion" can be used only when compiling C++
392 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Strict ANSI mode is incompatible with long preserving rules.

[Explanation]

Option "extern_inline" can be used only when compiling C++.

[Explanation]

Option "guiding_decls" can be used only when compiling C++.

[Explanation]

Option "embedded_c++" can be used only when compiling C++.

[Explanation]

Invalid Microsoft version number.

[Explanation]

Option "vla" can be used only when compiling C.

[Explanation]

Option "enum_overloading" can be used only when compiling C++.

F9099B [814] strict ANSI mode is incompatible with long preserving rules

F9099B [820] option "extern_inline" can be used only when compiling C++

F9099B [856] option "guiding_decls" can be used only when compiling C++

F9099B [874] option "embedded_c++" can be used only when compiling C++

F9099B [883] invalid Microsoft version number

F9099B [889] option "vla" can be used only when compiling C

F9099B [899] option "enum_overloading" can be used only when compiling C++
PART 1 OPERATION 393

APPENDIX C Error Message
[Explanation]

Option "nonstd_qualifier_deduction" can be used only when compiling C++.

[Explanation]

Invalid directory for instantiation files.

[Explanation]

Option "one_instantiation_per_object" can be used only when compiling C++.

[Explanation]

An instantiation information file name may not be specified when compiling several input

files.

[Explanation]

Option "one_instantiation_per_object" may not be used when compiling several input

files.

[Explanation]

More than one command line option matches the abbreviation "--xxxx".

F9099B [903] option "nonstd_qualifier_deduction" can be used only when compiling C++

F9099B [917] invalid directory for instantiation files

F9099B [918] option "one_instantiation_per_object" can be used only when compiling C++

F9099B [921] an instantiation information file name may not be specified when compiling several
input files

F9099B [922] option "one_instantiation_per_object" may not be used when compiling several input
files

F9099B [923] more than one command line option matches the abbreviation "--xxxx"
394 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Late/early tiebreaker option can be used only when compiling C++.

[Explanation]

Pending instantiations option can be used only when compiling C++.

[Explanation]

invalid directory for #import files.

[Explanation]

An import directory can be specified only in Microsoft mode.

[Explanation]

Option "class_name_injection" can be used only when compiling C++.

[Explanation]

Option "arg_dep_lookup" can be used only when compiling C++.

[Explanation]

Option "friend_injection" can be used only when compiling C++.

F9099B [927] late/early tiebreaker option can be used only when compiling C++

F9099B [931] pending instantiations option can be used only when compiling C++

F9099B [932] invalid directory for #import files:

F9099B [933] an import directory can be specified only in Microsoft mode

F9099B [943] option "class_name_injection" can be used only when compiling C++

F9099B [944] option "arg_dep_lookup" can be used only when compiling C++

F9099B [945] option "friend_injection" can be used only when compiling C++
PART 1 OPERATION 395

APPENDIX C Error Message
[Explanation]

Option "nonstd_using_decl" can be used only when compiling C++.

[Explanation]

Option "designators" can be used only when compiling C.

[Explanation]

Option "extended_designators" can be used only when compiling C.

[Explanation]

Option "compound_literals" can be used only when compiling C.

[Explanation]

Invalid macro definition.

[Explanation]

Sun mode is incompatible with cfront mode.

[Explanation]

Strict ANSI mode is incompatible with Sun mode.

F9099B [950] option "nonstd_using_decl" can be used only when compiling C++

F9099B [957] option "designators" can be used only when compiling C

F9099B [958] option "extended_designators" can be used only when compiling C

F9099B [974] option "compound_literals" can be used only when compiling C

F9099B [993] invalid macro definition:

F9099B
[1004]

Sun mode is incompatible with cfront mode

F9099B
[1005]

strict ANSI mode is incompatible with Sun mode
396 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

Sun mode is only allowed when compiling C++.

[Explanation]

Option "dep_name" can be used only when compiling C++.

[Explanation]

Option "ignore_std" can be used only when compiling C++.

[Explanation]

Option "parse_templates" can be used only when compiling C++.

[Explanation]

Option "dep_name" cannot be used with "no_parse_templates".

[Explanation]

Language modes specified are incompatible.

F9099B
[1006]

Sun mode is only allowed when compiling C++

F9099B
[1017]

option "dep_name" can be used only when compiling C++

F9099B
[1024]

option "ignore_std" can be used only when compiling C++

F9099B
[1025]

option "parse_templates" can be used only when compiling C++

F9099B
[1026]

option "dep_name" cannot be used with "no_parse_templates"

F9099B
[1027]

language modes specified are incompatible
PART 1 OPERATION 397

APPENDIX C Error Message
[Explanation]

Option "export" can be used only when compiling C++.

[Explanation]

Option "export" cannot be used with "no_dep_name".

[Explanation]

Option "export" cannot be used with "implicit_include".

[Explanation]

The option to list makefile dependencies may not be specified when compiling more than

one translation unit.

[Explanation]

The option to generate preprocessed output may not be specified when compiling more

than one translation unit.

[Explanation]

"implicit_include" cannot be used when compiling more than one translation unit.

F9099B
[1058]

option "export" can be used only when compiling C++

F9099B
[1059]

option "export" cannot be used with "no_dep_name"

F9099B
[1060]

option "export" cannot be used with "implicit_include"

F9099B
[1078]

the option to list makefile dependencies may not be specified when compiling more
than one translation unit

F9099B
[1080]

the option to generate preprocessed output may not be specified when compiling
more than one translation unit

F9099B
[1082]

"implicit_include" cannot be used when compiling more than one translation unit
398 PART 1 OPERATION

APPENDIX C Error Message
[Explanation]

File name specified more than once.

[Explanation]

More than one preinclude option specified.

[Explanation]

Unrecognized flag name.

[Explanation]

The "short_enums" option is only valid in GNU C and GNU C++ modes.

[Explanation]

UPC mode is incompatible with C++ and K&R modes.

[Explanation]

Option "export" requires distinct template signatures.

F9099B
[1104]

file name specified more than once:

F9099B
[1141]

more than one preinclude option specified

F9099B
[1157]

unrecognized flag name

F9099B
[1164]

the "short_enums" option is only valid in GNU C and GNU C++ modes

F9099B
[1191]

UPC mode is incompatible with C++ and K&R modes

F9099B
[1281]

option "export" requires distinct template signatures
PART 1 OPERATION 399

APPENDIX C Error Message
[Explanation]

Invalid architecture specified by the --cpu option.

[Explanation]

Cannot open include files list output file.

[Explanation]

Cannot open message file.

[Explanation]

Invalid assert definition.

F9099B
[9095]

invalid architecture specified by the --cpu option:

F9099B
[9096]

cannot open include files list output file

F9099B
[9097]

cannot open message file

F9099B
[9098]

invalid assert definition
400 PART 1 OPERATION

APPENDIX D Reserved Pragma Directive
APPENDIX D Reserved Pragma Directive

The pragma directive has been reserved by the C compiler is described.

■ Pragma directive has been reserved by C compiler
The following pragma directives have been reserved by the fcc911s command.

#pragma ARGSUSED

#pragma NOTREACHED

#pragma STDC

#pragma VARARGS

#pragma __printf_args

#pragma __scanf_args

#pragma builtin

#pragma can_instantiate

#pragma db_name

#pragma db_opt

#pragma define_type_info

#pragma diag_default

#pragma diag_error

#pragma diag_remark

#pragma diag_suppress

#pragma diag_warning

#pragma hdrstop

#pragma ident

#pragma int_to_unsigned

#pragma loop

#pragma no_pch

#pragma pcros

#pragma realos

#pragma statement

#pragma unknown_control_flow

#pragma weak
PART 1 OPERATION 401

APPENDIX E About Reentrancy of C Library Functions
APPENDIX E About Reentrancy of C Library Functions

Reentrancy of C library functions is described.

■ About Reentrancy of C Library Functions

● List of reentrant functions

Table E-1 List of reentrant functions (1/2)

function name header file name

abs stdlib.h

atoi stdlib.h

atol stdlib.h

bsearch stdlib.h

difftime time.h

div stdlib.h

isalnum ctype.h

isalpha ctype.h

iscntrl ctype.h

isdigit ctype.h

isgraph ctype.h

islower ctype.h

isprint ctype.h

ispunct ctype.h

isspace ctype.h

isupper ctype.h

isxdigit ctype.h

labs stdlib.h

ldiv stdlib.h

memchr string.h

memcmp string.h

memcpy string.h

memmove string.h
402 PART 1 OPERATION

APPENDIX E About Reentrancy of C Library Functions
memset string.h

qsort stdlib.h

strcat string.h

strchr string.h

strcmp string.h

strcpy string.h

strcspn string.h

strlen string.h

strncat string.h

strncmp string.h

strncpy string.h

strpbrk string.h

strrchr string.h

strspn string.h

strstr string.h

tolower ctype.h

toupper ctype.h

va_arg stdarg.h

va_end stdarg.h

va_start stdarg.h

All runtime library functions

Table E-1 List of reentrant functions (2/2)

function name header file name
PART 1 OPERATION 403

APPENDIX E About Reentrancy of C Library Functions
● List of non-reentrant functions

Table E-2 List of non-reentrant functions (1/3)

function name header file name

abort stdlib.h

acos math.h

asctime time.h

asin math.h

assert assert.h

atan math.h

atan2 math.h

atexit stdlib.h

atof stdlib.h

calloc stdlib.h

ceil math.h

clearerr stdio.h

cos math.h

cosh math.h

ctime time.h

exit stdlib.h

exp math.h

fabs math.h

fclose stdio.h

feof stdio.h

ferror stdio.h

fflush stdio.h

fgetc stdio.h

fgetpos stdio.h

fgets stdio.h

floor math.h

fmod math.h

fopen stdio.h
404 PART 1 OPERATION

APPENDIX E About Reentrancy of C Library Functions
fprintf stdio.h

fputc stdio.h

fputs stdio.h

fread stdio.h

free stdlib.h

freopen stdio.h

frexp math.h

fscanf stdio.h

fseek stdio.h

fsetpos stdio.h

ftell stdio.h

fwrite stdio.h

getc stdio.h

getchar stdio.h

gets stdio.h

gmtime time.h

ldexp math.h

localtime time.h

log math.h

log10 math.h

longjmp setjmp.h

malloc stdlib.h

mktime time.h

modf math.h

pow math.h

printf stdio.h

putc stdio.h

putchar stdio.h

puts stdio.h

rand stdlib.h

realloc stdlib.h

Table E-2 List of non-reentrant functions (2/3)

function name header file name
PART 1 OPERATION 405

APPENDIX E About Reentrancy of C Library Functions
rewind stdio.h

scanf stdio.h

setbuf stdio.h

setjmp setjmp.h

setvbuf stdio.h

sin math.h

sinh math.h

sprintf stdio.h

sqrt math.h

srand stdlib.h

sscanf stdio.h

stream_init -

strftime time.h

strtod stdlib.h

strtok string.h

strtol stdlib.h

strtoul stdlib.h

tan math.h

tanh math.h

ungetc stdio.h

vfprintf stdio.h

vprintf stdio.h

vsprintf stdio.h

Table E-2 List of non-reentrant functions (3/3)

function name header file name
406 PART 1 OPERATION

INDEX
INDEX

The index follows on the next page.
This is listed in alphabetic order.
407

INDEX
Index

Symbols

#pragma section
Section Name Change Function(#pragma section)

..98
#pragma segment

Section Name Change Function(#pragma segment)
..99

__divsb
__divsb Intrinsic Function107

__divsh
__divsh Intrinsic Function109

__divub
__divub Intrinsic Function108

__divuh
__divuh Intrinsic Function110

__modsb
__modsb Intrinsic Function111

__modsh
__modsh Intrinsic Function113

__modub
__modub Intrinsic Function...............................112

__moduh
__moduh Intrinsic Function...............................114

__muls
__muls Intrinsic Function..................................105

__mulsh
__mulsh Intrinsic Function103

__mulu
__mulu Intrinsic Function106

__muluh
__muluh Intrinsic Function104

__wait_nop
__wait_nop Intrinsic Function102

_abort Function
_abort Function ..144

_exit Function
_exit Function ..143

A

addition
Arithmetic operation (addition, subtraction,

multiplication, and division)................. 153
Alignment

fcc911s Command Boundary Alignment 69
ANSI Standard

Macros Stipulated by ANSI Standard................. 115
Area Management

Area Management.. 160
Argument

fcc911s Command Argument 77
fcc911s Command Argument Extension Format

... 80
Arithmetic operation

Arithmetic operation (addition, subtraction,
multiplication, and division)................. 153

asm Statement
Description by asm Statement 90

assert
assert.h.. 168

B

Bit Field
fcc911s Command Bit Field................................ 70

Boundary Alignment
fcc911s Command Boundary Alignment 69

C

C compiler
Pragma directive has been reserved by C compiler

... 401
C Libraries

Operations Specific to C Libraries 174
C++

C++ Specifications for C/C++ Compiler and EC++
Specifications 157

Modifications to C++ Specifications for C/C++
Compiler from ISO 156

C++ Template
Circumventing limitations on the use of the C++

template ... 158
Function for Controlling Instantiation of C++

Template .. 119
Limitations on Use of C++ Template 158

C/C++ Compiler
C++ Specifications for C/C++ Compiler and EC++

Specifications 157
408

INDEX
C/C++ Compiler Functions 2
Modifications to C++ Specifications for C/C++

Compiler from ISO 156
Call Interface

fcc911s Command Function Call Interface 74
fcc911s Command Interrupt Function Call Interface

.. 85
Calling Procedure

fcc911s Command Calling Procedure 81
Cancel

List of Command Cancel Options 24
Circumventing limitations

Circumventing limitations on the use of the C++
template ... 158

clock Function
clock Function ... 146

close Function
close Function ... 137, 164

Command
Command Basic Process....................................... 3
Command Line .. 16
Command Operands ... 17
Command Process.. 16
Command Related Options 26, 57
fcc911s Command Argument 77
fcc911s Command Argument Extension Format

.. 80
fcc911s Command Bit Field 70
fcc911s Command Boundary Alignment 69
fcc911s Command Calling Procedure 81
fcc911s Command Function Call Interface 74
fcc911s Command Interrupt Function Call Interface

.. 85
fcc911s Command Register Guarantee 83
fcc911s Command Register Setup 83
fcc911s Command Return Value 84
fcc911s Command Source Program List of sbrk

Function... 165
fcc911s Command Stack Frame 75
List of Command Cancel Options 24
List of Command Options 20
Macros Predefined by fcc911s Command........... 115
Position within Command Line 19

Command Library
fcc911s Command Library Section Names 126

Command Section Structure
fcc911s Command Section Structure.................... 66

Command Structure
fcc911s Command Structure/Union 72

Comment Entry
Acceptable Comment Entry in Option File 61

Comparison
Comparison ... 153

Compiler
C/C++ Compiler Functions 2

Compiler-dependent Language Specification
Differentials ..150

Limitations on Compiler Translation116
Modifications to C++ Specifications for C/C++

Compiler from ISO156
Pragma directive has been reserved by C compiler

..401
Compiler-dependent Language

Compiler-dependent Language Specification
Differentials ..150

conversion
Type conversion (floating-point number ->floating-

point number)......................................154
Type conversion (floating-point number ->integer)

..154
Type conversion (integer ->floating-point number)

..154
ctype

ctype.h...168

D

Data Output
Data Output Related Options26, 32

Debug Information
Debug Information Related Options26, 56

Debugger
Coordination with Symbolic Debugger5
Simulator Debugger Setup.................................162

Dependency
Exclusiveness and Dependency............................19

Directory Names
File Names and Directory Names18

division
Arithmetic operation (addition, subtraction,

multiplication, and division)153
Dynamic Allocation

Dynamic Allocation Area Change165

E

EC++
C++ Specifications for C/C++ Compiler and EC++

Specifications157
errno

errno.h ...168
Error

Error Level ..64
error messages

Format of error messages179
Exclusiveness

Exclusiveness and Dependency............................19
Execution Process

Execution Process Overview..............................122
409

INDEX
Extension Format
fcc911s Command Argument Extension Format

..80

F

fcc911s
fcc911s Command Argument77
fcc911s Command Argument Extension Format

..80
fcc911s Command Bit Field70
fcc911s Command Boundary Alignment69
fcc911s Command Calling Procedure...................81
fcc911s Command Function Call Interface74
fcc911s Command Interrupt Function Call Interface

..85
fcc911s Command Library Section Names126
fcc911s Command Register Guarantee83
fcc911s Command Register Setup........................83
fcc911s Command Return Value..........................84
fcc911s Command Section Structure66
fcc911s Command Source Program List of sbrk

Function ...165
fcc911s Command Stack Frame...........................75
fcc911s Command Structure/Union......................72
Macros Predefined by fcc911s Command115
Rules for Name Generation with the fcc911s68

fcntl
fcntl.h..172

FELANG
FELANG...13

FETOOL
FETOOL ...8

File Names
File Names and Directory Names.........................18

File Organization
File Organization..126

File System
File System Overview.......................................160

float
float.h..169

floating-point number
Type conversion (floating-point number ->floating-

point number)154
Type conversion (floating-point number ->integer)

..154
Type conversion (integer ->floating-point number)

..154
Format

fcc911s Command Argument Extension Format
..80

Frame
fcc911s Command Stack Frame...........................75
Interrupt Stack Frame ...86

Function Call Interface
fcc911s Command Interrupt Function Call Interface

... 85
Function Calling Procedure

Interrupt Function Calling Procedure 87

G

Guarantee
fcc911s Command Register Guarantee................. 83

H

Header File
Header File Search ... 4

I

I/O Area
I/O Area Access Function 96

I/O Port
Special I/O Port ... 163

Identifier
Tool Identifier ... 63

INC
INC911 ... 11

INC911
INC911 ... 11

Initialization
Initialization .. 161
Initialization of Stream Area 131
Initialization/Termination Process 131

In-line Expansion
In-line Expansion Specifying Function................. 97

Instruction
Description by Pragma Instruction 91

integer
Type conversion (floating-point number ->integer)

... 154
Type conversion (integer ->floating-point number)

... 154
Interface

fcc911s Command Function Call Interface 74
fcc911s Command Interrupt Function Call Interface

... 85
Interrupt

fcc911s Command Interrupt Function Call Interface
... 85

Interrupt Function Calling Procedure 87
Interrupt Function Description Function 94
Interrupt Level Setup Function 94, 101
Interrupt Mask Disable Function 93
Interrupt Mask Setup Function 93
Interrupt Stack Frame ... 86
Interrupt Vector Table Generation Function 95
410

INDEX
Interrupt Level
Interrupt Level Setup Function 101

Interrupt Vector
Interrupt Vector Table Generation Function.......... 95

Intrinsic Function
__divsb Intrinsic Function................................. 107
__divsh Intrinsic Function................................. 109
__divub Intrinsic Function 108
__divuh Intrinsic Function 110
__modsb Intrinsic Function............................... 111
__modsh Intrinsic Function............................... 113
__modub Intrinsic Function 112
__moduh Intrinsic Function 114
__muls Intrinsic Function 105
__mulsh Intrinsic Function................................ 103
__mulu Intrinsic Function 106
__muluh Intrinsic Function 104
__wait_nop Intrinsic Function 102

isatty Function
isatty Function ... 141, 164

ISO
Modifications to C++ Specifications for C/C++

Compiler from ISO 156

L

Language
Compiler-dependent Language Specification

Differentials 150
Language Specification

Language Specification Related Options 26, 37
LIB

LIB911 ... 9
LIB911

LIB911 ... 9
Library

Low-level Function Library Overview 160
Processes and Functions must be prepared for Using

Library... 130
limits

limits.h.. 169
Linkage

Linkage Related Options............................... 26, 58
Load Module

Load Module Creation...................................... 161
Low-level Function

Low-level Function (System-dependent Process)
Types... 127

Low-level Function Library Overview 160
Low-level Function Specifications..................... 135
Low-level Function Types 133
Standard Library Functions and Required Processes/

Low-level Functions............................ 134
lseek Function

lseek Function ... 140, 163

M

Macros
Macros Predefined by fcc911s Command115
Macros Stipulated by ANSI Standard115

Mask
Interrupt Mask Disable Function93
Interrupt Mask Setup Function93

math
math.h ...170

Messages
Format of error messages179
Messages Generated in Translation Process...........63

Multiple Specifying
Multiple Specifying of Same Option.....................19

multiplication
Arithmetic operation (addition, subtraction,

multiplication, and division)153

N

Name Generation
Rules for Name Generation with the fcc911s68

Names
File Names and Directory Names18

O

Object
Output Object Related Options26, 49

open Function
open Function ..136, 163

OPT
OPT911 ...10

OPT911
OPT911 ...10

Optimization
Optimization ..5
Optimization Related Options26, 42

Option
Command Related Options26, 57
Data Output Related Options26, 32
Debug Information Related Options26, 56
Language Specification Related Options

..26, 37
Linkage Related Options26, 58
List of Command Cancel Options.........................24
List of Command Options20
Multiple Specifying of Same Option.....................19
Optimization Related Options26, 42
Option File Related Options26, 60
Option Syntax ..19
Options for Compiling Process Control...................3
Output Object Related Options26, 49
Preprocessing Related Options29
Preprocessor Related Options26
411

INDEX
Translation Control Related Options26, 27
Option File

Acceptable Comment Entry in Option File............61
Default Option File...62
Option File ..61
Option File Limitations61
Option File Related Options26, 60

Output
The Open and Close Processes of the Standard Input/

Output and Standard Error Output File
..131

Output Object
Output Object Related Options26, 49

P

Port
Special I/O Port..163

Pragma
Pragma directive has been reserved by C compiler

..401
Section Name Change Function(#pragma section)

..98
Section Name Change Function(#pragma segment)

..99
Pragma Instruction

Description by Pragma Instruction91
Preprocessing

Preprocessing Related Options29
Preprocessor

Preprocessor related options26
Procedure

Interrupt Function Calling Procedure....................87
Process

Initialization/Termination Process......................131
Processes and Functions must be prepared for Using

Library ...130
Standard Library Functions and Required Processes/

Low-level Functions134
System-dependent Processes127

Process Control
Options for Compiling Process Control3

R

read Function
read Function ...138, 163

Register Guarantee
fcc911s Command Register Guarantee83

Register Setup
fcc911s Command Register Setup........................83

Re-include
Re-include Prevention Function118

Return Value
fcc911s Command Return Value..........................84

S

sbrk Function
fcc911s Command Source Program List of sbrk

Function... 165
sbrk Function... 142, 164

Section
fcc911s Command Library Section Names 126
Section Name Change Function(#pragma section)

... 98
Section Name

Section Name Change Function(#pragma section)
... 98

Section Name Change Function(#pragma segment)
... 99

Section Structure
fcc911s Command Section Structure.................... 66

segment
Section Name Change Function(#pragma segment)

... 99
Sensitiveness

Case Sensitiveness ... 19
setjmp

setjmp.h .. 170
Setup

fcc911s Command Register Setup 83
Interrupt Level Setup Function 94, 101
Interrupt Mask Setup Function 93
Simulator Debugger Setup 162

Simulator
Simulator Debugger Setup 162

Source Program
fcc911s Command Source Program List of sbrk

Function... 165
Special I/O Port

Special I/O Port ... 163
Stack

fcc911s Command Stack Frame 75
Interrupt Stack Frame ... 86

Stack Frame
fcc911s Command Stack Frame 75

Standard
The Open and Close Processes of the Standard Input/

Output and Standard Error Output File
... 131

Standard Error
The Open and Close Processes of the Standard Input/

Output and Standard Error Output File
... 131

Standard Input
The Open and Close Processes of the Standard Input/

Output and Standard Error Output File
... 131
412

INDEX
Standard Library
Standard Library Functions and Required Processes/

Low-level Functions............................ 134
Startup Routine

Startup Routine Creation................................... 124
Statement

Description by asm Statement 90
stdarg

stdarg.h ... 170
stddef

stddef.h ... 170
stdio

stdio.h ... 171
stdlib

stdlib.h .. 171
Stream Area

Initialization of Stream Area 131
string

string.h.. 172
subtraction

Arithmetic operation (addition, subtraction,
multiplication, and division)................. 153

Symbolic Debugger
Coordination with Symbolic Debugger 5

Syntax
Option Syntax.. 19

sys/types
sys/types.h... 173

System-dependent Process
Low-level Function (System-dependent Process)

Types... 127
System-dependent Processes 127

T

Template
Circumventing limitations on the use of the C++

template ... 158

Function for Controlling Instantiation of C++
Template...119

Limitations on Use of C++ Template158
Termination Process

Initialization/Termination Process131
time

time.h ..173
Time Function

Time Function ..145
time Function

time Function ...147
TMP

TMP..12
Tool

Tool Identifier ..63
Translation

Limitations on Compiler Translation116
Translation Control

Translation Control Related Options...............26, 27
Translation Process

Messages Generated in Translation Process...........63
Type conversion

Type conversion (floating-point number ->floating-
point number)......................................154

Type conversion (floating-point number ->integer)
..154

Type conversion (integer ->floating-point number)
..154

U

Union
fcc911s Command Structure/Union72

unistd
unistd.h..172

W

write Function
write Function ..139, 163
413

INDEX
414

Colophon

CM81-00206-5E

FUJITSU MICROELECTRONICS • CONTROLLER MANUAL

FR FAMILY

SOFTUNE TM C/C++ COMPILER MANUAL

for V6

July 2008 the fifth edition

Published FUJITSU MICROELECTRONICS LIMITED
Edited Business & Media Promotion Dept.

	CHAPTER 1 SOFTUNE C/C++ COMPILER
	1.1 C/C++ Compiler Functions
	1.2 Basic Process of Commands
	1.3 C/C++ Compiler Basic Functions

	CHAPTER 2 SETTING ENVIRONMENT VARIABLES IN SYSTEM BEFORE STARTING
	2.1 FETOOL
	2.2 LIB911
	2.3 OPT911
	2.4 INC911
	2.5 TMP
	2.6 FELANG

	CHAPTER 3 C/C++ COMPILER OPERATION
	3.1 Command Line
	3.2 Command Operands
	3.3 File Names and Directory Names
	3.4 Command Options
	3.4.1 List of Command Options
	3.4.2 List of Command Cancel Options

	3.5 Details of Options
	3.5.1 Translation Control Related Options
	3.5.2 Preprocessing Related Options
	3.5.3 Data Output Related Options
	3.5.4 Language Specification Related Options
	3.5.5 Optimization Related Options
	3.5.6 Output Object Related Options
	3.5.7 Debug Information Related Options
	3.5.8 Command Related Options
	3.5.9 Linkage Related Options
	3.5.10 Option File Related Options

	3.6 Option Files
	3.7 Messages Generated in Translation Process

	CHAPTER 4 fcc911s COMMAND OBJECT PROGRAM STRUCTURE
	4.1 Section Structure of fcc911s Command
	4.2 Rules for Name Generation with the fcc911s
	4.3 fcc911s Command Boundary Alignment
	4.4 fcc911s Command Bit Field
	4.5 fcc911s Command Structure/Union
	4.6 fcc911s Command Function Call Interface
	4.6.1 fcc911s Command Stack Frame
	4.6.2 fcc911s Command Argument
	4.6.3 fcc911s Command Argument Extension Format
	4.6.4 fcc911s Command Calling Procedure
	4.6.5 fcc911s Command Register
	4.6.6 fcc911s Command Return Value

	4.7 fcc911s Command Interrupt Function Call Interface
	4.7.1 fcc911s Command Interrupt Stack Frame
	4.7.2 fcc911s Command Interrupt Function Calling Procedure

	CHAPTER 5 EXTENDED LANGUAGE SPECIFICATIONS
	5.1 Assembler Description Functions
	5.2 Interrupt Control Functions
	5.3 I/O Area Access Function
	5.4 In-line Expansion Specifying Function
	5.5 Section Name Change Function
	5.6 Interrupt Level Setup Function
	5.7 Intrinsic Function
	5.7.1 Integer Operation Intrinsic Function

	5.8 Predefined Macros
	5.9 Limitations on Compiler Translation
	5.10 Re-include Prevention Function
	5.11 Function for Controlling Instantiation of C++ Template

	CHAPTER 6 EXECUTION ENVIRONMENT
	6.1 Execution Process Overview
	6.2 Startup Routine Creation

	CHAPTER 7 LIBRARY OVERVIEW
	7.1 File Organization
	7.2 Relationship to Library Incorporating System

	CHAPTER 8 LIBRARY INCORPORATION
	8.1 Library Incorporation Overview
	8.2 Initialization/Termination Process Necessary for Using Library
	8.3 Low-level Function Types
	8.4 Standard Library Functions and Required Processes/Low- level Functions
	8.5 Low-level Function Specifications
	8.5.1 open Function
	8.5.2 close Function
	8.5.3 read Function
	8.5.4 write Function
	8.5.5 lseek Function
	8.5.6 isatty Function
	8.5.7 sbrk Function
	8.5.8 _exit Function
	8.5.9 _abort Function

	8.6 Time Function Specifications
	8.6.1 clock Function
	8.6.2 time Function

	CHAPTER 9 COMPILER-DEPENDENT SPECIFICATIONS
	9.1 Compiler-dependent C Language Specification Differentials
	9.2 Type of Floating-point Data and Range of Representable Values
	9.3 Floating-point Operation due to the Runtime Library Function
	9.4 Dissimilarities between C++ Specifications for C/C++ Compiler and ISO
	9.5 C++ Specifications for C/C++ Compiler and EC++ Specifications
	9.6 Limitations on Use of C++ Template

	CHAPTER 10 SIMULATOR DEBUGGER LOW-LEVEL FUNCTION LIBRARY
	10.1 Low-level Function Library Overview
	10.2 Low-level Function Library Use
	10.3 Low-level Func. Function
	10.4 Low-level Function Library Change

	APPENDIX
	APPENDIX A List of Types, Macros, Functions, and Variables Provided by C Libraries
	APPENDIX B Operations Specific to C Libraries
	APPENDIX C Error Message
	APPENDIX D Reserved Pragma Directive
	APPENDIX E About Reentrancy of C Library Functions

