FUJITSU MICROELECTRONICS

CONTROLLER MANUAL CM81-00322-1E

FR Family

uT-Kernel Specification Compliant

SorTuNE™ UT-REALOS/FR
USER'S GUIDE

(o8
FUJITSU

FR Family

uT-Kernel Specification Compliant

SorTuNE™ uT-REALOS/FR
USER'S GUIDE

FUJITSU MICROELECTRONICS LIMITED

Preface

B Purpose and Intended Reader of This Manual
This manual covers how to create application programs that use SOFTUNE uT-REALOS/FR (referred to as
"UT-REALOS" in this manual), and describes the overal functionaity of WT-REALOS, how to create
application programs, and the procedure for building a system.

Reading this manual requires basic knowledge of the FR processor and basic knowledge related to real-
time OSs.

See the "SOFTUNE puT-REALOS/FR API Reference” (referred to as the "API Reference” in this manual)
for details on the system call interfaces, and the "SOFTUNE uT-REALOS/FR Anayzer Guide" (referred to
asthe"Anayzer Guide" in this manual) for details on the analyzer.

B About the uT-Kernel

The uT-Kernel specifications are specifications for an open rea-time OS established by the T-Engine Forum.
The uT-Kernel specifications are available from the T-Engine Forum website (http://Aww.t-engine.org/). The
origina copyright for the puT-Kernel belongs to Mr. Ken Sakamura. The copyright for the uT-Kerne
specifications belongs to the T-Engine Forum. This product uses the uT-Kernel source code from the T-Engine
Forum (www.t-engine.org) based on the uT-License.

B Trademarks
SOFTUNE isatrademark of Fujitsu Microelectronics Limited.

REALOS isatrademark of Fujitsu Microelectronics Limited.

TRON isan abbreviation of "The Real-time Operating system Nucleus'.

ITRON isan abbreviation of "Industrial TRON".

U TRON is an abbreviation of "Micro Industrial TRON".

T-Kernel and uT-Kernel are the name of computer specifications, and do not refer to a particular product or
group of products.

The company names and brand names herein are the trademarks or registered trademarks of their respective
OWners.

B Overall Overall Structure of This Manual
This manual consists of five chapters and an appendix as follows.
CHAPTER 1 OVERVIEW OF uT-REALOS
This chapter explains an overview of uT-REALOS.
CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

This chapter describes the basic concepts that need to be understood in advance before using the uT-
REALOS kernel.

CHAPTER 3 uT-REALOS FUNCTIONS
This chapter describes the functions supported by uT-REALOS.
CHAPTER 4 WRITING A USER PROGRAM
This chapter describes the basic items in writing a user program on uT-REALOS.
CHAPTER 5 HOW TO CONSTRUCT A SYSTEM
This chapter describes how to construct a user system.
APPENDIX

The appendix describes error messages of the configurator.

B Reference Manuals
See the manuals listed below as required while using this system.
SOFTUNE uT-REALOS/FR API Reference
SOFTUNE uT-REALOS/FR Anayzer Guide
FR Family SOFTUNE C/C++ Compiler Manual V6
FR Family SOFTUNE Assembler Manual V6
FR Family SOFTUNE Linkage Kit Manual V6

B Organization of the uT-REALOS Manuals
The uT-REALOS manuals are divided into the following three volumes.
First-time users of uT-REALOS should read the "SOFTUNE puT-REALOS/FR User's Guide" first.

uT-Kernel Specification

Compliant Describes the overall functionality of uT-REALOS, how to create
SOFTUNE uT-REALOS/FR user programs, and the procedure for building a system.
User’s Guide

uT-Kernel Specification

Compliant Describes the details of the uT-REALOS API.
SOFTUNE uT-REALOS/FR
API| Reference

uT-Kernel Specification

Compliant Describes the operation of the REALOS Analyzer in detail.
SOFTUNE REALOS
Analyzer Guide

B How to read This Manual

@ Explanation of terminology

The terminology used in this manual is described below.

Word Overview
Kernel The program that provides the OS functionality is called the kernel.
Refers to application programs that use uT-REAL OS functions. In order to emphasize
User program the point that these programs are created by the user, these are called user programsin
this manual.
User system Refers to an executable program formed by linking a user program with uT-REALOS.
System call The group of functions that implement OS functionality and that can be called directly
from a user program are called system calls.
The resources that are handled by the kernel are called objects. Specifically, thisrefers
Object to semaphores, mailboxes, and other objects that implement functionality such as tasks,

synchronization, and communications.

Configuration
definition macros

The configuration definition macros are written in the system configuration file, and act
as an interface for setting kernel configuration parameters.

Idle state

The state when there are no tasks ready to execute.

« The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.

« Theinformation, such as descriptions of function and application circuit examples, in this document are presented solely for the
purpose of reference to show examples of operations and uses of FUJTSU MICROELECTRONICS device; FUJITSU
MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When
you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of
such use of the information. FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of
the use of the information.

* Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license
of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJTSU
MICROELECTRONICS or any third party or does FUJTSU MICROELECTRONICS warrant non-infringement of any third-
party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no
liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of
information contained herein.

» The products described in this document are designed, developed and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured,
could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss
(i.e, nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life
support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible
repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or
damages arising in connection with above-mentioned uses of the products.

e Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.

» Exportation/release of any products described in this document may require necessary procedures in accordance with the
regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

e The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Copyright ©2008 FUJ TSU MICROELECTRONICS LIMITED All rights reserved.
Copyright ©2006 T-Engine Forum. All rights reserved.
This manual is made based on the specification of p-Kernel with the formal agreement by the T-Engine Forum.

Vv

Vi

CONTENTS

CHAPTER 1 OVERVIEW OF UT-REALOS ... 1
1.1 YU o] ole] g t=To [SV Tex (o] o T TP OO PUPPPPPT 2
1.2 Directory Structure Of Provided FilESoooiiiiiiiiiie e 3
1.3 Tools Required for DEVEIOPIMENTcoiiiiiieieiee e e e e e e e e e aa e e e e e aaaeeas 4
1.4 SEUCTUIE OF PTOUUCT ...ttt e e e e e e e s s e bbbt e e e e e e e e e e e e s aannbbebreeeaaaaaeaaan 5

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNELcooiiiiiiiiiiii 7
21 SYSIEM CAIS ..ttt et bt e e e e e b et e e e ek b e e e e e e bt e e e e e e e e e b e e e e e anrees 8
2.2 Execution Units Of USEr PrOQramccoooii oo s s s s s e s e e e e e e e e e e e e e e e e e eeeeaeaeaeeenennnnnnnnns 9

221 B I T PP PP TR OTPPRPPP 10
222 L= U = Lo TU 1] =P ER R 14
2.2.3 T (=T g U o =T o 1= 15
2.2.4 TiMeE EVENE HANAIEIS ...ttt e e e e e e e e st e e e e e e e e e e s e e aaanbnneees 16
2.25 L (o] gl = Lo U111 1= O PPPRURPRP 18
2.2.6 EXteNded SVC HANGAIEIScooiiiiiiiiii ettt e e e e e s e e e e aeeeeeeas 19
2.2.7 Device Processing FUNCHONS ..ottt ettt e e e e e e e e b e e e e eeeaaaaeaeaaans 20
2.3 L] 1T o £SO 21
24 N] =] RS = L= PSPPSR PUPPTPNE 22
25 Enabling and Disabling Dispatching and INTEITUPLSueiiiiiiiiiiiiiieiieee e 24
2.6 Precedence of Execution of Tasks and HandIers ... 25

CHAPTER 3 UT-REALOS FUNCTIONS ... e 27
3.1 Overview of LUT-REALOS FUNCLONSooiiiiiiiiiiiiiiee ettt et e e e e e e e e eeeaee e 28
3.2 Task ManagemeNnt FUNCLIONSuuiiiiiiiiiiiae ittt e e e ettt e e e e e e e e s s bbb e e e e e eeaaaeeeseaaanneneeees 29
3.3 Task SyNchronization FUNCHIONSuuiiiiiiieiiii e s s e e e e s e s re e e e e e e e e e s e e snenennes 30
3.4 Synchronization and Communication FUNCLIONSuuuiiiiiiiiii e e 31

3.4.1 SEeMAPNOrE FUNCHONS ...ttt ettt e e e e e e e ettt e e e e e e e e e e s e s aannbbbaeaeeeaaaas 32
3.4.2 EVENt Flag FUNCLIONSoviiiiiiiii et e e e e s e s s e e e e e e e e e e e s s s nsnsbeennneeeaeeeeseanans 34
3.43 M@IIDOX FUNCLIONS ...ttt ettt e e e e e s e et e e e et e e e e e e e aaaanbbebbeeeeeeeaeeseaanns 35
3.5 Extended Synchronization and Communication FUNCHONSoooiiiiiiiiiiiiiiiaae e 37
351 MULEX FUNCLIONS ...ttt ettt e e ettt e e s skttt e e e et et e e e e snbbeeaeesnnbeeeeeennee 38
3.5.2 Message BUFfEr FUNCLIONSoouiiiiiiiiiiiis it n e s e e e e e e e e e e e e e e eeaees 40
3.5.3 ReNdezVOUS POt FUNCLIONS ..ottt e e e e e e e e e et e b e e eaaaaaeaeeeaan 42
3.6 Memory Pool Management FUNCLIONSuuiiiiirieioiiiiiiiieeee e ee e e s e s s ssntieeeeeeee e e e e e s s s snnnnnnaeeeeeeaeeesennnns 45
3.6.1 Fixed-size Memory POOI FUNCHONSuuuiiiiiiii i e e e e e e e e e e e e e 46
3.6.2 Variable-size Memory POOI FUNCLIONS ...t a7
3.7 Time Management FUNCHIONSuuiiiiiiiiieie e iis st e e e e e e e s s s e e e e e e e e s e s sn s e e eeeaeeeeseesnnennnnes 48
3.7.1 System Time Management FUNCLONScoooiiiiiiiiiiieeciis s s ss e s e e e e e e e e e e e e e e e e e eeaeeaeeeeernennn 49
3.7.2 CyClic HANAIET FUNCLIONSueiiiiiiiee ettt ettt e e e e e ettt e et e e e e e e e e e annbabaeaeaeaeaas 50
3.7.3 Alarm Handler FUNCLONSoiiiiiiie ettt et e e e s st e e s s e e e e e e 52
3.8 Interrupt Management FUNCLIONSuuuiiiiiiie st a e e s e e e e e e e e aaeaaaeeeees 53
3.9 System State Management FUNCHIONSo.uuiiiiiiiiia et e e e e e e e ebab e e eeeaeeas 54
3.10 Subsystem Management FUNCHONSccceiiiiiiiiiiiiiiiie i e e e e s s ee e e e e e e s s s s e e e e e e e e e s e s nnrnnrnneees 55

3.11 Device Management FUNCHONSe ittt ettt e e e e e e e e e e s et eeeeaaaaeeeeeaneneeees 56
3.12 POWEr SAVING FUNCHIONSeeiiiiiiiiiiiee ittt ettt et e e st e e s bbbt e e e s aabbeeee s anneeeas 58
700 TG T o100 10 1= 11 o] o T 1 T 1o o £ 59
3.14 Debugging ASSIStANCE FUNCHONScuiiiiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e e e e e e s e e annbneeees 64
CHAPTER 4 WRITING A USER PROGRAM ..o 73
4.1 ConfigUIINg & USEI PrOGIAMooiiiiiiiiie ittt ettt e e e e bt e e e sbb e e e e e e anbbe e e e e aneee 74
4.2 STANT FIOW ..ottt e ettt e e ot et e et e e e e o R e e e s et e e e a e r e e e e s e e e e nan 75
4.3 RESEE ENLIY ROULINE ...ttt et e e e e s e sttt e et e e e e e e e s e e nnnbebaeeeaaaaaeaeeanns 76
4.4 T L= U = Lo TU 1] T PP ERURRR 79
4.5 L= E PSR TP PP 81
4.6 PO HANAIET ...ttt e e e e e e e e e e bbbttt e e e e e e e e e e s e nnbbbebeeeaaaaaaaaaaan 85
4.7 =g I =TT | = P EPEPPR 86
4.8 T (T 0 o =T T |1 SRRt 87
4.9 =g o] gl = o101 1] = PP PPPPPPTPT 89
410 POWEN SAVING ROULINE ...oiiiiiiiiiiiiiite ettt s ettt e e e s bt e e e easbe e e e s e anbb e e e e e annbreeeeeanees 90
411 EXeNSION SVC HANGIEToeiiiiiiiiieiee ettt e s e e e e e e e e 91
A B 1= ot B 1V TP SURT TP 92
4.13 Notes When Writing @ USEI PrOGIaMuuiiiiiiiiiiee ittt sttt et s e e e e e annbre e e s e nnees 95
CHAPTERS5 HOW TO CONSTRUCT A SYSTEM ...ooiiiiii e 97
5.1 Steps of CONSLIUCHING @ SYSEIM ..o e e e e e e e e e et e e e e e e e e e seaaeas 98
5.2 Create the UT-REALOS PrOJECEcoiiiiiiiiii ittt ettt e e e e e e e e e e s aanbebeeaeeeas 99
5.3 Y=] o [o) @] 11T T8 - o] o 1SS 102
5.4 Y= ua aTo l o) il I 0] =T g @] o) 1o o I 109
55 BUIIA 8 USEI SYSEEIM ..ottt ettt e e e e e e e e e bbb bt e et e e e e e e e e e s e e annnbberbeeeaaaans 114
AP P EN D DX o e 115
APPENDIX A Error Messages Of the CONfIQUIALONooiciiiiiieiiieiee e e e e e ssnrenr e e e e e e e e e 116
1N] = PP UPPPPPTRTRUPPPRPTN 127

viii

CHAPTER 1

OVERVIEW OF uT-REALOS

This chapter explains an overview of uT-REALOS.
UT-REALOS is a uT-Kernel specification real-time
OS that runs on the FR family of 32-bit RISC
controllers.

UT-REALOS is conforms to the uT-Kernel
specifications.

1.1 Supported Functions
1.2 Directory Structure of Provided Files
1.3 Tools Required for Development

1.4 Structure of Product

CHAPTER 1 OVERVIEW OF uT-REALOS

1.1

Supported Functions

This section provides an overview of the functions supported by uT-REALOS.

B Supported Functions

Libraries and header files are provided with uT-REALOS. The libraries are used by linking them
with the user program to create an executable program that can run on the target processor. The
header files are included by user programs in order to use the uT-Kernel API. The combination of
libraries and header files is called the uT-REALOS kernel (referred to as the "kernel" in this
manual). The kernel is a program that implements the following functionality of uT-Kernel.

e Task management functions

« Task synchronization functions

» Synchronization and communication functions (semaphores, event flags, mailboxes)

» Extended synchronization and communication functions (message buffers, mutexes, rendezvous ports)
« Memory pool management functions (fixed length memory pool, variable length memory pool)
» Time management functions

* Interrupt management functions

« System configuration management functions

* Subsystem management functions

« Device management functions

« Power saving functions

See "CHAPTER 3 uUT-REALOS FUNCTIONS' and "CHAPTER 3 SYSTEM CALL
INTERFACE" of the"API Reference" for details on the above functions.

The following development tools are also provided with uT-REALOS for use when building or
debugging a system. These are Windows applications that run on a PC.

e SOFTUNE uT-REALOS Configurator
* SOFTUNE uT-REALOS Anayzer

SOFTUNE uT-REALOS Configurator (referred to as the "Configurator” in this manual) is used
when building a user system to configure the kernel based an a predefined structure. See "3.13
Configuration Functions' for details on the Configurator functions.

SOFTUNE uT-REALOS Analyzer (referred to as the "Anayzer" in this manual) is used when
debugging a user program and includes a variety of functions for improving debugging efficiency.
See "3.14 Debugging Assistance Functions' and the "Analyzer Guide" for details.

CHAPTER 1 OVERVIEW OF uT-REALOS

1.2 Directory Structure of Provided Files

This section describes the directory structure of the files provided with the
UT-REALOS API.

B Directory Structure of Provided Files
UT-REALOS isinstalled using the following directory structureof thefile.

[Installation folder]

—— utrealos911j.ixt Installation guide (Japanese)

— utrealos911.txt Installation guide (English)

—— bin¥ Folder containing Windows programs
— lib¥ Folder related to Windows programs

}7911¥

}— 911.csv CPU information file

—— utkernel¥

}7 911¥ Folder for u.T-REALOS/FR

L cfg¥ Folder containing Configurator files
— dbg¥ Folder of Analyzer debug modules
—— include¥ Folder containing header files

—— kernel¥ Folder containing kernel libraries
— lib¥ Folder containing system call libraries

smpsys¥ Folder containing sample programs

See the "Installation Guide" for details of the directory structure. The Installation Guide can be
found on the product CD-ROM and in the installation folder.

CHAPTER 1 OVERVIEW OF uT-REALOS

1.3 Tools Required for Development

This section describes the tools that are required to develop a user system.

B Tools Required for Development
The following tools are required to develop a W T-REALOS user system.

¢ Cross-development tool

FR Family SOFTUNE Professional Pack V6
* ICE

Fujitsu MB2198 series

CHAPTER 1 OVERVIEW OF uT-REALOS

1.4 Structure of Product

This section explains the structure of the product.

W Structure of Product

The structure of uT-REALOS is shown below.

Development

T Kernel ----------------- 8]

tools bl i

] ! Kernel Kernel]

Configurator | | ! libraries header files :
Analyzer P i
b Sample !

o Sample |

P build-related i

I rograms _ i

b prog files !

Configurator

The Configurator modules that run under Windows. This includes command format (.exe)
executable files that are run from the command prompt window and DLL format files that are
used as SOFTUNE Workbench add-ins.

Analyzer

Consists of DLL format files that are used as add-ins in SOFTUNE Workbench and debugger
object files that are linked with user programs to collect trace data.

Kernel libraries
The uT-REALOS kernel object files are included in SOFTUNE library format.
Kernel header files

Header files that are included by user programs, and which define system calls and parameter
types.

Sample programs

Samples programs of reset entry routines, initialization processing, timer interrupt handlers, and
tasks.

Sample build-related files
SOFTUNE project files, configuration files, and other files for the sample programs.

CHAPTER 1 OVERVIEW OF uT-REALOS

CHAPTER 2

BASIC CONCEPTS OF THE
UT-REALOS KERNEL

This chapter describes the basic concepts that
need to be understood in advance before using the
UT-REALOS kernel.

2.1 System Calls

2.2 Execution Units of User Program

2.3 Objects

2.4 System States

2.5 Enabling and Disabling Dispatching and Interrupts

2.6 Precedence of Execution of Tasks and Handlers

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

2.1 System Calls

This section describes the system calls which act as an interface for calling kernel
functions from the user program.

B System Calls

The interface for calling kernel functions using general-purpose data types and constant macros
from a user program are cadled system calls. The system calls conform to the uT-Kernel
specifications.

See "CHAPTER 3 SYSTEM CALL INTERFACE" of the "API Reference" for details on the
system calls.

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

2.2 Execution Units of User Program

This section describes the execution units of a user program.

B Execution Units of User Program

The execution units of a user program can be broadly divided into tasks, initial routines, interrupt
handlers, time event handlers, error routines, extended SV C handlers, and device driver processing
functions.

o Tasks

 Initia routines

e Interrupt handlers

» Time event handlers

e Error routines

» Extended SVC handlers

» Devicedriver processing functions

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

2.2.1

Tasks

This section describes tasks.

B Tasks

Tasks are the program execution unit that form the basis of user program processing.

In uT-REALOS, if the execution of a task is interrupted, the state prior to the interrupt (register
values) is saved on a per-task basis. This is caled the task context. The information saved in the
task context can be used to resume execution of the interrupted task.

Tasks have a variety of states, including the run state, ready state, WAITING, etc. See "l Task
Portions' for details on the task portion transitions.

B Current Task and Other Tasks

When a system call is made from atask, the calling task is called the current task and all other tasks
are called other tasks.

B Priority Sequence and Task Priorities

The order of execution of program execution units is called the precedence. The value that
determines the precedence of a task is called the task priority. The smaller the value of the task
priority, the higher the priority. Tasks with a higher priority (small task priority value) have
precedence when executing.

The task priority consists of a base priority, current priority, and startup priority. The term task
priority by itself refers to the current priority. The current priority is used to determine the
execution sequence of the task. The base priority is the base priority of the task, and normally has
the same value as the current priority. When mutex functions are used, however, the current
priority may be changed temporarily in some cases and can differ from the base priority. Even in
these situations, however, the modified current priority is restored to the base priority when the
mutex function has finished being used (see "3.5.1 Mutex Functions"). The startup priority is the
priority specified when atask is created, and the base priority of the task is initialized to the value
of the startup priority when the task starts.

B Dispatching and Preemption

10

The process of switching between running tasks is called dispatching. The process of atask that is
in the run state losing the execution right is called preemption. The functionality within the kernel
that implements dispatching is called the dispatcher.

Dispatching occurs when a task that has a higher priority than the currently executing task enters
the ready state. Preemption occurs when a dispatch occurs or an interrupt handler is activated while
atask is executing.

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

B Task Portions
Tasks have the following states.
@ RUNNING
The state where the task is running.

Note that if a program other than atask is running, the task that was running prior to that program
remainsin the run state.

@® READY

The state where the task is ready to execute, but is unable to run because atask that is higher in the
precedence is currently running.

@ WAITING

The state where execution has been suspended due to calling a system call with some kind of wait
condition. Thisis categorized into the following states depending on the wait condition.

» Wakeup wait state (waiting due to tk_slp_tsk)

» Elapsed time wait state (waiting dueto tk_dly_tsk)

« Semaphore resource acquisition wait state (waiting due to tk_wai_sem)

« Event flag wait state (waiting due to tk_wai_flg)

* Receive from mailbox wait state (waiting dueto tk_rcv_mbx)

e Mutex lock wait state (waiting due to tk_loc_mtx)

¢ Send to message buffer wait state (waiting due to tk_snd_mbf)

* Receive from message buffer wait state (waiting due to tk_rcv_mbf)

« Fixed length memory block acquisition wait state (waiting due to tk_get mpf)
« Variable length memory block acquisition wait state (waiting due to tk_get_mpl)
* Rendezvous call/termination wait state (waiting due to tk_cal_por)

* Rendezvous accept wait state (waiting dueto tk_acp_por)

@® SUSPENDED
The state where execution has been forcefully suspended by another task.

@ WAITING-SUSPENDED
This state is both WAITING and SUSPENDED at the same time.

@ DORMANT
The state where the task has not yet been started, or the task has ended.

@ NON-EXISTENT
The state where the task has not yet been created, or the task has been deleted.

11

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

B Task Portion Transitions

The state transitions for tasks are shown below.

Figure 2.2-1 Task Portion Transitions

Dispatch
READY « ~ RUNNING
] Preempt ro
ik Release W:'Itt'
wait condition
L -
WAITING
N Terminate
Suspend Resume
A
E WAITING- Terminate
SUSPENDED
Wait cleared
Suspend 3
> Terminate
SUSPENDED
Resume T
Start _Terminate,
DORMANT .
Terminate N Exit
Create Delete
y
Exit and delete
NON-EXISTENT <

12

When multiple tasks are in the READY state, the tasks are scheduled (controls the execution
sequence) according to the task priorities. The task that has the highest position in the precedence
from among the tasks that are in the READY date is placed in the RUNNING and the task is
executed. The task precedence is ordered such that tasks that have higher task priorities are placed
higher in the task precedence. For tasks with the same task priority, the task that entered the READY
state first has the highest position in the precedence.

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

Figure 2.2-2 Conceptual Diagram of the Precedence

/ The task that is highest in the precedence enters the RUNNING state

Order in which tasks entered the READY state

. Earlier < » Later
Higher
y
Task in > Task in
READY state READY state
> Task in > Task in > Task in
o READY state READY state READY state
IS
a
X
)]
©
= - Task in > Task in
READY state READY state
» Task in
READY state
v
Lower

13

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

2.2.2

Initial Routines

This section describes initial routines.

B Initial Routines

14

An initial routine is program to perform initialization processing that is specific to the user
program, and generally prepares the environment in which the user program can run by creating
tasks, semaphores and other objects and registering interrupt handlers and devices.

During kernel initialization, the initial task is automatically created to perform internal kernel
initialization. Thisinitial task calls the predefined initial routine from the user program. The initial
routine therefore runs as a task.

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

2.2.3 Interrupt Handlers

This section describes the task-independent part of the interrupt handlers.

B Interrupt Handlers

An interrupt handler is a program that is activated synchronously with peripheral hardware
interrupt sources, CPU exceptions, and software interrupt instructions. Interrupt handlers can be
defined for each interrupt source.

If an interrupt occurs while a task is running, the kernel temporarily interrupts task execution and
runs the interrupt handler corresponding to the interrupt source that occurred. At this time, the stack
switches to the stack that is provided for executing interrupt processing (the system stack). The
interrupt handler therefore does not execute in the context of the task that had been running, but
instead executes in an independent context.

Furthermore, all of the interrupt handlers run at a higher priority than the tasks, therefore tasks do
not run until the interrupt handler has finished. If multiple interrupt handlers are activated, task
execution does not continue until all of the interrupt handlers have finished processing. Therefore,
even if an interrupt handler calls a system call that resultsin a dispatch (such as starting a task with
a high priority), the actual task dispatch is not performed until after all of the interrupt handlers
have finished processing. Thisbehavior is called "delayed dispatch".

See "3.8 Interrupt Management Functions' for details on the interrupt handlers.

15

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

2.2.4

Time Event Handlers

This section describes time event handlers.

B Time Event Handlers

Cyclic handlers and alarm handlers are collectively referred to as time event handlers.

B Cyclic Handlers

16

A cyclic handler is a program that is activated at a specified interval regular. Programs that are
executed periodically can be defined as cyclic handlers, and the execution and suspension of these
handlers are able to be controlled.

If the specified interval elapses while a task is executing, the task execution is temporarily
interrupted and the corresponding cyclic handler is activated. The cyclic handler does not execute
in the context of the task that had been running, but instead executes in an independent context.

Furthermore, all of the cyclic handlers run at a higher priority than the tasks, therefore tasks do not
run until the cyclic handler has finished. Even if the cyclic handler calls a system call that resultsin
a dispatch (such as starting a task with a high priority), the actual task dispatch is not performed
until after the cyclic handler has finished processing.

The cyclic handlers in uT-REALOS are activated from within isig_tim, which is called from the
timer interrupt handler for the system clock. The cyclic handlers therefore operate as part of the
timer interrupt handler. Time-related handlers that are activated from the timer interrupt handler in
this way are called "time event handlers'. In uT-REALOS, cyclic handlers and alarm handlers,
which are described next, are collectively referred to as time event handlers. As described earlier,
cyclic handlers execute as part of the timer interrupt handler, and a cyclic handler is therefore not
interrupted to process other time event handlers while the cyclic handler is running.

The time when a cyclic handler is first activated is calculated based on the time tick following the
time when the cyclic handler is created or activated. However, if a cyclic handler is created or
activated from within a time event handler, the time is calculated based on the time when the time
event handler was activated. The activation time after the first time is calculated based on the time
when the cyclic handler was activated.

See"3.7.2 Cyclic Handler Functions' for details on cyclic handlers.

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

B Alarm Handlers
An aarm handler is a program that is activated at a specified time. The program that is executed at
the specified time is created as an alarm handler, and the execution and suspension of these
handlers are able to be controlled.

If the specified time is reached while a task is executing, the task execution is temporarily
interrupted and the corresponding alarm handler is executed. The alarm handler does not executein
the context of the task that had been running, but instead executes in an independent context.

Furthermore, all of the alarm handlers run at a higher priority than the tasks, therefore tasks do not
run until the alarm handler has finished. Even if the alarm handler calls a system call that resultsin
a dispatch (such as starting a task with a high priority), the actual task dispatch is not performed
until after the alarm handler has finished processing.

The alarm handlers in uT-REALOS operate as part of the interrupt handler for the system clock.
Alarm handlers are therefore not interrupted to process other time event handlers while the alarm
handler is running.

The time when the alarm handler is activated is calculated based on the time tick following the time
when the alarm handler is activated. However, if an dlarm handler is activated from within a time
event handler, the timeis calculated based on the time when the time event handler was activated.

See"3.7.3 Alarm Handler Functions" for details on alarm handlers.

17

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

2.2.5

Error Routines

This section describes error routines.

B Error Routines

18

An error routine is a program that is run when the kernel detects some kind of error.
The error routine is activated under the following conditions.
¢ System Down
Aninternal kernel inconsistency is detected
 Initial Settings Error
An error occurs during kernel initialization
e Undefined Interrupt
An interrupt occurs that does not have a defined interrupt handler

The error routine is used for the purpose of debugging the user program. There is no way to recover
from the error routine. Therefore, if the error routine has been called, clear the cause of the error
and restart the system.

If the error routine is called due to an initia settings error, it runs as a task. Otherwise it runsin a
task-independent portion.

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

2.2.6 Extended SVC Handlers

This section describes extended SVC handlers.

B Extended SVC Handlers
An extended SV C handler is a handler that acts as a receiver for requests to subsystems. If called
from atask, the handler runs as a quasi-task portion!. If called from atask-independent context, the

handler runs in a task-independent portion. See "3.10 Subsystem Management Functions' for
details on the subsystems.

19

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

2.2.7

Device Processing Functions

This section describes the device processing functions.

B Device Processing Functions

20

The device processing functions are device driver functions that are called from device
management functions. The device processing functions operate in the task context if they are
called as a task extension. The functions run in a task-independent portion if they are called as a
task-independent extension. See "3.11 Device Management Functions' for details on device
processing functions.

2.3

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

Objects

This section describes objects.

B Objects

UT-REALOS supports a variety of functions, including synchronization/communication between
tasks, exclusive control, and acquisition/release of memory regions. The resources that operate on
system callsin order to use these functions from a user program are called objects.

The following objects are available in uT-REALOS. See each of the descriptions in Table 2.3-1
for details on each of the objects.

Table 2.3-1 List of Objects

Object Synopsis
Task The task object isthe most fundamental unit that makes up a user program.
Semaphores are objects for representing numerically the number and availability of unused
Semaphore resources, and for managing exclusive control and synchronization when using those
resources.
Event flags are objects that perform synchronization by representing the presence or absence
Event flag :
of events as bit flags.
. Mailboxes are objects that perform synchronization and communication by receiving mes-
Mailboxes ;
sages that are stored in memory.
MUtexes M utexes are objects that perform exclusive access control between tasks that use a shared
resource.
M e buffers nge buffers are objects that perform synchronization and communication by receiving
=50 variable-length messages.
Rendezvous ports provide intertask synchronous communication functionality, and support a
Rendezvous ports single sequence where one task requests processing of another task and the other task then
P returns the processing result to thefirst task. The object that synchronizes the waiting of both
tasksis called arendezvous port.
Fixed-size Fixed-size memory pool are objects for dynamically managing fixed size memory blocks.
memory pool yp | y y aging y
Variable-size Variable-size memory pool are objects for dynamically managing arbitrary size memory
memory pool blocks.
Cyclic handlers Cyclic handlers are time event handlers that activate at afixed period.

Alarm handlers

Alarm handlers are time event handlers that activate at a specified time.

21

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

2.4 System States

This section describes the system states.

B System States
The system states of uT-REALOS are divided into the following categories.

Figure 2.4-1 System States

Task portion running : Task program
System states

Transient states During OS execution
Non-task portion running ~E Task-independent portion running : Interrupt handlers and time event handlers

Quasi-task portion running : Extended SVC handlers (OS extensions)

B Task Portion Running

"Task portion running” are the states in which task programs run. This does not include states in
which the OS (system calls) executes or states in which handlers execute, which are part of the
"Non-task portion running" described below.

B Non-task Portion Running

"Non-task portion running" are further subdivided into the three states of "transient states”,
"task-independent portion running”, and "quasi-task portion running".

(1) "Transient States"
"Transient States' refer to the states in which uT-REALOS system call processing is executed.
(2) "Task-indePendent Portion Running"”

"Task-independent Portion Running” refer to the states in which interrupt handlers and time
event handlers are executed.

(3) "Quasi-task Portion Running”

These are the states in which extended SVC handlers called from a task and device driver
interface functions are executed.

22

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

B System Calls that can be called

Except for system calls such astk_ret_int and isig_tim that are required to be called from a "task-
independent portion", all of the system calls can be called from the "task portions" and "quasi-task
portions".

In contrast, "task-independent portions' execute in a context that is independent of any tasks, and
do not have the concept of a task. The following system calls therefore cannot be called from the
task-independent portions.

- System calls that explicitly specify the current task (calls where tskid is specified using the
"TSK_SELF" macro)

- System calls that implicitly specify the current task (callsthat enter a WAITING)

See Section "3.1 List of System Calls' of the "API Reference" for details on the system calls that
can be called from each of the system states.

B User Programs and System States
Table 2.4-1 shows the relationship between the parts of a user program and the system states.

Table 2.4-1 System States of Each Part of a User Program

User Program Component System State

Tasks Task portion

Extended SV C handlers Non-task portion (quasi-task portion, task-independent portion)
Device drivers Non-task portion (quasi-task portion)

Cyclic handlers Non-task portion (task-independent portion)

Alarm handlers Non-task portion (task-independent portion)

Interrupt handlers Non-task portion (task-independent portion)

Error routines Task portion, non-task portion (task-independent portion)

Note:

The uT-Kernel specifications do not define isig_tim or error routines. These are extended
functionality that is specific to uT-REALOS.

23

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

2.5

Enabling and Disabling Dispatching and Interrupts

This section describes the dispatch enabled/disabled states and the interrupts
enabled/disabled states.

B Dispatch Enabled/disabled States

During execution of a user program, the dispatcher can either be in the dispatch disabled state or
the dispatch enabled state. After system initialization, the dispatcher enters the dispatch enabled
state when the initial task begins executing.

In the dispatch disabled state, the system does not switch the task that is in the RUNNING
(dispatching does not occur). While in the dispatch disabled state, an error (E_CTX) occurs if a
system call is made where there is a possibility of the currently running task entering the
WAITING. However, interrupt handlers, cyclic handlers, and alarm handlers remain active.

The dispatch disabled/enabled states can be controlled from a user program by calling the
following system calls.

- tk_dis dsp: Enters the dispatch disabled state (disables dispatching)
- tk_ena_dsp:Enters the dispatch enabled state (enables dispatching)

B Interrupts Enabled/disabled States

24

During execution of a user program, the system can either be in the interrupts disabled state or the
interrupts enabled state. After system initialization, the system enters the interrupts enabled state
when theinitial task begins executing.

In the interrupts disabled state, the | flag in the PS register is set to 0 and all external interrupts are
disabled such that control is not passed to an interrupt handler even if a hardware interrupt occurs.
Furthermore, if dispatching is aso disabled, then the system does not switch from the currently
running task (dispatching does not occur). While in the interrupts disabled state, an error (E_CTX)
occursif a system call is made where there is a possibility of the currently running task entering the
WAITING. An error (E_CTX) aso occursif asystem call is made to enable or disable dispatching
(tk_dis dsp or tk_ena_dsp) whilein the interrupts disabled state.

The interrupts enabled/disabled states can be controlled from a user program by calling the
following macros.

- DI: Enterstheinterrupts disabled state (disables interrupts)
- El: Enterstheinterrupts enabled state (enables interrupts)

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

2.6 Precedence of Execution of Tasks and Handlers

This section describes the precedence of execution of tasks and handlers.

B Precedence of Execution (Tasks vs. Interrupt Handlers and Time Event Handlers)
Handlers have a higher precedence of execution than tasks. For example, if a hardware interrupt
occurs while a task is executing, the execution of the task is suspended and the interrupt handler
corresponding to the interrupt is executed. When the interrupt handler finishes executing, the task
resumes execution from the point where it was suspended.

Precedence
of execution

Interrupt
handler

Task

4

>

Interrupt
occurs

Z

v

Time

B Precedence of Execution (Tasks vs. Tasks)
The precedence of execution of tasks executes tasks that have a higher priority first. If atask with a
higher priority than the task that is currently executing enters the READY, the currently executing
task is suspended and the higher priority task is executed.

Precedence
of Execution

Task 2
(priority = 15)

changes from 5 to 15

Priority of task 2

changes from 15to 5

_ Task2 RUNNING RUNNING
(priority = 5)
| H
Task 1 : 1
- READY X RUNNING i READY
(priority = 10) f--ooomaeaaeeaao Rt YRS

]

]

! READY Priority of task 2

v

Time

25

CHAPTER 2 BASIC CONCEPTS OF THE uT-REALOS KERNEL

B Precedence of Execution (Handlers vs. Handlers)
In the precedence of execution of handlers, interrupt handlers for CPU exceptions execute with the
highest precedence. The precedence of execution of other interrupt handlers depends on the hardware
interrupt level (IL), with the interrupt handlers corresponding to interrupts that have a high interrupt
level (the numerical vaue of the interrupt level is small) executing with precedence. Time event
handlers execute as extensions of the timer interrupt handler. The precedence of execution of time event
handlers therefore depends on the interrupt level of the timer interrupt.

Precedence
of execution
A
Interrupt handler
(CPU exception) CPU f T
exception ! :
occurs '
Al :
L}
Time event handler v *_I
} }
call ret
| }
})
}]
Timer interrupt handler ! !
(IL=16) . | A
Interrupt | !
occurs ! '
(IL=16) 1 X
Al :
Interrupt handler ! v
(IL=30)

Time

26

CHAPTER 3

UT-REALOS FUNCTIONS

This chapter describes the functions supported by
UT-REALOS.

3.1 Overview of uT-REALOS Functions

3.2 Task Management Functions

3.3 Task Synchronization Functions

3.4 Synchronization and Communication Functions
3.5 Extended Synchronization and Communication Functions
3.6 Memory Pool Management Functions

3.7 Time Management Functions

3.8 Interrupt Management Functions

3.9 System State Management Functions

3.10 Subsystem Management Functions

3.11 Device Management Functions

3.12 Power Saving Functions

3.13 Configuration Functions

3.14 Debugging Assistance Functions

27

CHAPTER 3 uT-REALOS FUNCTIONS

3.1

Overview of uT-REALOS Functions

This section explains an overview of uT-REALOS functions.

B Overview of uT-REALOS Functions
UT-REALOS supports the following functions.

28

Kernel

Task management functions

Task-dependent synchronization functions

Synchronization and communication functions (semaphores, event flags, mailboxes)

Extended synchronization and communication functions (mutexes, message buffers, rendezvous
ports)

Memory pool management functions (fixed length memory pool, variable length memory pool)
Time management functions (system time, cyclic handlers, alarm handlers)

Interrupt management functions

System state management functions

Subsystem management functions

Device management functions

Power saving functions

Configurator

Configuration function

Analyzer

Debugging assistance functions

See "CHAPTER 3 SYSTEM CALL INTERFACE" of the "API Reference" for details on the
system calls described in this chapter.

CHAPTER 3 UT-REALOS FUNCTIONS

3.2 Task Management Functions

This section describes the task management functions.

B Task Management Functions

The task management functions are functions for directly operating and referring to the state of a
task. Thisincludes functions to create and delete tasks, functions to start and end tasks, functions to
change the priority of tasks, and functionsto refer to the states of tasks.

Tasks are identified by an ID number that is assigned uniquely to each task. The task ID number is
called the task ID.

When atask exits, the kernel does not release resources acquired by the task (semaphore resources,
memory blocks, etc). However, mutex locks are released (see "3.5.1 Mutex Functions'). When a
task exits, ensure that the user program releases the resources that the task acquired.

The task management functions provide the following functions using the corresponding system
cals.

« Creating and deleting tasks
Creating atask:tk_cre tsk
Deleting atask:tk_del_tsk (Deletes atask in the DORMANT)
tk_exd_tsk (Ends and deletes a task)
« Starting and ending tasks
Starting atask:tk_sta tsk
Ending atask:tk_ext_tsk (Ends the current task)
tk_exd_tsk (Ends and deletes the current task)
tk_ter_tsk (Forcibly terminate another task)
» Changing the task priority ‘tk_chg_pri
« Referring to the state of atask Ak ref tsk
e Setting and referring to task registers
Setting task registersitk_set_reg
Retrieving to task registers:itk_get_reg

29

CHAPTER 3 uT-REALOS FUNCTIONS

3.3

Task Synchronization Functions

This section describes the task synchronization functions.

B Task Synchronization Functions

30

The task synchronization functions are functions for performing synchronization by directly
operating task portions.

They include functions for task sleep and wakeup, for canceling wakeup requests, for forcibly
releasing task WAITING state, for changing atask portion to SUSPENDED state, for resuming atask
from SUSPENDED state and for delaying execution of the invoking task.

Wakeup requests for a task are queued. That is, when it is attempted to wake up atask that is not
WAITING, the wakeup request is remembered, and the next time the task is to go to a WAITING
state, it does not enter that state. To redlize this, the kernel maintains the number of wakeup
requests that have been queued for each task. This is called the "wakeup request queuing count".
When the task is started, this count is cleared to O.

Futhermore, suspend requests for a task are nested. That is, if it is attempted to suspend a task
dready in SUSPEND state (including WAIT-SUSPEND state), the request is remembered, and later
when it is attempted to resume the task in SUSPEND state (including WAIT-SUSPEND state), it is
not resumed. To realize this, the kernel maintains the number of nested suspension requests for each
task. This is called the "suspend request nesting count”. When the task is started, this count is
cleared to 0.

The task synchronization functions provide the following functions using the corresponding system calls.
e Task sleep and wake up task

Task deep:tk_dlp_tsk

Task wake up:tk_wup_tsk
e Cancelling awakeup request tk_can_wup
« Forcibly releasing task WAITING state :tk_rel_wai
» Suspending and resuming tasks

Suspend request:tk_sus_tsk

Resume suspend:tk_rsm_tsk

tk_frsm_tsk (forced resume)
» Delaying the execution of atask itk dly tsk

If the tskstat is in a state other than TTS WAI (or TTS WAYS), tskwait and wid are both "0".
Furthermore, wupcnt and suscnt are both 0" for tasksin the DORMANT.

If packet address (pk_rtsk) for returning the task status is invalid, no error check is performed and the
operation is not guaranteed.

CHAPTER 3 UT-REALOS FUNCTIONS

3.4 Synchronization and Communication Functions

This section describes the synchronization and communication functions.

B Synchronization and Communication Functions

The synchronization and communication functions are functions for performing synchronization
and communi cation between tasks using task-independent objects.

The synchronization and communication functions support the following objects.
* Semaphores
« Eventflags

* Mailboxes

31

CHAPTER 3 uT-REALOS FUNCTIONS

3.4.1

Semaphore Functions

This section describes the semaphore functions.

B Semaphore Functions

Semaphores are objects for representing numerically data of and availability of unused resources
(called the semaphore count), and for managing exclusive control and synchronization when using
those resources. The semaphore functions include functions for creating and deleting semaphores,
functions for acquiring and returned semaphore resources, and functions for referring to the state of
a semaphore.

Semaphore objects are identified by an ID number. The semaphore ID number is called the
semaphore ID.

Semaphores have a semaphore count and await queue of tasks waiting to acquire resources. When
m resources are returning (the event notifier side), the semaphore count increases by m. When n
resources are acquired (the event wait side), the semaphore count decreases by n. When a task
attempts to acquire semaphore resources when the number of resources is insufficient (specificaly,
when the semaphore count reduces to a negative value), a task attempting to acquire resources goes
into WAITING until the next time resources are returning. A task waiting for semaphore resources
is linked to the wait queue of that semaphore. Furthermore, a maximum resource count can be
configured on each semaphore to prevent too many resources from being returning. An error occurs
when an attempt is made to return resources that exceed the maximum semaphore count to a
semaphore (specifically, when the semaphore count increases and exceeds the maximum
semaphore count).

The order of the wait queue can be selected from the two options of FIFO order (TA_TFIFO) and
task priority order (TA_TPRI). Furthermore, the precedence of resource acquisition can be selected
from the two options of task at head of wait queue first (TA_FIRST) or task with smallest request
count first (TA_CNT). These are specified as semaphore attributes when the semaphore is created.

Figure 3.4-1 shows the situation when the semaphore count changes from 1 to 2 in a semaphore
with the TA_CNT attribute. Task 1 is skipped and the resources are alocated to Task 2.

Figure 3.4-1 Example of Semaphore Wait Queue

[
Ll

Task 1 Task 2
Request Request
count=3 count=2

32

The maximum value of the semaphore count is specified when the semaphore is created. The upper
limit on the maximum value of the semaphore count is OX7FFFFFFF. See Section "3.5.1.1
tk_cre_sem" inthe "API Reference’ for details.

CHAPTER 3 UT-REALOS FUNCTIONS

The semaphore functions provide the following functions using the corresponding system calls.
» Creating and deleting semaphores

Creating a semaphore:tk_cre_sem

Deleting a semaphore:tk_del_sem
e Acquiring and returned semaphore resources

Returned semaphore resources:tk_sig_sem

Acquiring semaphore resources:tk_wai_sem

« Referring to the semaphore state itk _ref_sem

33

CHAPTER 3 uT-REALOS FUNCTIONS

3.4.2

Event Flag Functions

This section describes the event flag functions.

B Event Flag Functions

34

Event flags are objects that perform synchronization by representing the presence or absence of
events as bit flags. The event flag functions include functions for creating and deleting event flags,
functions for setting and clearing event flags, functions for waiting for event flags, and functions
for referring to the state of an event flag.

Event flag objects are identified by an ID number. The event flag ID number is called the event
flag ID.

Event flags contain a hit pattern where each bit represents the presence or absence of the
corresponding event, and a wait queue of tasks waiting for those event flags. Sometimes the bit
pattern of an event flag is simply called the event flag. The event notifier side of the event flag is able
to set or clear the specified bits in the bit pattern of the event flag. On the event waiting side of the
event flag, atask is able to be WAITING state until al or some of the specified bits in the bit pattern
of the event flag are set. A task waiting for event flag is linked to the wait queue of that event flag.
The conditions for release from WAITING stae can specify either of the two attributes of AND
wait or OR wait. These attributes specify how the release from WAITING state operates when
waiting for multiple events. For the AND wait, the WAITING state is not released until al of the
events are signaled, whereas for the OR wait, the WAITING state is released when even one of the
events being waited for is signaled. Furthermore, it is possible to specify whether or not to clear the
bits when the WAITING state is released, and there is a selection between clearing all of the bits or
only clearing the bits that were matched.

In uT-REALOS, event generation is managed using 32-bit bit patterns.

The event flag functions provide the following functions using the corresponding system calls.

e Creating and deleting event flags
Creating an event flag:tk_cre flg
Deleting an event flag:tk_del_flg
e Setting and clearing event flag bits
Setting an event flagitk_set flg
Clearing an event flag:tk_clr_flg
* Waiting for an event flag 'tk_wai_flg
« Referring to the state of an event flag :tk_ref flg

CHAPTER 3 UT-REALOS FUNCTIONS

3.4.3 Mailbox Functions

This section describes the mailbox functions.

B Mailbox Functions

Mailboxes are objects that perform synchronization and communication by receiving messages that
are stored in memory. The mailbox functions include functions for creating and deleting mailboxes,
functions for sending and receiving messages to and from a mailbox, and functions for referring to
the state of amailbox.

Mailbox objects are identified by an ID number. The mailbox ID number is called the mailbox ID.

Mailboxes have a message queue for storing messages that have been sent, and a wait queue for
tasks that are waiting to receive a message. On the message-sending side (the event notifier side),
the messages to be sent are placed in the message queue. On the message-receiving side (the event
wait side), asingle message is retrieved from the message queue.

If there are no messages in the message queue, the task enters a state of waiting for receipt from the
mailbox until the next message is sent. Tasks that enter a state of waiting for receipt from the
mailbox linked to the wait queue of that mailbox.

The information that is actually sent and received by the mailbox is only the starting address of a
message in memory. This means that the contents of messages that are sent and received are not
copied. The kernel manages the messages in the message queue using alinked list.

Figure 3.4-2 shows the message packet format of priority-ordered messages. The user program
should allocate an area (msgque) at the top of a message being sent for the kernel to use for the
linked list. This areais called the message header. Furthermore, if the message queue is ordered by
message priority, an area for holding the message priority (msgpri) also needs to be reserved in the
message header. The message header and the following area where the application stores the
message are collectively called a message packet. System calls for sending messages to a mailbox
take the starting address of the message packet (pk_msg) as a parameter. Furthermore, system calls
for receiving messages from a mailbox return the starting address of the message packet as the
return value.

35

CHAPTER 3 uT-REALOS FUNCTIONS

Figure 3.4-2 Message Packet Format

(msgque
. Message header
msgpri
Note: The size of msgque and
msgpri are 4 bytes each.
Message < The msgpri area must be
packet Transmltted/ provided when the messages
received in the message queue are
message .
priority-ordered. An error may
be returned if the msgpri area
\ is not provided.

The mailbox functions provide the following functions using the corresponding system calls.
« Creating and deleting mailboxes

Creating a mailbox:tk_cre_mbx

Deleting a mailbox:tk_del_mbx
» Sending to and receiving from a mailbox

Sending to amailbox:tk_snd_mbx

Receiving from a mailbox:tk_rcv_mbx

* Referring to the state of a mailbox :tk_ref_mbx

B Additional Notes

Because the area for the message header is allocated by the user program, the mailbox functions do
not have an upper limit on the number of messages that can be placed in a message queue.
Furthermore, the system calls for sending messages do not enter the WAITING state. Message
packets are able use memory blocks dynamically allocated from the fixed-size memory pool or
variable-size memory pool, or statically allocated regions. Typical usage is for the sending task to
alocate a memory block from the memory pool and send this as a message packet, and for the
receiving task to directly release the memory block back to the memory pool after reading the
contents of the message.

36

CHAPTER 3 UT-REALOS FUNCTIONS

3.5 Extended Synchronization and Communication
Functions

This section describes the extended synchronization and communication
functions.

B Extended Synchronization and Communication Functions

The extended synchronization and communication functions are functions for performing high-
level synchronization and communication between tasks using task-independent objects. This
includes functions for mutexes, message buffers, and rendezvous ports.

These functions support the following objects.
e Mutexes
* Message buffers

* Rendezvous ports

37

CHAPTER 3 uT-REALOS FUNCTIONS

3.5.1

Mutex Functions

This section describes the mutex functions.

B Mutex Functions

38

M utexes are objects that perform exclusive control between tasks that use a shared resource.

The mutexes support the priority inheritance protocol and priority ceiling protocol as a mechanism
to prevent priority inversion due to unlimited exclusive control. The mutex functions include
functions for creating and deleting mutexes, functions for locking and unlocking mutexes, and
functions for referring to the state of a mutex.

Mutex objects areidentified by an ID number. The mutex ID number is called the mutex ID.

Mutexes have a state that can be locked or unlocked, and a wait queue of tasks waiting to lock the
mutex. Furthermore, the kernel manages the following objects.

- Thetasksthat are locking each mutex

- The mutexesthat are locked by each task

A task locks the mutex before using the resource. If the mutex is already locked by another task,
the task waits for the mutex to become unlocked. Tasks in mutex lock waiting state are linked to
the wait queue of that mutex. When the task finishes using the resource, the task releases the lock
on the mutex.

The mutexes support the priority inheritance protocol by specifying TA_INHERIT(=0x02) for
mutex attributes. And the mutexes support the priority ceiling protocol by specifying
TA_CEILING(=0x03) for mutex attributes.

For mutexes that have the TA_CEILING attribute, the base priority of the task with the highest
base priority from among the tasks that could lock the mutex is set as the ceiling priority when the
mutex is created. An E_ILUSE error occurs if a task with a base priority higher than the ceiling
priority of amutex that hasthe TA_CEILING attribute attempts to lock that mutex. Furthermore, if
an attempt is made to use tk_chg_pri to set the priority of atask that has alock or is waiting for a
lock on a mutex that has the TA_CEILING attribute to a higher priority than the ceiling priority of
that mutex, tk_chg_pri returnsthe error E_ILUSE.

If these protocols are used, the current priority of atask is changed when the task operates a mutex
in order to prevent unlimited priority inversion. The kernel changes the current priority of a task
that has alock on a mutex. Therefore it always equals the highest value from among the following
priorities.

e Thebase priority of the task that islocking the mutex

» The current priority of the task that has the highest current priority from among the tasks that
are waiting to lock that mutex if the task islocking a mutex that hasthe TA_INHERIT attribute

« The ceiling priority of the mutex that has the highest ceiling priority from among the mutexes
being locked by that task if the task islocking a mutex that hasthe TA_CEILING attribute

CHAPTER 3 UT-REALOS FUNCTIONS

If the current priority of atask that is waiting for a mutex that has the TA_INHERIT attribute is
changed as a result of a mutex operation or the base priority being changed by tk_chg_pri, the
current priority of the task that is locking that mutex may need to be changed. This is called
transitive priority inheritance. Furthermore, if that task is waiting for another mutex that has the
TA_INHERIT attribute, then transitive priority inheritance processing may be needed for the task
that islocking that mutex.

The following processing is performed when the current priority of atask is changed as the result
of operating on a mutex.

« If atask that has changed its priority isin arunnable state, the precedence of the task is changed
based on the priority after the change (the task has the lowest precedence from among the tasks
that have the same priority as the priority after the change).

e If the task that has changed its priority is linked to some kind of task priority ordered wait
queue, the order within the wait queue is changed based on the priority after the change (the task
has the lowest precedence from among the tasks that have the same priority as the priority after
the change).

« |If atask is still locking any mutexes when the task ends, the locks are released from all of those
mutexes. If the tasks is locking multiple mutexes, those mutexes are released in order starting
from the mutexes that were allocated last.

See Section "3.6.1.4 tk_unl_mtx" in the "API Reference" for specific details on the lock release
process.

The mutex functions provide the following functions using the corresponding system calls.
« Creating and deleting mutexes

Creating a mutex:tk_cre_mtx

Deleting a mutex:tk_del_mtx
¢ Locking and unlocking a mutex

Locking a mutex:tk_loc_mtx

Unlocking a mutex:tk_unl_mtx

« Referring to the state of a mutex ‘tk_ref_mtx

B Additional Notes

Mutexes that have the TA_TFIFO attribute or TA_TPRI attribute have the same functions as a
semaphore with a maximum resource count of 1 (binary semaphore). However, mutexes differ in
that the lock can only be released by the locking task, and the lock is automatically released when
the task ends.

39

CHAPTER 3 uT-REALOS FUNCTIONS

3.5.2

Message Buffer Functions

This section describes the message buffer functions.

B Message Buffer Functions

40

Message buffers are objects that perform synchronization and communication by receiving
variable-length messages. The message buffer functions include functions for creating and deleting
message buffers, functions for sending and receiving messages to and from a message buffer, and
functions for referring to the state of a message buffer.

Message buffer objects are identified by an ID number. The message buffer ID number is called the
message buffer ID.

Message buffers have await queue of tasks waiting to send messages (send wait queue) and a wait
queue of tasks waiting to receive messages (receive wait queue). The message buffer also has a
message buffer area for storing sent messages.

On the message-sending side (the event notifier side), the messages to be sent are copied into the
message buffer. If there is not enough free space in the message buffer area, the task waits for
sending a message to message buffer until there is enough free space in the message buffer area.
Tasks waiting to send a message to message buffer are linked to the send wait queue of that
message buffer.

On the message-receiving side (the event wait side), a single message is retrieved from the message
buffer. If there are no messages in the message buffer, the task waits for receiving a message from
message buffer until the next message is sent. Tasks waiting for receiving a message from message
buffer are linked to the receive wait queue of that message buffer.

Synchronous messaging functionality can be obtained by setting the size of the message buffer area
to zero. This means that both the sending task and the receiving task wait for each-other to make
the system call, and pass the message between them when both tasks have made the system call.

The message buffer functions provide the following functions using the corresponding system
cals.

« Creating and deleting message buffers
Creating a message buffer:tk_cre_mbf
Deleting a message buffer:tk_del_mbf
» Sending and receiving messages to and from a message buffer
Sending to a message buffer:tk_snd_mbf
Receiving from a message buffer:tk_rcv_mbf

» Referring to the state of a message buffer :tk_ref_mbf

CHAPTER 3 UT-REALOS FUNCTIONS

B Additional Notes

Figure 3.5-1 shows the operation of a message buffer when the size of the message buffer area is
set to 0. Inthis diagram, Task A and Task B are executing asynchronously.

e If Task A calstk_snd_mbf first, Task A enters the wait state until Task B callstk _rcv_mbf. In
this case, Task A enters the send wait state to message buffer (Figure 3.5-1 (a)).

e If Task B calstk_rcv_mbf first, Task B enters the wait state until Task A callstk_snd mbf. In
this case, Task B enters the receive wait state from message buffer (Figure 3.5-1 (b)).

* The message is passed from Task A to Task B when Task A has called tk_snd_mbf and Task B
has called tk_rcv_mbf. After this, both tasks enter arunnable state.

Figure 3.5-1 Synchronous Communication Using a Message Buffer

Task A Task B Task A Task B
tk_snd_mbf tk_rcv_mbf
Send wait state Receive wait state
— tk_rcv_mbf tk_snd_mbf >
(a) tk_snd_mbf called first (b) tk_rcv_mbf called first

Tasks that are waiting to send to a message buffer send messages in the order that they are linked to
the wait queue. For example, consider the situation where Task A which is attempting to send a 40-
byte message to the message buffer and Task B which is attempting to send a 10-byte message, and
these tasks are linked into the wait queue in this order. Now suppose that 20 bytes of free space are
created by another task receiving a message. In this situation, Task B is unable to send its message
until Task A sends its message.

Message buffers are different from mailboxes because they transfer variable-length messages by
copying.

41

CHAPTER 3 uT-REALOS FUNCTIONS

3.5.3

Rendezvous Port Functions

This section describes the rendezvous port functions.

B Rendezvous Port Functions

42

Rendezvous ports provide intertask synchronous communication functionality, and support asingle
sequence where one task requests processing of another task and the other task then returns the
processing result to the first task. The object that synchronizes the waiting of both tasksis called a
rendezvous port. Although the rendezvous port functions can be used to implement atypical client/
server model of intertask communication, they provide a synchronous communication model that is
more flexible than the client/server mode.

The rendezvous port functions include functions for creating and deleting rendezvous ports,
functions for requesting processing from a rendezvous port (rendezvous cal), functions for
accepting processing requests from a rendezvous port (rendezvous accept), functions for returning
processing results (rendezvous complete), functions for forwarding received processing requests to
another rendezvous port (rendezvous forward), and functions for referring to rendezvous ports and
rendezvous states.

Rendezvous port objects are identified by an ID number. The rendezvous port ID number is called
the rendezvous port 1D.

The task that makes the processing request to the rendezvous port (the client-side task) specifiesthe
rendezvous port, rendezvous parameters, and a message containing information regarding the
processing being requested (called the call message) and performs the rendezvous call. The task
that accepts processing requests from the rendezvous port (the server-side task) specifies the
rendezvous port and rendezvous parameters to accept the rendezvous.

The rendezvous parameters are specified as a bit pattern. For a given rendezvous port, a rendezvous
is established if the result of logical bitwise ANDing of the rendezvous parameters bit pattern of the
calling tasking and the rendezvous parameters bit pattern of the accepting task is non-zero. The task
that calls the rendezvous enters the rendezvous call wait state until the rendezvous is established.
Similarly, the task that receives a rendezvous enters the rendezvous accept wait state until the
rendezvous is established.

Once the rendezvous is established, the call message is passed from the task that called the
rendezvous to the task that accepted the rendezvous. The task that called the rendezvous then enters
the rendezvous completion wait state and waits for the requested processing to finish. The task that
accepted the rendezvous is released from the wait state and performs the requested processing.
Once the task that accepted the rendezvous has finished the requested processing, the results of the
processing are passed to the calling task in the form of a response message and the rendezvous
finishes. At this time, the task that called the rendezvous is released from the rendezvous
completion wait state.

CHAPTER 3 UT-REALOS FUNCTIONS

Rendezvous ports have a call wait queue for linking tasks in the rendezvous call wait state, and a
receive wait queue for linking tasks in the rendezvous accept wait state. Furthermore, after the
rendezvous is established, both of the rendezvousing tasks are disconnected from the rendezvous port.
This means that rendezvous ports do not have a wait queue for linking tasks in the rendezvous
completion wait state. Furthermore, rendezvous ports do not have information about accepting
rendezvous and tasks that are currently executing a processing request.

The kernel allocates object numbers for identifying rendezvous that are established at the same
time. The rendezvous object number is called the rendezvous number. The upper 16 bits of the
rendezvous number is the task ID of the task that called the rendezvous, and the lower 16 bitsis a
sequential number that is incremented by 1 for each rendezvous accepted. This means that even
when rendezvous are called by the same task, different rendezvous numbers are alocated to the
first rendezvous and the second rendezvous.

The rendezvous port functions provide the following functions using the corresponding system
calls.

» Creating and deleting rendezvous ports
Creating arendezvous port:tk_cre_por
Deleting arendezvous port:tk_del_por
* Reguesting processing, accepting, and replying to a rendezvous port
Requesting processing to a rendezvous port:tk_cal_por
Accepting processing from a rendezvous port:tk_acp por
Replying to arendezvous port:tk_rpl_rdv

« Forwarding arendezvous port :tk_fwd_por

B Additional Notes
Figure 3.5-2 shows the rendezvous operation. In this diagram, Task A and Task B are executing
asynchronously.

o If Task A calstk cal_por first, Task A enters the wait state until Task B calls tk_acp _por. In
this case, Task A enters the rendezvous call wait state (Figure 3.5-2 (a)).

e If Task B callstk_acp_por first, Task B enters the wait state until Task A callstk_cal_por. In
this case, Task B enters the rendezvous accept wait state (Figure 3.5-2 (b)).

« When both Task A has called tk_cal_por and Task B has called tk_acp_por, a rendezvous is
established. Task A is left in the wait state and Task B is released from the wait state. Task A
now enters the rendezvous completion wait state.

e When Task B calls tk_rpl_rdv, Task A is released from the wait state. After this, both tasks
enter arunnable state.

43

CHAPTER 3 uT-REALOS FUNCTIONS

Figure 3.5-2 Rendezvous Operation

Task A Task B Task A Task B
| I
tk_cal_por tk_acp_por
Call wait state Accept wait state
— tk_acp_por tk_cal_por —
Completion wait state Completion wait state
<+— tk_rpl_rdv <+— tk_rpl_rdv
| I
(a) tk_cal_por called first (b) tk_acp_por called first

44

CHAPTER 3 UT-REALOS FUNCTIONS

3.6 Memory Pool Management Functions

This section describes the memory pool management functions.

B Memory Pool Management Functions

The "memory pool management functions' are functions for managing memory pools and
allocating regions of memory (memory blocks) for use by user programs.

The available memory pools are the fixed-size memory pool and the variable-size memory pool.
These two memory pools are separate objects and are accessed by different system calls. The size
of memory blocks obtained from the fixed-size memory pool is fixed whereas arbitrary sizes can be
specified for memory blocks obtained from the variable-size memory pool.

The memory pool management functions support the following types of memory pools.
» Fixed-size memory pool

e Variable-size memory pool

45

CHAPTER 3 uT-REALOS FUNCTIONS

3.6.1

Fixed-size Memory Pool Functions

This section describes the fixed-size memory pool functions.

B Fixed-size Memory Pool Functions

Fixed-size memory pool are objects that perform dynamic management of fixed size memory
blocks. The fixed-size memory pool functions include functions for creating and deleting fixed
length memory pools, functions for getting and returning memory blocks from a fixed-size memory
pool, and functions for referring to the state of a fixed-size memory pool.

fixed-size memory pool objects are identified by an ID number. The fixed-size memory pool 1D
number is called the fixed-size memory pool ID.

Fixed-size memory pool have aregion of memory that is used as the fixed-size memory pool (this
is called the fixed-size memory pool region, or simply the memory pool region), and a wait queue
for tasks that are waiting to get a memory block. If there is no free space in the memory pool
region, a task that gets a memory block from a fixed-size memory pool enters the fixed length
memory block acquisition wait state until the next memory block is returned. Tasks that enter the
fixed length memory block acquisition wait state are linked to the wait queue of that fixed-size
memory pool.

Figure 3.6-1 Memory Region of a Fixed-size Memory Pool

Memory blocks (all the same size)

46

The fixed-size memory pool functions provide the following functions using the corresponding
system calls.

« Creating and deleting fixed-size memory pool
Creating a fixed-size memory pool:tk_cre mpf
Deleting afixed-size memory pool:tk_del_mpf
» Getting and returning fixed-length memory blocks
Getting a fixed-length memory block:tk_get mpf
Returning a fixed-length memory block:tk_rel_mpf
* Referring to the state of afixed-length memory block :tk_ref_mpf

CHAPTER 3 UT-REALOS FUNCTIONS

3.6.2 Variable-size Memory Pool Functions

This section describes the variable-size memory pool functions.

B Variable-size Memory Pool Functions

Variable-size memory pool are objects for dynamically managing arbitrary size memory blocks.
The variable-size memory pool functions include functions for creating and deleting variable-size
memory pool, functions for getting and returning memory blocks from a variable-size memory
pool, and functions for referring to the state of a variable-size memory pool.

variable-size memory pool objects are identified by an ID number. The variable-size memory pool
ID number is called the variable-size memory pool ID.

Variable-size memory pool have a region of memory that is used as the variable-size memory pool
(thisis called the variable-size memory pool region, or simply the memory pool region), and a wait
queue for tasks that are waiting to get a memory block. If there is insufficient free space in the
memory pool region when a task gets a memory block from the variable-size memory pool, the
task enters the variable length memory block acquisition WAITING until a memory block of
sufficient size isreturned. Tasks that enter the variable length memory block acquisition WAITING
are linked to the wait queue of that variable-size memory pool.

Figure 3.6-2 Memory Region of a Variable-size Memory Pool

Memory blocks (sizes vary)

The variable-size memory pool functions provide the following functions using the corresponding
system calls.

» Creating and deleting variable-size memory pool
Creating a variable-size memory pool:tk_cre_mpl
Deleting a variable-size memory pool:tk_del_mpl

» Getting and returning variable-length memory blocks
Getting a variable-length memory block:tk_get_mpl
Returning a variable-length memory block:tk_rel_mpl

» Referring to the state of a variable-length memory block :tk_ref mpl

47

CHAPTER 3 uT-REALOS FUNCTIONS

3.7 Time Management Functions

This section describes the time management functions.

B Time Management Functions

The time management functions are functions for performing time-dependent processing. The
functions include functions for system time management, cyclic handlers, and alarm handlers.
Cyclic handlers and alarm handlers are collectively referred to astime event handlers.

The following functions are supported.
e System time management
¢ Cyclic handlers

¢ Alarm handlers

48

CHAPTER 3 UT-REALOS FUNCTIONS

3.7.1 System Time Management Functions

This section describes the system time management functions.

B System Time

The system time is represented by the accumulated number of milliseconds since the 1st January
1985 (GMT). For example, a system time value of O represents 12:00:00 AM on 1st January 1985
(GMT). A system time value of 1000 represents 12:00:01 AM on 1st January 1985 (GMT).
Because uT-REALOS does not have a function to automatically set the current time when the
system starts, the current time needs to be set by the user program.

B Updating the System Time
In uT-REALOS, the user program is reguired to update the system time. uT-REALOS therefore
providesisig_tim for this purpose. The system time is increased by one by calling this system call.
Theisig_tim system call is specific to uT-REALOS.
Because the resolution of the system timeis 1 ms, an interval timer is typically made to generate an
interrupt at an interval of 1 ms, and the system time is updated by calling isig_tim from that
interrupt handler.

* Updating the system time lidg_tim

B Setting and Getting the System Time
UT-REALOS provides the following system calls for getting and setting the system time.
e Setting and getting the system time
Setting the system time:tk_set_tim
Getting the system time:tk_get_tim

B Getting the System Uptime
The amount of time that has elapsed since the system was started is called the system uptime. The
system uptime can be retrieved using the following system call.

« Getting the system uptime ‘tk_get otm

The system uptime differs from the system time because it is not affected by setting the system
timeusing tk_set tim.

49

CHAPTER 3 uT-REALOS FUNCTIONS

3.7.2

Cyclic Handler Functions

This section describes the cyclic handler functions.

B Cyclic Handler Functions

50

Cyclic handlers are time event handlers that activate at a fixed period. The cyclic handler functions
include functions for creating and deleting cyclic handlers, functions for starting and stopping the
operation of cyclic handlers, and functions for referring to the state of a cyclic handler.

Cyclic handler objects are identified by an ID number. The cyclic handler ID number is called the
cyclic handler ID.

Cyclic handlers can either be in the operating state or the non-operating state. When a cyclic
handler is in the non-operating state, the cyclic handler is not activated even when the time when
the cyclic handler is supposed to activate is reached, and only the time when the handler should
next activate is set. When the system call to start the operation of the cyclic handler (tk_sta cyc) is
called, the cyclic handler is placed in the operating state and the time when the cyclic handler
should next activate is reset if necessary. When the system call to stop the operation of the cyclic
handler (tk_stp_cyc) is caled, the cyclic handler changes to the non-operating state. After the
cyclic handler is created, either the operating or non-operating state is determined by the cyclic
handler attributes.

The activation phase of a cyclic handler is determined by the time when the cyclic handler first
activates, which is specified as the relative time from the time when the system call to create the
cyclic handler is called. The activation interval of a cyclic handler is determined by a relative time
that specifies the time when the cyclic handler should next activate based on the time when the
cyclic handler should have activated (not the time when the handler actually activated).

The activation interval and activation phase for each cyclic handler can be set when the cyclic
handler is created. When a cyclic handler is operating, the kernel determines the time when the
cyclic handler should next activate from the specified activation interval and activation phase.
When the cyclic handler is created, the time when the handler should next activate is set to the
cyclic handler creation time plus the activation phase. When the time when the cyclic handler
should activate is reached, the cyclic handler is activated with the extended information (exinf) of
that cyclic handler as a parameter. In this case, the time when the handler should next activate is set
to the time when the cyclic handler should have activated plus the activation interval. When the
operation of a cyclic handler is started, the time when the handler should next activate may need to
be reset.

If the time that is longer than that oh the activation interval is specified to an activation phase, the
cyclic handler will not activate until the time specified by the activation phase has elapsed. For
example, if the activation interval is 100 ms and the activation phase is 200 ms, the cyclic handler
will first activate 200 ms later, and then after 200+100 x (n-1) ms have el apsed.

The cyclic handler functions provide the following functions using the corresponding system calls.
» Creating and deleting cyclic handlers
Creating a cyclic handler:tk_cre cyc

CHAPTER 3 UT-REALOS FUNCTIONS

Deleting acyclic handler:tk_del_cyc
« Starting and stopping the operation of a cyclic handler
Starting the operation of acyclic handler:tk_sta cyc

tk_cre cyc
(create and start operation by specifying TA_STA)

Stopping the operation of a cyclic handler:tk_stp cyc
« Referring to the state of acyclic handler :tk_ref cyc
See Section "4.6 Period Handler" for details on writing cyclic handlers.

51

CHAPTER 3 uT-REALOS FUNCTIONS

3.7.3

Alarm Handler Functions

This section describes the alarm handler functions.

B Alarm Handler Functions

52

Alarm handlers are time event handlers that activate at a specified time. The aarm handler
functions include functions for creating and deleting alarm handlers, functions for starting and
stopping the operation of alarm handlers, and functions for referring to the state of an alarm
handler.

Alarm handler objects are identified by an ID number. The alarm handler ID number is called the
alarm handler ID.

The time when an alarm handler activates (this is called the alarm handler activation time) can be
set for each alarm handler. When the alarm handler activation time is reached, the alarm handler is
activated with the extended information (exinf) of that alarm handler as a parameter.

Immediately after an alarm handler is created, the alarm handler activation time is not set and the
alarm handler operation is stopped. When the system call to start the operation of an alarm handler
(tk_sta alm) is called, the alarm handler activates after the specified relative time. When the system
call to stop the operation of an alarm handler (tk_stp _alm) is called, the alarm handler activation
time setting is cleared. In addition, when an alarm handler activates, the alarm handler activation
time setting is cleared and the alarm handler stops operating.

The alarm handler functions provide the following functions using the corresponding system calls.
» Creating and deleting alarm handlers
Creating an alarm handler:tk_cre_am
Deleting an dlarm handler:tk_del_am
« Starting and stopping the operation of an alarm handler
Starting the operation of an alarm handler:tk_sta alm
Stopping the operation of an alarm handler:tk_stp_am
» Referring to the state of an alarm handler :tk_ref_am
See Section "4.7 Alarm Handler" for details on writing alarm handlers.

CHAPTER 3 UT-REALOS FUNCTIONS

3.8 Interrupt Management Functions

This section describes the interrupt management functions.

B Interrupt Management Functions

The interrupt management functions are functions for performing operations such as defining
handlers for external interrupts and CPU exceptions, and controlling interrupts.

The interrupt management functions provide the following functions using the corresponding
system calls.

e Managing interrupt handlers
Defining an interrupt handler:tk_def_int
Returning from an interrupt handler:tk_ret_int

Interrupt handlers are handled in the task-independent portion. Although system calls can be called
from the task-independent portion using the same format as the task portion, the following
limitations are placed on system calls that are called from the task-independent portion.

« System callsthat specify the current task and system calls that enter a WAITING state internally
cannot be called and produce an error.

During execution in the task-independent portion, if a dispatch request is made during the
processing of a system call, the dispatch is delayed until the system leaves the task-independent
portion. Thisis called delayed dispatch.

See Section "4.8 Interrupt Handler" for details on writing interrupt handlers.
« CPU interrupt control

Disabling al external interrupts:DI

Enabling al external interrupts:El

Retrieving the interrupts disabled state prior to calling DI:isDI

These functions manipulate the CPU registers to set the interrupts enabled/disabled. DI, El, and
isDI cannot be called from the task-independent portion or from a state where dispatch and
interrupts are disabled.

53

CHAPTER 3 uT-REALOS FUNCTIONS

3.9

System State Management Functions

This section describes the system state management functions.

B System State Management Functions

The system state management functions are functions for changing and referring to the state of the
system. This includes functions for rotating the precedence of tasks, functions for referring to the
task ID of the executing state, functions for disabling and enabling task dispatch, functions for
referring to context and system states, and functions for referring to the version of the kernel.

54

The system state management functions provide the following functions using the corresponding
system calls.

Rotating the task precedence ‘tk_rot_rdg
Referring to the task ID of the running state:tk_get tid
Disabling and enabling dispatch

Disabling dispatch:tk_dis dsp

Enabling dispatch:tk_ena dsp

Referring to the system state ‘tk_ref sys

Referring to the kernel version ‘tk_ref ver

CHAPTER 3 UT-REALOS FUNCTIONS

3.10 Subsystem Management Functions

This section describes the subsystem management functions.

B Subsystem Management Functions

The subsystem management functions only consist of the extended SV C handlers for accepting
requests. The subsystem management functions provide the following functions using the
corresponding system calls.

» Defining a subsystem itk _def ssy
» Referring to information about the defined subsystems:tk_ref ssy

55

CHAPTER 3 uT-REALOS FUNCTIONS

3.11

Device Management Functions

This section describes the device management functions.

B Device Management Functions

The device management functions provide a common API for handling different devices and
include functions for performing device-related operations such as registering and deleting devices,
accessing device data, and retrieving device information.

56

The device management functions provide the following functions using the corresponding system
calls.

System calls

Registering adeviceitk_def _dev

Retrieving deviceinitialization information:tk_ref idv
Opening adeviceitk_opn_dev

Closing adeviceitk_cls dev

Starting adevice read:tk_rea_dev

Reading a device synchronously:tk_srea dev
Starting a device write:itk_wri_dev

Writing a device synchronously:tk_swri_dev
Waiting for adevice request to finish:tk_wai_dev
Suspending adeviceitk_sus dev

Retrieving the device name:tk_get_dev

Retrieving device information:tk_ref _dev
:tk_oref_dev

Retrieving alist of registered devices:tk_Ist_dev
Sending driver request eventsto adeviceitk_evt dev

The system calls that can be called depending on the device registration and open state are as

follows.
D_eV|ce Device Callable system calls
registered opened
No - tk_def_dev
No tk_opn_dev, tk_ref idv, tk_get dev, tk_ref _dev, tk_Ist_dev,
Yes tk_sus dev, tk_def_dev
Yes All system calls of the device management function

CHAPTER 3 UT-REALOS FUNCTIONS

The specifications for the interface between the device drivers and the kernel are defined by the
device driver interface. The device driver interface defines the device processing functions that are
called from the kernel, the format of data passed between the kernel and the device driver, etc.

Because the device driver interface is supported by al uT-Kernel specification OSs, device drivers
that were created in compliance with device driver interface have improved portability between uT-
Kernel specification OSs.

See "APPENDIX C: Device Driver Interface" of the "APlI Reference" for details on the device
driver interface.

57

CHAPTER 3 uT-REALOS FUNCTIONS

3.12

Power Saving Functions

This section describes the power saving functions.

B Power Saving Functions

58

The uT-REALOS has a power saving function where a user-defined power saving routing is called
by the kernel when all of the tasks have stopped running and have switched to the idle state. Thisis
called the power saving function.

The processing performed by the power saving routine can be written freely by the user to suit the
target hardware. This power saving routine is useful becauseit is defined using the static API of the
configurator. See "3.13 Configuration Functions" for details on how to define the power saving
routine and to "4.10 Power Saving Routine" for details on writing the power saving routine.

CHAPTER 3 UT-REALOS FUNCTIONS

3.13 Configuration Functions

This section describes the configuration functions.

B Configuration Functions
The configuration functions provide the functionality for the user to define the configuration of the
kernel, such as upper limits on the number of resources used by the kernel, and to configure the
internal kernel management data based on this. The amount of memory used by the kernel can be
reduced by optimizing the kernel configuration to suit the user program. This also provides
functions for statically registering user program modules such as interrupt handlers and the initial
routine.

The uT-REALOS development tool for executing configurations is called the "Configurator”.
Furthermore, the macros that are provided for defining the kernel configuration are called
"configuration macros' and the declaration statements for registering user program modules are
called the "static API".

When a configuration is executed, the configuration definition macros and static API are written in
atext format file called the "configuration file", and the Configurator is executed with this as the
input file.

Configurator takes the configuration file as the input file and outputs the kernel configuration file
in the SOFTUNE language tool library format. The kernel configuration file is linked with the user
program when an object of the executable format is created.

Because configuration files are normally generated automatically by editing the configuration using
the GUI screen of SOFTUNE Workbench, there is no need to be aware of the syntax of the
configuration definition macros and static API. Furthermore, kernel configuration is automatically
performed when SOFTUNE Workbench is used as the build environment. See Section "5.3
Setting of Configuration" for details on editing the configuration using the GUI screens.

59

CHAPTER 3 uT-REALOS FUNCTIONS

B Configuration Definition Macros
The configuration definition macros are macros provided for user-defined kernel configurations. A

list of the configuration definition macrosis given below.

Table 3.13-1 List of Configuration Definition Macros

Function Range of values
tvpe Name Meaning (default values
yp shown in bold)

_KERNEL_MAX_TSKPRI Maximum task priority 1to 1024
Priority _KERNEL_INIT_TSKPRI Initial task priority 1to 1024
definitions
_KERNEL_MAX_SSYPRI Maximum subsystem priority 1to 16
_KERNEL_USE TKDEFINT | Useor not usetk def int (1 means use) Oorl
Function
selection _KERNEL_USE IMALLOC | Useor not usetheheap area(1 meansuse) | Oor 1
_KERNEL_REALMEMSZ Size of the heap area Any value
_KERNEL_MAX_TSK Maximum number of tasks 1to 32767
_KERNEL_MAX_SEM Maximum number of semaphores 0to 32767
_KERNEL_MAX FLG Maximum number of event flags 0to 32767
_KERNEL_MAX_MBX Maximum number of mailboxes 0to 32767
_KERNEL_MAX_MTX Maximum number of mutexes 0to 32767
_KERNEL_MAX_MBF Maximum number of message buffers 0to 32767
_KERNEL_MAX_POR Maximum number of rendezvous ports 0to 32767
Maximum KERNEL MAX MPE Maximum number of fixed-size memory 0t 32767
number of - - - pool
each object Max ber of varicbles
KERNEL_MAX_MPL imum number of variaoie-size 0to 32767
- - - memory pool
_KERNEL_MAX_CYC Maximum number of cyclic handlers 0to 32767
_KERNEL_MAX_ALM Maximum number of alarm handlers 0to 32767
_KERNEL_MAX_SSY Maximum number of subsystems 0to 255
_KERNEL_MAX_ REGDEV Maximum number of registered devices 0to 255
_KERNEL_MAX_OPNDEV | Maximum number of open devices 0to 255
_KERNEL_MAX_ REQDEV Maximum number of device requests 0to 255
Size _KERNEL_SYS STKSIZE System stack size 128 to 4294967292
specified _KERNEL_INIT_TSKSTKSZ | Initial task stack size 128 t0 4294967292

60

CHAPTER 3 UT-REALOS FUNCTIONS

The value of "_KERNEL_MAX_TSKPRI" and the vaue of " KERNEL_INIT_TSKPRI" are
required to satisfy the following condition.

value of "_KERNEL_MAX_TSKPRI" 2 valueof "_KERNEL_INIT_TSKPRI"

_KERNEL_REALMEMSZ specifies the size of the heap area If the TA_USERBUF is not
specified upon creation of the task, the message buffer, or the memory pool, the task stack, the
message buffer area, or the memory pool can be automatically got from the heap area.

If the definition of any of the configuration definition macros is omitted, the minimum value that can
be taken is sdected as the default value. For example, if the definition of
" KERNEL_MAX_TSKPRI" is omitted, the maximum value of the task priority is set to "1".
Similarly, if the definition of " KERNEL _MAX_SEM" is omitted, the maximum number of
semaphoresis set to "0".

If the maximum number of an object is "0", that object cannot be used. For example, if the
maximum number of semaphores is set to "0" and the user program contains semaphore-related
system calls, an undefined error occurs for the semaphore-related system calls when the user
system isbuilt.

The configuration definition macros are written in the configuration file using the following syntax.
Normally, however, these values are edited from the "CFG" tab in the project window of
SOFTUNE Workbench (see "5.3 Setting of Configuration").

[Configuration Definition Macro Syntax]

Configuration definition macro Defined value

Example)
_KERNEL MAX TSK 256
_KERNEL INIT TSKSTKSZ 0x1000

Note:

The maximum number of tasks defined by " KERNEL_MAX_TSK" includes the initial task
that is created within the kernel. Therefore, when the number of tasks that a user program
creates is N, define the maximum number of tasks as (N+1) or more.

Furthermore, because the device management function uses the following objects, set the
value for the maximum number of objects to "number used by user program + number used
by device management".

« Semaphores :One used for each device opened
» Message buffers :One used by all device management functions
« Event flags :One used by all device management functions

61

CHAPTER 3 uT-REALOS FUNCTIONS

B Static API

The interface for the user program modules that are statically defined by the Configurator is called
the static API.

Theinitial routine, interrupt handlers, error routine, and power saving routine can be registered in the
static API. Although the initia routine , error routine, and power saving routine can only be
registered in the static API, interrupt handlers can also be registered from a user program using

tk_def_int.

A list of the static API is shown in Table 3.13-2.

Table 3.13-2 List of Static API

Name

Function

ATT_INI

Definestheinitial routine

DEF_INH

Defines an interrupt handler

VATT_ERR

Defines the error routine

VDEF_PSR

Defines a power saving routine

The static API is written in the configuration file using the following syntax. Normally, however,
these definitions are edited from the "CFG" tab in the project window of SOFTUNE Workbench

(see"5.3 Setting of Configuration™).
[Static API Syntax]

« ATT_INI

ATT_INI({Attributes, Extended Information, Entry Point});

 DEF_INH

DEF_INH(Interrupt Number, { Attributes, Entry Point});
« VATT_ERR

VATT_ERR({Attributes, Entry Point});

« VDEF PSR

VDEF_PSR({ Attributes, Entry Point});

Example)

ATT INI({ TA HLNG, 0, uint});

DEF_INH (35,

VATT ERR({TA HLNG, uerr});
VDEF PSR ({TA HLNG, pow_down}) ;

62

{ TA HLNG, inthdr});

CHAPTER 3 UT-REALOS FUNCTIONS

B Running the Configurator
The configurator is automaticaly executed if the build or make menu item is selected from a
SOFTUNE Workbench project.

Configurator is located in the "bin" folder under the uT-REALOS installation folder and has the
name "ftcfs.exe". Use the following syntax to start the configurator manually or from a batch
procedure.

ftcfs -f file_name -cpu cpu_name -out path[-V] [-g] [-cif cif_name]

Specifies the configuration file name as the file_name.

-f file_name This parameter cannot be omitted.

Specifies the target CPU.

“Cpu cpu_name This parameter cannot be omitted.

Specifies the output folder for the kernel configuration file that isfinally
-out path output by the configurator as "path".
This parameter cannot be omitted.

Outputs the configurator startup message.
This also appliesto the tools that are called by configurator.

-g Outputs debugging information.

Specifies the CPU information file name as "cif_name".
-cif cif_name If this parameter is omitted, the file "[SOFTUNE Installation
Folder]\lib\911\911.csv" is used as the CPU information file.

e Startup example

ftcfs -f C:\smpsys\system.tcf -cpu MB91403 -out C:\smpsys

Note:
Indicates that the elements inside the [] may be omitted.

63

CHAPTER 3 uT-REALOS FUNCTIONS

3.14

Debugging Assistance Functions

This section describes the analyzer provided by uT-REALOS for assisting in the
debugging user programs.

B Overview of the Debugging Assistance Functions
User programs are debugged by using the SOFTUNE Workbench debugger (referred to as the
SOFTUNE debugger in this manual) operated from the Windows GUI screen. In uT-REALOS, the
analyzer is provided as a plug-in tool for the SOFTUNE debugger. The analyzer contains the
following functions for assisting in the debugging of user programs.

Object list display
OS breakpoints
Logs

Issuing system calls
Stack information

Task context display

The following sections describe these functions. See the "Analyzer Guide" for details on these
functions and how to use them.

B Object List Display
Displays alist of the ID numbers and states of the objects created by a user program categorized by
object type. Figure 3.14-1 shows a screen example of the object list display.

Figure 3.14-1 Screen Example of Object List Display

= Setting

I [=] 3
=-[#] % Task Al 1D Entry Status Priority 1] Stack Top -
""" nl_init_tas
O=&1 @] knl_init_task TTS_RUM 138 H'8009E164
""" sem_ts ! .
O 2 B K0z TTS WAL | TTW SEM 2 H'B01 02995
""" sem_ts ! .
O= 3 w3 k03 TTS WAl | TTW SEM 3 H'801 02 E &4
e ts | |
""" O-a 4 g d flg_tsk04 TTS WAl | TTW FLG 4 H'801 033F G
""" O-= g B E flg_tsk05 TTS.WAL| TTW FLG 5§ HiS01 03904
""" Eg ; i mh_tsk6 TTS WAL | TTW MBX 6 H'801 D3E6S
_____ O 5 @7 mh_tsk7 TTS WAL | TTW MBX 7 H'801 04364
_____ O o @8 mtx_tsk 08 TTS WAL | TTW MTH 8 H'S01 D48 BC
_____ O 10 @0 mt_tgh 09 TTS DMT g H'801 04 D4
_____ O 11 w210 mbf_tgk10 TTS DMT 10 H'801 0531C
..... O 12 @11 mbf tsk11 TTS DMT 11 H'201 05824
..... O 13 w12 por_tsk12 TS DMT 12 HBM0802C
_____ O= 14 wR13 par_tzk13 TTS_DMT 13 H'801 05234
..... O= 15 w14 mpf_tzk14 TTS_DMT 14 H'801 06785
----- Ot 16 w15 mpf_tsk 15 TTS5_DMT 15 H'801 D6C04
----- O 17 R 16 mpl_tsk16 TTS_DMT 16 H'801 071 ES
----- O=18 =] |17 mpl_tzk17 TTS_DMT 17 HEM076F4 |
Wiewy P | | vl

64

CHAPTER 3 UT-REALOS FUNCTIONS

B OS Breakpoints

MW Logs

OS breakpoints is a function that can set breakpoints on separate tasks. When multiple tasks are
sharing the same code (shared functions etc.), this enables breakpoints that are triggered when a
particular task runs that code. For example, if Task 1, Task 2, and Task 3 all call the common
function "comm_func()", a breakpoint can be set for when Task 2 calls "comm_func()".

Furthermore, breakpoints can be set using the following conditions on a per-task basis.
* When atask accesses specific data.
« When atask gains or loses the execution right.

« At theentry point or exit point of system calls called from atask.

During the execution of a user program, alog of the operation of the program can be acquired, and
the contents of the log can be displayed in time-sequence in a variety of formats. This allows the
operation of auser program to be analyzed easily.

The information that can be captured in the log is as follows. You can specify whether or not to
capture thisinformation by user definition.

 Interrupt handler start/stop

e Timer interrupt handler start/stop

» Digpatch start/stop

e System call start/stop

» User-specified events

The following formats are available for the display format of the logs.
e List format

e Statetransition diagram

o Statigtical format

Thereisalso a"monitoring” function that displays the "state transition diagram™ in real time.

@ List format

Figure 3.14-2 shows a screen example of the list format log display.

65

CHAPTER 3 uT-REALOS FUNCTIONS

66

Figure 3.14-2 Screen Example of List Format Log Display

(O =]
Tranzition Diagram Statistic Find Setup
Flag Clear (5ET Monitar ing Reslstime Statistics
Event Mum : 256 -
Euffer Full e
-
Setting of Log Type | Event Mum | -~
%Timer Handler 0 b
B, Timer Handler:LEAVE 0 =
Time Task System Call Int/Hand 2
+ l
= Dispatcher |
B0 | 0000005154 G@ Tagk ID:14
+7 l
p Service Gall tk_get_mpfQ
" Tazk ID:14
51 | 0000005156 - —
+ l
Dizpatcher
Task ID -1

s
62 | 0000005158 G@

CHAPTER 3 UT-REALOS FUNCTIONS

@ State transition diagram

Figure 3.14-3 shows a screen example of the state transition diagram format log display. The state
transition diagram allows the state of the task dispatcher to be understood at a glance.

Figure 3.14-3 Screen Example of State Transition Diagram

W RTOS Loe(Transition Diaeram)

13 [= o] 58] 2 %]

IS‘]D?BDD D|||||||||‘]D||||||||ED||||||||SD||||||||dD||||||||SD|||||||||jD||||||||

E-¥# Object 2]
=1 AlarmHardler
-8 Cyolic-Haruler

5@ Task Bt @ ¢ @ O © § o &

..... o@? {C_Iil

""" @15 19

----- o0 o[NN

67

CHAPTER 3 uT-REALOS FUNCTIONS

@ Monitoring

In Figure 3.14-3, the user program is stopped, and a state transition diagram is displayed based on
the log information up to immediately prior to the stop. As an aternative, it is possible to have the
state transition diagram displayed as the user program is running. This function is called
"monitoring”. Figure 3.14-4 shows a screen example of the monitoring.

Figure 3.14-4 Screen Eexample of Monitoring

M RTOS-Log(Maonitoring?

- 5 10 15 20 25 30 35 40 45 50 55 60 65 [0 75 20 85 90 95 0 5 10 15 20 25 30 35 40 ¢

Note:

The monitoring function cannot be used if the CPU does not have a built-in DSU4 debug unit.
See the "Analyzer Guide" for details.

68

@ Statistical Format

CHAPTER 3 UT-REALOS FUNCTIONS

Figure 3.14-5 shows a screen example of the statistical format log display. In the statistical format,
information such as the proportion of execution time and number of dispatches for each task can be

obtained.

Figure 3.14-5 Screen Example of Statistical Format

W RTOS Loe

Total Event : 256

Loezing Time : 2564 (System Clock?

D | Percentage &) Total Run Time Run Cont Max Fun Time ffin Bun Time
Hle 0% a] a]
Tazk-1 [ipri=138] | 1% 28 15 3 1
Tazk-2 [ipri=2] 0% i} 0 a]
Task-3 [ipri=3] 0% 3 1 3 3
Tazk-4 [ipri=d] W g% 225 1 228 s
Tazk-5 [ipri=5] TG 1337 1 1337 1337
Task-6 [ipri=g] A 4 % 13 1 113 113
Tazk=7 [ipri=7] NS 26 % a7 1 670 G70
Tazk-8 [ipri=8] 0% 3 1 3 3
Task-9 [ipri=0] 0% 1} 0 a 1]
Task-10 [ipri=10] 0% 2 1 2 2
Task-11 [ipri=11] 0% 1 1 1 1
Task-12 [ipri=12] 0% 2 1 2 2
Tazk-13 [ipri=13] 0% 3 1 3 3
Task-14 [ipri=14] 0% 4 1 4 4
Task-15 [ipri=18] 0% 4 1 4 4

NN

B Issuing System Calls
While the user program is stopped, a selected system call function can be executed.

69

CHAPTER 3 uT-REALOS FUNCTIONS

B Stack Information
Display the current task stack usage and maximum usage using a graph. Figure 3.14-6 shows a
screen example of the stack information.

Figure 3.14-6 Screen Example of Stack Information

ck Information

-

Giraph |] | Uze Size | Stack Size |

B Use Size : HOOODOETC 275
all —— Max : HOOOD445C 33.9% HOO0OCOE0

Free Size : HOOD02524 (56.0%)

D Graph | G | lze Size Area Stack Size
. IUge Size : HOOODDOOC (0.0%:

H'80089300
. Ma - HOD00390C 589.1% H'BDD%DEGF H'00004000

Free Size : HODOOOGF4 £10.8%)

B e Size : HOOOOD0Z2C: (0.0%
H'B00873C0

i Max - HODODOOFG &2.4%) H'BDDéQBBF H'00002200

Free Size : HOODO2704 (9765

. Uze Size : HOOOOODOES (14.3%)

2 ‘ Max - HOOODODES (18.1%)

Free Size : HOOD0D412 31.8%

H'E00803ES
Heoospgee HODOODSOO

70

B Task Context Display

CHAPTER 3 UT-REALOS FUNCTIONS

Displays the contents of the context of a specified task. Figure 3.14-7 shows a screen example of

the task context

display.

Figure 3.14-7 Screen Example of Task Context Display

Il Tazk Context Watch

Task ID : |2

IP/PC: HDOS14B46

SP: H'B0010430

seSize/ BreaSizelFxoept O5-Faw HO:

H'O00000BC, A H'00000500
Stack Area Size:H00000500

[

& USER ¢ OF

Walue

+ R 00000054

+H" 00000030

+RH70000002C

+H 00000026

+ R 00000024

+H 00000020

+R70000001C

+H7 00000016

+RH° 000000714

+H7 00000010

+RH700000o0c

+H 00000008

+RH° 00000004

BOTTOM ADR

H 80010A DO
H" 00000001

H" 00000001

H"FFFFFFFF

H"a0ooo0oo
H"aooooooo
H 80010AE4
H"00B0ZB%0
H 00801844
H"a0ooo0oo
Haooooooo
Haooooooo
H"aooooooo

H 80010AEC

71

CHAPTER 3 uT-REALOS FUNCTIONS

72

CHAPTER 4

WRITING A USER
PROGRAM

This chapter describes the basic items in writing a user
program on uT-REALQOS.

4.1 Configuring a User Program
4.2 Start Flow

4.3 Reset Entry Routine

4.4 Initial Routine

4.5 Task

4.6 Period Handler

4.7 Alarm Handler

4.8 Interrupt Handler

4.9 Error Routine

4.10 Power Saving Routine
4.11 Extension SVC Handler
4.12 Device Driver

4.13 Notes when Writing a User Program

73

CHAPTER 4 WRITING A USER PROGRAM

4.1 Configuring a User Program

This section describes how to configure a user program.

B Configuring a User Program

A user program consists of the modules in Table 4.1-1. Build the user system after creating modules
necessary for the user system.

Table 4.1-1 User Program Configuration Elements

Module name Processing overview Necessity

Thisroutineisfirst launched by the hardware

Reset entry routine reset. It performs hardware initialization, and Mandatory
starts the kernel.
Thisroutineis called from the kernel intialization.

Initial routine It provides the operating environment for the user Mandatory
program.

Task Performs the main process of a user program. Mandatory

Period handler (_Zreat_ed when performing a process at regular Optional
timeintervals.

Alarm handler Createq |f_there isaprocess to be performed after Optional
acertain time.

Interrupt handler Created when handling hardware interrupts. When
system timeisused, it is necessary to create a Optiona
timer interrupt handler.

Error routine Created when handling kernel errors from a user .

Optional

program.

Power saving Created when performing power saving process Ontional

routine using auser program. P

Extension SVC Created when defining user function using the Otional

Handler extension SV C handler. P

Device driver Created when controlling the device driver using .

Optiona

the device management API.

For more on these, see "4.3 Reset Entry Routine" to "4.12 Device Driver" in this document respectively.

74

4.2

Start Flow

CHAPTER 4 WRITING A USER PROGRAM

This section explains the process flow from the hardware reset occurrence until control

is passed to the user program task.

B Starting a User Program
Figure 4.2-1 shows the processing flow after hardware reset occurs.

When theinitia routine of a user program is called by theinitial task, control is passed to the user program

having the highest priority task.

Figure 4.2-1 Start Flow

Reset User

Reset entry
routine

A 4

Processes, such as
initialization of
hardware

y

kernel

Initial routine 1

------------ Kernel

r—{Initialize the kernel)

A 4

‘ Initial task

Initialize the inside of the kernel

A 4

Create an initial task

A 4

Initialize the device, etc.

A 4

Call the initial routine

Process the
user program

1 Start the initial task P>
A 4 i
1
Create a task, etc. !
:
v '
Return } : P>

1
1
1

H Pass control to the user task having the highest priority
User task < ;
1
1
1
1
1
1
1
1

75

CHAPTER 4 WRITING A USER PROGRAM

4.3

Reset Entry Routine

This section describes how to write the reset entry routine.

B Reset Entry Routine

The reset entry routine, which is launched by reset, performs initialization of the processor and of the
peripheral devices for which initial settings are necessary during reset. Control is then moved to
UT-REALOS.

B Process of Reset Entry Routine
The reset entry routine generally performs the following processes:

76

Setting of Stack pointer (SP) (mandatory)
Sets SP with the address of stack pointer used when the reset entry routine is running.

Hardware initial settings (optional)
Initially sets those items of hardware for which settings are necessary before starting the kernel such as
memory controller, CPU clock, interrupt controller, CPU cache

Copy to RAM of INIT section inside ROM (optional)

When burning a user program into the ROM , the INIT section(the area inside the object program where
the global variables with initial values are contained) is located inside the ROM. This is copied to the
RAM area, where read/write is enabled.

Initializing the DATA section of a user program (Mandatory)

Clearsthe DATA section (the area inside the object program where global variables without initial values
are contained) inside a user system which has been loaded into the memory of the target hardware.

Starting the kernel (mandatory)

Starting the kernel at the end of the reset entry routine. The kernel startup jumps to the label of
" kernel_start" by the IMP command of the assembler language after the system stack is set.

CHAPTER 4 WRITING A USER PROGRAM

B A specific Example of the Reset Entry Routine
Figure 4.3-1 to Figure 4.3-3 shows the description examples for each process of the reset entry routine. The
source codes are attached to the product as a sample program (icrt0.asm) of uT-REALOS.

Figure 4.3-1 Description Example of INIT Section Copy

¢ As constants RAM_INIT, ROM_INIT, and INIT are defined at the linker,
it is not necessary to define them at the user program. RAM_INIT refers
to the start address of the INIT section in the RAM, ROM_INIT refers to the
start address of the INIT section in the ROM, and INIT refers to the size
(number of bytes) of the INIT section.
* In the following example, copy_rom1 performs copy byte by byte, and
copy_rom2 performs copy in units of 4 bytes.
/*
* Initialization of 'data’ area (ROM startup)
*/
Idi #_RAM_INIT, rO
[di #_ ROM_INIT, r1
di #size of(INIT), r2
cmp #0, r2
beqg:d copy_rom_end
Idi #3,r12
and r2, ri2
beq:d copy_rom2
mov r2, r13
mov r2, r3
sub r12, r3
copy_rom1:
add #1,r13
Idub @(r13,r1), r12
cmp r3, r13
bhi:d copy_rom1
stb r12, @(r13, r0)
cmp #0, r3
beq:d copy_rom_end
copy_romz2:
add #4,r13
Id @(r13,r1), r12
bgt:d copy_rom2
st r12, @(r13, r0)
copy_rom_end:

77

CHAPTER 4 WRITING A USER PROGRAM

78

Figure 4.3-2 Description example of DATA section 0 Clear

¢ As constants DATA and sizeof DATA are defined at the linker, it is not

necessary to define them at the user program. DATA is the start

address of the DATA section area. sizeof DATA is the size (number

of bytes) of the DATA section.

¢ In the following example, clear_ramO performs 0 clear in units of

4 bytes, and clear_ram2 performs 0 clear byte by byte in the final area

that is less than 4 bytes.

/*

*/
Idi:8
[di
[di
cmp
beq
clear_ram0O:
add2
bne:d
st
clear_ram1:
Idi:8
[di
cmp
beq
clear_ram2:
add2
bne:d
stb
clear_ramE:

Clear 'bss' area

#0, r0

#sizeof DATA & ~0x3, r1
#DATA, r13

#0, r1

clear_ram1

#4,
clear_ramO
ro, @(r13, r1)

#sizeof DATA & 0x3, r1

#DATA + (sizeof DATA & ~0x3), r13
#0, 1

clear_ramE

#1,
clear_ram2
ro, @(r13, r1)

Figure 4.3-3 Description Example of Kernel Startup

» Set the kernel stack address to the SP register
e Jump to the label of "__kernel_start" to start the kernel

1di:32
1di:32

jmp

#__kernel_ssta ck_end, sp // Set SP(SSP)
#__kernel_start, r0 // System startup
@ro

CHAPTER 4 WRITING A USER PROGRAM

4.4 Initial Routine

This section describes how to write the initial routine.

B Process of the Initial Routine
The initial routine is called from the initial task created during initialization of the kernel. Although the
initial routine can be described freely in accordance with the user program, it generally performs the
following processes:

» Creating and starting objects necessary for operations of the user program, such as tasks, semaphores,
time event handlers

 Initializing and registering device drivers
« Initializing hardware
» Starting atimer interrupt

Note:
The initial routine is executed while the interrupt is enabled.

B Description Format of the Initial Routine
Theinitia routine is described as follows:

Figure 4.4-1 Description Format of the Initial Routine

void sample_init(void)
{
/*
Process the initial routine
*/
return;
1

B Description Example of the Initial Routine

Figure 4.4-2 shows the description example of the initia routine. The source codes are attached to the
product as a sample program (init_task.c) of uT-REALOS.

79

CHAPTER 4 WRITING A USER PROGRAM

Figure 4.4-2 Description Example of the Initial Routine

use the same function (task1).

void uinit_task(void)

{
ID tsk1, tsk2, tsk3;
T_CTSK ctsk;
T_CSEM csem;

csem.sematr =TA_TFIFO | TA_FIRST;
csem.isement = 0;
csem.maxsem =1;

sem1 = tk_cre_sem(&csem); /* Create semaphore */
ctsk.exinf = (VP)1;

ctsk.tskatr =TA_HLNG | TA_RNGO | TA_USERBUF;
ctsk.task = task1;

ctsk.itskpri =1;

ctsk.stksz = sizeof(task1_stack);

ctsk.bufptr = task1_stack;

tsk1 = tk_cre_tsk(&ctsk); /* Create task1 */
ctsk.exinf = (VP)2;

ctsk.tskatr =TA_HLNG | TA_RNGO | TA_USERBUF;
ctsk.task = task1;

ctsk.itskpri =2;

ctsk.stksz = sizeof(task2_stack);

ctsk = sizeof(task1_stack);

tsk2 = tk_cre_tsk(&ctsk); /* Create task2 */
ctsk.exinf = (VP)3;

ctsk.tskatr =TA_HLNG | TA_RNGO | TA_USERBUF;
ctsk.task = task2;

ctsk.itskpri =3;

ctsk.stksz = sizeof(task3_stack);

ctsk.bufptr = task3_stack;

tsk 3 = tk_cre_tsk(&ctsk); /* Create task3 */
tk_sta_tsk(tsk1, 1); /* Start task1 */
tk_sta_tsk(tsk2, 2); /* Start task2 */
tk_sta_tsk(tsk3, 3); /* Start task3 */

e After the timer for the system clock is started(START_TIMERO()), semaphore and
three tasks (task ID=tsk1, tsk2, tsk3) will be created. Then, the created 3 tasks
are started. The task whose task ID is task1 and the task whose task ID is tsk2

static UB task1_stack[0x400], task2_stack[0x400], task3_stack[0x400];

START_TIMERO(); /* Start Timer0 for System clock */

80

CHAPTER 4 WRITING A USER PROGRAM

4.5 Task

This section describes how to write a task.

B Description Format of the Task
The task is described as follows:

Figure 4.5-1 Description Format of the Task

void task(INT stacd, VP exinf)
{
/*
Process the body of the task program
*/
tk_ext_tsk(); or tk_exd_tsk(); /* Task termination */
}

The task start code (stacd) specified during task startup (when tk_sta tsk is called) is passed to stacd. The
extension information (exinf)specified when the task is created is passed to exinf.

A function(task) cannot be terminated by a simple return. Using tk_ext tsk or tk_exd tsk to ensure
termination.

B Creating a Task
tk_cre tsk is called to create a task. An example is shown below. In this example, function, "taskl", is
being created using task priority 1. If tk_cre tsk is terminated normally, the task 1D will be returned as the
return value.

Figure 4.5-2 Description Example of Task Creation

ID tid1; /* Task ID of task1 */
T_CTSK ctsk; /* Input parameter of tk_cre_tsk */
INT task1_stack[256]; /* Stack area of the task */

ctsk.exinf = (VP)1; /* Extension information=1 */
ctsk.tskatr = TA_HLNG | TA_RNGO | TA_USERBUF; /* Attribute */
ctsk.task =taskl; /* Start address of the task */
ctsk.itskpri = 1; /* Task priority */

ctsk.stksz = sizeof(task1_stack); /* Stack size */

ctsk.bufptr = task1_stack; /* Start address of the stack */
tid1 = tk_cre_tsk(&ctsk); /* Create the task */

For details of tk_cre_tsk, see"3.3.1tk_cre tsk" of "API Reference” .

81

CHAPTER 4 WRITING A USER PROGRAM

B Starting a Task
A task created by tk_cre tsk isinitialy in the stop status. Therefore, tk_sta tsk is called to run this task. In

the example below, the task whose task ID istidl is being started.

Figure 4.5-3 Description Example of the Task Startup

tk_sta_tsk(tid1, 1); /* Start the task whose task ID is tid1 */

The status of atask started by tk_sta tsk is executable. If the priority of atask is higher than those of other
tasks of execution status or executable status, the task attains execution status.

For details of tk_sta tsk, see"3.3.3 tk_sta tsk" of "API Reference".

B A specific Example of the Task
Figure 4.5-4 shows the description example of atask, and Figure 4.5-5 shows the operation diagram of the
program in the description example. The source codes are attached to the product as a sample program
(init_task.c) of uT-REALOS. In addition, the task in this specific example is created/started using the initial
routine given in Figure 4.4-2.

82

CHAPTER 4 WRITING A USER PROGRAM

Figure 4.5-4 Description Example of a Task

* Function taskl runs at two task: task started with stacd=1 and task started with
stacd=2. Each task moves to the status of waiting for the semphore of sem1 by
the system call of tk_wai_sem.

* task2 releases the semaphore resources of sem1 by the system call of
tk_sig_sem. This releases task1 from the standby status.

e The task priorities are: task1(stacd=1) > task1(stacd=2) > task2

static void task1(INT stacd, VP exinf)

{
if(stacd == 1){
while (1) {
tk_wai_semsem1, 1, TMO_FEVR);
}
else if (stacd == 2){
while (1) {
tk_wai_sem(sem1, 1, TMO_FEVR);
}
elsef{
tk_ext_tsk(); /* Exit task */
}
!
static void task2(INT stacd, VP exinf)
if (stacd == 3){
while (1) {
tk_sig_sem(sem1, 1);
}
elsef
tk_ext_tsk(); /* Exit task */

}

83

CHAPTER 4 WRITING A USER PROGRAM

84

Figure 4.5-5 Operation Diagram of the Description Example

task1
(stacd=1)

task1
(stacd=2)

task2

wai_sem

wai_sem

wai_sem

A4 A\

/

sig_sem

sig_sem

CHAPTER 4 WRITING A USER PROGRAM

4.6 Period Handler

This section describes how to write a period handler.

B Description Format of a Period Handler
The period handler is described as follows:

Figure 4.6-1 Description Example of a Period Handler

void cychdr1(VP exinf)
{

/* Process the period handler */

return; /* Terminate the period handler */

B Creation of a Period Handler
tk_cre_cyc is called to create a period handler. An example is shown below. In this example, function
"cychdrl" is being created as a period handler of the start period 1 second (1000ms). When creation of a
period handler normally ends, the period handler ID isreturned as the return value.

Figure 4.6-2 Description Example of the Period Handler Creation

ID cycid1,; /* Cyclic handler ID */

T_CCYC ccyc; /* Input parameter of tk_cre_cyc*/
ccycexinf = (VP)1,; [* Extension information=1 */
ccyc.cycatr =TA_HLNG | TA_RNGO | TA_STA; /* Attribute */
ccyc.cychdr =cychdrl; [* Start address of the period handler */
ccyc.cyctim = 1000; [* Start Cyclic */

ccyc.cycphs =0; [* Start phase */

cycidl = tk_cre_cyc(&ccyc); /* Create the Cyclic handler */

B Launch of a Period Handler
To move a period handler from the stop status to the action status, tk_sta cyc is called. In the following
example, the period handler ID is started as the period handler of cycidl.

Figure 4.6-3 Description Example of the Period Handler Startup

tk_sta_cyc(cycidl); /* Start the Cyclic handler whose ID is cycidl */

85

CHAPTER 4 WRITING A USER PROGRAM

Alarm Handler

This section describes how to write an alarm handler.

B Description Format of an Alarm Handler

An alarm handler is described as follows:

Figure 4.7-1 Description Example of an Alarm Handler

void almhdr1 (VP exinf)
{

/* Process the alarm handler */

return; /* Terminate the alarm handler */
}

The extension information specified when an alarm handler is created (tk_cre_am) is passed to exinf.

B Creating an Alarm Handler

tk_cre am is called to create an alarm handler. An example is shown below. In this example, function
"amhdrl" is created as an alarm handler. If creation of an alarm handler is terminated normally, the alarm

handler ID will be returned as the return value.
An alarm handler moves to the stop status after it is created.

Figure 4.7-2 Description Example of the Alarm Handler Creation

ID almid1; /* Alarm handler ID*/

T_CALM calm; /* Input parameter of tk_cre_alm*/

calm.exinf = (VP)1; [*Extension information =1 */
calm.almatr = TA_ HLNG | TA_RNGO; /* Attribute */

calm.almhdr = almhdrl; [* Start address of the alarm handler */
almidl = tk_cre_alm(&calm); [* Create the alarm handler */

B Starting an Alarm Handler

To move an darm handler from the stop status to the action status, call tk_sta_am. In the example below,
the alarm handler with an alarm handler ID of almidl is started using time-out time 100ms.

Figure 4.7-3 Description Example of the Alarm Handler Startup

tk_sta_alm(almid1, 100); /* Start the alarm handler whose ID is
almid1 using a time-out time of 100ms*/

CHAPTER 4 WRITING A USER PROGRAM

4.8 Interrupt Handler

This section describes how to write an interrupt handler.

B Description Format of an Interrupt Handler
An interrupt handler is described as follows:

Figure 4.8-1 Description Example of an Interrupt Handler

void sample_inthdr(void)

{
/* Interrupt handler body */

}

The interrupt handler is executed at the task independent portion. In addition, it is started while interrupt is
enabled. Therefore, while an interrupt handler is being executed, the interrupt handler may be started
multiply. For details, see "CHAPTER 4 RESET AND EIT PROCESSING" of "FR Family Instruction
Manua".

B Registering an Interrupt Handler

There are two methods of registering an interrupt handler: static, and dynamic. For static registering
method, see "5.3 Setting of Configuration”. For dynamic registering method, tk_def int is called from a
user program.
* Example
When the timer interrupt handler of vector number 24 registers "timer" as an interrupt handler through a
user program.

Figure 4.8-2 Example of Registering an Interrupt Handler Through a User Program

T_DINT dint;

ER err;

dint.intatr = TA_HLNG|TA_RNGO; /* Attribute */

dint.inthdr = timer; /* Start address of the interrupt handler */
err = tk_def_int(&dint); /* Register the interrupt handler */

To register an interrupt handler through a user program, set " KERNEL USE TKDEFINT" of the macro
specified by the configurator to 1, and execute the configuration. In addition, to perform operations with the
vector table placed in the ROM, register an interrupt handler using static API.

87

CHAPTER 4 WRITING A USER PROGRAM

B Timer Interrupt Handler

To use the functions of time event handler, timeout, and system time, it is necessary to let the timer

interrupt occur at intervals of 1ms, and then update the system time using the interrupt handler. System
time will be updated whenisig_timis called.

An example of the timer interrupt is shown below.

Figure 4.8-3 Description Example of an Timer Interrupt Handler

void timer(void)
{
/*
Clear the timer interrupt factors
*/
isig_tim();
1

Note:
When an interrupt handler is described using assembler, note the following points:
» Calling an interrupt handler or returning from an interrupt handler is not via the OS.

* As the OS does not back up and restore registers or perform stack settings, perform such
processes on the interrupt handler side.

88

CHAPTER 4 WRITING A USER PROGRAM

4.9 Error Routine

This section describes how to write an error routine.

B Description Format of an Error Routine
The description format of an error routine is shown as follows:

Figure 4.9-1 Description Format of an Error Routine

void sample_errrtn (UINT errptn, INT errinf1,INT errinf2)
{

/* Error routine body */

}

The following information are passed to errptn, errinfl, and errinf2.

e errptn : Error factor
= KERNEL_ERR_SYS DOWN (0x01): System down
_KERNEL_ERR _INI_ERR (0x02): Initial setting error
_KERNEL_ERR _EIT_DOWN (0x04): Undefined interrupt
» errinfl: Error informationl
Inthe case of [KERNEL_ERR_SYS DOWN]
=0x1: tk_ext tsk was called from the task independent portion.
=0x2: tk_exd_tsk was called from the task independent portion.
= 0x3: tk_ext_tsk had been called while dispatch was disabled.
=0x4 : tk_exd_tsk had been called while dispatch was disabled.
Inthe case of [_ KERNEL_ERR_INI_ERR]
Initial setting error information
= 0x1 : Heap area assignment error
= 0x2 : System startup error
=0x3: Initial task startup error
= 0x4 : Module initialization error
= 0x5 : Power off processing error
[Inthe case of [KERNEL_ERR _EIT_DOWN]
Uncertain value
e errinf2: Error information2
Not used. Reserved for future extension.

B Registering an Error Routine
For registering an error routine, see"5.3 Setting of Configuration".

89

CHAPTER 4 WRITING A USER PROGRAM

4.10 Power Saving Routine

This section describes how to write a power saving routine.

B Description Format of a Power Saving Routine

The power saving routine is a process called when the status has become idle inside the kernel. The
processing of transition to the power saving mode is described inside a function.

Figure 4.10-1 Description Example of a Power Saving Routine

void usr_low_pow (void)
{

/* Describe the process of transition to the power saving mode*/
}

B Registering a Power Saving Routine
For registering a power saving routine, see "5.3 Setting of Configuration™.

Note:
When a system call is made inside the power saving routine, the operation is not guaranteed.

90

CHAPTER 4 WRITING A USER PROGRAM

4.11 Extension SVC Handler

This section describes how to create and call an extension SVC handler.

B Description Format of an Extension SVC Handler
The description format of an extension SV C handler is shown as follows:

Figure 4.11-1 Description Format of an Extension SVC Handler

INT svchdr(VP pk_para, FN fncd)
{
/*
Branch and proceed according to fncd
*/
return retcode; /*Terminate the extension SVC handler */
}

pk_para turns the parameters passed from the caller into the packet format. The packet format can be
determined by subsystems arbitrarily.
fncd, which is the function code, contains the subsystem ID in its low 8 bits. The remaining high bits are
determined by subsystems arbitrarily.

B Calling Format of an Expansion SVC Handler
An extension SVC handler is called from a user program using software interrupt of interrupt number 64
with the fncd value set to rO register. Therefore, it is necessary to describe an extension SVC handler

calling section as a user program in the assembler.

Figure 4.11-2 Calling Format of an Expansion SVC Handler

#define FUNC1_FNCD O0x10A /* ssyid = 10 */
INT funcl(int argl, int arg2)

{
__asm(* Idi:32 #FUNC1_FNCD, r0”);

__asm("“ int #64"),

In the example of Figure 4.11-2, the SV C handler whose subsystem ID(sayid) is 10 is called. In the called
SVC handler, the beginning addresses of packets contained in argl and arg2 are passed to pk_para, and
"Ox10A" is passed to fned.

91

CHAPTER 4 WRITING A USER PROGRAM

4.12 Device Driver

This section describes how to write a device driver.

B Device Driver Interface

In the uT-Kernel specification, the device management function increases the portability of the device
drivers by unifying their interfaces. The following describes how to create a driver based on the device
driver interface. In addition, for details of a device driver, see "Appendix C Device Driver Interface”" of
"API Reference".

B Determining A Device Name
Device name is the name granted to the type unit of a device using up to 8 bytes.
A device name using the following format:.

Type Unit Sub unit

A device name consists of the following elements.
Type . A nameindicating the type of adevice. Charactersthat can be used are a-z, A-Z.

Unit : A number indicating the physical device. Characters that can be used are a-z. Specified
using asingle character. Assigned for each unit starting with a.

Sub unit : A number indicating the logical device. Characters that can be used are numbers
between 0-254, not exceeding 3 digits. Assigned for each sub unit starting with 0.

B Creating an Open Function (openfn)
An open function is called from the kernel when tk_opn _dev is called from a user program. An open
processing function makes preparation to access the device data.
For details of an open processing function, see "Device processing function open processing function
(Openfn)" of "Appendix C Device Driver Interface" in "API Reference’.

ERercd = openfn(ID devid, UINT omode, VP exinf)
{

/*

Device open processing

*/
}

92

CHAPTER 4 WRITING A USER PROGRAM

B Creating a Close Function (closefn)
A close function is called from the kernel whentk_cls_dev is called from a user program.

Cdlling a close processing function means access to a device has been terminated. The driver then performs
the device terminating process whenever necessary.

ERercd = closefn(ID devid, UINT option, VP exinf)
{

/*

Device close processing

*/
}

B Creating a Process Start Function (execfn)

A process start function is caled from the kernel when tk rea dev, tk srea dev, tk_wri_dev, or
tk_swri_dev is called from a user program.

In the process start function, the data to be processed is first set to the parameter and then called. However,
the function does not return upon completion of the data process, instead it returns when the process has
been accepted. For example, when the data to be written to a device is passed viatk_wri_dev, it returns on
completion of the write start instruction, and it is not necessary to wait for completion of the device write
process.

For details of a process start function, see "Device processing function process start function (execfn)" of
"Appendix C Device Driver Interface" in "API Reference".

ERercd = execfn(T_DEVREQ *devreq, TMO tmout, VP exinf)
{

/*

Device process start

*/

B Creating a Waiting for Completion Function (waitfn)

A waiting for completion function is called from the kernel when tk_wai_dev, tk_srea dev, or tk_swri_dev
iscalled from a user program.

A waiting for completion function waits for the completion of 1/0 request accepted at the process start
function. Therefore, system calls for entering the standby status (such astk_slp _tsk) may be used.

For details of a waiting for completion function, see "Device processing function waiting for completion
function (waitfn) " of "Appendix C Device Driver Interface” in "API Reference”.

INT pktno =waitfn(T_DEVREQ *devreq, INT nreq, TMO tmout, VP exinf)
{

/*

Device wait for completion process

*/

93

CHAPTER 4 WRITING A USER PROGRAM

B Creating a Process Abort Function (abortfn)

The process abort function is called from the kernel if there are unfinished 1/0 requests for the device when
the device close instruction is issued from a user program.

Process aborting requested by /O specified using parametersis performed in a process aborting function.

1/0O for the device is aborted, and removes the waiting state if the task has entered a state waiting for 1/0
completion.

For details of a process abort function, see "Device processing function process abort function (abortfn)" of
"Appendix C Device Driver Interface” in "API Reference”.

INT pktno =waitfn(T_DEVREQ *devreq, INT nreq, TMO tmout, VP exinf)
{

/*

Device process abort

*/

B Event Function (eventfn)

An event function is called from the kernel when tk_sus_dev or tk_evt_dev is called from a user program.
Thisfunction is called from a user program or the kernel when notifying some event to adevice.

As the event type is passed to a parameter in an event function, process for that event is performed in the
driver.

INT rtncd = eventfn(INT evttyp, INT evtinf, VP exinf)
{

/*

Device event process

*/

94

CHAPTER 4 WRITING A USER PROGRAM

4.13 Notes when Writing a User Program

This section describes notes when writing a user program of uT-REALOS.

B Notes on the Overall of a Program

Internal identifiers starting with"_KERNEL", " _kernel", "tk_", "tm_"and "knl_"

The kernel of uT-REALOS uses symbols and macros starting with the above mentioned. Do not use
these symbols and macros in a user program. This may cause duplicate definition.

Management register of uT-REALOS
UT-REALOS usesthe ILM field of the PS register. Do not change this field in a user program.
Include file of kernel

Include "[SOFTUNE Install Directory]\utkernel\911\include\tk\tkernel.h in a user program using a
system call

B Notes on the Overall of a System Call

A system call can be made while the task independent portion or dispatch is disable.
When calling is disabled, an E_CTX error or exception may occur. For availability of calling, see "3.1
System Call List" of "API Reference" in addition, operations cannot be guaranteed when isig_tim or
tk_ret_int is called from the task section.

Omitting the error check of a system call

Check for entry address and packet address will not be performed. Specifying an illegal address may
cause an abnormal operation.

B Notes on a Task

Stack Definition
Secure the stack areato make its beginning address to become 4 byte boundaries.
Status transition of tasks during execution while the dispatch is on hold

While dispatch is on hold, the state transition is delayed until dispatch occurs, when moving the tasks
during execution forcibly to the forcible waiting state and the stop state by calling tk_ter tsk and
tk_sus_tsk from task independent portion. In such a case, tasks being executed will retain the execution
status. However, when reference the task portion using tk_ref _tsk, it becomes the forcible waiting state or
the stop state.

95

CHAPTER 4 WRITING A USER PROGRAM

B Notes on Interrupt

96

Execution priority of an interrupt handler and atime event handler

The execution priority for each handler is determined according to the defined interrupt level. For details,
see"CHAPTER 4 RESET AND EIT PROCESSING" of "FR Family Instruction Manual".

A time event handler is executed at the interrupt handler interrupt level for system clock calling isig_tim.

When designing the system stack size, taking these handler multiple startup into consideration, add 80
bytes for interrupt of 1 level.

CHAPTER 5

HOW TO CONSTRUCT A
SYSTEM

This chapter describes how to construct a user system.

5.1 Steps of Constructing a System
5.2 Create the uT-REALOS Project
5.3 Setting of Configuration

5.4 Setting of Linker Option

5.5 Build a User System

97

CHAPTER 5 HOW TO CONSTRUCT A SYSTEM

5.1 Steps of Constructing a System

This section describes steps of constructing a system including compiling, configuring,
and linking a user program for uT-REALOS.

B Steps of System Construction
Construct the user system of uT-REALOS using the following steps.

Create the uT-REALOS project

|

Set configuration

|

Set the linker option

|

Build the user system

98

CHAPTER 5 HOW TO CONSTRUCT A SYSTEM

5.2 Create the uT-REALOS Project

This section describes how to create the uT-REALOS Project on SOFTUNE Workbench.

B Create the uT-REALOS Project
Create the uT-REALOS using the following steps.

» Sdlect [File]-[New Creation] menu on the SOFTUNE Workbench. Select "Workspace/Project File" as
the file type in the opened new dialog, and then click the "OK" button.

Figure 5.2-1 Selection of File Type

Hew

File type:

space/Project file

Text file

LI X

Cancel

* Select aproject tab in the "New Creation” dialog, and select "REALOS(ABS)" in the project type. Input
"Chip Type", "Target MCU", and "Project Name", and then click the "OK" button.

99

CHAPTER 5 HOW TO CONSTRUCT A SYSTEM

Figure 5.2-2 Input the Project Information

Create E|

Praject] Warkspace]

Project Twpe:
roject lyvpe Chip Clazsification:
Loadmodule(ABES)

Relocatable(REL) |FR *| MCU change..
Library{LIE)
EECSCTO N Torsct MOU

| MEG 461 |

Project Mame:

|test

Tareet Filename:

]test.al:us Browze..
_Browse. |

Project Directory:

]G:¥t mp Browse..

v Create new workspace W et

A7)

« Diaog of "Select REALOS' is displayed. Select "SOFTUNE uT-REALOSFR", and then click the
"OK" button.

Figure 5.2-3 Select the REALOS Type

Select REALOS E|

[SOFTUNE uT-REALOS/FR |

» Select some of following items from the dialog for creating a configuration file.
- New

- Load an existing configuration file

100

CHAPTER 5 HOW TO CONSTRUCT A SYSTEM

Figure 5.2-4 Create a Configuration File

Greate Gonfieuration File

—aelect Confieuration File -

" Bead Existing Configuration File

]

(0] 4 | Cancel

101

CHAPTER 5 HOW TO CONSTRUCT A SYSTEM

5.3

Setting of Configuration

This section describes setting of configuration.

B Setting of Configuration

102

Define the following items at configuration.

« Definition of the maximum number of objects

Set the maximum value for the number of objects that the user program can use. The objects can be
created up to the maximum value and used in the user program. Therefore, define the maximum value
using a value bigger than the number of objects that are used in the user program.

For example, when 3 semaphores are used in the user program, define the configuration specification
macro " _KERNEL_MAX_SEM" as 3. In such a case, the program can operate without problems even it
is defined as 10 . However, since 10 semaphore control areas are ensured in kernel, the 7 unused control
areas will become useless. Therefore, it is necessary to define the maximum number of objects used in
application in order to optimize usage efficiency of memory.

It is unnecessary to define objects not used in the user program.
Table 5.3-1 displays byte number of consumed memory in kernel for each object.

Table 5.3-1 Consumed Memory of Object Management Block

Object name anfiggration Manggementarea
specification macro size (byte)
Task _KERNEL_MAX_TSK 119
Semaphore _KERNEL_MAX_SEM 28
Event Flag _KERNEL_MAX_FLG 24
Mailbox _KERNEL_MAX_MBX 28
Mutex _KERNEL_MAX_MTX 32
M essage Buffer _KERNEL_MAX_MBF 52
Rendezvous Port _KERNEL_MAX_POR 36
Fixed-size Memory Pool _KERNEL_MAX_MPF 56
Variable-size Memory Pool _KERNEL _MAX_MPL 56
Cyclic Handler _KERNEL_MAX_CYC 44
Alarm Handler _KERNEL_MAX_ALM 40
Device _KERNEL_MAX_REGDEV 1328

For definition of maximum number of object, see "l Setting Operation of Configuration” in this section.

CHAPTER 5 HOW TO CONSTRUCT A SYSTEM

Definition of priority maximum value

Defines the maximum priority value of atask and subsystem. Same as the maximum object value, when
the value defiend for the task priority becomes smaller, consumed memory of kernel can be reduced.
When Task Priority is P, its consumed memory can be calculated according to following formula.

Consumed Memory (byte) = (8* P) +4* (P/32)
Definition of system stack size and stack size of theinitial task

Specifies the size of system stack and stack size of initial task. For specification method of the stack size,
see "l Setting Operation of Configuration™ in this section.

Register theinitial routine, error routine and power saving routine

When using the initial routine, error routine, and power saving routine, perform the registration through
the static API. For registration method of these routines, see "4.4 Initial Routine", "4.9 Error Routine",
and "4.10 Power Saving Routine" of "l Setting Operation of Configuration" in this section.

Register an Interrupt Handler

On using an interrupt handler, register it through a static API. After the system startup, dynamic
registration of interrupt handler through tk_def_int is also available. In the case of dynamic registration,
registration through a static APl will be not necessary. In addition, in such a case, define
"_KERNEL_USE TKDEFINT" of configuration macro as"1".

On using an interrupt vector table located in the ROM area, setting *_KERNEL_USE _TKDEFINT" to
"0" will allow the kernel to cancel copying the vector table from the ROM to the RAM. Therefore,
memory used by the kernel can be reduced.

Whether to register an interrupt handler through a static APl or tk_def int is optional depending on
processing of the user program. Registration through a static APl has advantages in reducing the codes
for registration through tk_def int.

B Setting Operation of Configuration
Set the configuration parameters using the following steps.

Project window of the configurator
Clicking the "CFG" tab at lower left of SOFTUNE Workbench window will display Figure 5.3-1.

Figure 5.3-1 Project Window of the Configurator
-2 config

% Configuration Definition
¥ Size Spec
% Function Select
- % Entry Registration
+- % Initial Routine
Error Routine
+ Interrupt Handler
ﬁ Low Power Mode
- F\ Debug
+ }?\ typel
+ ?\ type?
+ }?\ typed
+ }?\ twpeh

Configuration Definition

103

CHAPTER 5 HOW TO CONSTRUCT A SYSTEM

104

Double clicking "Configuration Definition" on the project window will display Figure 5.3-2. Set
"Definition of Priority" and "Maximum number of each object" in Table 3.13-1.

Clicking the "Recalculate” button upon completion of entry in each configuration window will display
the consumed RAM memory area corresponding to the number of inputted object and the total RAM
memory area.

Figure 5.3-2 Configuration Definition Window

FAH frea Ligs HAM freg Lise
M Tazk, Mumber [] 38 byies Max Cyelic Hangler Fumbser [T s
Macx Taik Prievity [140 1135 byaes Ma Alsem Handler Humber 8 T30 byrtes
Max Gamaphons Mumbe] &3 bryies Max Fersdaprous Fort Mumbsy] T bytes
Mas Evrriiflag Murnser | 3 Ty e Mar Fggrayabrm b [B 32 byien
M ailbeeoe Mumbar [B TH bytee Mar Subwwyatem Priceity [15 1 byt
Mac Mt Mumber | [] 8 e My Dewce Pagetration bamber [] 1060 byiea
My Mesemtn Bulter Humbm [] 416 brries Man Dervice Cpep Mumbes 1% [rvims
Max _Envﬂ-Hui-d Momay Pond Mumles |]- 42 by M Deven I-'h-gm:l Muiridars 18 1V bryhen
Mar Yariskle=Sired Memory Ponl Mamber I [] 45 bytes ksl Task Priority (7] 1l brytes
PAM Araa Tatal Uss
19704 btay
o] cecel | Be-colcuaton| List Disphay |
* Size Spec
Double clicking "Size Spec" on the project window will display Figure 5.3-3. Set items of "Size Spec" in
Table 3.13-1.

Figure 5.3-3 Size Spec Window

Size 3pec [')__(l

Thitial Tack Stack Size | g+1024
Swstem Stack Size 1024

gk Cancel |

¢ Function Select

Double clicking "Function Select" on the project window will display Figure 5.3-4. Set the items of
"Function Select" in Table 3.13-1.

CHAPTER 5 HOW TO CONSTRUCT A SYSTEM

Figure 5.3-4 Function Select Window

Function Select E|

th_def_inti)

[v Use tk_def_int)

Heap

v Uze Heap Area

Size 16384

Cancel

* Entry registration
Performs registration of an initial routine, an error routine, an interrupt handler, and a power saving
routine (power saving function).
Double clicking "Initial routine”, "Error Routine", or "Power saving function" on the project window will
display Figure 5.3-5, Figure 5.3-6, and Figure 5.3-7 respectively. Set the entry name of functions used in
the initial routine, error routine, and power saving routine.

105

CHAPTER 5 HOW TO CONSTRUCT A SYSTEM

Figure 5.3-5 Initiallize Routine Setting Window

Initiallize Routine Setting

INIT
Entry Mame uinit_task
Cancel |
Figure 5.3-6 Error Routine Setting Window
Error Routine Setting ['5_<|
ERR

Entry Mame |errrtn'|

106

CHAPTER 5 HOW TO CONSTRUCT A SYSTEM

Figure 5.3-7 Low Power Mode Window

Low Power Mode Zetting [5_(|

S

Entry Mame parrtnl

Cancel

New registration of an interrupt handler will display Figure 5.3-8 at the first. Select an interrupt number
corresponding to the registered handler in this window.

Figure 5.3-8 Select Interrupt Number Window

Select Interrupt Mumber [5_(|

Pleaze zelect ..

|24]

I Cancel |

Clicking the "OK" button at Figure 5.3-8 will display Figure 5.3-9. Set the entry name of functions used
in the interrupt handler.

107

CHAPTER 5 HOW TO CONSTRUCT A SYSTEM

Figure 5.3-9 Interrupt Handler Setting Window

Interrutp Handler Setting

N

Ihterrupt Mumber

Entry Mame

Mode Wector

|‘24

|timer

Cancel

3

e Debug

Specifies the type of debug module used in the log function of uT-REALOS analyzer (module log).
Double clicking the names of "Typel", "Type2", "Type3", and "Type5" on the project window of the
configurator first or selecting the [setting] menu by right clicking will set the selected debug modules.

For the module log, see "2.4 Log", and "CHAPTER 3 TASK ANALYSIS MODULE" of "Analyzer

Guide".

B Execution of Configuration

108

Configuration will be executed automatically when the project is built.

CHAPTER 5 HOW TO CONSTRUCT A SYSTEM

54 Setting of Linker Option

This section describes how to set the linker option

B Memory map setting of ROM and RAM
Set the memory area used as ROM/RAM area according to the user system.

The sample program below allocates the ROM/RAM areato IMB and 4MB respectively.

Table 5.4-1 Memory Map of ROM/RAM Area in the Sample Program

Area attribute Area name Start address End address
ROM Image _ROM _ 0x00800000 Ox008FFFFF
RAM Image _RAM_ 0x80000000 Ox803FFFFF

B Kernel specific section
Section names used in the kernel are described as follows:

Table 5.4-2 Kernel Specific Section List

Type Section Name Meaning
CONST INTVECT Vector Table
DATA SYSINFO Object management table
STACK _KERNEL_STACK_SC System stack area
DATA HEAP Kernel heap area

INTVECT isalocated in the ROM area, while SYSINFO and KERNEL STACK_SC are alocated in the
RAM area

For details of "Type" mentioned in the above table, see "5.3 Types of Section” in "SOFTUNE Linkage Kit
Manua" (hereinafter, "Linkage Kit Manual") .

The start address of the vector table is set in table base register (TBR) of CPU. Therefore, INTVECT
section will usually be specified when fixed addresses are linked.

B How to specify the memory map
Memory map will be specified as the linker's option when the user system is linked. The operation method
is described below. For details of the linker, see "PARTII LINKER" in "Linkage Kit Manual".

» Select [Project]-[Project settings] menu on the SOFTUNE Workbench. Click the "Linker" tab, then
click the "add" button of the "ROM/RAM Area List" at the category of "Allocate/merge” in the project
settings dialog.

109

CHAPTER 5 HOW TO CONSTRUCT A SYSTEM

Figure 5.4-1 Setup Project Dialog

Setup Project |?|
Tareet of zettine: General] ML] A0+ Caompiler] fizzembler Linker] Lihrariari]Ll
] Debug Lj Category:] Digpozition/Connection L]

[I e
futo Disposition: 1MDE|E 2 _'_]
ROM/RAM Area List Set. | ceve | e | oo |
BOM/BEM Azea... | 3zazt Rdd... | End Addresz | Azea A... |
The Dizposition/Gonnection option iz reset Set Section.,

W When a ROMSRAM area is specified bevond the internal
ROM/RAM ranee, the warning is issued,

v When sections are arranged bevond the range that the
ROM/RAM area iz specified, the warning iz izsued.

Option:

- s
-AL 2 =
—-check_locate

Ees v

¢ Input the attributes of RAM area and ROM area, start address, and end address, then click the "OK"

button.
Figure 5.4-2 Setup RAM Area Name
Setup ROMSRAM Area Name EJ
BOMARAM Area Mame: J_F{F\M_
frea Attribute:]F{F'.M _v__]
Start Address: |IZIxEEII:IEIEIEIEIEI
End fddress: ijEDBfffff
Cancel |
Figure 5.4-3 Setup ROM Area Name
Setup ROM/RAM Area Name EJ
BOMARAM frea Mame:]_F{OM_
firea Attribute:]ROM :__]
Start Address: |D><DDBDDDDD
End &ddress: jl:lelEIEfffff
S T Cancel

110

CHAPTER 5 HOW TO CONSTRUCT A SYSTEM

» Set the address of the INTVECT section next. Click the "Setup Section” button on the "Setup Project”

dialog.

Figure 5.4-4 Setup Project

Setup Project

Target of zetting:

] Debug Lj
Bt

General | MGU | G/CG++ Gompiler] fizsembler Linker]Librariar A] r

Category:] DizpositionConnection L]

Auto Dizposition: 1Mode 2 _"_J
FOM/RAM Area List St | el | 10 | Do |
BOM/BAM Area... | Starr Add... | End Address | Area &...

_ARM AOO00000 naM
RCM 00B00000 =T Y4
The Dizposition/Gonnection option is reset Set Section..

r When a ROMARAM area iz specified beyond the internal
ROM/RAM ranege, the warning iz izsued

) When sections are arraneed bevond the ranee that the
FOMARAM ares iz specified, the warning ig izsued.

Option:

- =
-AL 2 =
-ra _Fa M =0x80000000,0:803FFFFF

—ro -ROM =0=00800000/0:=008F FFFF v

» Select "Specify address’ in the ROM/RAM area name in the " Setup Section” dialog. Input "INTVECT"
in the section name, and input the start address of the INTVECT section in "Address’, then click "OK"

button.

111

CHAPTER 5 HOW TO CONSTRUCT A SYSTEM

Figure 5.4-5 Setup Section

Setup Section §|
BOMARAM Area Mame: |Speu:if3-' i Address ﬂ
Section Mame: |INWECT Set
Address: |H'EIEIE FFCO0
Contentzs Type: | Mane ﬂ

Section Mame List:

Cancel |

B Link objects

Table 5.4-3 isalist of sample programs relevant to object files that are required for creating a user system.
No user setting is required since these files will be automatically set as Link Option when REALOS Project
is created, or when a user program is registered.

Table 5.4-3 Link Object List

Classification File Name Remarks
User Program icrt0.obj Reset entry routine
(Sample Program) init_task.obj Task, timer interrupt handler
Kernel configuration file config.lib Filecgﬂ?;jrs atsﬁje:isfti:gi the
libtm.lib
libtstdlib.lib
Kernel Library libstr.lib File nameisfixed
libtk.lib
libtkernel .lib

112

CHAPTER 5 HOW TO CONSTRUCT A SYSTEM

B Reset entry settings

Set the address of the reset entry in the "Entry point” column at the "General” category of the project
settings dialog. The example below sets the address of the" _ start" symbol to the reset entry.

Figure 5.4-6 Reset Entry Settings

Tareet of setting: General | MGU | G/G++ Compiler | Aczembler Linker] Librariar 41 ¥

Lj Ciategory: 1Genera| L]

[~ Cutputs start meszage

¥ Outputs debue information

Entry Point:]_start

Warning Level: 1Leve| 1 _f_.]
¥ Contral of default option file
Oither Option:

Qption:

B ~

-AL 2 =

-ra _RAM =0:80000000/0=803FFFFF

~ro _ROM =0:00800000,/0:008F FFFF b
Cancel Bpply

113

CHAPTER 5 HOW TO CONSTRUCT A SYSTEM

5.5 Build a User System

This section describes how to build a user system

B Build a user system

Build the system to create an object in the executable format, which contains uT-REALOS. Build
automatically performs compilation and configuration of the user program and link with uT-REALOS.

e Select [Project]-[Make] and [Build] on SOFTUNE Workbench. Build results will be displayed in the
output window at the bottom of the SOFTUNE Workbench Window.

Figure 5.5-1 Screen example during building

¢ SOFTUNE Workbrneh - smpeys
Eile Edit Yew Promect [ebas BAnsbowr Sehp Windom Hel
B el 3] @laie sl me]) o)) | e =] [Tt _ -
Dlzla o) ol RlRlwe) Fale gl il Tl o[l 5] 1)

Y o reep—"
= I emppsabs - " empys pri”
- (B Souca Pl

114

APPENDIX

The appendix describes error messages of the
configurator.

APPENDIX A Error Messages of the Configurator

115

APPENDIX A Error Messages of the Configurator

APPENDIX A Error Messages of the Configurator

Appendix A describes the categorization, display format, and meaning of error
messages output during configuration.

B Error Message Categorization of the Configurator
Error messages output by the configurator on execution of configuration are categorized by importance into
the following three levels.
¢ Warning message

Warning messages are |ess serious than the error messages described next, and the output results can be
used almost without problems.

Occasionally, a process different from what the user intended may be performed.
Determine whether the output results are usabl e after checking the message contents.
e Error message

The process is continued. However, the configuration is not performed. It is necessary to eliminate the
factors causing the error and perform the execution again.

This error mainly occurs while reading afile.
» Fata error message

An error indicating that the process cannot be continued. Such an error may occur due to problemsin the
execution environment as well as wrong specification by the user.

In addition, there are messages that are output by the compiler, assembler, or linker executed inside the
configurator. For messages output by the compiler, assembler, or linker, see the corresponding manual.

116

B Display Format of Configurator Error Messages
Error messages are output in the following formats:

*** File name(line number)X nnnnT: M essage text(Assist message)

Section Description
File name Configuration file name and line number where the error occurred.
(Line number) Output when error occurred while reading the configuration file.
Error level is expressed using one of the following three characters.
W Warning message
X
E Error message
F ... Fatal error message
Error number
The error number and error level are associated as follows:
nnnn 1000 to 1999 W
4000t04999 E
9000t09999 F
Tool identification is expressed using the following character.
M Configurator
T C Compiler
A ... Assembler
L ... Linker
M essage text Error message text
More detailed information regarding the error.
Assist message The symbol name indicating the error occurrence is displayed.
It may be output to the error message body.

Note:

An error may occur at the complier, assembler, or linker launched by the configurator ("C", "A", or "L"
are respectively output to the tool identification.)

For details of an error in such a case, see the corresponding manual.

117

APPENDIX A Error Messages of the Configurator

W Description of Message Notation

Warning messages, error messages, and fatal error messages from the configurator are hereafter described
in the following format:

Error code English message

The variable character string in the message is described with underlines.

118

B Warning Messages

W1130M Multiple definition (Definition name)

The definition displayed in the definition name was duplicated.
This definition was overwritten by the definition specified | ater.

When a number is displayed in the definition name, the ID indicated by the number was overwritten by the
definition specified later.

W1401M Not found maximum area definition (Definition name)

Maximum area definition name displayed by the definition name does not exist.

When this error message is output, the maximum size is assigned automatically.

W1405M EIT vector No."num" is system reserve

Astheinterrupt number specified by "num" is system reserved, it cannot be used.

This error message is output when the interrupt number of an interrupt handler defined in "TATT_INI" is
system reserved.

119

APPENDIX A Error Messages of the Configurator

B Error Messages

E4024M Illegal character (Parameter)

Characters that cannot be used in parameter displayed by parameter are contained

This error occurs when characters are specified in Parameter requiring numbers, or when numbers are
specified in Parameter requiring labels.

E4026M Specified value is out of range (Parameter)

The value displayed in Parameter is out of range that can be specified.

This error occurs when a value exceeding 32767 was specified in object ID.

E4110M Unknown API name (Character string)

Cannot use the definition displayed in the character string.
This error occurs when unsupported APl name is described.

E4111M Too long line (MAX value)

Description is not available when the line length exceeds the length displayed in MAX value.
Limit the description to the length displayed using MAX value.

E4112M [llegal parameter expression

Expression shown in line number isillegal.
This error message is output when the description syntax or the definition method of API isillegal.

E4120M Parameter istoo long

The parameter length shown in Parameter is too long.
This message is output when a symbol is described with alength exceeding its specification.

120

E4121M Too many Definition name (MAX value)

Definition displayed in Definition name exceeds the number displayed in the value.
This error message is output if an attempt is made to define more than standard API.

E4123M Too many parameters (Parameter)

Parameter beyond those shown at Parameter are unnecessary.

E4125M Short of parameter

The parameters of the definition name are inadequate.

E4130M Multiple definition (Definition name)

Definition that cannot be duplicated was duplicated and defined.
This error message is output when the API ID is duplicated.

E4131M Parameter not defined (Parameter name)

Parameters that cannot be omitted were omitted.
The definition displayed in the Parameter name cannot be omitted.

E4132M Illegal parameter (Parameter)

Parameter that cannot be specified was specified.
This error is displayed mainly when a string that cannot be selected in the selection item is specified.

E4133M Symbol is aready defined (Symbaol name)

A symbol that has already been defined was redefined.
This error occurs mainly when the task or event flag names, specified by API are duplicated.

121

APPENDIX A Error Messages of the Configurator

E4136M Illegal size or address (value)

The specified size or address is not correct.

E4142M Device open count is bigger than semaphore count (MAX value)

The device open number was specified with avalue larger than the semaphore number.

Lower the device open number, or increase the semaphore number.

E4402M API ID exceed maximum area definition (Parameter)

More APIs displayed by Parameter were defined than the value defined by the maximum area.
This error message is output even when the API is defined with no maximum area defined.

122

B Fatal Error Messages

FO000M Environment variable not found (Environment variable name)

The environment variable displayed in Environment variable name is not defined.

FO001M Insufficient memory

Insufficient memory for program execution.

Fo002M Not configurated

Configuration was not performed.

This error message is output when execution is interrupted due to an error during configuration.

Fo011M Input file is not found (File name)

The specified input file is not found.

Fo016M Error read error (File name)

Reasons such as file without read privilege, hardware problems can be considered.

Fo017M File write error (File name)

Reasons such as file without write privilege, presence of the same directory or no free disk space can be
considered.

F9022M Unknown option hame (Option)

A parameter that cannot be specified was specified.

Fo023M [llegal option parameter (Parameter)

The parameter displayed in Parameter isillegally specified.

123

APPENDIX A Error Messages of the Configurator

124

Fo024M

Option parameter not specified (Option)

Parameter is not specified in Option specified by option.

FO030M

Missing input file name

The configuration file was not specified.

FO033M

Illegal file format (Parameter)

This error occurs when format of files such as CPU information fileisillegal.

F9405M

Initial task priority is higher than maximum task priority (MAX value)

Theinitial task priority is higher than the maximum priority.

Lower theinitial task priority, or increase the maximum task priority.

FO501M

Not found CPU information file

The CPU information file is not found at the specified location.

F9502M

Not found CPU information

This error occurs when the MB number specified by -cpu option has not been registered to the CPU

information file.

Confirm the MB number specified by -cpu option.

F9801M

Definition name is not defined

The definition content displayed using the Definition name is not defined.

This error message is output when a definition or an option that cannot be omitted has not been specified.

F9805M

EIT vector No.Number is system reserve

Cannot use the vector Number displayed using number is system reserved.

F9895M Error in Compiler (File name)

Error occurred when compiling the displayed file.

F9897M Error in Assembler (Eile name)

Error occurred when assembling the displayed file.

F9898M Error in Linker

Error occurred in the linker.

F9899M Tool nameis not found

The compiler, assembler, or linker could not be found from environment variable "PATH".

Define a path where the tool is contained in environment variable "PATH".

F9990M File 1/0O error (Eile name, Information)

Some error occurred during input/output of afile.

F9993M Cannot create directory (Directory name)

Failed to create adirectory displayed using Directory name.

The reasons such as no directory writing privilege, presence of the same name directory name, no free disk
space are considered.

F9994M Cannot create file (File name)

Failed to create afile displayed using File name.

The reasons such as no file writing privilege, presence of the same name directory name, no free disk space
are considered.

125

APPENDIX A Error Messages of the Configurator

F9995M Cannot close file (File name)

Failed to close afile displayed using File name.

The reasons such as no file writing privilege, presence of the same name directory name, no free disk space
are considered.

F9996M Cannot open file (File name)

Failed to open afile displayed using File name.

The reasons such as no file writing privilege, presence of the same name directory name, no free disk space
are considered.

F9999M Internal error (Identification information)

When this error occurs, please contact sales representative immediately.

126

INDEX

INDEX

The index follows on the next page.
This is listed in alphabetic order.

127

INDEX

Index
A
abortfn
Creating a Process Abort Function (abortfn) 94
Additional
Additional NOES.........ccciiiiiiiiiieeeee e, 41
Additional Notes
Additional NOtes..........ccccviiiiiiieieeeiens 36, 39, 43
Alarm Handler
Alarm Handler FUnctions.........cccccoeeveviiivvvneennnn. 52
Alarm Handlers.........oooovvviiiiiiiiieeeeee e 17
Creating an Alarm Handler...........ccccceevviiieennnen. 86
Description Format of an Alarm Handler 86
Starting an Alarm Handler...........cccoeevviiieneinnnn. 86
API
SAC AP o 62
Assistance
Overview of the Debugging Assistance Functions
.. 64
B
Breakpoints
OS BreakpointS..........veeeeiniiieeieniiiieeeeeeiiieee e 65
C
Calling Format
Cadling Format of an Expansion SVC Handler 91
Close Function
Creating a Close Function (closefn)coe..e 93
closefn
Creating a Close Function (closefn) 93
Communication
Extended Synchronization and Communication
FUNCLIONS. ... 37
Synchronization and Communication Functions
.. 31
Configuration
Configuration FUNCLiONS............cccuvviiiiiieieeeenee 59
Execution of Configurationcccccceeeeiiinnee 108
Setting of Configuration............ccccuveeeveeieeinnnnnns 102
Setting Operation of Configuration 103
Configuration Definition
Configuration Definition Macros..........cccceeeeeennne 60
Configurator
Display Format of Configurator Error Messages
.. 117
Error Message Categorization of the Configurator
.. 116
Running the Configurator............cccceeeeveiiiiieeeeennn. 63

128

Creating
Creating a Close Function (closefn) 93
Creating a Process Abort Function (abortfn)......... 94
Creating a Process Start Function (execfn) 93
Creating aTasK.......cceveeiiiiiiieie e, 81
Creating a Waiting for Completion Function (waitfn)
... 93
Creating an Alarm Handlercccccvveeevenenennn. 86
Creating an Open Function (openfn) 92
Creation
Creation of aPeriod Handler............cccceeeveeeeenn. 85
Current Task
Current Task and Other Tasks........ccccvvveeeeeeeeennn. 10
Cyclic Handler
Cyclic Handler FUNCLiONSccvvveeiviiiieeeenne, 50
CyclicHandlers.........cooooiiiiieiinieceieeee e, 16
D
Debugging
Overview of the Debugging Assistance Functions
... 64
Debugging Assistance
Overview of the Debugging Assistance Functions
... 64
Description Example
Description Example of the Initial Routine........... 79
Description Format
Description Format of a Period Handler 85
Description Format of a Power Saving Routine
... 90
Description Format of an Alarm Handler.............. 86
Description Format of an Error Routine................ 89
Description Format of an Extension SVC Handler
... 91
Description Format of an Interrupt Handler 87
Description Format of the Initial Routine............. 79
Description Format of the TasKvvvveenennnn. 81
Development
Tools Required for Development..............ceeeveeeennn. 4
Device
Determining A Device Name...........cccccveevvinneen. 92
Device Driver Interfaceccccccvvveeeeiiiiciiiiienen, 92
Device Management Functionsccceeeee... 56
Device Processing FUNCLIONS............cccevveeininneen. 20
Device Driver Interface
Device Driver Interfacecccceveeeeiiiiiiiiiiennnn. 92
Device Management
Device Management FUNnctionsccceeeeeeee. 56

Device Name

Determining A Device Nameccccceeeeeiiinnnnns 92
Directory Structure

Directory Structure of Provided Files..................... 3
Dispatch

Dispatch Enabled/disabled States................ccueeeeee 24
Dispatching

Dispatching and Preemption............ccccccoeeinnninnns 10

Display Format
Display Format of Configurator Error Messages

.. 117
Driver
Device Driver Interfacecoccvvveevinienenennnen, 92
E
Error Message
Display Format of Configurator Error Messages
.. 117
Error Message Categorization of the Configurator
.. 116
Error MESSages........ocovvveviiiviiiiiiiiiieeaeae e 120
Fatal Error Messages........coovvevuviiiieeeiieaaeeeeens 123
Error Routine
Description Format of an Error Routine................ 89
Error ROULINESvvvviiiiieeeeeieeiiiieeeeeee e 18
Registering an Error Routine............ccoccveveeinnee. 89
Event Flag
Event Flag FUNCLiONS............ovviiiiiiiiiiiee e, 34
Event Function
Event Function (eventfn)ccccceviieeiiininiinns 94
eventfn
Event Function (eventfn)cccoeeeevniiiineninnnn, 94
Example
A specific Example of the TasKvvvvvvivnnnnnn. 82
execfn
Creating a Process Start Function (execfn) 93
Expansion SVC Handler
Calling Format of an Expansion SVC Handler 91
Extended SVC Handler
Extended SVC HandlerS..........occveveiiniieneninne, 19

Extended Synchronization
Extended Synchronization and Communication
FUNCLIONS ... 37
Extension SVC Handler
Description Format of an Extension SVC Handler

.. 91
F
Fatal Error Message
Fatal Error MESSageS.........cvvevvirrveeeinirieneenenens 123
Fixed-size Memory Pool
Fixed-size Memory Pool Functions...................... 46

INDEX

Format
Calling Format of an Expansion SVC Handler....... 91
Description Format of a Period Handler 85
Description Format of a Power Saving Routine90
Description Format of an Alarm Handler 86
Description Format of an Error Routine................ 89
Description Format of an Extension SV C Handler
.. 91
Description Format of an Interrupt Handler 87
Description Format of the Initial Routine.............. 79
Description Format of the Taskcccoeeineneee. 81
Function
Creating a Close Function (closefn)...................... 93
Creating a Process Abort Function (abortfn).......... 94
Creating a Process Start Function (execfn) 93
Creating a Waiting for Completion Function (waitfn)
.. 93
Creating an Open Function (openfn)..................... 92
Event Function (eventfn)cccovveiiiiienennnnnn. 94
H
Handler
Alarm Handler FUNCtiONSccoooieeeiiiiiiiiiiieee. 52
Alarm Handlers. ... 17
Cdling Format of an Expansion SVC Handler....... 91
Creating an Alarm Handler................cccooeeeeeen, 86
Creation of aPeriod Handler.............ccccceeeeeennnne 85
Cyclic Handler Functions.............cooeeevvvvvvivieennn, 50
CyclicHandlers.........ccveveeiiiiniiiiiiieeeeeeeeeeeeeeee 16
Description Format of a Period Handler 85
Description Format of an Alarm Handler 86
Description Format of an Extension SVC Handler
.. 91
Description Format of an Interrupt Handler 87
Extended SVC Handlers.........cccvvveeeeeiieeininis 19
Interrupt Handlers............oovvvvveiiviiiiiiiciieie e, 15
Launch of aPeriod Handlerccccoeeeeiiiinnnns 85
Precedence of Execution (Handlers vs. Handlers)
.. 26
Precedence of Execution (Tasksvs. Interrupt Handlers
and Time Event Handlers) 25
Registering an Interrupt Handler 87
Starting an Alarm Handler................cccooevieeees 86
TimeEvent Handlerscccoeeeiiniiniiiiiiieeeen. 16
Timer Interrupt Handler ..., 88
I
Initial Routine
Description Example of the Initial Routine............ 79
Description Format of the Initial Routine.............. 79
Initial ROULINES........ccoiiiiiiiiiie 14
Process of the Initial Routing..........cccccccoeeiinneee. 79
Interface
Device Driver Interface........cccoovcveviiiiiineennnnnen. 92

129

INDEX

Interrupt

Interrupt Management Functions 53

Notes on INEETUPLcovvviiiiiiiiiii e 96

Timer Interrupt Handlercccooiiiiiiiiiiiennen. 88
Interrupt Handler

Description Format of an Interrupt Handler........... 87

Interrupt Handlersoeeeeviiiiieeiiece e 15

Precedence of Execution (Tasksvs. Interrupt Handlers

and Time Event Handlers)..................... 25

Registering an Interrupt Handler ..., 87
Interrupt Management

Interrupt Management Functionscccee..e 53
Interrupts

Interrupts Enabled/disabled States........................ 24
K
Kernel

Kernel specific section.........c.cccvveevveveeeiiiiicinnnns 109
Kernel specific section

Kernel specific section...........evvveeeeciiiiiieiineeenn. 109
L
Launch

Launch of aPeriod Handlerccccceeiniininnnne. 85
Link objects

Link ODJeCtS.....vviiiiiieiiieee e 112
Logs

L O0S. c ettt ettt 65
M
Macros

Configuration Definition Macroscccceeeeenne 60
Mailbox

Mailbox FUNCLIONS...........cooviiiiiiiiiiiee e 35
Management

Device Management Functions.............ccceeeeeeenn.. 56

Interrupt Management Functionsccccoeee.... 53

Subsystem Management Functions 55

System State Management Functions................... 54
Memory map

How to specify the memory map..............c.oo.e. 109

Memory map setting of ROM and RAM............. 109
Memory Pool

Fixed-size Memory Pool Functions...................... 46

Memory Pool Management Functions.................. 45

Variable-size Memory Pool Functions.................. 47
Memory Pool Management

Memory Pool Management Functions.................. 45
Message

Description of Message Notation 118

Display Format of Configurator Error Messages

.. 117

130

Error Message Categorization of the Configurator

... 116

Error Messages.........cooovviiiiiiiiieeeeieiiieiee 120

Fatal Error Messages.........ccvvvvveeeeeieaeeenienaiiens 123

Warning MeSSages.uuveeereiieeeeeinaiiiiivieeeeen 119
Message Buffer

Message Buffer FUNCtioNSoooveveeeniinnenen, 40
UT-REALOS

Create the uUT-REALOS Projectcueveveeeeeennn. 99

Overview of uT-REALOS Functions................... 28
Mutex

Mutex FUNCLiONS..............ocoeviviieee 38
N
Non-task

Non-task Portion RUNNIiNGcooevveeenninnenen. 22
Notation

Description of Message Notation....................... 118
0]
Object List

Object List DiSplayeeeeeeeeeeiieiiiiiiiiiieeeeeeeeeenn 64
Objects

LinK ODJECES. ..ot 112

OBJECLS ..ot 21
Open Function

Creating an Open Function (openfn) 92
openfn

Creating an Open Function (openfn) 92
OS Breakpoints

OS Breakpoints..........uveeeeeiieeeeeeiiiiiiiiieeereeaeeeeens 65
P
Period Handler

Creation of aPeriod Handler............ccccceveeeeenn. 85

Description Format of a Period Handler 85

Launch of aPeriod Handlerccoovviiieneeen. 85
Power Saving

Power Saving FUNCLIONSccvviiiiiiniiiiiiiie, 58
Power Saving Routine

Description Format of a Power Saving Routine

... 90

Registering a Power Saving Routine.................... 90
Preemption

Dispatching and Preemptioncccccvvennnnnnn. 10
Priority

Priority Sequence and Task Priorities................... 10
Priority Sequence

Priority Sequence and Task Priorities................... 10
Process

Process of Reset Entry Routinecccevvveeeee. 76

Process of the Initial Routingocccvvvveneeen. 79

Process Abort Function

Creating a Process Abort Function (abortfn) 94
Process Start Function
Creating a Process Start Function (execfn) 93
Product
Structure of Productcccooovverneeenenenee e 5
Program
Notes on the Overall of aProgram....................... 95
Project
Createthe u'T-REALOS Projectcccovcvveeeennns 99
R
RAM
Memory map setting of ROM and RAM 109
Registering
Registering a Power Saving Routine.................... 90
Registering an Error ROUtINE...........ccovveeeeiinnnnnnns 89
Rendezvous Port
Rendezvous Port FUNCLIONS............ccoovviiirerininnee. 42
Reset
A specific Example of the Reset Entry Routine
.. 77
Process of Reset Entry Routine.............coeeeeeeenenn. 76
Reset Entry ROULINEcvvvvviiiiiiici e, 76
Reset Entry SettingsS..........cvvvvvviiviiiiiiiininineeenn, 113
Reset Entry
Reset Entry SEettingS.......cooovviiiiiiiiiieeeieeeee e 113
Reset Entry Routine
A specific Example of the Reset Entry Routine
.. 77
Process of Reset Entry Routine.............ccccoeeeeeeee. 76
Reset Entry ROULINEcvvviieiiiieiee e 76
ROM
Memory map setting of ROM and RAM 109
Routine
A specific Example of the Reset Entry Routine
.. 77
Description Example of the Initial Routine........... 79
Description Format of a Power Saving Routine
.. 90
Description Format of an Error Routine................ 89
Description Format of the Initial Routine 79
Process of Reset Entry Routine..............cccoeeeeeee 76
Process of the Initial ROUting............cccoeeeeiinninnns 79
Registering a Power Saving Routine.................... 90
Registering an Error ROUtINE...........cooevieeiinninnnns 89
Reset Entry ROULINEoooiiiiiiiiiiiiiieicee e, 76
Running
Non-task Portion RUNNING.........cccevevveeeeeeeiiiinnns 22
Task Portion RUNNING.........cvvvieiieeeeeiieiciiiieeeen, 22

INDEX

S
section
Kernel specific Sectioncccuvvivieeiiinieninnnns 109
Semaphore
Semaphore FUNCLIONS............evveiiiiiieeiiee e 32
specific Example
A specific Example of the Reset Entry Routine......77
A specific Example of the TasK.........cccceevviieenns 82
Stack
Stack Informationcccceeeeeeieiiiiiieiieeeeeeieee, 70
Starting
Starting aTaskc.cevvvvvieiieeeee e 82
Starting an Alarm Handler............ccccovvvveieeennnnn, 86
Static API
SAC AP oo 62
Subsystem
Subsystem Management Functions....................... 55
Subsystem Management
Subsystem Management Functions....................... 55
SvC
Cdling Format of an Expansion SVC Handler....... 91
Description Format of an Extension SVC Handler
.. 91
Extended SVC Handlers.........cccveveeeeieiiniiiiee 19
Synchronization
Extended Synchronization and Communication
FUNCLiONS.......coevieeecc e, 37
Synchronization and Communication Functions
.. 31
System
Notes on the Overal of aSystem Cal 95
System Calls
Issuing System Calls........coovvvvviiiviniiiiiiiiiieieeeeen, 69
SysSteM CallS.....ovveviiiiiiiiiiie e, 8
System Callsthat canbecaled 23
System Construction
Steps of System Constructioncceveeeeeennne 98
System State
System State Management Functions.................... 54
SYSEEM SEALES.......eeeviieieeiiee e 22
User Programs and System States..............ccceeeeeee. 23
System State Management
System State Management Functions.................... 54
System Time
Setting and Getting the System Time.................... 49
SYStEM TiME...co i 49
Updating the System Timecccceeeeenniiiinnnnee. 49
System Uptime
Getting the System Uptime...........ccccccvveveeeeennn, 49
T
Task
A specific Example of the TasK..........ccceeveieinnnnnn. 82

131

INDEX

Creating @ TasKueeeiiiieiieeaiiiiieieee e 81
Current Task and Other TaskSoeveerriiveeeennnnn 10
Description Format of the TasK............ccoeeueeeee 81
Non-task Portion RUNNING............cceeiiiiiniiiniiiinns 22
NOtESON ATESK.....eveeeeeiiiiiee e 95
Precedence of Execution (Tasksvs. Interrupt Handlers
and Time Event Handlers)...................... 25
Precedence of Execution (Tasksvs. Tasks) 25
Priority Sequence and Task Priorities................... 10
Starting @ TasKueeeeeeeiieeeeeeieeiiiieeee e e 82
Task Context DisPlayeeeeeeeeeeeeiniiiniiiiiiieeeenn. 71
Task Management FUNCLiONS.............cccvvvieeeeennnn. 29
Task Portion RUNNINGeeeeiiiiieiiniiiiieeeee, 22
Task Portion TransitionS..........ccoovveeeeiiieeeeennns 12
Task POIiONS......cccoviiiiieeiiiiie e 11
Task Synchronization Functions..............ccccceee.... 30
TASKS ettt 10
Task Context
Task Context Displayoocvveeeeiiiiieeeeiiiiieeees 71
Task Management
Task Management Functions.............ccccceevvvvvnnnne. 29
Task Synchronization
Task Synchronization Functions..............ccccceee.... 30

Time Event Handler
Precedence of Execution (Tasksvs. Interrupt Handlers

and Time Event Handlers)...................... 25

Time Event Handlers........ccoccccvveeeiiiiiiiiiiieee, 16
Time Management

Time Management FUNctions....................eevvvennne. 48

132

Timer Interrupt Handler

Timer Interrupt Handler...........ccccooiiiiiiiiiiinnnn. 88
Tools

Tools Required for Development.............ccceeeeenneee 4
Transitions

Task Portion Transitions..........ccccocvvevevenienennne 12
U
User Program

Configuring aUser Programccceeeeeeeeeeennn. 74

Execution Units of User Programccccuvveveeee. 9

Starting aUser Program............coooviiviieeeienneeenn, 75

User Programs and System States.............oooeueeeee 23
user system

Build auser system ..o, 114
\Y
Variable-size Memory Pool

Variable-size Memory Pool Functions................. 47
w
waitfn

Creating a Waiting for Completion Function (waitfn)

... 93

Waiting for Completion Function
Creating a Waiting for Completion Function (waitfn)
... 93

Warning Message
Warning Messages...........ccovvvvvevevevevvennninnnnnnnnns 119

CM81-00322-1E

FUJITSU MICROELECTRONICS « CONTROLLER MANUAL
FR Family

uT-Kernel Specification Compliant

SOFTUNE™ uT-REALOS

USER'S GUIDE

June 2008 the first edition

Published FUJITSU MICROELECTRONICS LIMITED

Edited Strategic Business Development Dept.

	CHAPTER 1 OVERVIEW OF μT-REALOS
	1.1 Supported Functions
	1.2 Directory Structure of Provided Files
	1.3 Tools Required for Development
	1.4 Structure of Product

	CHAPTER 2 BASIC CONCEPTS OF THE μT-REALOS KERNEL
	2.1 System Calls
	2.2 Execution Units of User Program
	2.2.1 Tasks
	2.2.2 Initial Routines
	2.2.3 Interrupt Handlers
	2.2.4 Time Event Handlers
	2.2.5 Error Routines
	2.2.6 Extended SVC Handlers
	2.2.7 Device Processing Functions

	2.3 Objects
	2.4 System States
	2.5 Enabling and Disabling Dispatching and Interrupts
	2.6 Precedence of Execution of Tasks and Handlers

	CHAPTER 3 μT-REALOS FUNCTIONS
	3.1 Overview of mT-REALOS Functions
	3.2 Task Management Functions
	3.3 Task Synchronization Functions
	3.4 Synchronization and Communication Functions
	3.4.1 Semaphore Functions
	3.4.2 Event Flag Functions
	3.4.3 Mailbox Functions

	3.5 Extended Synchronization and Communication Functions
	3.5.1 Mutex Functions
	3.5.2 Message Buffer Functions
	3.5.3 Rendezvous Port Functions

	3.6 Memory Pool Management Functions
	3.6.1 Fixed-size Memory Pool Functions
	3.6.2 Variable-size Memory Pool Functions

	3.7 Time Management Functions
	3.7.1 System Time Management Functions
	3.7.2 Cyclic Handler Functions
	3.7.3 Alarm Handler Functions

	3.8 Interrupt Management Functions
	3.9 System State Management Functions
	3.10 Subsystem Management Functions
	3.11 Device Management Functions
	3.12 Power Saving Functions
	3.13 Configuration Functions
	3.14 Debugging Assistance Functions

	CHAPTER 4 WRITING A USER PROGRAM
	4.1 Configuring a User Program
	4.2 Start Flow
	4.3 Reset Entry Routine
	4.4 Initial Routine
	4.5 Task
	4.6 Period Handler
	4.7 Alarm Handler
	4.8 Interrupt Handler
	4.9 Error Routine
	4.10 Power Saving Routine
	4.11 Extension SVC Handler
	4.12 Device Driver
	4.13 Notes when Writing a User Program

	CHAPTER 5 HOW TO CONSTRUCT A SYSTEM
	5.1 Steps of Constructing a System
	5.2 Create the μT-REALOS Project
	5.3 Setting of Configuration
	5.4 Setting of Linker Option
	5.5 Build a User System

	APPENDIX
	APPENDIX A Error Messages of the Configurator

