
FUJITSU MICROELECTRONICS
CONTROLLER MANUAL

FR Family
µT-Kernel Specification Compliant

SOFTUNETM µT-REALOS/FR
USER'S GUIDE

CM81-00322-1E





FUJITSU MICROELECTRONICS LIMITED

FR Family
µT-Kernel Specification Compliant

SOFTUNETM µT-REALOS/FR
USER'S GUIDE





Preface

■ Purpose and Intended Reader of This Manual
This manual covers how to create application programs that use SOFTUNE µT-REALOS/FR (referred to as

"µT-REALOS" in this manual), and describes the overall functionality of µT-REALOS, how to create

application programs, and the procedure for building a system. 

Reading this manual requires basic knowledge of the FR processor and basic knowledge related to real-

time OSs. 

See the "SOFTUNE µT-REALOS/FR API Reference" (referred to as the "API Reference" in this manual)

for details on the system call interfaces, and the "SOFTUNE µT-REALOS/FR Analyzer Guide" (referred to

as the "Analyzer Guide" in this manual) for details on the analyzer. 

■ About the µT-Kernel
The µT-Kernel specifications are specifications for an open real-time OS established by the T-Engine Forum.

The µT-Kernel specifications are available from the T-Engine Forum website (http://www.t-engine.org/). The

original copyright for the µT-Kernel belongs to Mr. Ken Sakamura. The copyright for the µT-Kernel

specifications belongs to the T-Engine Forum. This product uses the µT-Kernel source code from the T-Engine

Forum (www.t-engine.org) based on the µT-License. 

■ Trademarks
SOFTUNE is a trademark of Fujitsu Microelectronics Limited.

REALOS is a trademark of Fujitsu Microelectronics Limited.

TRON is an abbreviation of "The Real-time Operating system Nucleus".

ITRON is an abbreviation of "Industrial TRON".

µITRON is an abbreviation of "Micro Industrial TRON".

T-Kernel and µT-Kernel are the name of computer specifications, and do not refer to a particular product or

group of products. 

The company names and brand names herein are the trademarks or registered trademarks of their respective

owners.
i



  
■ Overall Overall Structure of This Manual
This manual consists of five chapters and an appendix as follows. 

CHAPTER 1  OVERVIEW OF µT-REALOS

This chapter explains an overview of µT-REALOS.

CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL

This chapter describes the basic concepts that need to be understood in advance before using the µT-

REALOS kernel.

CHAPTER 3  µT-REALOS FUNCTIONS

This chapter describes the functions supported by µT-REALOS.

CHAPTER 4  WRITING A USER PROGRAM

This chapter describes the basic items in writing a user program on µT-REALOS.

CHAPTER 5  HOW TO CONSTRUCT A SYSTEM

This chapter describes how to construct a user system.

APPENDIX  

The appendix describes error messages of the configurator.

■ Reference Manuals
See the manuals listed below as required while using this system. 

SOFTUNE µT-REALOS/FR API Reference

SOFTUNE µT-REALOS/FR Analyzer Guide

FR Family SOFTUNE C/C++ Compiler Manual V6

FR Family SOFTUNE Assembler Manual V6

FR Family SOFTUNE Linkage Kit Manual V6
ii



■ Organization of the µT-REALOS Manuals
The µT-REALOS manuals are divided into the following three volumes. 

First-time users of µT-REALOS should read the "SOFTUNE µT-REALOS/FR User's Guide" first. 

µT-Kernel Specification 
Compliant
SOFTUNE µT-REALOS/FR
User’s Guide

Describes the overall functionality of µT-REALOS, how to create 
user programs, and the procedure for building a system.

µT-Kernel Specification 
Compliant
SOFTUNE µT-REALOS/FR
API Reference

Describes the details of the µT-REALOS API.

µT-Kernel Specification 
Compliant
SOFTUNE REALOS
Analyzer Guide

Describes the operation of the REALOS Analyzer in detail.
iii



  
■ How to read This Manual

● Explanation of terminology

The terminology used in this manual is described below.

Word Overview

Kernel The program that provides the OS functionality is called the kernel. 

User program
Refers to application programs that use µT-REALOS functions. In order to emphasize 
the point that these programs are created by the user, these are called user programs in 
this manual. 

User system Refers to an executable program formed by linking a user program with µT-REALOS. 

System call
The group of functions that implement OS functionality and that can be called directly 
from a user program are called system calls. 

Object
The resources that are handled by the kernel are called objects. Specifically, this refers 
to semaphores, mailboxes, and other objects that implement functionality such as tasks, 
synchronization, and communications. 

Configuration 
definition macros

The configuration definition macros are written in the system configuration file, and act 
as an interface for setting kernel configuration parameters. 

Idle state The state when there are no tasks ready to execute.
iv



Copyright ©2008 FUJITSU MICROELECTRONICS LIMITED All rights reserved.

Copyright ©2006 T-Engine Forum. All rights reserved.

This manual is made based on the specification of µ-Kernel with the formal agreement by the T-Engine Forum.

• The contents of this document are subject to change without notice. 
Customers are advised to consult with sales representatives before ordering.

• The information, such as descriptions of function and application circuit examples, in this document are presented solely for the
purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU
MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When
you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of
such use of the information. FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of
the use of the information.

• Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license
of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU
MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-
party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no
liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of
information contained herein.

• The products described in this document are designed, developed and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured,
could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss
(i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life
support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible
repeater and artificial satellite).
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or
damages arising in connection with above-mentioned uses of the products.

• Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.

• Exportation/release of any products described in this document may require necessary procedures in accordance with the
regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

• The company names and brand names herein are the trademarks or registered trademarks of their respective owners.
v



  
vi



CONTENTS

CHAPTER 1 OVERVIEW OF µT-REALOS .......................................................................  1
1.1 Supported Functions ...........................................................................................................................  2
1.2 Directory Structure of Provided Files ..................................................................................................  3
1.3 Tools Required for Development ........................................................................................................  4
1.4 Structure of Product ............................................................................................................................  5

CHAPTER 2 BASIC CONCEPTS OF THE µT-REALOS KERNEL ..................................  7
2.1 System Calls .......................................................................................................................................  8
2.2 Execution Units of User Program .......................................................................................................  9

2.2.1 Tasks ...........................................................................................................................................  10
2.2.2 Initial Routines .............................................................................................................................  14
2.2.3 Interrupt Handlers ........................................................................................................................  15
2.2.4 Time Event Handlers ...................................................................................................................  16
2.2.5 Error Routines .............................................................................................................................  18
2.2.6 Extended SVC Handlers ..............................................................................................................  19
2.2.7 Device Processing Functions ......................................................................................................  20

2.3 Objects ..............................................................................................................................................  21
2.4 System States ...................................................................................................................................  22
2.5 Enabling and Disabling Dispatching and Interrupts ..........................................................................  24
2.6 Precedence of Execution of Tasks and Handlers .............................................................................  25

CHAPTER 3 µT-REALOS FUNCTIONS ..........................................................................  27
3.1 Overview of µT-REALOS Functions .................................................................................................  28
3.2 Task Management Functions ...........................................................................................................  29
3.3 Task Synchronization Functions .......................................................................................................  30
3.4 Synchronization and Communication Functions ...............................................................................  31

3.4.1 Semaphore Functions .................................................................................................................  32
3.4.2 Event Flag Functions ...................................................................................................................  34
3.4.3 Mailbox Functions ........................................................................................................................  35

3.5 Extended Synchronization and Communication Functions ..............................................................  37
3.5.1 Mutex Functions ..........................................................................................................................  38
3.5.2 Message Buffer Functions ...........................................................................................................  40
3.5.3 Rendezvous Port Functions ........................................................................................................  42

3.6 Memory Pool Management Functions ..............................................................................................  45
3.6.1 Fixed-size Memory Pool Functions .............................................................................................  46
3.6.2 Variable-size Memory Pool Functions .........................................................................................  47

3.7 Time Management Functions ...........................................................................................................  48
3.7.1 System Time Management Functions .........................................................................................  49
3.7.2 Cyclic Handler Functions .............................................................................................................  50
3.7.3 Alarm Handler Functions .............................................................................................................  52

3.8 Interrupt Management Functions ......................................................................................................  53
3.9 System State Management Functions ..............................................................................................  54
3.10 Subsystem Management Functions .................................................................................................  55
vii



  
3.11 Device Management Functions ........................................................................................................  56
3.12 Power Saving Functions ...................................................................................................................  58
3.13 Configuration Functions ....................................................................................................................  59
3.14 Debugging Assistance Functions .....................................................................................................  64

CHAPTER 4 WRITING A USER PROGRAM ..................................................................  73
4.1 Configuring a User Program .............................................................................................................  74
4.2 Start Flow ..........................................................................................................................................  75
4.3 Reset Entry Routine ..........................................................................................................................  76
4.4 Initial Routine ....................................................................................................................................  79
4.5 Task ..................................................................................................................................................  81
4.6 Period Handler ..................................................................................................................................  85
4.7 Alarm Handler ...................................................................................................................................  86
4.8 Interrupt Handler ...............................................................................................................................  87
4.9 Error Routine ....................................................................................................................................  89
4.10 Power Saving Routine ......................................................................................................................  90
4.11 Extension SVC Handler ....................................................................................................................  91
4.12 Device Driver ....................................................................................................................................  92
4.13 Notes when Writing a User Program ................................................................................................  95

CHAPTER 5 HOW TO CONSTRUCT A SYSTEM ..........................................................  97
5.1 Steps of Constructing a System .......................................................................................................  98
5.2 Create the µT-REALOS Project ........................................................................................................  99
5.3 Setting of Configuration ..................................................................................................................  102
5.4 Setting of Linker Option ..................................................................................................................  109
5.5 Build a User System .......................................................................................................................  114

APPENDIX .........................................................................................................................  115
APPENDIX A Error Messages of the Configurator .....................................................................................  116

INDEX................................................................................................................................... 127
viii



CHAPTER 1
OVERVIEW OF µT-REALOS

This chapter explains an overview of µT-REALOS. 
µT-REALOS is a µT-Kernel specification real-time 
OS that runs on the FR family of 32-bit RISC 
controllers. 
µT-REALOS is conforms to the µT-Kernel 
specifications. 

1.1  Supported Functions

1.2  Directory Structure of Provided Files

1.3  Tools Required for Development

1.4  Structure of Product
1



CHAPTER 1  OVERVIEW OF µT-REALOS
1.1 Supported Functions

This section provides an overview of the functions supported by µT-REALOS. 

■ Supported Functions
Libraries and header files are provided with µT-REALOS. The libraries are used by linking them

with the user program to create an executable program that can run on the target processor. The

header files are included by user programs in order to use the µT-Kernel API. The combination of

libraries and header files is called the µT-REALOS kernel (referred to as the "kernel" in this

manual). The kernel is a program that implements the following functionality of µT-Kernel. 

• Task management functions

• Task synchronization functions

• Synchronization and communication functions (semaphores, event flags, mailboxes)

• Extended synchronization and communication functions (message buffers, mutexes, rendezvous ports)

• Memory pool management functions (fixed length memory pool, variable length memory pool)

• Time management functions

• Interrupt management functions

• System configuration management functions

• Subsystem management functions

• Device management functions

• Power saving functions

See "CHAPTER 3  µT-REALOS FUNCTIONS" and "CHAPTER 3 SYSTEM CALL

INTERFACE" of the "API Reference" for details on the above functions. 

The following development tools are also provided with µT-REALOS for use when building or

debugging a system. These are Windows applications that run on a PC. 

• SOFTUNE µT-REALOS Configurator

• SOFTUNE µT-REALOS Analyzer

SOFTUNE µT-REALOS Configurator (referred to as the "Configurator" in this manual) is used

when building a user system to configure the kernel based an a predefined structure. See "3.13

Configuration Functions" for details on the Configurator functions. 

SOFTUNE µT-REALOS Analyzer (referred to as the "Analyzer" in this manual) is used when

debugging a user program and includes a variety of functions for improving debugging efficiency.

See "3.14  Debugging Assistance Functions" and the "Analyzer Guide" for details.
2



CHAPTER 1  OVERVIEW OF µT-REALOS
1.2 Directory Structure of Provided Files

This section describes the directory structure of the files provided with the 
µT-REALOS API. 

■ Directory Structure of Provided Files
µT-REALOS is installed using the following directory structureof the file.

See the "Installation Guide" for details of the directory structure. The Installation Guide can be

found on the product CD-ROM and in the installation folder. 

  
[Installation folder]  
 

utrealos911j.txt   Installation guide (Japanese)
 
utrealos911.txt   Installation guide (English) 

 
   bin¥    Folder containing Windows programs 
 
            lib¥    Folder related to Windows programs 
 
   911¥
 
   911.csv CPU information file 
 
 
    utkernel¥  
 
   911¥  Folder for µT-REALOS/FR 
 
   cfg¥ Folder containing Configurator files  
 
   dbg¥ Folder of Analyzer debug modules  
 
   include¥ Folder containing header files 
 
   kernel¥  Folder containing kernel libraries  
 
   lib¥  Folder containing system call libraries  
 
   smpsys¥ Folder containing sample programs 
 
 

3



CHAPTER 1  OVERVIEW OF µT-REALOS
1.3 Tools Required for Development

This section describes the tools that are required to develop a user system. 

■ Tools Required for Development
The following tools are required to develop a µT-REALOS user system. 

• Cross-development tool

FR Family SOFTUNE Professional Pack V6

• ICE

Fujitsu MB2198 series
4



CHAPTER 1  OVERVIEW OF µT-REALOS
1.4 Structure of Product

This section explains the structure of the product. 

■ Structure of Product
The structure of µT-REALOS is shown below. 

• Configurator

The Configurator modules that run under Windows. This includes command format (.exe)

executable files that are run from the command prompt window and DLL format files that are

used as SOFTUNE Workbench add-ins. 

• Analyzer

Consists of DLL format files that are used as add-ins in SOFTUNE Workbench and debugger

object files that are linked with user programs to collect trace data. 

• Kernel libraries

The µT-REALOS kernel object files are included in SOFTUNE library format. 

• Kernel header files

Header files that are included by user programs, and which define system calls and parameter

types. 

• Sample programs

Samples programs of reset entry routines, initialization processing, timer interrupt handlers, and

tasks.

• Sample build-related files

SOFTUNE project files, configuration files, and other files for the sample programs. 

 
Development 

tools

Configurator 

 
Analyzer 

Kernel  

Kernel 
libraries

 

Kernel 
header files 

Samples 

Sample 
programs

 
 

 

Sample 
build-related 

files  

 

5



CHAPTER 1  OVERVIEW OF µT-REALOS
6



CHAPTER 2
BASIC CONCEPTS OF THE

µT-REALOS KERNEL

This chapter describes the basic concepts that 
need to be understood in advance before using the 
µT-REALOS kernel.

2.1  System Calls

2.2  Execution Units of User Program

2.3  Objects

2.4  System States

2.5  Enabling and Disabling Dispatching and Interrupts

2.6  Precedence of Execution of Tasks and Handlers
7



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
2.1 System Calls

This section describes the system calls which act as an interface for calling kernel 
functions from the user program. 

■ System Calls
The interface for calling kernel functions using general-purpose data types and constant macros

from a user program are called system calls. The system calls conform to the µT-Kernel

specifications. 

See "CHAPTER 3 SYSTEM CALL INTERFACE" of the "API Reference" for details on the

system calls. 
8



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
2.2 Execution Units of User Program

This section describes the execution units of a user program. 

■ Execution Units of User Program
The execution units of a user program can be broadly divided into tasks, initial routines, interrupt

handlers, time event handlers, error routines, extended SVC handlers, and device driver processing

functions.

• Tasks

• Initial routines

• Interrupt handlers

• Time event handlers

• Error routines

• Extended SVC handlers

• Device driver processing functions
9



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
2.2.1 Tasks

This section describes tasks.

■ Tasks
Tasks are the program execution unit that form the basis of user program processing. 

In µT-REALOS, if the execution of a task is interrupted, the state prior to the interrupt (register

values) is saved on a per-task basis. This is called the task context. The information saved in the

task context can be used to resume execution of the interrupted task. 

Tasks have a variety of states, including the run state, ready state, WAITING, etc. See "■  Task

Portions" for details on the task portion transitions.

■ Current Task and Other Tasks
When a system call is made from a task, the calling task is called the current task and all other tasks

are called other tasks. 

■ Priority Sequence and Task Priorities
The order of execution of program execution units is called the precedence. The value that

determines the precedence of a task is called the task priority. The smaller the value of the task

priority, the higher the priority. Tasks with a higher priority (small task priority value) have

precedence when executing. 

The task priority consists of a base priority, current priority, and startup priority. The term task

priority by itself refers to the current priority. The current priority is used to determine the

execution sequence of the task. The base priority is the base priority of the task, and normally has

the same value as the current priority. When mutex functions are used, however, the current

priority may be changed temporarily in some cases and can differ from the base priority. Even in

these situations, however, the modified current priority is restored to the base priority when the

mutex function has finished being used (see "3.5.1  Mutex Functions"). The startup priority is the

priority specified when a task is created, and the base priority of the task is initialized to the value

of the startup priority when the task starts. 

■ Dispatching and Preemption
The process of switching between running tasks is called dispatching. The process of a task that is

in the run state losing the execution right is called preemption. The functionality within the kernel

that implements dispatching is called the dispatcher. 

Dispatching occurs when a task that has a higher priority than the currently executing task enters

the ready state. Preemption occurs when a dispatch occurs or an interrupt handler is activated while

a task is executing. 
10



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
■ Task Portions
Tasks have the following states. 

● RUNNING

The state where the task is running. 

Note that if a program other than a task is running, the task that was running prior to that program

remains in the run state. 

● READY

The state where the task is ready to execute, but is unable to run because a task that is higher in the

precedence is currently running. 

● WAITING

The state where execution has been suspended due to calling a system call with some kind of wait

condition. This is categorized into the following states depending on the wait condition. 

• Wakeup wait state (waiting due to tk_slp_tsk)

• Elapsed time wait state (waiting due to tk_dly_tsk)

• Semaphore resource acquisition wait state (waiting due to tk_wai_sem)

• Event flag wait state (waiting due to tk_wai_flg)

• Receive from mailbox wait state (waiting due to tk_rcv_mbx)

• Mutex lock wait state (waiting due to tk_loc_mtx)

• Send to message buffer wait state (waiting due to tk_snd_mbf)

• Receive from message buffer wait state (waiting due to tk_rcv_mbf)

• Fixed length memory block acquisition wait state (waiting due to tk_get_mpf)

• Variable length memory block acquisition wait state (waiting due to tk_get_mpl)

• Rendezvous call/termination wait state (waiting due to tk_cal_por)

• Rendezvous accept wait state (waiting due to tk_acp_por)

● SUSPENDED

The state where execution has been forcefully suspended by another task.

● WAITING-SUSPENDED

This state is both WAITING and SUSPENDED at the same time.

● DORMANT

The state where the task has not yet been started, or the task has ended. 

● NON-EXISTENT

The state where the task has not yet been created, or the task has been deleted. 
11



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
■ Task Portion Transitions
The state transitions for tasks are shown below.

Figure 2.2-1 Task Portion Transitions

When multiple tasks are in the READY state, the tasks are scheduled (controls the execution

sequence) according to the task priorities. The task that has the highest position in the precedence

from among the tasks that are in the READY state is placed in the RUNNING and the task is

executed. The task precedence is ordered such that tasks that have higher task priorities are placed

higher in the task precedence. For tasks with the same task priority, the task that entered the READY

state first has the highest position in the precedence. 

READY RUNNING

WAITING

WAITING-
SUSPENDED

SUSPENDED

DORMANT

NON-EXISTENT

Dispatch

Preempt
Wait 

condition

ResumeSuspend

Wait cleared

Suspend

Resume

Start

Create Delete

Exit

Release 
   wait

Terminate

Terminate

Terminate

Terminate

Terminate

Exit and delete
12



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
Figure 2.2-2 Conceptual Diagram of the Precedence

Task in
READY state

Task in
READY state

Higher

Lower

Earlier Later
Order in which tasks entered the READY state

T
as

k 
pr

io
rit

y
The task that is highest in the precedence enters the RUNNING state

Task in
READY state

Task in
READY state

Task in
READY state

Task in
READY state

Task in
READY state

Task in
READY state
13



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
2.2.2 Initial Routines

This section describes initial routines.

■ Initial Routines
An initial routine is program to perform initialization processing that is specific to the user

program, and generally prepares the environment in which the user program can run by creating

tasks, semaphores and other objects and registering interrupt handlers and devices. 

During kernel initialization, the initial task is automatically created to perform internal kernel

initialization. This initial task calls the predefined initial routine from the user program. The initial

routine therefore runs as a task. 
14



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
2.2.3 Interrupt Handlers

This section describes the task-independent part of the interrupt handlers.

■ Interrupt Handlers
An interrupt handler is a program that is activated synchronously with peripheral hardware

interrupt sources, CPU exceptions, and software interrupt instructions. Interrupt handlers can be

defined for each interrupt source. 

If an interrupt occurs while a task is running, the kernel temporarily interrupts task execution and

runs the interrupt handler corresponding to the interrupt source that occurred. At this time, the stack

switches to the stack that is provided for executing interrupt processing (the system stack). The

interrupt handler therefore does not execute in the context of the task that had been running, but

instead executes in an independent context. 

Furthermore, all of the interrupt handlers run at a higher priority than the tasks, therefore tasks do

not run until the interrupt handler has finished. If multiple interrupt handlers are activated, task

execution does not continue until all of the interrupt handlers have finished processing. Therefore,

even if an interrupt handler calls a system call that results in a dispatch (such as starting a task with

a high priority), the actual task dispatch is not performed until after all of the interrupt handlers

have finished processing. This behavior is called "delayed dispatch". 

See "3.8  Interrupt Management Functions" for details on the interrupt handlers. 
15



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
2.2.4 Time Event Handlers

This section describes time event handlers.

■ Time Event Handlers
Cyclic handlers and alarm handlers are collectively referred to as time event handlers.

■ Cyclic Handlers
A cyclic handler is a program that is activated at a specified interval regular. Programs that are

executed periodically can be defined as cyclic handlers, and the execution and suspension of these

handlers are able to be controlled. 

If the specified interval elapses while a task is executing, the task execution is temporarily

interrupted and the corresponding cyclic handler is activated. The cyclic handler does not execute

in the context of the task that had been running, but instead executes in an independent context. 

Furthermore, all of the cyclic handlers run at a higher priority than the tasks, therefore tasks do not

run until the cyclic handler has finished. Even if the cyclic handler calls a system call that results in

a dispatch (such as starting a task with a high priority), the actual task dispatch is not performed

until after the cyclic handler has finished processing. 

The cyclic handlers in µT-REALOS are activated from within isig_tim, which is called from the

timer interrupt handler for the system clock. The cyclic handlers therefore operate as part of the

timer interrupt handler. Time-related handlers that are activated from the timer interrupt handler in

this way are called "time event handlers". In µT-REALOS, cyclic handlers and alarm handlers,

which are described next, are collectively referred to as time event handlers. As described earlier,

cyclic handlers execute as part of the timer interrupt handler, and a cyclic handler is therefore not

interrupted to process other time event handlers while the cyclic handler is running. 

The time when a cyclic handler is first activated is calculated based on the time tick following the

time when the cyclic handler is created or activated. However, if a cyclic handler is created or

activated from within a time event handler, the time is calculated based on the time when the time

event handler was activated. The activation time after the first time is calculated based on the time

when the cyclic handler was activated. 

See "3.7.2  Cyclic Handler Functions" for details on cyclic handlers. 
16



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
■ Alarm Handlers
An alarm handler is a program that is activated at a specified time. The program that is executed at

the specified time is created as an alarm handler, and the execution and suspension of these

handlers are able to be controlled. 

If the specified time is reached while a task is executing, the task execution is temporarily

interrupted and the corresponding alarm handler is executed. The alarm handler does not execute in

the context of the task that had been running, but instead executes in an independent context. 

Furthermore, all of the alarm handlers run at a higher priority than the tasks, therefore tasks do not

run until the alarm handler has finished. Even if the alarm handler calls a system call that results in

a dispatch (such as starting a task with a high priority), the actual task dispatch is not performed

until after the alarm handler has finished processing. 

The alarm handlers in µT-REALOS operate as part of the interrupt handler for the system clock.

Alarm handlers are therefore not interrupted to process other time event handlers while the alarm

handler is running. 

The time when the alarm handler is activated is calculated based on the time tick following the time

when the alarm handler is activated. However, if an alarm handler is activated from within a time

event handler, the time is calculated based on the time when the time event handler was activated. 

See "3.7.3  Alarm Handler Functions" for details on alarm handlers. 
17



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
2.2.5 Error Routines

This section describes error routines.

■ Error Routines
An error routine is a program that is run when the kernel detects some kind of error. 

The error routine is activated under the following conditions. 

• System Down

An internal kernel inconsistency is detected

• Initial Settings Error

An error occurs during kernel initialization

• Undefined Interrupt

An interrupt occurs that does not have a defined interrupt handler

The error routine is used for the purpose of debugging the user program. There is no way to recover

from the error routine. Therefore, if the error routine has been called, clear the cause of the error

and restart the system. 

If the error routine is called due to an initial settings error, it runs as a task. Otherwise it runs in a

task-independent portion. 
18



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
2.2.6 Extended SVC Handlers

This section describes extended SVC handlers. 

■ Extended SVC Handlers
An extended SVC handler is a handler that acts as a receiver for requests to subsystems. If called

from a task, the handler runs as a quasi-task portion!. If called from a task-independent context, the

handler runs in a task-independent portion. See "3.10  Subsystem Management Functions" for

details on the subsystems.
19



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
2.2.7 Device Processing Functions

This section describes the device processing functions. 

■ Device Processing Functions
The device processing functions are device driver functions that are called from device

management functions. The device processing functions operate in the task context if they are

called as a task extension. The functions run in a task-independent portion if they are called as a

task-independent extension. See "3.11  Device Management Functions" for details on device

processing functions. 
20



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
2.3 Objects

This section describes objects.

■ Objects
µT-REALOS supports a variety of functions, including synchronization/communication between

tasks, exclusive control, and acquisition/release of memory regions. The resources that operate on

system calls in order to use these functions from a user program are called objects. 

The following objects are available in µT-REALOS. See each of the descriptions in Table 2.3-1

for details on each of the objects. 

Table 2.3-1 List of Objects

Object Synopsis

Task The task object is the most fundamental unit that makes up a user program. 

Semaphore
Semaphores are objects for representing numerically the number and availability of unused 
resources, and for managing exclusive control and synchronization when using those 
resources. 

Event flag
Event flags are objects that perform synchronization by representing the presence or absence 
of events as bit flags.

Mailboxes
Mailboxes are objects that perform synchronization and communication by receiving mes-
sages that are stored in memory. 

Mutexes
Mutexes are objects that perform exclusive access control between tasks that use a shared 
resource. 

Message buffers
Message buffers are objects that perform synchronization and communication by receiving 
variable-length messages. 

Rendezvous ports

Rendezvous ports provide intertask synchronous communication functionality, and support a 
single sequence where one task requests processing of another task and the other task then 
returns the processing result to the first task. The object that synchronizes the waiting of both 
tasks is called a rendezvous port. 

Fixed-size 
memory pool

Fixed-size memory pool are objects for dynamically managing fixed size memory blocks. 

Variable-size 
memory pool

Variable-size memory pool are objects for dynamically managing arbitrary size memory 
blocks. 

Cyclic handlers Cyclic handlers are time event handlers that activate at a fixed period. 

Alarm handlers Alarm handlers are time event handlers that activate at a specified time. 
21



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
2.4 System States

This section describes the system states. 

■ System States
The system states of µT-REALOS are divided into the following categories. 

Figure 2.4-1 System States

■ Task Portion Running
"Task portion running" are the states in which task programs run. This does not include states in

which the OS (system calls) executes or states in which handlers execute, which are part of the

"Non-task portion running" described below. 

■ Non-task Portion Running
"Non-task portion running" are further subdivided into the three states of "transient states", 

"task-independent portion running", and "quasi-task portion running". 

(1) "Transient States"

"Transient States" refer to the states in which µT-REALOS system call processing is executed. 

(2) "Task-indePendent Portion Running"

"Task-independent Portion Running" refer to the states in which interrupt handlers and time

event handlers are executed. 

(3) "Quasi-task Portion Running"

These are the states in which extended SVC handlers called from a task and device driver

interface functions are executed. 

Task portion running : Task program

System states
Transient states : During OS execution

Non-task portion running Task-independent portion running : Interrupt handlers and time event handlers

Quasi-task portion running : Extended SVC handlers (OS extensions)
22



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
■ System Calls that can be called
Except for system calls such as tk_ret_int and isig_tim that are required to be called from a "task-

independent portion", all of the system calls can be called from the "task portions" and "quasi-task

portions". 

In contrast, "task-independent portions" execute in a context that is independent of any tasks, and
do not have the concept of a task. The following system calls therefore cannot be called from the
task-independent portions. 

- System calls that explicitly specify the current task (calls where tskid is specified using the

"TSK_SELF" macro)

- System calls that implicitly specify the current task (calls that enter a WAITING)

See Section "3.1 List of System Calls" of the "API Reference" for details on the system calls that

can be called from each of the system states. 

■ User Programs and System States
Table 2.4-1  shows the relationship between the parts of a user program and the system states. 

Note:

The µT-Kernel specifications do not define isig_tim or error routines. These are extended
functionality that is specific to µT-REALOS. 

Table 2.4-1 System States of Each Part of a User Program

User Program Component System State

Tasks Task portion

Extended SVC handlers Non-task portion (quasi-task portion, task-independent portion)

Device drivers Non-task portion (quasi-task portion)

Cyclic handlers Non-task portion (task-independent portion)

Alarm handlers Non-task portion (task-independent portion)

Interrupt handlers Non-task portion (task-independent portion)

Error routines Task portion, non-task portion (task-independent portion)
23



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
2.5 Enabling and Disabling Dispatching and Interrupts

This section describes the dispatch enabled/disabled states and the interrupts 
enabled/disabled states. 

■ Dispatch Enabled/disabled States
During execution of a user program, the dispatcher can either be in the dispatch disabled state or

the dispatch enabled state. After system initialization, the dispatcher enters the dispatch enabled

state when the initial task begins executing. 

In the dispatch disabled state, the system does not switch the task that is in the RUNNING

(dispatching does not occur). While in the dispatch disabled state, an error (E_CTX) occurs if a

system call is made where there is a possibility of the currently running task entering the

WAITING. However, interrupt handlers, cyclic handlers, and alarm handlers remain active. 

The dispatch disabled/enabled states can be controlled from a user program by calling the

following system calls. 

- tk_dis_dsp: Enters the dispatch disabled state (disables dispatching)

- tk_ena_dsp:Enters the dispatch enabled state (enables dispatching)

■ Interrupts Enabled/disabled States
During execution of a user program, the system can either be in the interrupts disabled state or the

interrupts enabled state. After system initialization, the system enters the interrupts enabled state

when the initial task begins executing. 

In the interrupts disabled state, the I flag in the PS register is set to 0 and all external interrupts are

disabled such that control is not passed to an interrupt handler even if a hardware interrupt occurs.

Furthermore, if dispatching is also disabled, then the system does not switch from the currently

running task (dispatching does not occur). While in the interrupts disabled state, an error (E_CTX)

occurs if a system call is made where there is a possibility of the currently running task entering the

WAITING. An error (E_CTX) also occurs if a system call is made to enable or disable dispatching

(tk_dis_dsp or tk_ena_dsp) while in the interrupts disabled state. 

The interrupts enabled/disabled states can be controlled from a user program by calling the

following macros. 

- DI:  Enters the interrupts disabled state (disables interrupts)

- EI:  Enters the interrupts enabled state (enables interrupts)
24



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
2.6 Precedence of Execution of Tasks and Handlers

This section describes the precedence of execution of tasks and handlers. 

■ Precedence of Execution (Tasks vs. Interrupt Handlers and Time Event Handlers)
Handlers have a higher precedence of execution than tasks.  For example, if a hardware interrupt

occurs while a task is executing, the execution of the task is suspended and the interrupt handler

corresponding to the interrupt is executed. When the interrupt handler finishes executing, the task

resumes execution from the point where it was suspended. 

■ Precedence of Execution (Tasks vs. Tasks)
The precedence of execution of tasks executes tasks that have a higher priority first. If a task with a

higher priority than the task that is currently executing enters the READY, the currently executing

task is suspended and the higher priority task is executed. 

Task

Interrupt 
handler

Time

Precedence 
of execution

Interrupt 
occurs

Precedence 
of Execution

Task 2 
(priority = 5)

Task 1 
(priority = 10)

Task 2 
(priority = 15)

Priority of task 2
changes from 5 to 15

Priority of task 2
changes from 15 to 5

Time

RUNNING RUNNING

READY

READY

READYRUNNING
25



CHAPTER 2  BASIC CONCEPTS OF THE µT-REALOS KERNEL
■ Precedence of Execution (Handlers vs. Handlers)
In the precedence of execution of handlers, interrupt handlers for CPU exceptions execute with the

highest precedence. The precedence of execution of other interrupt handlers depends on the hardware

interrupt level (IL), with the interrupt handlers corresponding to interrupts that have a high interrupt

level (the numerical value of the interrupt level is small) executing with precedence. Time event

handlers execute as extensions of the timer interrupt handler. The precedence of execution of time event

handlers therefore depends on the interrupt level of the timer interrupt. 

Precedence 
of execution

Interrupt handler 
(CPU exception)

Interrupt handler 
(IL=30)

Timer interrupt handler 
(IL=16)

Time event handler

Interrupt
occurs
(IL=16)

CPU
exception

occurs

ret

Time

call
26



CHAPTER 3
µT-REALOS FUNCTIONS

This chapter describes the functions supported by 
µT-REALOS. 

3.1  Overview of µT-REALOS Functions

3.2  Task Management Functions

3.3  Task Synchronization Functions

3.4  Synchronization and Communication Functions

3.5  Extended Synchronization and Communication Functions

3.6  Memory Pool Management Functions

3.7  Time Management Functions

3.8  Interrupt Management Functions

3.9  System State Management Functions

3.10  Subsystem Management Functions

3.11  Device Management Functions

3.12  Power Saving Functions

3.13  Configuration Functions

3.14  Debugging Assistance Functions
27



CHAPTER 3  µT-REALOS FUNCTIONS
3.1 Overview of µT-REALOS Functions

This section explains an overview of µT-REALOS functions. 

■ Overview of µT-REALOS Functions
µT-REALOS supports the following functions.

• Kernel

Task management functions

Task-dependent synchronization functions

Synchronization and communication functions (semaphores, event flags, mailboxes)

Extended synchronization and communication functions (mutexes, message buffers, rendezvous

ports)

Memory pool management functions (fixed length memory pool, variable length memory pool)

Time management functions (system time, cyclic handlers, alarm handlers)

Interrupt management functions

System state management functions

Subsystem management functions

Device management functions

Power saving functions

• Configurator

Configuration function

• Analyzer

Debugging assistance functions

See "CHAPTER 3 SYSTEM CALL INTERFACE" of the "API Reference" for details on the

system calls described in this chapter. 
28



CHAPTER 3  µT-REALOS FUNCTIONS
3.2 Task Management Functions

This section describes the task management functions.

■ Task Management Functions
The task management functions are functions for directly operating and referring to the state of a

task. This includes functions to create and delete tasks, functions to start and end tasks, functions to

change the priority of tasks, and functions to refer to the states of tasks. 

Tasks are identified by an ID number that is assigned uniquely to each task. The task ID number is

called the task ID. 

When a task exits, the kernel does not release resources acquired by the task (semaphore resources,

memory blocks, etc). However, mutex locks are released (see "3.5.1  Mutex Functions"). When a

task exits, ensure that the user program releases the resources that the task acquired. 

The task management functions provide the following functions using the corresponding system

calls.

• Creating and deleting tasks

Creating a task:tk_cre_tsk

Deleting a task:tk_del_tsk (Deletes a task in the DORMANT)

tk_exd_tsk (Ends and deletes a task)

• Starting and ending tasks

Starting a task:tk_sta_tsk

Ending a task:tk_ext_tsk (Ends the current task)

tk_exd_tsk (Ends and deletes the current task)

tk_ter_tsk (Forcibly terminate another task)

• Changing the task priority :tk_chg_pri

•  Referring to the state of a task :tk_ref_tsk

• Setting and referring to task registers

Setting task registers:tk_set_reg

 Retrieving to task registers:tk_get_reg
29



CHAPTER 3  µT-REALOS FUNCTIONS
3.3 Task Synchronization Functions

This section describes the task synchronization functions.

■ Task Synchronization Functions
The task synchronization functions are functions for performing synchronization by directly

operating task portions.

They include functions for task sleep and wakeup, for canceling wakeup requests, for forcibly

releasing task WAITING state, for changing a task portion to SUSPENDED state, for resuming a task

from SUSPENDED state and for delaying execution of the invoking task.

Wakeup requests for a task are queued. That is, when it is attempted to wake up a task that is not

WAITING, the wakeup request is remembered, and the next time the task is to go to a WAITING

state, it does not enter that state. To realize this, the kernel maintains the number of wakeup

requests that have been queued for each task. This is called the "wakeup request queuing count".

When the task is started, this count is cleared to 0.

Futhermore, suspend requests for a task are nested. That is, if it is attempted to suspend a task

already in SUSPEND state (including WAIT-SUSPEND state), the request is remembered, and later

when it is attempted to resume the task in SUSPEND state (including WAIT-SUSPEND state), it is

not resumed. To realize this, the kernel maintains the number of nested suspension requests for each

task. This is called the "suspend request nesting count".  When the task is started, this count is

cleared to 0.

The task synchronization functions provide the following functions using the corresponding system calls.

• Task sleep and wake up task

Task sleep:tk_slp_tsk

Task wake up:tk_wup_tsk

• Cancelling a wakeup request :tk_can_wup

• Forcibly releasing task WAITING state :tk_rel_wai

• Suspending and resuming tasks

Suspend request:tk_sus_tsk

Resume suspend:tk_rsm_tsk

tk_frsm_tsk (forced resume)

• Delaying the execution of a task :tk_dly_tsk

If the tskstat is in a state other than TTS_WAI (or TTS_WAS), tskwait and wid are both "0".

Furthermore, wupcnt and suscnt are both "0" for tasks in the DORMANT. 

If packet address (pk_rtsk) for returning the task status is invalid, no error check is performed and the

operation is not guaranteed. 
30



CHAPTER 3  µT-REALOS FUNCTIONS
3.4 Synchronization and Communication Functions

This section describes the synchronization and communication functions. 

■ Synchronization and Communication Functions
The synchronization and communication functions are functions for performing synchronization

and communication between tasks using task-independent objects. 

The synchronization and communication functions support the following objects. 

• Semaphores

• Event flags

• Mailboxes
31



CHAPTER 3  µT-REALOS FUNCTIONS
3.4.1 Semaphore Functions

This section describes the semaphore functions. 

■ Semaphore Functions
Semaphores are objects for representing numerically data of and availability of unused resources

(called the semaphore count), and for managing exclusive control and synchronization when using

those resources. The semaphore functions include functions for creating and deleting semaphores,

functions for acquiring and returned semaphore resources, and functions for referring to the state of

a semaphore. 

Semaphore objects are identified by an ID number. The semaphore ID number is called the

semaphore ID. 

Semaphores have a semaphore count and a wait queue of tasks waiting to acquire resources. When

m resources are returning (the event notifier side), the semaphore count increases by m. When n

resources are acquired (the event wait side), the semaphore count decreases by n. When a task

attempts to acquire semaphore resources when the number of resources is insufficient (specifically,

when the semaphore count reduces to a negative value), a task attempting to acquire resources goes

into WAITING until the next time resources are returning. A task waiting for semaphore resources

is linked to the wait queue of that semaphore. Furthermore, a maximum resource count can be

configured on each semaphore to prevent too many resources from being returning. An error occurs

when an attempt is made to return resources that exceed the maximum semaphore count to a

semaphore (specifically, when the semaphore count increases and exceeds the maximum

semaphore count). 

The order of the wait queue can be selected from the two options of FIFO order (TA_TFIFO) and

task priority order (TA_TPRI). Furthermore, the precedence of resource acquisition can be selected

from the two options of task at head of wait queue first (TA_FIRST) or task with smallest request

count first (TA_CNT). These are specified as semaphore attributes when the semaphore is created. 

Figure 3.4-1 shows the situation when the semaphore count changes from 1 to 2 in a semaphore

with the TA_CNT attribute. Task 1 is skipped and the resources are allocated to Task 2. 

Figure 3.4-1 Example of Semaphore Wait Queue

The maximum value of the semaphore count is specified when the semaphore is created. The upper

limit on the maximum value of the semaphore count is 0x7FFFFFFF. See Section "3.5.1.1

tk_cre_sem" in the "API Reference" for details. 

Task 1

Request 
count=3

Task 2

Request 
count=2
32



CHAPTER 3  µT-REALOS FUNCTIONS
The semaphore functions provide the following functions using the corresponding system calls.

• Creating and deleting semaphores

Creating a semaphore:tk_cre_sem

Deleting a semaphore:tk_del_sem

• Acquiring and returned semaphore resources

Returned semaphore resources:tk_sig_sem

Acquiring semaphore resources:tk_wai_sem

• Referring to the semaphore state :tk_ref_sem
33



CHAPTER 3  µT-REALOS FUNCTIONS
3.4.2 Event Flag Functions

This section describes the event flag functions. 

■ Event Flag Functions
Event flags are objects that perform synchronization by representing the presence or absence of

events as bit flags. The event flag functions include functions for creating and deleting event flags,

functions for setting and clearing event flags, functions for waiting for event flags, and functions

for referring to the state of an event flag. 

Event flag objects are identified by an ID number. The event flag ID number is called the event

flag ID. 

Event flags contain a bit pattern where each bit represents the presence or absence of the

corresponding event, and a wait queue of tasks waiting for those event flags. Sometimes the bit

pattern of an event flag is simply called the event flag. The event notifier side of the event flag is able

to set or clear the specified bits in the bit pattern of the event flag. On the event waiting side of the

event flag, a task is able to be WAITING state until all or some of the specified bits in the bit pattern

of the event flag are set. A task waiting for event flag is linked to the wait queue of that event flag. 

The conditions for release from WAITING stae can specify either of the two attributes of AND

wait or OR wait. These attributes specify how the release from WAITING state operates when

waiting for multiple events. For the AND wait, the WAITING state is not released until all of the

events are signaled, whereas for the OR wait, the WAITING state is released when even one of the

events being waited for is signaled. Furthermore, it is possible to specify whether or not to clear the

bits when the WAITING state is released, and there is a selection between clearing all of the bits or

only clearing the bits that were matched. 

In µT-REALOS, event generation is managed using 32-bit bit patterns. 

The event flag functions provide the following functions using the corresponding system calls.

• Creating and deleting event flags

Creating an event flag:tk_cre_flg

Deleting an event flag:tk_del_flg

• Setting and clearing event flag bits

Setting an event flag:tk_set_flg

Clearing an event flag:tk_clr_flg

• Waiting for an event flag :tk_wai_flg

• Referring to the state of an event flag :tk_ref_flg
34



CHAPTER 3  µT-REALOS FUNCTIONS
3.4.3 Mailbox Functions

This section describes the mailbox functions. 

■ Mailbox Functions
Mailboxes are objects that perform synchronization and communication by receiving messages that

are stored in memory. The mailbox functions include functions for creating and deleting mailboxes,

functions for sending and receiving messages to and from a mailbox, and functions for referring to

the state of a mailbox. 

Mailbox objects are identified by an ID number. The mailbox ID number is called the mailbox ID. 

Mailboxes have a message queue for storing messages that have been sent, and a wait queue for

tasks that are waiting to receive a message. On the message-sending side (the event notifier side),

the messages to be sent are placed in the message queue. On the message-receiving side (the event

wait side), a single message is retrieved from the message queue. 

If there are no messages in the message queue, the task enters a state of waiting for receipt from the

mailbox until the next message is sent. Tasks that enter a state of waiting for receipt from the

mailbox linked to the wait queue of that mailbox. 

The information that is actually sent and received by the mailbox is only the starting address of a

message in memory. This means that the contents of messages that are sent and received are not

copied. The kernel manages the messages in the message queue using a linked list. 

Figure 3.4-2 shows the message packet format of priority-ordered messages. The user program

should allocate an area (msgque) at the top of a message being sent for the kernel to use for the

linked list. This area is called the message header. Furthermore, if the message queue is ordered by

message priority, an area for holding the message priority (msgpri) also needs to be reserved in the

message header. The message header and the following area where the application stores the

message are collectively called a message packet. System calls for sending messages to a mailbox

take the starting address of the message packet (pk_msg) as a parameter. Furthermore, system calls

for receiving messages from a mailbox return the starting address of the message packet as the

return value. 
35



CHAPTER 3  µT-REALOS FUNCTIONS
Figure 3.4-2 Message Packet Format

The mailbox functions provide the following functions using the corresponding system calls.

• Creating and deleting mailboxes

Creating a mailbox:tk_cre_mbx

Deleting a mailbox:tk_del_mbx

• Sending to and receiving from a mailbox

Sending to a mailbox:tk_snd_mbx

Receiving from a mailbox:tk_rcv_mbx

• Referring to the state of a mailbox :tk_ref_mbx

■ Additional Notes
Because the area for the message header is allocated by the user program, the mailbox functions do

not have an upper limit on the number of messages that can be placed in a message queue.

Furthermore, the system calls for sending messages do not enter the WAITING state. Message

packets are able use memory blocks dynamically allocated from the fixed-size memory pool or

variable-size memory pool, or statically allocated regions. Typical usage is for the sending task to

allocate a memory block from the memory pool and send this as a message packet, and for the

receiving task to directly release the memory block back to the memory pool after reading the

contents of the message. 

Message header

Message 
packet Transmitted/

received 
message

Note: The size of msgque and 

msgpri are 4 bytes each.

The msgpri area must be 

provided when the messages 

in the message queue are 

priority-ordered. An error may 

be returned if the msgpri area 

is not provided.

msgque

msgpri
36



CHAPTER 3  µT-REALOS FUNCTIONS
3.5 Extended Synchronization and Communication 
Functions

This section describes the extended synchronization and communication 
functions. 

■ Extended Synchronization and Communication Functions
The extended synchronization and communication functions are functions for performing high-

level synchronization and communication between tasks using task-independent objects. This

includes functions for mutexes, message buffers, and rendezvous ports. 

These functions support the following objects. 

• Mutexes

• Message buffers

• Rendezvous ports
37



CHAPTER 3  µT-REALOS FUNCTIONS
3.5.1 Mutex Functions

This section describes the mutex functions. 

■ Mutex Functions
Mutexes are objects that perform exclusive control between tasks that use a shared resource. 

The mutexes support the priority inheritance protocol and priority ceiling protocol as a mechanism

to prevent priority inversion due to unlimited exclusive control. The mutex functions include

functions for creating and deleting mutexes, functions for locking and unlocking mutexes, and

functions for referring to the state of a mutex. 

Mutex objects are identified by an ID number. The mutex ID number is called the mutex ID. 

Mutexes have a state that can be locked or unlocked, and a wait queue of tasks waiting to lock the

mutex. Furthermore, the kernel manages the following objects. 

- The tasks that are locking each mutex

- The mutexes that are locked by each task

A task locks the mutex before using the resource. If the mutex is already locked by another task,

the task waits for the mutex to become unlocked. Tasks in mutex lock waiting state are linked to

the wait queue of that mutex. When the task finishes using the resource, the task releases the lock

on the mutex. 

The mutexes support the priority inheritance protocol by specifying TA_INHERIT(=0x02) for

mutex attributes. And the mutexes support the priority ceiling protocol by specifying

TA_CEILING(=0x03) for mutex attributes.

For mutexes that have the TA_CEILING attribute, the base priority of the task with the highest

base priority from among the tasks that could lock the mutex is set as the ceiling priority when the

mutex is created. An E_ILUSE error occurs if a task with a base priority higher than the ceiling

priority of a mutex that has the TA_CEILING attribute attempts to lock that mutex. Furthermore, if

an attempt is made to use tk_chg_pri to set the priority of a task that has a lock or is waiting for a

lock on a mutex that has the TA_CEILING attribute to a higher priority than the ceiling priority of

that mutex, tk_chg_pri returns the error E_ILUSE. 

If these protocols are used, the current priority of a task is changed when the task operates a mutex

in order to prevent unlimited priority inversion. The kernel changes the current priority of a task

that has a lock on a mutex. Therefore it always equals the highest value from among the following

priorities. 

• The base priority of the task that is locking the mutex

• The current priority of the task that has the highest current priority from among the tasks that

are waiting to lock that mutex if the task is locking a mutex that has the TA_INHERIT attribute

• The ceiling priority of the mutex that has the highest ceiling priority from among the mutexes

being locked by that task if the task is locking a mutex that has the TA_CEILING attribute
38



CHAPTER 3  µT-REALOS FUNCTIONS
If the current priority of a task that is waiting for a mutex that has the TA_INHERIT attribute is

changed as a result of a mutex operation or the base priority being changed by tk_chg_pri, the

current priority of the task that is locking that mutex may need to be changed. This is called

transitive priority inheritance. Furthermore, if that task is waiting for another mutex that has the

TA_INHERIT attribute, then transitive priority inheritance processing may be needed for the task

that is locking that mutex. 

The following processing is performed when the current priority of a task is changed as the result

of operating on a mutex. 

• If a task that has changed its priority is in a runnable state, the precedence of the task is changed

based on the priority after the change (the task has the lowest precedence from among the tasks

that have the same priority as the priority after the change).

• If the task that has changed its priority is linked to some kind of task priority ordered wait

queue, the order within the wait queue is changed based on the priority after the change (the task

has the lowest precedence from among the tasks that have the same priority as the priority after

the change).

• If a task is still locking any mutexes when the task ends, the locks are released from all of those

mutexes. If the tasks is locking multiple mutexes, those mutexes are released in order starting

from the mutexes that were allocated last. 

See Section "3.6.1.4 tk_unl_mtx" in the "API Reference" for specific details on the lock release

process. 

The mutex functions provide the following functions using the corresponding system calls.

• Creating and deleting mutexes

Creating a mutex:tk_cre_mtx

Deleting a mutex:tk_del_mtx

• Locking and unlocking a mutex

Locking a mutex:tk_loc_mtx

Unlocking a mutex:tk_unl_mtx

• Referring to the state of a mutex :tk_ref_mtx

■ Additional Notes
Mutexes that have the TA_TFIFO attribute or TA_TPRI attribute have the same functions as a

semaphore with a maximum resource count of 1 (binary semaphore). However, mutexes differ in

that the lock can only be released by the locking task, and the lock is automatically released when

the task ends. 
39



CHAPTER 3  µT-REALOS FUNCTIONS
3.5.2 Message Buffer Functions

This section describes the message buffer functions. 

■ Message Buffer Functions
Message buffers are objects that perform synchronization and communication by receiving

variable-length messages. The message buffer functions include functions for creating and deleting

message buffers, functions for sending and receiving messages to and from a message buffer, and

functions for referring to the state of a message buffer. 

Message buffer objects are identified by an ID number. The message buffer ID number is called the

message buffer ID. 

Message buffers have a wait queue of tasks waiting to send messages (send wait queue) and a wait

queue of tasks waiting to receive messages (receive wait queue). The message buffer also has a

message buffer area for storing sent messages. 

On the message-sending side (the event notifier side), the messages to be sent are copied into the

message buffer. If there is not enough free space in the message buffer area, the task waits for

sending a message to message buffer until there is enough free space in the message buffer area.

Tasks waiting to send a message to message buffer are linked to the send wait queue of that

message buffer. 

On the message-receiving side (the event wait side), a single message is retrieved from the message

buffer. If there are no messages in the message buffer, the task waits for receiving a message from

message buffer until the next message is sent. Tasks waiting for receiving a message from message

buffer are linked to the receive wait queue of that message buffer. 

Synchronous messaging functionality can be obtained by setting the size of the message buffer area

to zero. This means that both the sending task and the receiving task wait for each-other to make

the system call, and pass the message between them when both tasks have made the system call. 

The message buffer functions provide the following functions using the corresponding system

calls.

• Creating and deleting message buffers

Creating a message buffer:tk_cre_mbf

Deleting a message buffer:tk_del_mbf

• Sending and receiving messages to and from a message buffer

Sending to a message buffer:tk_snd_mbf

Receiving from a message buffer:tk_rcv_mbf

• Referring to the state of a message buffer :tk_ref_mbf
40



CHAPTER 3  µT-REALOS FUNCTIONS
■ Additional Notes
Figure 3.5-1 shows the operation of a message buffer when the size of the message buffer area is

set to 0. In this diagram, Task A and Task B are executing asynchronously. 

• If Task A calls tk_snd_mbf first, Task A enters the wait state until Task B calls tk_rcv_mbf. In

this case, Task A enters the send wait state to message buffer (Figure 3.5-1 (a)). 

• If Task B calls tk_rcv_mbf first, Task B enters the wait state until Task A calls tk_snd_mbf. In

this case, Task B enters the receive wait state from message buffer (Figure 3.5-1 (b)). 

• The message is passed from Task A to Task B when Task A has called tk_snd_mbf and Task B

has called tk_rcv_mbf. After this, both tasks enter a runnable state. 

Figure 3.5-1 Synchronous Communication Using a Message Buffer

Tasks that are waiting to send to a message buffer send messages in the order that they are linked to

the wait queue. For example, consider the situation where Task A which is attempting to send a 40-

byte message to the message buffer and Task B which is attempting to send a 10-byte message, and

these tasks are linked into the wait queue in this order. Now suppose that 20 bytes of free space are

created by another task receiving a message. In this situation, Task B is unable to send its message

until Task A sends its message.

Message buffers are different from mailboxes because they transfer variable-length messages by

copying. 

Task A Task B
tk_snd_mbf

·
·

Send wait state
·
·

(a) tk_snd_mbf called first (b) tk_rcv_mbf called first

Task A Task B
 tk_rcv_mbf

·
·

Receive wait state
·
·

tk_snd_mbftk_rcv_mbf
41



CHAPTER 3  µT-REALOS FUNCTIONS
3.5.3 Rendezvous Port Functions

This section describes the rendezvous port functions.

■ Rendezvous Port Functions
Rendezvous ports provide intertask synchronous communication functionality, and support a single

sequence where one task requests processing of another task and the other task then returns the

processing result to the first task. The object that synchronizes the waiting of both tasks is called a

rendezvous port. Although the rendezvous port functions can be used to implement a typical client/

server model of intertask communication, they provide a synchronous communication model that is

more flexible than the client/server model. 

The rendezvous port functions include functions for creating and deleting rendezvous ports,

functions for requesting processing from a rendezvous port (rendezvous call), functions for

accepting processing requests from a rendezvous port (rendezvous accept), functions for returning

processing results (rendezvous complete), functions for forwarding received processing requests to

another rendezvous port (rendezvous forward), and functions for referring to rendezvous ports and

rendezvous states. 

Rendezvous port objects are identified by an ID number. The rendezvous port ID number is called

the rendezvous port ID. 

The task that makes the processing request to the rendezvous port (the client-side task) specifies the

rendezvous port, rendezvous parameters, and a message containing information regarding the

processing being requested (called the call message) and performs the rendezvous call. The task

that accepts processing requests from the rendezvous port (the server-side task) specifies the

rendezvous port and rendezvous parameters to accept the rendezvous. 

The rendezvous parameters are specified as a bit pattern. For a given rendezvous port, a rendezvous

is established if the result of logical bitwise ANDing of the rendezvous parameters bit pattern of the

calling tasking and the rendezvous parameters bit pattern of the accepting task is non-zero. The task

that calls the rendezvous enters the rendezvous call wait state until the rendezvous is established.

Similarly, the task that receives a rendezvous enters the rendezvous accept wait state until the

rendezvous is established. 

Once the rendezvous is established, the call message is passed from the task that called the

rendezvous to the task that accepted the rendezvous. The task that called the rendezvous then enters

the rendezvous completion wait state and waits for the requested processing to finish. The task that

accepted the rendezvous is released from the wait state and performs the requested processing.

Once the task that accepted the rendezvous has finished the requested processing, the results of the

processing are passed to the calling task in the form of a response message and the rendezvous

finishes. At this time, the task that called the rendezvous is released from the rendezvous

completion wait state. 
42



CHAPTER 3  µT-REALOS FUNCTIONS
Rendezvous ports have a call wait queue for linking tasks in the rendezvous call wait state, and a

receive wait queue for linking tasks in the rendezvous accept wait state. Furthermore, after the

rendezvous is established, both of the rendezvousing tasks are disconnected from the rendezvous port.

This means that rendezvous ports do not have a wait queue for linking tasks in the rendezvous

completion wait state. Furthermore, rendezvous ports do not have information about accepting

rendezvous and tasks that are currently executing a processing request. 

The kernel allocates object numbers for identifying rendezvous that are established at the same

time. The rendezvous object number is called the rendezvous number. The upper 16 bits of the

rendezvous number is the task ID of the task that called the rendezvous, and the lower 16 bits is a

sequential number that is incremented by 1 for each rendezvous accepted. This means that even

when rendezvous are called by the same task, different rendezvous numbers are allocated to the

first rendezvous and the second rendezvous. 

The rendezvous port functions provide the following functions using the corresponding system

calls.

• Creating and deleting rendezvous ports

Creating a rendezvous port:tk_cre_por

Deleting a rendezvous port:tk_del_por

• Requesting processing, accepting, and replying to a rendezvous port

Requesting processing to a rendezvous port:tk_cal_por

Accepting processing from a rendezvous port:tk_acp_por

Replying to a rendezvous port:tk_rpl_rdv

• Forwarding a rendezvous port :tk_fwd_por

■ Additional Notes
Figure 3.5-2 shows the rendezvous operation. In this diagram, Task A and Task B are executing

asynchronously. 

• If Task A calls tk_cal_por first, Task A enters the wait state until Task B calls tk_acp_por. In

this case, Task A enters the rendezvous call wait state (Figure 3.5-2 (a)). 

• If Task B calls tk_acp_por first, Task B enters the wait state until Task A calls tk_cal_por. In

this case, Task B enters the rendezvous accept wait state (Figure 3.5-2 (b)). 

• When both Task A has called tk_cal_por and Task B has called tk_acp_por, a rendezvous is

established. Task A is left in the wait state and Task B is released from the wait state. Task A

now enters the rendezvous completion wait state. 

• When Task B calls tk_rpl_rdv, Task A is released from the wait state. After this, both tasks

enter a runnable state. 
43



CHAPTER 3  µT-REALOS FUNCTIONS
Figure 3.5-2 Rendezvous Operation

Task A Task B

tk_acp_por
·
·

Accept wait state
·

tk_cal_por
·

Completion wait state
·

             tk_rpl_rdv

(a) tk_cal_por called first (b) tk_acp_por called first

Task A Task B

tk_cal_por
·
·

Call wait state
·
· tk_acp_por
·

Completion wait state
·

tk_rpl_rdv
44



CHAPTER 3  µT-REALOS FUNCTIONS
3.6 Memory Pool Management Functions

This section describes the memory pool management functions.

■ Memory Pool Management Functions
The "memory pool management functions" are functions for managing memory pools and

allocating regions of memory (memory blocks) for use by user programs. 

The available memory pools are the fixed-size memory pool and the variable-size memory pool.

These two memory pools are separate objects and are accessed by different system calls. The size

of memory blocks obtained from the fixed-size memory pool is fixed whereas arbitrary sizes can be

specified for memory blocks obtained from the variable-size memory pool. 

The memory pool management functions support the following types of memory pools. 

• Fixed-size memory pool

• Variable-size memory pool
45



CHAPTER 3  µT-REALOS FUNCTIONS
3.6.1 Fixed-size Memory Pool Functions

This section describes the fixed-size memory pool functions. 

■ Fixed-size Memory Pool Functions
Fixed-size memory pool are objects that perform dynamic management of fixed size memory

blocks. The fixed-size memory pool functions include functions for creating and deleting fixed

length memory pools, functions for getting and returning memory blocks from a fixed-size memory

pool, and functions for referring to the state of a fixed-size memory pool. 

fixed-size memory pool objects are identified by an ID number. The fixed-size memory pool ID

number is called the fixed-size memory pool ID.

Fixed-size memory pool have a region of memory that is used as the fixed-size memory pool (this

is called the fixed-size memory pool region, or simply the memory pool region), and a wait queue

for tasks that are waiting to get a memory block. If there is no free space in the memory pool

region, a task that gets a memory block from a fixed-size memory pool enters the fixed length

memory block acquisition wait state until the next memory block is returned. Tasks that enter the

fixed length memory block acquisition wait state are linked to the wait queue of that fixed-size

memory pool. 

Figure 3.6-1 Memory Region of a Fixed-size Memory Pool

The fixed-size memory pool functions provide the following functions using the corresponding

system calls.

• Creating and deleting fixed-size memory pool

Creating a fixed-size memory pool:tk_cre_mpf

Deleting a fixed-size memory pool:tk_del_mpf

• Getting and returning fixed-length memory blocks

Getting a fixed-length memory block:tk_get_mpf

Returning a fixed-length memory block:tk_rel_mpf

• Referring to the state of a fixed-length memory block :tk_ref_mpf

·  ·  ·

·  ·  ·

Memory blocks (all the same size)
46



CHAPTER 3  µT-REALOS FUNCTIONS
3.6.2 Variable-size Memory Pool Functions

This section describes the variable-size memory pool functions. 

■ Variable-size Memory Pool Functions
Variable-size memory pool are objects for dynamically managing arbitrary size memory blocks.

The variable-size memory pool functions include functions for creating and deleting variable-size

memory pool, functions for getting and returning memory blocks from a variable-size memory

pool, and functions for referring to the state of a variable-size memory pool. 

variable-size memory pool objects are identified by an ID number. The variable-size memory pool

ID number is called the variable-size memory pool ID.

Variable-size memory pool have a region of memory that is used as the variable-size memory pool

(this is called the variable-size memory pool region, or simply the memory pool region), and a wait

queue for tasks that are waiting to get a memory block. If there is insufficient free space in the

memory pool region when a task gets a memory block from the variable-size memory pool, the

task enters the variable length memory block acquisition WAITING until a memory block of

sufficient size is returned. Tasks that enter the variable length memory block acquisition WAITING

are linked to the wait queue of that variable-size memory pool. 

Figure 3.6-2 Memory Region of a Variable-size Memory Pool

The variable-size memory pool functions provide the following functions using the corresponding

system calls.

• Creating and deleting variable-size memory pool

Creating a variable-size memory pool:tk_cre_mpl

Deleting a variable-size memory pool:tk_del_mpl

• Getting and returning variable-length memory blocks

Getting a variable-length memory block:tk_get_mpl

Returning a variable-length memory block:tk_rel_mpl

• Referring to the state of a variable-length memory block :tk_ref_mpl

·  ·  ·

·  ·  ·

Memory blocks (sizes vary)
47



CHAPTER 3  µT-REALOS FUNCTIONS
3.7 Time Management Functions

This section describes the time management functions.

■ Time Management Functions
The time management functions are functions for performing time-dependent processing. The

functions include functions for system time management, cyclic handlers, and alarm handlers.

Cyclic handlers and alarm handlers are collectively referred to as time event handlers.

The following functions are supported. 

• System time management

• Cyclic handlers

• Alarm handlers
48



CHAPTER 3  µT-REALOS FUNCTIONS
3.7.1 System Time Management Functions

This section describes the system time management functions. 

■ System Time
The system time is represented by the accumulated number of milliseconds since the 1st January

1985 (GMT). For example, a system time value of 0 represents 12:00:00 AM on 1st January 1985

(GMT). A system time value of 1000 represents 12:00:01 AM on 1st January 1985 (GMT).

Because µT-REALOS does not have a function to automatically set the current time when the

system starts, the current time needs to be set by the user program. 

■ Updating the System Time
In µT-REALOS, the user program is required to update the system time. µT-REALOS therefore

provides isig_tim for this purpose. The system time is increased by one by calling this system call.

The isig_tim system call is specific to µT-REALOS. 

Because the resolution of the system time is 1 ms, an interval timer is typically made to generate an

interrupt at an interval of 1 ms, and the system time is updated by calling isig_tim from that

interrupt handler. 

• Updating the system time :isig_tim

■ Setting and Getting the System Time
µT-REALOS provides the following system calls for getting and setting the system time. 

• Setting and getting the system time

Setting the system time:tk_set_tim

Getting the system time:tk_get_tim

■ Getting the System Uptime
The amount of time that has elapsed since the system was started is called the system uptime. The

system uptime can be retrieved using the following system call. 

• Getting the system uptime :tk_get_otm

The system uptime differs from the system time because it is not affected by setting the system

time using tk_set_tim.
49



CHAPTER 3  µT-REALOS FUNCTIONS
3.7.2 Cyclic Handler Functions

This section describes the cyclic handler functions. 

■ Cyclic Handler Functions
Cyclic handlers are time event handlers that activate at a fixed period. The cyclic handler functions

include functions for creating and deleting cyclic handlers, functions for starting and stopping the

operation of cyclic handlers, and functions for referring to the state of a cyclic handler. 

Cyclic handler objects are identified by an ID number. The cyclic handler ID number is called the

cyclic handler ID.

Cyclic handlers can either be in the operating state or the non-operating state. When a cyclic

handler is in the non-operating state, the cyclic handler is not activated even when the time when

the cyclic handler is supposed to activate is reached, and only the time when the handler should

next activate is set. When the system call to start the operation of the cyclic handler (tk_sta_cyc) is

called, the cyclic handler is placed in the operating state and the time when the cyclic handler

should next activate is reset if necessary. When the system call to stop the operation of the cyclic

handler (tk_stp_cyc) is called, the cyclic handler changes to the non-operating state. After the

cyclic handler is created, either the operating or non-operating state is determined by the cyclic

handler attributes. 

The activation phase of a cyclic handler is determined by the time when the cyclic handler first

activates, which is specified as the relative time from the time when the system call to create the

cyclic handler is called. The activation interval of a cyclic handler is determined by a relative time

that specifies the time when the cyclic handler should next activate based on the time when the

cyclic handler should have activated (not the time when the handler actually activated). 

The activation interval and activation phase for each cyclic handler can be set when the cyclic

handler is created. When a cyclic handler is operating, the kernel determines the time when the

cyclic handler should next activate from the specified activation interval and activation phase.

When the cyclic handler is created, the time when the handler should next activate is set to the

cyclic handler creation time plus the activation phase. When the time when the cyclic handler

should activate is reached, the cyclic handler is activated with the extended information (exinf) of

that cyclic handler as a parameter. In this case, the time when the handler should next activate is set

to the time when the cyclic handler should have activated plus the activation interval. When the

operation of a cyclic handler is started, the time when the handler should next activate may need to

be reset.

If the time that is longer than that oh the activation interval is specified to an activation phase, the

cyclic handler will not activate until the time specified by the activation phase has elapsed. For

example, if the activation interval is 100 ms and the activation phase is 200 ms, the cyclic handler

will first activate 200 ms later, and then after 200+100 × (n-1) ms have elapsed. 

The cyclic handler functions provide the following functions using the corresponding system calls.

• Creating and deleting cyclic handlers

Creating a cyclic handler:tk_cre_cyc
50



CHAPTER 3  µT-REALOS FUNCTIONS
Deleting a cyclic handler:tk_del_cyc

• Starting and stopping the operation of a cyclic handler

Starting the operation of a cyclic handler:tk_sta_cyc

tk_cre_cyc 

(create and start operation by specifying TA_STA)

Stopping the operation of a cyclic handler:tk_stp_cyc

• Referring to the state of a cyclic handler :tk_ref_cyc

See Section "4.6  Period Handler" for details on writing cyclic handlers. 
51



CHAPTER 3  µT-REALOS FUNCTIONS
3.7.3 Alarm Handler Functions

This section describes the alarm handler functions. 

■ Alarm Handler Functions
Alarm handlers are time event handlers that activate at a specified time. The alarm handler

functions include functions for creating and deleting alarm handlers, functions for starting and

stopping the operation of alarm handlers, and functions for referring to the state of an alarm

handler. 

Alarm handler objects are identified by an ID number. The alarm handler ID number is called the

alarm handler ID. 

The time when an alarm handler activates (this is called the alarm handler activation time) can be

set for each alarm handler. When the alarm handler activation time is reached, the alarm handler is

activated with the extended information (exinf) of that alarm handler as a parameter. 

Immediately after an alarm handler is created, the alarm handler activation time is not set and the

alarm handler operation is stopped. When the system call to start the operation of an alarm handler

(tk_sta_alm) is called, the alarm handler activates after the specified relative time. When the system

call to stop the operation of an alarm handler (tk_stp_alm) is called, the alarm handler activation

time setting is cleared. In addition, when an alarm handler activates, the alarm handler activation

time setting is cleared and the alarm handler stops operating. 

The alarm handler functions provide the following functions using the corresponding system calls.

• Creating and deleting alarm handlers

Creating an alarm handler:tk_cre_alm

Deleting an alarm handler:tk_del_alm

• Starting and stopping the operation of an alarm handler

Starting the operation of an alarm handler:tk_sta_alm

Stopping the operation of an alarm handler:tk_stp_alm

• Referring to the state of an alarm handler :tk_ref_alm

See Section "4.7  Alarm Handler" for details on writing alarm handlers. 
52



CHAPTER 3  µT-REALOS FUNCTIONS
3.8 Interrupt Management Functions

This section describes the interrupt management functions.

■ Interrupt Management Functions
The interrupt management functions are functions for performing operations such as defining

handlers for external interrupts and CPU exceptions, and controlling interrupts. 

The interrupt management functions provide the following functions using the corresponding

system calls.

• Managing interrupt handlers

Defining an interrupt handler:tk_def_int

Returning from an interrupt handler:tk_ret_int

Interrupt handlers are handled in the task-independent portion. Although system calls can be called

from the task-independent portion using the same format as the task portion, the following

limitations are placed on system calls that are called from the task-independent portion. 

• System calls that specify the current task and system calls that enter a WAITING state internally

cannot be called and produce an error. 

During execution in the task-independent portion, if a dispatch request is made during the

processing of a system call, the dispatch is delayed until the system leaves the task-independent

portion. This is called delayed dispatch. 

See Section "4.8  Interrupt Handler" for details on writing interrupt handlers. 

• CPU interrupt control

Disabling all external interrupts:DI

Enabling all external interrupts:EI

Retrieving the interrupts disabled state prior to calling DI:isDI

These functions manipulate the CPU registers to set the interrupts enabled/disabled. DI, EI, and

isDI cannot be called from the task-independent portion or from a state where dispatch and

interrupts are disabled. 
53



CHAPTER 3  µT-REALOS FUNCTIONS
3.9 System State Management Functions

This section describes the system state management functions. 

■ System State Management Functions
The system state management functions are functions for changing and referring to the state of the

system. This includes functions for rotating the precedence of tasks, functions for referring to the

task ID of the executing state, functions for disabling and enabling task dispatch, functions for

referring to context and system states, and functions for referring to the version of the kernel. 

The system state management functions provide the following functions using the corresponding

system calls. 

• Rotating the task precedence :tk_rot_rdq

• Referring to the task ID of the running state:tk_get_tid

• Disabling and enabling dispatch

Disabling dispatch:tk_dis_dsp

Enabling dispatch:tk_ena_dsp

• Referring to the system state :tk_ref_sys

• Referring to the kernel version :tk_ref_ver
54



CHAPTER 3  µT-REALOS FUNCTIONS
3.10 Subsystem Management Functions

This section describes the subsystem management functions.

■ Subsystem Management Functions
The subsystem management functions only consist of the extended SVC handlers for accepting

requests. The subsystem management functions provide the following functions using the

corresponding system calls. 

• Defining a subsystem :tk_def_ssy

• Referring to information about the defined subsystems:tk_ref_ssy
55



CHAPTER 3  µT-REALOS FUNCTIONS
3.11 Device Management Functions

This section describes the device management functions.

■ Device Management Functions
The device management functions provide a common API for handling different devices and

include functions for performing device-related operations such as registering and deleting devices,

accessing device data, and retrieving device information. 

The device management functions provide the following functions using the corresponding system

calls. 

• System calls

Registering a device:tk_def_dev

Retrieving device initialization information:tk_ref_idv

Opening a device:tk_opn_dev

Closing a device:tk_cls_dev

Starting a device read:tk_rea_dev

Reading a device synchronously:tk_srea_dev

Starting a device write:tk_wri_dev

Writing a device synchronously:tk_swri_dev

Waiting for a device request to finish:tk_wai_dev

Suspending a device:tk_sus_dev

Retrieving the device name:tk_get_dev

Retrieving device information:tk_ref_dev

:tk_oref_dev

Retrieving a list of registered devices:tk_lst_dev

Sending driver request events to a device:tk_evt_dev

The system calls that can be called depending on the device registration and open state are as

follows. 

Device 
registered

Device 
opened

Callable system calls

No - tk_def_dev

Yes
No

tk_opn_dev, tk_ref_idv, tk_get_dev, tk_ref_dev, tk_lst_dev, 
tk_sus_dev, tk_def_dev

Yes All system calls of the device management function
56



CHAPTER 3  µT-REALOS FUNCTIONS
The specifications for the interface between the device drivers and the kernel are defined by the

device driver interface. The device driver interface defines the device processing functions that are

called from the kernel, the format of data passed between the kernel and the device driver, etc. 

Because the device driver interface is supported by all µT-Kernel specification OSs, device drivers

that were created in compliance with device driver interface have improved portability between µT-

Kernel specification OSs.

See "APPENDIX C: Device Driver Interface" of the "API Reference" for details on the device

driver interface. 
57



CHAPTER 3  µT-REALOS FUNCTIONS
3.12 Power Saving Functions

This section describes the power saving functions.

■ Power Saving Functions
The µT-REALOS has a power saving function where a user-defined power saving routing is called

by the kernel when all of the tasks have stopped running and have switched to the idle state. This is

called the power saving function. 

The processing performed by the power saving routine can be written freely by the user to suit the

target hardware. This power saving routine is useful because it is defined using the static API of the

configurator. See "3.13  Configuration Functions" for details on how to define the power saving

routine and to "4.10  Power Saving Routine" for details on writing the power saving routine. 
58



CHAPTER 3  µT-REALOS FUNCTIONS
3.13 Configuration Functions

This section describes the configuration functions. 

■ Configuration Functions
The configuration functions provide the functionality for the user to define the configuration of the

kernel, such as upper limits on the number of resources used by the kernel, and to configure the

internal kernel management data based on this. The amount of memory used by the kernel can be

reduced by optimizing the kernel configuration to suit the user program. This also provides

functions for statically registering user program modules such as interrupt handlers and the initial

routine. 

The µT-REALOS development tool for executing configurations is called the "Configurator".

Furthermore, the macros that are provided for defining the kernel configuration are called

"configuration macros" and the declaration statements for registering user program modules are

called the "static API". 

When a configuration is executed, the configuration definition macros and static API are written in

a text format file called the "configuration file", and the Configurator is executed with this as the

input file. 

Configurator takes the configuration file as the input file and outputs the kernel configuration file

in the SOFTUNE language tool library format. The kernel configuration file is linked with the user

program when an object of the executable format is created. 

Because configuration files are normally generated automatically by editing the configuration using

the GUI screen of SOFTUNE Workbench, there is no need to be aware of the syntax of the

configuration definition macros and static API. Furthermore, kernel configuration is automatically

performed when SOFTUNE Workbench is used as the build environment. See Section "5.3

Setting of Configuration" for details on editing the configuration using the GUI screens. 
59



CHAPTER 3  µT-REALOS FUNCTIONS
■ Configuration Definition Macros
The configuration definition macros are macros provided for user-defined kernel configurations. A

list of the configuration definition macros is given below. 

Table 3.13-1 List of Configuration Definition Macros

Function 
type

Name Meaning
Range of values
(default values 
shown in bold)

Priority 
definitions

_KERNEL_MAX_TSKPRI Maximum task priority 1 to 1024

_KERNEL_INIT_TSKPRI Initial task priority 1 to 1024

_KERNEL_MAX_SSYPRI Maximum subsystem priority 1 to 16

Function 
selection

_KERNEL_USE_TKDEFINT Use or not use tk_def_int (1 means use) 0 or 1

_KERNEL_USE_IMALLOC Use or not use the heap area (1 means use) 0 or 1

_KERNEL_REALMEMSZ Size of the heap area Any value

Maximum 
number of 
each object

_KERNEL_MAX_TSK Maximum number of tasks 1 to 32767

_KERNEL_MAX_SEM Maximum number of semaphores 0 to 32767

_KERNEL_MAX_FLG Maximum number of event flags 0 to 32767

_KERNEL_MAX_MBX Maximum number of mailboxes 0 to 32767

_KERNEL_MAX_MTX Maximum number of mutexes 0 to 32767

_KERNEL_MAX_MBF Maximum number of message buffers 0 to 32767

_KERNEL_MAX_POR Maximum number of rendezvous ports 0 to 32767

_KERNEL_MAX_MPF
Maximum number of fixed-size memory 
pool

0 to 32767

_KERNEL_MAX_MPL
Maximum number of variable-size 
memory pool

0 to 32767

_KERNEL_MAX_CYC Maximum number of cyclic handlers 0 to 32767

_KERNEL_MAX_ALM Maximum number of alarm handlers 0 to 32767

_KERNEL_MAX_SSY Maximum number of subsystems 0 to 255

_KERNEL_MAX_REGDEV Maximum number of registered devices 0 to 255

_KERNEL_MAX_OPNDEV Maximum number of open devices 0 to 255

_KERNEL_MAX_REQDEV Maximum number of device requests 0 to 255

Size 
specified

_KERNEL_SYS_STKSIZE System stack size 128 to 4294967292

_KERNEL_INIT_TSKSTKSZ Initial task stack size 128 to 4294967292
60



CHAPTER 3  µT-REALOS FUNCTIONS
The value of "_KERNEL_MAX_TSKPRI" and the value of "_KERNEL_INIT_TSKPRI" are

required to satisfy the following condition. 

value of "_KERNEL_MAX_TSKPRI" ≥ value of "_KERNEL_INIT_TSKPRI"

_KERNEL_REALMEMSZ specifies the size of the heap area. If the TA_USERBUF is not

specified upon creation of the task, the message buffer, or the memory pool, the task stack, the

message buffer area, or the memory pool can be automatically got from the heap area. 

If the definition of any of the configuration definition macros is omitted, the minimum value that can

be taken is selected as the default value. For example, if the definition of

"_KERNEL_MAX_TSKPRI" is omitted, the maximum value of the task priority is set to "1".

Similarly, if the definition of "_KERNEL_MAX_SEM" is omitted, the maximum number of

semaphores is set to "0". 

If the maximum number of an object is "0", that object cannot be used. For example, if the

maximum number of semaphores is set to "0" and the user program contains semaphore-related

system calls, an undefined error occurs for the semaphore-related system calls when the user

system is built. 

The configuration definition macros are written in the configuration file using the following syntax.

Normally, however, these values are edited from the "CFG" tab in the project window of

SOFTUNE Workbench (see "5.3  Setting of Configuration").

[Configuration Definition Macro Syntax]

Configuration definition macro Defined value

    Example)

_KERNEL_MAX_TSK 256

_KERNEL_INIT_TSKSTKSZ 0x1000

Note:

The maximum number of tasks defined by "_KERNEL_MAX_TSK" includes the initial task
that is created within the kernel. Therefore, when the number of tasks that a user program
creates is N, define the maximum number of tasks as (N+1) or more. 

Furthermore, because the device management function uses the following objects, set the
value for the maximum number of objects to "number used by user program + number used
by device management". 

• Semaphores :One used for each device opened

• Message buffers :One used by all device management functions

• Event flags :One used by all device management functions
61



CHAPTER 3  µT-REALOS FUNCTIONS
■ Static API
The interface for the user program modules that are statically defined by the Configurator is called

the static API. 

The initial routine, interrupt handlers, error routine, and power saving routine can be registered in the

static API. Although the initial routine , error routine, and power saving routine can only be

registered in the static API, interrupt handlers can also be registered from a user program using

tk_def_int. 

A list of the static API is shown in Table 3.13-2. 

The static API is written in the configuration file using the following syntax. Normally, however,

these definitions are edited from the "CFG" tab in the project window of SOFTUNE Workbench

(see "5.3  Setting of Configuration").

[Static API Syntax]

• ATT_INI

ATT_INI({Attributes, Extended Information, Entry Point});

• DEF_INH

DEF_INH(Interrupt Number, {Attributes, Entry Point});

• VATT_ERR

VATT_ERR({Attributes, Entry Point});

• VDEF_PSR

VDEF_PSR({Attributes, Entry Point});

Example)

ATT_INI({ TA_HLNG, 0, uint});

DEF_INH(35, { TA_HLNG, inthdr});

VATT_ERR({TA_HLNG, uerr});

VDEF_PSR({TA_HLNG, pow_down});

Table 3.13-2 List of Static API

Name Function

ATT_INI Defines the initial routine

DEF_INH Defines an interrupt handler

VATT_ERR Defines the error routine

VDEF_PSR Defines a power saving routine
62



CHAPTER 3  µT-REALOS FUNCTIONS
■ Running the Configurator
The configurator is automatically executed if the build or make menu item is selected from a

SOFTUNE Workbench project. 

Configurator is located in the "bin" folder under the µT-REALOS installation folder and has the

name "ftcfs.exe". Use the following syntax to start the configurator manually or from a batch

procedure. 

 ftcfs  -f file_name  -cpu cpu_name  -out path [ -V ]  [ -g ] [ -cif cif_name ]

• Startup example

ftcfs -f C:\smpsys\system.tcf -cpu MB91403 -out C:\smpsys

Note:

Indicates that the elements inside the [ ] may be omitted.

-f file_name
Specifies the configuration file name as the file_name. 
This parameter cannot be omitted. 

-cpu cpu_name
Specifies the target CPU. 
This parameter cannot be omitted. 

-out path
Specifies the output folder for the kernel configuration file that is finally 
output by the configurator as "path". 
This parameter cannot be omitted. 

-V
Outputs the configurator startup message. 
This also applies to the tools that are called by configurator. 

-g Outputs debugging information. 

-cif cif_name
Specifies the CPU information file name as "cif_name". 
If this parameter is omitted, the file "[SOFTUNE Installation 
Folder]\lib\911\911.csv" is used as the CPU information file. 
63



CHAPTER 3  µT-REALOS FUNCTIONS
3.14 Debugging Assistance Functions

This section describes the analyzer provided by µT-REALOS for assisting in the 
debugging user programs. 

■ Overview of the Debugging Assistance Functions
User programs are debugged by using the SOFTUNE Workbench debugger (referred to as the

SOFTUNE debugger in this manual) operated from the Windows GUI screen. In µT-REALOS, the

analyzer is provided as a plug-in tool for the SOFTUNE debugger. The analyzer contains the

following functions for assisting in the debugging of user programs. 

• Object list display

• OS breakpoints

• Logs

• Issuing system calls

• Stack information

• Task context display

The following sections describe these functions. See the "Analyzer Guide" for details on these

functions and how to use them. 

■ Object List Display
Displays a list of the ID numbers and states of the objects created by a user program categorized by

object type. Figure 3.14-1 shows a screen example of the object list display.

Figure 3.14-1 Screen Example of Object List Display
64



CHAPTER 3  µT-REALOS FUNCTIONS
■ OS Breakpoints
OS breakpoints is a function that can set breakpoints on separate tasks. When multiple tasks are

sharing the same code (shared functions etc.), this enables breakpoints that are triggered when a

particular task runs that code. For example, if Task 1, Task 2, and Task 3 all call the common

function "comm_func()", a breakpoint can be set for when Task 2 calls "comm_func()". 

Furthermore, breakpoints can be set using the following conditions on a per-task basis. 

• When a task accesses specific data.

• When a task gains or loses the execution right. 

• At the entry point or exit point of system calls called from a task.

■ Logs
During the execution of a user program, a log of the operation of the program can be acquired, and

the contents of the log can be displayed in time-sequence in a variety of formats. This allows the

operation of a user program to be analyzed easily. 

The information that can be captured in the log is as follows. You can specify whether or not to

capture this information by user definition. 

• Interrupt handler start/stop

• Timer interrupt handler start/stop

• Dispatch start/stop

• System call start/stop

• User-specified events

The following formats are available for the display format of the logs.

• List format

• State transition diagram

• Statistical format

There is also a "monitoring" function that displays the "state transition diagram" in real time.

● List format

Figure 3.14-2 shows a screen example of the list format log display.
65



CHAPTER 3  µT-REALOS FUNCTIONS
Figure 3.14-2 Screen Example of List Format Log Display
66



CHAPTER 3  µT-REALOS FUNCTIONS
● State transition diagram

Figure 3.14-3 shows a screen example of the state transition diagram format log display. The state

transition diagram allows the state of the task dispatcher to be understood at a glance. 

Figure 3.14-3 Screen Example of State Transition Diagram
67



CHAPTER 3  µT-REALOS FUNCTIONS
● Monitoring

In Figure 3.14-3, the user program is stopped, and a state transition diagram is displayed based on

the log information up to immediately prior to the stop. As an alternative, it is possible to have the

state transition diagram displayed as the user program is running. This function is called

"monitoring". Figure 3.14-4 shows a screen example of the monitoring. 

Figure 3.14-4 Screen Eexample of Monitoring

Note:

The monitoring function cannot be used if the CPU does not have a built-in DSU4 debug unit.
See the "Analyzer Guide" for details.
68



CHAPTER 3  µT-REALOS FUNCTIONS
● Statistical Format

Figure 3.14-5 shows a screen example of the statistical format log display. In the statistical format,

information such as the proportion of execution time and number of dispatches for each task can be

obtained. 

Figure 3.14-5 Screen Example of Statistical Format

■ Issuing System Calls
While the user program is stopped, a selected system call function can be executed. 
69



CHAPTER 3  µT-REALOS FUNCTIONS
■ Stack Information
Display the current task stack usage and maximum usage using a graph. Figure 3.14-6 shows a

screen example of the stack information. 

Figure 3.14-6 Screen Example of Stack Information
70



CHAPTER 3  µT-REALOS FUNCTIONS
■ Task Context Display
Displays the contents of the context of a specified task. Figure 3.14-7 shows a screen example of

the task context display. 

Figure 3.14-7 Screen Example of Task Context Display
71



CHAPTER 3  µT-REALOS FUNCTIONS
72



CHAPTER 4
WRITING A USER

PROGRAM

This chapter describes the basic items in writing a user 
program on µT-REALOS.

4.1  Configuring a User Program

4.2  Start Flow

4.3  Reset Entry Routine

4.4  Initial Routine

4.5  Task

4.6  Period Handler

4.7  Alarm Handler

4.8  Interrupt Handler

4.9  Error Routine

4.10  Power Saving Routine

4.11  Extension SVC Handler

4.12  Device Driver

4.13  Notes when Writing a User Program
73



CHAPTER 4  WRITING A USER PROGRAM
4.1 Configuring a User Program

This section describes how to configure a user program.

■ Configuring a User Program
A user program consists of the modules in Table 4.1-1. Build the user system after creating modules

necessary for the user system.

For more on these, see "4.3  Reset Entry Routine" to "4.12  Device Driver" in this document respectively. 

Table 4.1-1  User Program Configuration Elements

Module name Processing overview Necessity

Reset entry routine
This routine is first launched by the hardware 
reset. It performs hardware initialization, and 
starts the kernel.

Mandatory

Initial routine
This routine is called from the kernel intialization. 
It provides the operating environment for the user 
program.

Mandatory

Task Performs the main process of a user program. Mandatory

Period handler
Created when performing a process at regular 
time intervals.

Optional

Alarm handler
Created if there is a process to be performed after 
a certain time.

Optional

Interrupt handler Created when handling hardware interrupts. When 
system time is used, it is necessary to create a 
timer interrupt handler. 

Optional

Error routine Created when handling kernel errors from a user 
program. 

Optional

Power saving 
routine

Created when performing power saving process 
using a user program.

Optional

Extension SVC 
Handler

Created when defining user function using the 
extension SVC handler.

Optional

Device driver Created when controlling the device driver using 
the device management API. 

Optional
74



CHAPTER 4  WRITING A USER PROGRAM
4.2 Start Flow

This section explains the process flow from the hardware reset occurrence until control 
is passed to the user program task. 

■ Starting a User Program
Figure 4.2-1 shows the processing flow after hardware reset occurs.

When the initial routine of a user program is called by the initial task, control is passed to the user program

having the highest priority task. 

Figure 4.2-1  Start Flow

Processes, such as 
initialization of 

hardware
 

Jump to the 
kernel  

Initialize the kernel 

Initialize the inside of the kernel 

Create an initial task 

Start the initial task 

 
Initialize the device, etc.  

 
Call the initial routine  

Initial routine  

Create a task, etc.  

Return  

Initial task Reset entry 
routine

User task  

Process the 
user program  

Pass control to the user task having the highest priority 

User 
program

 
 Kernel  

Reset  
75



CHAPTER 4  WRITING A USER PROGRAM
4.3 Reset Entry Routine

This section describes how to write the reset entry routine. 

■ Reset Entry Routine
The reset entry routine, which is launched by reset, performs initialization of the processor and of the

peripheral devices for which initial settings are necessary during reset. Control is then moved to 

µT-REALOS. 

■ Process of Reset Entry Routine
The reset entry routine generally performs the following processes: 

• Setting of Stack pointer (SP) (mandatory)

Sets SP with the address of stack pointer used when the reset entry routine is running. 

• Hardware initial settings (optional)

Initially sets those items of hardware for which settings are necessary before starting the kernel such as
memory controller, CPU clock, interrupt controller, CPU cache

• Copy to RAM of INIT section inside ROM (optional) 

When burning a user program into the ROM , the INIT section(the area inside the object program where
the global variables with initial values are contained) is located inside the ROM. This is copied to the
RAM area, where read/write is enabled. 

• Initializing the DATA section of a user program (Mandatory)

Clears the DATA section (the area inside the object program where global variables without initial values
are contained) inside a user system which has been loaded into the memory of the target hardware.

• Starting the kernel (mandatory)

Starting the kernel at the end of the reset entry routine. The kernel startup jumps to the label of
"__kernel_start" by the JMP command of the assembler language after the system stack is set.
76



CHAPTER 4  WRITING A USER PROGRAM
■ A specific Example of the Reset Entry Routine
Figure 4.3-1 to Figure 4.3-3 shows the description examples for each process of the reset entry routine. The

source codes are attached to the product as a sample program (icrt0.asm) of µT-REALOS. 

Figure 4.3-1  Description Example of INIT Section Copy

•  As constants RAM_INIT, ROM_INIT, and INIT are defined at the linker, 
    it is not necessary to define them at the user program.  RAM_INIT refers 
    to the start address of the INIT section in the RAM, ROM_INIT refers to the 
    start address of the INIT section in the ROM, and INIT refers to the size 
    (number of bytes) of the INIT section.
 
• In the following example, copy_rom1 performs copy byte by byte, and 

copy_rom2 performs copy in units of 4 bytes.  
 
 
/*  
 *  Initialization of 'data' area (ROM startup)
 */  
 ldi  #_RAM_INIT, r0 
 ldi  #_ROM_INIT, r1 
 ldi  #size of(INIT), r2  
 cmp #0, r2  
 beq:d copy_rom_end 
 ldi  #3, r12  
 and r2, r12  
 beq:d copy_rom2 
 mov r2, r13  
 mov r2, r3  
 sub r12, r3  
copy_rom1: 
 add #- 1, r13  
 ldub @(r13, r1), r12  
 cmp r3, r13  
 bhi:d  copy_rom1 
 stb  r12, @(r13, r0)  
 cmp #0, r3  
 beq:d copy_rom_end 
copy_rom2: 
 add #- 4, r13  
 ld  @(r13, r1), r12  
 bgt:d  copy_rom2 
 st  r12, @(r13, r0)  
copy_rom_end: 
77



CHAPTER 4  WRITING A USER PROGRAM
Figure 4.3-2  Description example of DATA section 0 Clear

Figure 4.3-3  Description Example of Kernel Startup

•

 

As constants DATA and sizeof DATA are defined at the linker, it is not 
necessary to define them at the user program. DATA is the start 
address of the DATA section area. sizeof DATA is the size (number 
of bytes) of the DATA section.

• In the following example, clear_ram0 performs 0 clear in units of 
4 bytes, and clear_ram2 performs 0 clear byte by byte in the final area 
that is less than 4 bytes.  

 
/*  
 *  Clear 'bss' area  
 */  
 ldi:8  #0, r0  
 ldi  #sizeof DATA & ~0x3, r1  
 ldi  #DATA, r13 
 cmp #0, r1  
 beq clear_ram1 
clear_ram0:  
 add2 #- 4, r1  
 bne:d clear_ram0 
 st  r0, @(r13, r1)  
clear_ram1:  
 ldi:8  #sizeof DATA & 0x3, r1  
 ldi  #DATA + (sizeof DATA & ~0x3), r13  
 cmp #0, r1  
 beq clear_ramE 
clear_ram2:  
 add2 #- 1, r1  
 bne:d clear_ram2 
 stb  r0, @(r13, r1)  
clear_ramE:  
 

Set the kernel stack address to the SP register  
•
•

Jump to the label of "__kernel_start" to start the kernel  

ldi:32  #__kernel_ssta ck_end, sp  // Set SP(SSP)  
ldi:32  #__kernel_start, r0  // System startup  
jmp @r0 
78



CHAPTER 4  WRITING A USER PROGRAM
4.4 Initial Routine

This section describes how to write the initial routine. 

■ Process of the Initial Routine
The initial routine is called from the initial task created during initialization of the kernel. Although the

initial routine can be described freely in accordance with the user program, it generally performs the

following processes: 

• Creating and starting objects necessary for operations of the user program, such as tasks, semaphores,
time event handlers

• Initializing and registering device drivers

• Initializing hardware

• Starting a timer interrupt

Note:

The initial routine is executed while the interrupt is enabled. 

■ Description Format of the Initial Routine
The initial routine is described as follows: 

Figure 4.4-1  Description Format of the Initial Routine

■ Description Example of the Initial Routine
Figure 4.4-2 shows the description example of the initial routine. The source codes are attached to the

product as a sample program (init_task.c) of µT-REALOS. 

void sample_init(void)  
{  

/*  
Process the initial routine 

*/  

return;  

}  
79



CHAPTER 4  WRITING A USER PROGRAM
Figure 4.4-2  Description Example of the Initial Routine

•  After the timer for the system clock is started(START_TIMER0()), semaphore and 
three tasks (task ID=tsk1, tsk2, tsk3) will be created. Then, the created 3 tasks 
are started. The task whose task ID is task1 and the task whose task ID is tsk2 
use the same function (task1). 

static UB task1_stack[0x400], task2_stack[0x400], task3_stack[0x400];  
void uinit_task(void)  
{  
 ID tsk1, tsk2, tsk3;  
 T_CTSK ctsk; 
 T_CSEM csem; 

 START_TIMER0();  /* Start Timer0 for System clock */
  
 csem.sematr = TA_TFIFO | TA_FIRST; 
 csem.isemcnt = 0; 
 csem.maxsem = 1; 
 sem1 = tk_cre_sem(&csem); /* Create semaphore */ 
  
 ctsk.exinf = (VP)1; 
 ctsk.tskatr = TA_HLNG | TA_RNG0 | TA_USERBUF; 
 ctsk.task = task1; 
 ctsk.itskpri = 1; 
 ctsk.stksz = sizeof(task1_stack);  
 ctsk.bufptr = task1_stack; 
 tsk1 = tk_cre_tsk(&ctsk);   /* Create task1 */  
  
 ctsk.exinf = (VP)2; 
 ctsk.tskatr = TA_HLNG | TA_RNG0 | TA_USERBUF; 
 ctsk.task = task1; 
 ctsk.itskpri = 2; 
 ctsk.stksz = sizeof(task2_stack);  
 ctsk              = sizeof(task1_stack); 
 tsk2 = tk_cre_tsk(&ctsk);   /* Create task2 */  
  
 ctsk.exinf = (VP)3; 
 ctsk.tskatr = TA_HLNG | TA_RNG0 | TA_USERBUF; 
 ctsk.task = task2; 
 ctsk.itskpri = 3; 
 ctsk.stksz = sizeof(task3_stack);  
 ctsk.bufptr = task3_stack; 
 tsk 3 = tk_cre_tsk(&ctsk);   /* Create task3 */  
  
 tk_sta_tsk(tsk1, 1);   /* Start task1 */  
 tk_sta_tsk(tsk2, 2);   /* Start task2 */  
 tk_sta_tsk(tsk3, 3);   /* Start task3 */  
}

80



CHAPTER 4  WRITING A USER PROGRAM
4.5 Task

This section describes how to write a task. 

■ Description Format of the Task
The task is described as follows: 

Figure 4.5-1  Description Format of the Task

The task start code (stacd) specified during task startup (when tk_sta_tsk is called) is passed to stacd. The

extension information (exinf)specified when the task is created is passed to exinf. 

A function(task) cannot be terminated by a simple return. Using tk_ext_tsk or tk_exd_tsk to ensure

termination. 

■ Creating a Task
tk_cre_tsk is called to create a task. An example is shown below. In this example, function, "task1", is

being created using task priority 1. If tk_cre_tsk is terminated normally, the task ID will be returned as the

return value. 

Figure 4.5-2  Description Example of Task Creation

For details of tk_cre_tsk, see "3.3.1 tk_cre_tsk" of "API Reference" . 

void task(INT stacd, VP exinf)  
{  

/* 
Process the body of the task program 
*/  

tk_ext_tsk(); or tk_exd_tsk(); /* Task termination */
}

ID tid1;  /* Task ID of task1 */
T_CTSK ctsk; /* Input parameter of tk_cre_tsk */
INT task1_stack[256];   /* Stack area of the task */

ctsk.exinf = (VP)1;  /* Extension information=1 */ 
ctsk.tskatr = TA_HLNG | TA_RNG0 | TA_USERBUF; /* Attribute */ 
ctsk.task = task1;    /* Start address of the task */  
ctsk.itskpri = 1;  /* Task priority */
ctsk.stksz = sizeof(task1_stack);  /* Stack size */
ctsk.bufptr = task1_stack;  /* Start address of the stack */  
tid1  = tk_cre_tsk(&ctsk);  /* Create the task */
81



CHAPTER 4  WRITING A USER PROGRAM
■ Starting a Task
A task created by tk_cre_tsk is initially in the stop status. Therefore, tk_sta_tsk is called to run this task. In

the example below, the task whose task ID is tid1 is being started. 

Figure 4.5-3  Description Example of the Task Startup

The status of a task started by tk_sta_tsk is executable. If the priority of a task is higher than those of other

tasks of execution status or executable status, the task attains execution status. 

For details of tk_sta_tsk, see "3.3.3 tk_sta_tsk" of "API Reference". 

■ A specific Example of the Task
Figure 4.5-4 shows the description example of a task, and Figure 4.5-5 shows the operation diagram of the

program in the description example. The source codes are attached to the product as a sample program

(init_task.c) of µT-REALOS. In addition, the task in this specific example is created/started using the initial

routine given in Figure 4.4-2. 

 
tk_sta_tsk(tid1, 1);  /* Start the task whose task ID is tid1 */ 
82



CHAPTER 4  WRITING A USER PROGRAM
Figure 4.5-4  Description Example of a Task

•  Function task1 runs at two task: task started with stacd=1 and task started with 
stacd=2. Each task moves to the status of waiting for the semphore of sem1 by 
the system call of tk_wai_sem.

• task2 releases the semaphore resources of sem1 by the system call of 
tk_sig_sem. This releases task1 from the standby status. 

•  The task priorities are: task1(stacd=1) > task1(stacd=2) > task2

 
static void task1( INT stacd, VP exinf )  
{  
 if(stacd == 1){  
  while (1) {  
   tk_wai_sem(sem1, 1, TMO_FEVR); 
  }  
 }  
 else if (stacd == 2){  
  while (1) {  
   tk_wai_sem(sem1, 1, TMO_FEVR); 
  }  
 }  
 else{  
  tk_ext_tsk();  /* Exit task */  
 }  
}  
 
static void task2( INT stacd, VP exinf )  
{  
 if (stacd == 3){  
  while (1) {  
   tk_sig_sem(sem1, 1);  
  }  
 }  
 else{  
  tk_ext_tsk();  /* Exit task */  
 }  
}  
83



CHAPTER 4  WRITING A USER PROGRAM
Figure 4.5-5  Operation Diagram of the Description Example

  
           
 
task1 
(stacd=1) 
 
 
task1  
(stacd=2) 
 
 
task2  
 
 

Time 

wai _sem 

wai _sem 

sig_sem 

wai _sem 

sig_sem 

wai _sem 
84



CHAPTER 4  WRITING A USER PROGRAM
4.6 Period Handler

This section describes how to write a period handler. 

■ Description Format of a Period Handler
The period handler is described as follows: 

Figure 4.6-1  Description Example of a Period Handler

■ Creation of a Period Handler
tk_cre_cyc is called to create a period handler. An example is shown below. In this example, function

"cychdr1" is being created as a period handler of the start period 1 second (1000ms). When creation of a

period handler normally ends, the period handler ID is returned as the return value. 

Figure 4.6-2  Description Example of the Period Handler Creation

■ Launch of a Period Handler
To move a period handler from the stop status to the action status, tk_sta_cyc is called. In the following

example, the period handler ID is started as the period handler of cycid1. 

Figure 4.6-3  Description Example of the Period Handler Startup

 void cychdr1(VP exinf)  
{  

/* Process the period handler */   

return; /* Terminate the period handler */ 
}  

ID cycid1; /* Cyclic handler ID */ 

T_CCYC ccyc; /* Input parameter of tk_cre_cyc*/

ccycexinf = (VP)1; /* Extension information=1 */  
ccyc.cycatr = TA_HLNG | TA_RNG0 | TA_STA;  /* Attribute */  
ccyc.cychdr = cychdr1; /* Start address of the period handler */  
ccyc.cyctim = 1000; /* Start Cyclic */ 
ccyc.cycphs = 0; /* Start phase */  
cycid1 = tk_cre_cyc(&ccyc);  /* Create the Cyclic handler */ 

 tk_sta_cyc(cycid1);  /* Start the Cyclic handler whose ID is cycid1 */
85



CHAPTER 4  WRITING A USER PROGRAM
4.7 Alarm Handler

This section describes how to write an alarm handler. 

■ Description Format of an Alarm Handler
An alarm handler is described as follows: 

Figure 4.7-1  Description Example of an Alarm Handler

The extension information specified when an alarm handler is created (tk_cre_alm) is passed to exinf.

■ Creating an Alarm Handler
tk_cre_alm is called to create an alarm handler. An example is shown below. In this example, function

"almhdr1" is created as an alarm handler. If creation of an alarm handler is terminated normally, the alarm

handler ID will be returned as the return value. 

An alarm handler moves to the stop status after it is created. 

Figure 4.7-2  Description Example of the Alarm Handler Creation

■ Starting an Alarm Handler
To move an alarm handler from the stop status to the action status, call tk_sta_alm. In the example below,

the alarm handler with an alarm handler ID of almid1 is started using time-out time 100ms. 

Figure 4.7-3  Description Example of the Alarm Handler Startup

 void almhdr1(VP exinf)  
{  

/* Process the alarm handler */  
return; /* Terminate the alarm handler */  

}  

 ID almid1;   /* Alarm handler ID*/  

T_CALM calm;  /* Input parameter of tk_cre_alm*/  

calm.exinf = (VP)1;  /*Extension information =1 */ 
calm.almatr = TA_HLNG | TA_RNG0;  /* Attribute */ 
calm.almhdr = almhdr1;  /* Start address of the alarm handler */

 almid1 = tk_cre_alm(&calm);  /* Create the alarm handler */  

 tk_sta_alm(almid1, 100);  /* Start the alarm handler whose ID is  
almid1 using a time-out time of 100ms*/  
86



CHAPTER 4  WRITING A USER PROGRAM
4.8 Interrupt Handler

This section describes how to write an interrupt handler. 

■ Description Format of an Interrupt Handler
An interrupt handler is described as follows: 

Figure 4.8-1  Description Example of an Interrupt Handler

The interrupt handler is executed at the task independent portion. In addition, it is started while interrupt is

enabled. Therefore, while an interrupt handler is being executed, the interrupt handler may be started

multiply. For details, see "CHAPTER 4 RESET AND EIT PROCESSING" of "FR Family Instruction

Manual". 

■ Registering an Interrupt Handler
There are two methods of registering an interrupt handler: static, and dynamic. For static registering

method, see "5.3  Setting of Configuration". For dynamic registering method, tk_def_int is called from a

user program. 

• Example

When the timer interrupt handler of vector number 24 registers "timer" as an interrupt handler through a
user program. 

Figure 4.8-2  Example of Registering an Interrupt Handler Through a User Program

To register an interrupt handler through a user program, set "_KERNEL_USE_TKDEFINT" of the macro

specified by the configurator to 1, and execute the configuration. In addition, to perform operations with the

vector table placed in the ROM, register an interrupt handler using static API.

 void sample_inthdr( void)  

{  

   /* Interrupt handler body */

}  

 T_DINT dint;  
ER err;  
 
dint.intatr = TA_HLNG|TA_RNG0; /* Attribute */ 
dint.inthdr = timer;   /* Start address of the interrupt handler */  
err = tk_def_int(&dint);  /* Register the interrupt handler */  
87



CHAPTER 4  WRITING A USER PROGRAM
■ Timer Interrupt Handler
To use the functions of time event handler, timeout, and system time, it is necessary to let the timer

interrupt occur at intervals of 1ms, and then update the system time using the interrupt handler. System

time will be updated when isig_tim is called. 

An example of the timer interrupt is shown below. 

Figure 4.8-3  Description Example of an Timer Interrupt Handler

Note:

When an interrupt handler is described using assembler, note the following points: 

• Calling an interrupt handler or returning from an interrupt handler is not via the OS. 

• As the OS does not back up and restore registers or perform stack settings, perform such
processes on the interrupt handler side. 

 void timer(void)  
{  

/*  
Clear the timer interrupt factors  
*/  
isig_tim();  

}  
88



CHAPTER 4  WRITING A USER PROGRAM
4.9 Error Routine

This section describes how to write an error routine. 

■ Description Format of an Error Routine
The description format of an error routine is shown as follows:

Figure 4.9-1  Description Format of an Error Routine

The following information are passed to errptn, errinf1, and errinf2. 

• errptn : Error factor

= _KERNEL_ERR_SYS_DOWN (0x01): System down

= _KERNEL_ERR_INI_ERR (0x02): Initial setting error

= _KERNEL_ERR_EIT_DOWN (0x04): Undefined interrupt

• errinf1 : Error information1

In the case of [_KERNEL_ERR_SYS_DOWN ]

= 0x1 : tk_ext_tsk was called from the task independent portion. 

= 0x2 : tk_exd_tsk was called from the task independent portion. 

= 0x3 : tk_ext_tsk had been called while dispatch was disabled.

= 0x4 : tk_exd_tsk had been called while dispatch was disabled.

In the case of [_KERNEL_ERR_INI_ERR ]

Initial setting error information

= 0x1 : Heap area assignment error

= 0x2 : System startup error

= 0x3 : Initial task startup error 

= 0x4 : Module initialization error

= 0x5 : Power off processing error

[In the case of [_KERNEL_ERR_EIT_DOWN]

Uncertain value

• errinf2 : Error information2

Not used. Reserved for future extension. 

■ Registering an Error Routine
For registering an error routine, see "5.3  Setting of Configuration". 

 void sample_errrtn (UINT errptn, INT errinf1,INT errinf2)  
{  

/* Error routine body */  
}  
89



CHAPTER 4  WRITING A USER PROGRAM
4.10 Power Saving Routine

This section describes how to write a power saving routine. 

■ Description Format of a Power Saving Routine
The power saving routine is a process called when the status has become idle inside the kernel. The

processing of transition to the power saving mode is described inside a function. 

Figure 4.10-1  Description Example of a Power Saving Routine

■ Registering a Power Saving Routine
For registering a power saving routine, see "5.3  Setting of Configuration". 

Note:

When a system call is made inside the power saving routine, the operation is not guaranteed. 

 void usr_low_pow ( void )  
{  

/* Describe the process of transition to the power saving mode*/  
}  
90



CHAPTER 4  WRITING A USER PROGRAM
4.11 Extension SVC Handler

This section describes how to create and call an extension SVC handler. 

■ Description Format of an Extension SVC Handler
The description format of an extension SVC handler is shown as follows:

Figure 4.11-1  Description Format of an Extension SVC Handler

pk_para turns the parameters passed from the caller into the packet format. The packet format can be

determined by subsystems arbitrarily. 

fncd, which is the function code, contains the subsystem ID in its low 8 bits. The remaining high bits are

determined by subsystems arbitrarily. 

■ Calling Format of an Expansion SVC Handler
An extension SVC handler is called from a user program using software interrupt of interrupt number 64

with the fncd value set to r0 register. Therefore, it is necessary to describe an extension SVC handler

calling section as a user program in the assembler. 

Figure 4.11-2  Calling Format of an Expansion SVC Handler

In the example of Figure 4.11-2, the SVC handler whose subsystem ID(sayid) is 10 is called. In the called

SVC handler, the beginning addresses of packets contained in arg1 and arg2 are passed to pk_para, and

"0x10A" is passed to fncd. 

INT svchdr(VP pk_para, FN fncd)
{

/* 
  Branch and proceed according to fncd 
*/

return retcode; /*Terminate the extension SVC handler */ 

}

 #define FUNC1_FNCD 0x10A /* ssyid = 10 */  
INT func1(int arg1, int arg2)  
{  

 __asm( “  ldi:32  #FUNC1_FNCD, r0” ); 
 __asm( “  int  #64” );  

    } 
91



CHAPTER 4  WRITING A USER PROGRAM
4.12 Device Driver

This section describes how to write a device driver. 

■ Device Driver Interface
In the µT-Kernel specification, the device management function increases the portability of the device

drivers by unifying their interfaces. The following describes how to create a driver based on the device

driver interface. In addition, for details of a device driver, see "Appendix C Device Driver Interface" of

"API Reference". 

■ Determining A Device Name 
Device name is the name granted to the type unit of a device using up to 8 bytes. 

A device name using the following format:. 

A device name consists of the following elements. 

Type : A name indicating the type of a device. Characters that can be used are a-z, A-Z. 

Unit : A number indicating the physical device. Characters that can be used are a-z. Specified

using a single character. Assigned for each unit starting with a. 

Sub unit : A number indicating the logical device. Characters that can be used are numbers

between 0-254, not exceeding 3 digits. Assigned for each sub unit starting with 0. 

■ Creating an Open Function (openfn)
An open function is called from the kernel when tk_opn_dev is called from a user program. An open

processing function makes preparation to access the device data. 

For details of an open processing function, see "Device processing function open processing function

(Openfn)" of "Appendix C Device Driver Interface" in "API Reference". 

 Type Unit Sub unit

 ER ercd = openfn(ID devid, UINT omode, VP exinf)  
{  
 /*  
 Device open processing  

*/  
}  
92



CHAPTER 4  WRITING A USER PROGRAM
■ Creating a Close Function (closefn)
A close function is called from the kernel when tk_cls_dev is called from a user program. 

Calling a close processing function means access to a device has been terminated. The driver then performs

the device terminating process whenever necessary. 

■ Creating a Process Start Function (execfn)
A process start function is called from the kernel when tk_rea_dev, tk_srea_dev, tk_wri_dev, or

tk_swri_dev is called from a user program. 

In the process start function, the data to be processed is first set to the parameter and then called. However,

the function does not return upon completion of the data process, instead it returns when the process has

been accepted. For example, when the data to be written to a device is passed via tk_wri_dev, it returns on

completion of the write start instruction, and it is not necessary to wait for completion of the device write

process. 

For details of a process start function, see "Device processing function process start function (execfn)" of

"Appendix C Device Driver Interface" in "API Reference". 

■ Creating a Waiting for Completion Function (waitfn)
A waiting for completion function is called from the kernel when tk_wai_dev, tk_srea_dev, or tk_swri_dev

is called from a user program. 

A waiting for completion function waits for the completion of I/O request accepted at the process start

function. Therefore, system calls for entering the standby status (such as tk_slp_tsk) may be used. 

For details of a waiting for completion function, see "Device processing function waiting for completion

function (waitfn) " of "Appendix C Device Driver Interface" in "API Reference". 

 ER ercd = closefn(ID devid, UINT option, VP exinf)  
{  
 /*  
 Device close processing 

*/  
}  

 ER ercd = execfn(T_DEVREQ *devreq, TMO tmout, VP exinf)  
{  
 /*  
 Device process start 

* /  
}  

 INT pktno = waitfn(T_DEVREQ *devreq, INT nreq, TMO tmout, VP exinf)  
{  
 /*  
 Device wait for completion process 

*/  
}  
93



CHAPTER 4  WRITING A USER PROGRAM
■ Creating a Process Abort Function (abortfn)
The process abort function is called from the kernel if there are unfinished I/O requests for the device when

the device close instruction is issued from a user program. 

Process aborting requested by I/O specified using parameters is performed in a process aborting function. 

I/O for the device is aborted, and removes the waiting state if the task has entered a state waiting for I/O

completion. 

For details of a process abort function, see "Device processing function process abort function (abortfn)" of

"Appendix C Device Driver Interface" in "API Reference".

■ Event Function (eventfn)
An event function is called from the kernel when tk_sus_dev or tk_evt_dev is called from a user program.

This function is called from a user program or the kernel when notifying some event to a device. 

As the event type is passed to a parameter in an event function, process for that event is performed in the

driver. 

 INT pktno = waitfn(T_DEVREQ *devreq, INT nreq, TMO tmout, VP exinf)  
{  
 /*  
 Device process abort 

*/  
}  

 INT rtncd = eventfn(INT evttyp, INT evtinf, VP exinf)  
{  
 /*  
 Device event process  

*/  
}  
94



CHAPTER 4  WRITING A USER PROGRAM
4.13 Notes when Writing a User Program

This section describes notes when writing a user program of µT-REALOS.

■ Notes on the Overall of a Program
• Internal identifiers starting with "_KERNEL", "_kernel", "tk_", "tm_"and "knl_" 

The kernel of µT-REALOS uses symbols and macros starting with the above mentioned. Do not use
these symbols and macros in a user program. This may cause duplicate definition. 

• Management register of µT-REALOS

µT-REALOS uses the ILM field of the PS register. Do not change this field in a user program. 

• Include file of kernel

Include "[SOFTUNE Install Directory]\utkernel\911\include\tk\tkernel.h in a user program using a
system call

■ Notes on the Overall of a System Call
• A system call can be made while the task independent portion or dispatch is disable. 

When calling is disabled, an E_CTX error or exception may occur. For availability of calling, see "3.1
System Call List" of "API Reference" in addition, operations cannot be guaranteed when isig_tim or
tk_ret_int is called from the task section. 

• Omitting the error check of a system call

Check for entry address and packet address will not be performed. Specifying an illegal address may
cause an abnormal operation. 

■ Notes on a Task
• Stack Definition

Secure the stack area to make its beginning address to become 4 byte boundaries. 

• Status transition of tasks during execution while the dispatch is on hold 

While dispatch is on hold, the state transition is delayed until dispatch occurs, when moving the tasks
during execution forcibly to the forcible waiting state and the stop state by calling tk_ter_tsk and
tk_sus_tsk from task independent portion. In such a case, tasks being executed will retain the execution
status. However, when reference the task portion using tk_ref_tsk, it becomes the forcible waiting state or
the stop state. 
95



CHAPTER 4  WRITING A USER PROGRAM
■ Notes on Interrupt
• Execution priority of an interrupt handler and a time event handler

The execution priority for each handler is determined according to the defined interrupt level. For details,
see "CHAPTER 4 RESET AND EIT PROCESSING" of "FR Family Instruction Manual".

A time event handler is executed at the interrupt handler interrupt level for system clock calling isig_tim. 

When designing the system stack size, taking these handler multiple startup into consideration, add 80
bytes for interrupt of 1 level. 
96



CHAPTER 5
HOW TO CONSTRUCT A

SYSTEM

This chapter describes how to construct a user system.

5.1  Steps of Constructing a System

5.2  Create the µT-REALOS Project

5.3  Setting of Configuration

5.4  Setting of Linker Option

5.5  Build a User System
97



CHAPTER 5  HOW TO CONSTRUCT A SYSTEM
5.1 Steps of Constructing a System

This section describes steps of constructing a system including compiling, configuring, 
and linking a user program for µT-REALOS. 

■ Steps of System Construction
Construct the user system of µT-REALOS using the following steps. 

 

Set the linker option  

 
Create the µT-REALOS project  

Set configuration  

Start  

Build the user system  
98



CHAPTER 5  HOW TO CONSTRUCT A SYSTEM
5.2 Create the µT-REALOS Project 

This section describes how to create the µT-REALOS Project on SOFTUNE Workbench. 

■ Create the µT-REALOS Project 
Create the µT-REALOS using the following steps. 

• Select [File]-[New Creation] menu on the SOFTUNE Workbench. Select "Workspace/Project File" as
the file type in the opened new dialog, and then click the "OK" button. 

Figure 5.2-1  Selection of File Type  

• Select a project tab in the "New Creation" dialog, and select "REALOS(ABS)" in the project type.  Input
"Chip Type", "Target MCU", and "Project Name", and then click the "OK" button. 
99



CHAPTER 5  HOW TO CONSTRUCT A SYSTEM
Figure 5.2-2  Input the Project Information 

• Dialog of "Select REALOS" is displayed. Select "SOFTUNE µT-REALOS/FR", and then click the
"OK" button.

Figure 5.2-3  Select the REALOS Type 

• Select some of following items from the dialog for creating a configuration file.

- New 

- Load an existing configuration file
100



CHAPTER 5  HOW TO CONSTRUCT A SYSTEM
Figure 5.2-4  Create a Configuration File 
101



CHAPTER 5  HOW TO CONSTRUCT A SYSTEM
5.3 Setting of Configuration 

This section describes setting of configuration. 

■ Setting of Configuration 
Define the following items at configuration. 

• Definition of the maximum number of objects 

Set the maximum value for the number of objects that the user program can use. The objects can be
created up to the maximum value and used in the user program. Therefore, define the maximum value
using a value bigger than the number of objects that are used in the user program. 

For example, when 3 semaphores are used in the user program, define the configuration specification
macro "_KERNEL_MAX_SEM" as 3. In such a case, the program can operate without problems even it
is defined as 10 . However, since 10 semaphore control areas are ensured in kernel, the 7 unused control
areas will become useless. Therefore, it is necessary to define the maximum number of objects used in
application in order to optimize usage efficiency of memory. 

It is unnecessary to define objects not used in the user program.

Table 5.3-1 displays byte number of consumed memory in kernel for each object.

For definition of maximum number of object, see "■ Setting Operation of Configuration" in this section.

Table 5.3-1  Consumed Memory of Object Management Block 

Object name 
Configuration 

specification macro
Management area 

size (byte)

Task _KERNEL_MAX_TSK 119

Semaphore _KERNEL_MAX_SEM 28

Event Flag _KERNEL_MAX_FLG 24

Mailbox _KERNEL_MAX_MBX 28

Mutex _KERNEL_MAX_MTX 32

Message Buffer _KERNEL_MAX_MBF 52

Rendezvous Port _KERNEL_MAX_POR 36

Fixed-size Memory Pool _KERNEL_MAX_MPF 56

Variable-size Memory Pool _KERNEL_MAX_MPL 56

Cyclic Handler _KERNEL_MAX_CYC 44

Alarm Handler _KERNEL_MAX_ALM 40

Device _KERNEL_MAX_REGDEV 1328
102



CHAPTER 5  HOW TO CONSTRUCT A SYSTEM
• Definition of priority maximum value

Defines the maximum priority value of a task and subsystem. Same as the maximum object value, when
the value defiend for the task priority becomes smaller, consumed memory of kernel can be reduced.
When Task Priority is P, its consumed memory can be calculated according to following formula. 

Consumed Memory (byte) = (8 * P) + 4 * (P /32) 

• Definition of system stack size and stack size of the initial task 

Specifies the size of system stack and stack size of initial task. For specification method of the stack size,
see "■ Setting Operation of Configuration" in this section. 

• Register the initial routine, error routine and power saving routine

When using the initial routine, error routine, and power saving routine, perform the registration through
the static API. For registration method of these routines, see "4.4  Initial Routine", "4.9  Error Routine",
and "4.10  Power Saving Routine" of "■ Setting Operation of Configuration" in this section. 

• Register an Interrupt Handler

On using an interrupt handler, register it through a static API. After the system startup, dynamic
registration of interrupt handler through tk_def_int is also available. In the case of dynamic registration,
registration through a static API will be not necessary. In addition, in such a case, define
"_KERNEL_USE_TKDEFINT" of configuration macro as "1". 

On using an interrupt vector table located in the ROM area, setting "_KERNEL_USE_TKDEFINT" to
"0" will allow the kernel to cancel copying the vector table from the ROM to the RAM. Therefore,
memory used by the kernel can be reduced. 

Whether to register an interrupt handler through a static API or tk_def_int is optional depending on
processing of the user program. Registration through a static API has advantages in reducing the codes
for registration through tk_def_int. 

■ Setting Operation of Configuration 
Set the configuration parameters using the following steps. 

• Project window of the configurator

Clicking the "CFG" tab at lower left of SOFTUNE Workbench window will display Figure 5.3-1.

Figure 5.3-1  Project Window of the Configurator

• Configuration Definition
103



CHAPTER 5  HOW TO CONSTRUCT A SYSTEM
Double clicking "Configuration Definition" on the project window will display Figure 5.3-2. Set
"Definition of Priority" and "Maximum number of each object" in Table 3.13-1.

Clicking the "Recalculate" button upon completion of entry in each configuration window will display
the consumed RAM memory area corresponding to the number of inputted object and the total RAM
memory area. 

Figure 5.3-2  Configuration Definition Window

• Size Spec

Double clicking "Size Spec" on the project window will display Figure 5.3-3. Set items of "Size Spec" in
Table 3.13-1.

Figure 5.3-3  Size Spec Window 

• Function Select

Double clicking "Function Select" on the project window will display Figure 5.3-4. Set the items of
"Function Select" in Table 3.13-1.
104



CHAPTER 5  HOW TO CONSTRUCT A SYSTEM
Figure 5.3-4  Function Select Window 

• Entry registration 

Performs registration of an initial routine, an error routine, an interrupt handler, and a power saving
routine (power saving function). 

Double clicking "Initial routine", "Error Routine", or "Power saving function" on the project window will
display Figure 5.3-5, Figure 5.3-6, and Figure 5.3-7 respectively. Set the entry name of functions used in
the initial routine, error routine, and power saving routine.
105



CHAPTER 5  HOW TO CONSTRUCT A SYSTEM
Figure 5.3-5  Initiallize Routine Setting Window

Figure 5.3-6  Error Routine Setting Window
106



CHAPTER 5  HOW TO CONSTRUCT A SYSTEM
Figure 5.3-7  Low Power Mode Window 

New registration of an interrupt handler will display Figure 5.3-8 at the first. Select an interrupt number
corresponding to the registered handler in this window.

Figure 5.3-8  Select Interrupt Number Window

Clicking the "OK" button at Figure 5.3-8 will display Figure 5.3-9. Set the entry name of functions used
in the interrupt handler.
107



CHAPTER 5  HOW TO CONSTRUCT A SYSTEM
Figure 5.3-9  Interrupt Handler Setting Window

• Debug

Specifies the type of debug module used in the log function of µT-REALOS analyzer (module log).
Double clicking the names of "Type1", "Type2", "Type3", and "Type5" on the project window of the
configurator first or selecting the [setting] menu by right clicking will set the selected debug modules. 

For the module log, see "2.4 Log", and "CHAPTER 3 TASK ANALYSIS MODULE" of "Analyzer
Guide".

■ Execution of Configuration 
Configuration will be executed automatically when the project is built. 
108



CHAPTER 5  HOW TO CONSTRUCT A SYSTEM
5.4 Setting of Linker Option 

This section describes how to set the linker option 

■ Memory map setting of ROM and RAM 
Set the memory area used as ROM/RAM area according to the user system.

The sample program below allocates the ROM/RAM area to 1MB and 4MB respectively. 

■ Kernel specific section 
Section names used in the kernel are described as follows: 

INTVECT is allocated in the ROM area, while SYSINFO and _KERNEL_STACK_SC are allocated in the

RAM area. 

For details of "Type" mentioned in the above table, see "5.3 Types of Section" in "SOFTUNE Linkage Kit

Manual" (hereinafter, "Linkage Kit Manual") .

The start address of the vector table is set in table base register (TBR) of CPU. Therefore, INTVECT

section will usually be specified when fixed addresses are linked. 

■ How to specify the memory map
Memory map will be specified as the linker's option when the user system is linked. The operation method

is described below. For details of the linker, see "PARTII LINKER" in "Linkage Kit Manual".

• Select [Project]-[Project settings] menu on the SOFTUNE Workbench. Click the "Linker" tab, then
click the "add" button of the "ROM/RAM Area List" at the category of "Allocate/merge" in the project
settings dialog. 

Table 5.4-1  Memory Map of ROM/RAM Area in the Sample Program 

Area attribute Area name Start address End address

ROM Image _ROM_ 0x00800000 0x008FFFFF

RAM Image _RAM_ 0x80000000 0x803FFFFF

Table 5.4-2  Kernel Specific Section List

Type Section Name Meaning 

CONST INTVECT Vector Table

DATA SYSINFO Object management table

STACK _KERNEL_STACK_SC System stack area

DATA HEAP Kernel heap area
109



CHAPTER 5  HOW TO CONSTRUCT A SYSTEM
Figure 5.4-1  Setup Project  Dialog

• Input the attributes of RAM area and ROM area, start address, and end address, then click the "OK"
button. 

Figure 5.4-2  Setup RAM Area Name

Figure 5.4-3  Setup ROM Area Name
110



CHAPTER 5  HOW TO CONSTRUCT A SYSTEM
• Set the address of the INTVECT section next. Click the "Setup Section" button on the "Setup Project"
dialog.

Figure 5.4-4  Setup Project

• Select "Specify address" in the ROM/RAM area name in the "Setup Section" dialog. Input "INTVECT"
in the section name, and input the start address of the INTVECT section in "Address", then click "OK"
button. 
111



CHAPTER 5  HOW TO CONSTRUCT A SYSTEM
Figure 5.4-5  Setup Section

■ Link objects 
Table 5.4-3 is a list of sample programs relevant to object files that are required for creating a user system.

No user setting is required since these files will be automatically set as Link Option when REALOS Project

is created, or when a user program is registered. 

Table 5.4-3  Link Object List 

Classification File Name Remarks

User Program
(Sample Program)

icrt0.obj Reset entry routine

init_task.obj Task, timer interrupt handler

Kernel configuration file config.lib
File name is specified at the 

configuration startup

Kernel Library

libtm.lib

File name is fixed 

libtstdlib.lib

libstr.lib

libtk.lib

libtkernel.lib
112



CHAPTER 5  HOW TO CONSTRUCT A SYSTEM
■ Reset entry settings
Set the address of the reset entry in the "Entry point" column at the "General" category of the project

settings dialog. The example below sets the address of the "__start" symbol to the reset entry.

Figure 5.4-6  Reset Entry Settings
113



CHAPTER 5  HOW TO CONSTRUCT A SYSTEM
5.5 Build a User System 

This section describes how to build a user system 

■ Build a user system 
Build the system to create an object in the executable format, which contains µT-REALOS. Build

automatically performs compilation and configuration of the user program and link with µT-REALOS. 

• Select [Project]-[Make] and [Build] on SOFTUNE Workbench. Build results will be displayed in the
output window at the bottom of the SOFTUNE Workbench Window.

Figure 5.5-1  Screen example during building 
114



APPENDIX

The appendix describes error messages of the 
configurator. 

APPENDIX A  Error Messages of the Configurator
115



APPENDIX A  Error Messages of the Configurator
APPENDIX A Error Messages of the Configurator

Appendix A describes the categorization, display format, and meaning of error 
messages output during configuration.

■ Error Message Categorization of the Configurator
Error messages output by the configurator on execution of configuration are categorized by importance into

the following three levels. 

• Warning message

Warning messages are less serious than the error messages described next, and the output results can be
used almost without problems.

Occasionally, a process different from what the user intended may be performed. 

Determine whether the output results are usable after checking the message contents. 

• Error message

The process is continued. However, the configuration is not performed. It is necessary to eliminate the
factors causing the error and perform the execution again.

This error mainly occurs while reading a file. 

• Fatal error message

An error indicating that the process cannot be continued. Such an error may occur due to problems in the
execution environment as well as wrong specification by the user. 

In addition, there are messages that are output by the compiler, assembler, or linker executed inside the

configurator. For messages output by the compiler, assembler, or linker, see the corresponding manual. 
116



■ Display Format of Configurator Error Messages
Error messages are output in the following formats: 

Note:

An error may occur at the complier, assembler, or linker launched by the configurator ("C", "A", or "L"
are respectively output to the tool identification.) 

For details of an error in such a case, see the corresponding manual. 

*** File name(line number)XnnnnT:Message text(Assist message)

Section Description

File name
(Line number)

Configuration file name and line number where the error occurred.
Output when error occurred while reading the configuration file.

X

Error level is expressed using one of the following three characters.
W .... Warning message
E .... Error message
F .... Fatal error message

nnnn

Error number
The error number and error level are associated as follows:
1000 to 1999 ....  W
4000 to 4999 ....  E
9000 to 9999 ....  F

T

Tool identification is expressed using the following character.
M .... Configurator
C .... Compiler
A .... Assembler
L .... Linker

Message text Error message text

Assist message
More detailed information regarding the error.
The symbol name indicating the error occurrence is displayed.
It may be output to the error message body.
117



APPENDIX A  Error Messages of the Configurator
■ Description of Message Notation
Warning messages, error messages, and fatal error messages from the configurator are hereafter described

in the following format:

The variable character string in the message is described with underlines. 

Error code English message
118



■ Warning Messages

The definition displayed in the definition name was duplicated. 

This definition was overwritten by the definition specified later. 

When a number is displayed in the definition name, the ID indicated by the number was overwritten by the

definition specified later. 

Maximum area definition name displayed by the definition name does not exist. 

When this error message is output, the maximum size is assigned automatically. 

As the interrupt number specified by "num" is system reserved, it cannot be used. 

This error message is output when the interrupt number of an interrupt handler defined in "ATT_INI" is

system reserved. 

W1130M Multiple definition (Definition name)

W1401M Not found maximum area definition (Definition name)

W1405M EIT vector No."num" is system reserve
119



APPENDIX A  Error Messages of the Configurator
■ Error Messages

Characters that cannot be used in parameter displayed by parameter are contained

This error occurs when characters are specified in Parameter requiring numbers, or when numbers are

specified in Parameter requiring labels.

The value displayed in Parameter is out of range that can be specified. 

This error occurs when a value exceeding 32767 was specified in object ID. 

Cannot use the definition displayed in the character string. 

This error occurs when unsupported API name is described. 

Description is not available when the line length exceeds the length displayed in MAX value. 

Limit the description to the length displayed using MAX value. 

Expression shown in line number is illegal.

This error message is output when the description syntax or the definition method of API is illegal.

The parameter length shown in Parameter is too long. 

This message is output when a symbol is described with a length exceeding its specification. 

E4024M Illegal character (Parameter)

E4026M Specified value is out of range (Parameter)

E4110M Unknown API name (Character string)

E4111M Too long line (MAX value)

E4112M Illegal parameter expression

E4120M Parameter is too long
120



Definition displayed in Definition name exceeds the number displayed in the value. 

This error message is output if an attempt is made to define more than standard API. 

Parameter beyond those shown at Parameter are unnecessary.

The parameters of the definition name are inadequate. 

Definition that cannot be duplicated was  duplicated and defined.

This error message is output when the API ID is duplicated. 

Parameters that cannot be omitted were omitted. 

The definition displayed in the Parameter name cannot be omitted. 

Parameter that cannot be specified was specified. 

This error is displayed mainly when a string that cannot be selected in the selection item is specified. 

A symbol that has already been defined was redefined. 

This error occurs mainly when the task or event flag names, specified by API are duplicated. 

E4121M Too many Definition name (MAX value)

E4123M Too many parameters (Parameter)

E4125M Short of parameter

E4130M Multiple definition (Definition name)

E4131M Parameter not defined (Parameter name)

E4132M Illegal parameter (Parameter)

E4133M Symbol is already defined (Symbol name)
121



APPENDIX A  Error Messages of the Configurator
The specified size or address is not correct. 

The device open number was specified with a value larger than the semaphore number. 

Lower the device open number, or increase the semaphore number. 

More APIs displayed by Parameter were defined than the value defined by the maximum area. 

This error message is output even when the API is defined with no maximum area defined. 

E4136M Illegal size or address (value)

E4142M Device open count is bigger than semaphore count (MAX value)

E4402M API ID exceed maximum area definition (Parameter)
122



■ Fatal Error Messages

The environment variable displayed in Environment variable name is not defined. 

Insufficient memory for program execution. 

Configuration was not performed.

This error message is output when execution is interrupted due to an error during configuration. 

The specified input file is not found. 

Reasons such as file without read privilege, hardware problems can be considered.

Reasons such as file without write privilege, presence of the same directory or no free disk space can be

considered. 

A parameter that cannot be specified was specified.

The parameter displayed in Parameter is illegally specified.

F9000M Environment variable not found (Environment variable name)

F9001M Insufficient memory

F9002M Not configurated

F9011M Input file is not found (File name)

F9016M Error read error (File name)

F9017M File write error (File name)

F9022M Unknown option name (Option)

F9023M Illegal option parameter (Parameter)
123



APPENDIX A  Error Messages of the Configurator
Parameter is not specified in Option specified by option. 

The configuration file was not specified. 

This error occurs when format of files such as CPU information file is illegal.

The initial task priority is higher than the maximum priority. 

Lower the initial task priority, or increase the maximum task priority. 

The CPU information file is not found at the specified location. 

This error occurs when the MB number specified by -cpu option has not been registered to the CPU

information file. 

Confirm the MB number specified by -cpu option. 

The definition content displayed using the Definition name is not defined. 

This error message is output when a definition or an option that cannot be omitted has not been specified. 

Cannot use the vector Number displayed using number is system reserved. 

F9024M Option parameter not specified (Option)

F9030M Missing input file name

F9033M Illegal file format (Parameter)

F9405M Initial task priority is higher than maximum task priority  (MAX value)

F9501M Not found CPU information file

F9502M Not found CPU information

F9801M Definition name is not defined

F9805M EIT vector No.Number is system reserve
124



Error occurred when compiling the displayed file. 

Error occurred when assembling the displayed file. 

Error occurred in the linker. 

The compiler, assembler, or linker could not be found from environment variable "PATH". 

Define a path where the tool is contained in environment variable "PATH". 

Some error occurred during input/output of a file. 

Failed to create a directory displayed using Directory name. 

The reasons such as no directory writing privilege, presence of the same name directory name, no free disk

space are considered. 

Failed to create a file displayed using File name. 

The reasons such as no file writing privilege, presence of the same name directory name, no free disk space

are considered. 

F9895M Error in Compiler (File name)

F9897M Error in Assembler (File name)

F9898M Error in Linker

F9899M Tool name is not found

F9990M File I/O error (File name, Information)

F9993M Cannot create directory (Directory name)

F9994M Cannot create file (File name)
125



APPENDIX A  Error Messages of the Configurator
Failed to close a file displayed using File name. 

The reasons such as no file writing privilege, presence of the same name directory name, no free disk space

are considered. 

Failed to open a file displayed using File name. 

The reasons such as no file writing privilege, presence of the same name directory name, no free disk space

are considered. 

When this error occurs, please contact sales representative immediately. 

F9995M Cannot close file (File name)

F9996M Cannot open file (File name)

F9999M Internal error (Identification information)
126



INDEX
INDEX

The index follows on the next page.
This is listed in alphabetic order.
127



INDEX
Index

A

abortfn
Creating a Process Abort Function (abortfn) .........94

Additional
Additional Notes ................................................41

Additional Notes
Additional Notes ....................................36, 39, 43

Alarm Handler
Alarm Handler Functions ....................................52
Alarm Handlers..................................................17
Creating an Alarm Handler..................................86
Description Format of an Alarm Handler ..............86
Starting an Alarm Handler...................................86

API
Static API ..........................................................62

Assistance
Overview of the Debugging Assistance Functions

............................................................64

B

Breakpoints
OS Breakpoints ..................................................65

C

Calling Format
Calling Format of an Expansion SVC Handler ......91

Close Function
Creating a Close Function (closefn) .....................93

closefn
Creating a Close Function (closefn) .....................93

Communication
Extended Synchronization and Communication

Functions..............................................37
Synchronization and Communication Functions

............................................................31
Configuration

Configuration Functions......................................59
Execution of Configuration ...............................108
Setting of Configuration....................................102
Setting Operation of Configuration ....................103

Configuration Definition
Configuration Definition Macros .........................60

Configurator
Display Format of Configurator Error Messages

..........................................................117
Error Message Categorization of the Configurator

..........................................................116
Running the Configurator....................................63

Creating
Creating a Close Function (closefn) ..................... 93
Creating a Process Abort Function (abortfn) ......... 94
Creating a Process Start Function (execfn) ........... 93
Creating a Task.................................................. 81
Creating a Waiting for Completion Function (waitfn)

........................................................... 93
Creating an Alarm Handler ................................. 86
Creating an Open Function (openfn) .................... 92

Creation
Creation of a Period Handler ............................... 85

Current Task
Current Task and Other Tasks ............................. 10

Cyclic Handler
Cyclic Handler Functions ................................... 50
Cyclic Handlers ................................................. 16

D

Debugging
Overview of the Debugging Assistance Functions

........................................................... 64
Debugging Assistance

Overview of the Debugging Assistance Functions
........................................................... 64

Description Example
Description Example of the Initial Routine ........... 79

Description Format
Description Format of a Period Handler ............... 85
Description Format of a Power Saving Routine

........................................................... 90
Description Format of an Alarm Handler.............. 86
Description Format of an Error Routine ............... 89
Description Format of an Extension SVC Handler

........................................................... 91
Description Format of an Interrupt Handler .......... 87
Description Format of the Initial Routine ............. 79
Description Format of the Task ........................... 81

Development
Tools Required for Development........................... 4

Device
Determining A Device Name .............................. 92
Device Driver Interface ...................................... 92
Device Management Functions ........................... 56
Device Processing Functions............................... 20

Device Driver Interface
Device Driver Interface ...................................... 92

Device Management
Device Management Functions ........................... 56
128



INDEX
Device Name
Determining A Device Name .............................. 92

Directory Structure
Directory Structure of Provided Files ..................... 3

Dispatch
Dispatch Enabled/disabled States......................... 24

Dispatching
Dispatching and Preemption................................ 10

Display Format
Display Format of Configurator Error Messages

.......................................................... 117
Driver

Device Driver Interface ...................................... 92

E

Error Message
Display Format of Configurator Error Messages

.......................................................... 117
Error Message Categorization of the Configurator

.......................................................... 116
Error Messages ................................................ 120
Fatal Error Messages ........................................ 123

Error Routine
Description Format of an Error Routine ............... 89
Error Routines ................................................... 18
Registering an Error Routine ............................... 89

Event Flag
Event Flag Functions.......................................... 34

Event Function
Event Function (eventfn) .................................... 94

eventfn
Event Function (eventfn) .................................... 94

Example
A specific Example of the Task ........................... 82

execfn
Creating a Process Start Function (execfn) ........... 93

Expansion SVC Handler
Calling Format of an Expansion SVC Handler ...... 91

Extended SVC Handler
Extended SVC Handlers ..................................... 19

Extended Synchronization
Extended Synchronization and Communication 

Functions ............................................. 37
Extension SVC Handler

Description Format of an Extension SVC Handler
............................................................ 91

F

Fatal Error Message
Fatal Error Messages ........................................ 123

Fixed-size Memory Pool
Fixed-size Memory Pool Functions...................... 46

Format
Calling Format of an Expansion SVC Handler.......91
Description Format of a Period Handler ................85
Description Format of a Power Saving Routine .....90
Description Format of an Alarm Handler ..............86
Description Format of an Error Routine ................89
Description Format of an Extension SVC Handler

............................................................91
Description Format of an Interrupt Handler ...........87
Description Format of the Initial Routine ..............79
Description Format of the Task ............................81

Function
Creating a Close Function (closefn) ......................93
Creating a Process Abort Function (abortfn)..........94
Creating a Process Start Function (execfn) ............93
Creating a Waiting for Completion Function (waitfn)

............................................................93
Creating an Open Function (openfn) .....................92
Event Function (eventfn) .....................................94

H

Handler
Alarm Handler Functions ....................................52
Alarm Handlers ..................................................17
Calling Format of an Expansion SVC Handler.......91
Creating an Alarm Handler ..................................86
Creation of a Period Handler................................85
Cyclic Handler Functions ....................................50
Cyclic Handlers ..................................................16
Description Format of a Period Handler ................85
Description Format of an Alarm Handler ..............86
Description Format of an Extension SVC Handler

............................................................91
Description Format of an Interrupt Handler ...........87
Extended SVC Handlers......................................19
Interrupt Handlers...............................................15
Launch of a Period Handler .................................85
Precedence of Execution (Handlers vs. Handlers)

............................................................26
Precedence of Execution (Tasks vs. Interrupt Handlers 

and Time Event Handlers) ......................25
Registering an Interrupt Handler ..........................87
Starting an Alarm Handler ...................................86
Time Event Handlers ..........................................16
Timer Interrupt Handler ......................................88

I

Initial Routine
Description Example of the Initial Routine............79
Description Format of the Initial Routine ..............79
Initial Routines ...................................................14
Process of the Initial Routine ...............................79

Interface
Device Driver Interface .......................................92
129



INDEX
Interrupt
Interrupt Management Functions .........................53
Notes on Interrupt ..............................................96
Timer Interrupt Handler ......................................88

Interrupt Handler
Description Format of an Interrupt Handler...........87
Interrupt Handlers ..............................................15
Precedence of Execution (Tasks vs. Interrupt Handlers 

and Time Event Handlers)......................25
Registering an Interrupt Handler ..........................87

Interrupt Management
Interrupt Management Functions .........................53

Interrupts
Interrupts Enabled/disabled States........................24

K

Kernel
Kernel specific section ......................................109

Kernel specific section
Kernel specific section ......................................109

L

Launch
Launch of a Period Handler .................................85

Link objects
Link objects .....................................................112

Logs
Logs..................................................................65

M

Macros
Configuration Definition Macros .........................60

Mailbox
Mailbox Functions..............................................35

Management
Device Management Functions ............................56
Interrupt Management Functions .........................53
Subsystem Management Functions ......................55
System State Management Functions ...................54

Memory map
How to specify the memory map........................109
Memory map setting of ROM and RAM.............109

Memory Pool
Fixed-size Memory Pool Functions ......................46
Memory Pool Management Functions ..................45
Variable-size Memory Pool Functions..................47

Memory Pool Management
Memory Pool Management Functions ..................45

Message
Description of Message Notation .......................118
Display Format of Configurator Error Messages

..........................................................117

Error Message Categorization of the Configurator
......................................................... 116

Error Messages ................................................ 120
Fatal Error Messages ........................................ 123
Warning Messages ........................................... 119

Message Buffer
Message Buffer Functions .................................. 40

µT-REALOS
Create the µT-REALOS Project .......................... 99
Overview of µT-REALOS Functions ................... 28

Mutex
Mutex Functions ................................................ 38

N

Non-task
Non-task Portion Running .................................. 22

Notation
Description of Message Notation....................... 118

O

Object List
Object List Display ............................................ 64

Objects
Link objects..................................................... 112
Objects ............................................................. 21

Open Function
Creating an Open Function (openfn) .................... 92

openfn
Creating an Open Function (openfn) .................... 92

OS Breakpoints
OS Breakpoints.................................................. 65

P

Period Handler
Creation of a Period Handler ............................... 85
Description Format of a Period Handler ............... 85
Launch of a Period Handler ................................ 85

Power Saving
Power Saving Functions ..................................... 58

Power Saving Routine
Description Format of a Power Saving Routine

........................................................... 90
Registering a Power Saving Routine .................... 90

Preemption
Dispatching and Preemption ............................... 10

Priority
Priority Sequence and Task Priorities................... 10

Priority Sequence
Priority Sequence and Task Priorities................... 10

Process
Process of Reset Entry Routine ........................... 76
Process of the Initial Routine .............................. 79
130



INDEX
Process Abort Function
Creating a Process Abort Function (abortfn) ......... 94

Process Start Function
Creating a Process Start Function (execfn) ........... 93

Product
Structure of Product ............................................. 5

Program
Notes on the Overall of a Program ....................... 95

Project
Create the µT-REALOS Project .......................... 99

R

RAM
Memory map setting of ROM and RAM ............ 109

Registering
Registering a Power Saving Routine .................... 90
Registering an Error Routine ............................... 89

Rendezvous Port
Rendezvous Port Functions ................................. 42

Reset
A specific Example of the Reset Entry Routine

............................................................ 77
Process of Reset Entry Routine............................ 76
Reset Entry Routine ........................................... 76
Reset Entry Settings ......................................... 113

Reset Entry
Reset Entry Settings ......................................... 113

Reset Entry Routine
A specific Example of the Reset Entry Routine

............................................................ 77
Process of Reset Entry Routine............................ 76
Reset Entry Routine ........................................... 76

ROM
Memory map setting of ROM and RAM ............ 109

Routine
A specific Example of the Reset Entry Routine

............................................................ 77
Description Example of the Initial Routine ........... 79
Description Format of a Power Saving Routine

............................................................ 90
Description Format of an Error Routine ............... 89
Description Format of the Initial Routine ............. 79
Process of Reset Entry Routine............................ 76
Process of the Initial Routine............................... 79
Registering a Power Saving Routine .................... 90
Registering an Error Routine ............................... 89
Reset Entry Routine ........................................... 76

Running
Non-task Portion Running................................... 22
Task Portion Running......................................... 22

S

section
Kernel specific section ......................................109

Semaphore
Semaphore Functions ..........................................32

specific Example
A specific Example of the Reset Entry Routine......77
A specific Example of the Task............................82

Stack
Stack Information ...............................................70

Starting
Starting a Task ...................................................82
Starting an Alarm Handler ...................................86

Static API
Static API ..........................................................62

Subsystem
Subsystem Management Functions .......................55

Subsystem Management
Subsystem Management Functions .......................55

SVC
Calling Format of an Expansion SVC Handler.......91
Description Format of an Extension SVC Handler

............................................................91
Extended SVC Handlers......................................19

Synchronization
Extended Synchronization and Communication 

Functions ..............................................37
Synchronization and Communication Functions

............................................................31
System

Notes on the Overall of a System Call ..................95
System Calls

Issuing System Calls ...........................................69
System Calls ........................................................8
System Calls that can be called ............................23

System Construction
Steps of System Construction ..............................98

System State
System State Management Functions....................54
System States .....................................................22
User Programs and System States.........................23

System State Management
System State Management Functions....................54

System Time
Setting and Getting the System Time ....................49
System Time ......................................................49
Updating the System Time ..................................49

System Uptime
Getting the System Uptime ..................................49

T

Task
A specific Example of the Task............................82
131



INDEX
Creating a Task ..................................................81
Current Task and Other Tasks .............................10
Description Format of the Task............................81
Non-task Portion Running ...................................22
Notes on a Task..................................................95
Precedence of Execution (Tasks vs. Interrupt Handlers 

and Time Event Handlers)......................25
Precedence of Execution (Tasks vs. Tasks) ...........25
Priority Sequence and Task Priorities ...................10
Starting a Task ...................................................82
Task Context Display .........................................71
Task Management Functions ...............................29
Task Portion Running .........................................22
Task Portion Transitions .....................................12
Task Portions .....................................................11
Task Synchronization Functions ..........................30
Tasks ................................................................10

Task Context
Task Context Display .........................................71

Task Management
Task Management Functions ...............................29

Task Synchronization
Task Synchronization Functions ..........................30

Time Event Handler
Precedence of Execution (Tasks vs. Interrupt Handlers 

and Time Event Handlers)......................25
Time Event Handlers ..........................................16

Time Management
Time Management Functions ..............................48

Timer Interrupt Handler
Timer Interrupt Handler...................................... 88

Tools
Tools Required for Development........................... 4

Transitions
Task Portion Transitions ..................................... 12

U

User Program
Configuring a User Program ............................... 74
Execution Units of User Program .......................... 9
Starting a User Program...................................... 75
User Programs and System States ........................ 23

user system
Build a user system .......................................... 114

V

Variable-size Memory Pool
Variable-size Memory Pool Functions ................. 47

W

waitfn
Creating a Waiting for Completion Function (waitfn)

........................................................... 93
Waiting for Completion Function

Creating a Waiting for Completion Function (waitfn)
........................................................... 93

Warning Message
Warning Messages ........................................... 119
132



Colophon

CM81-00322-1E

FUJITSU MICROELECTRONICS • CONTROLLER MANUAL

FR Family

µT-Kernel Specification Compliant

SOFTUNETM µT-REALOS

USER'S GUIDE

June 2008 the first edition

Published FUJITSU MICROELECTRONICS LIMITED
Edited Strategic Business Development Dept.




	CHAPTER 1 OVERVIEW OF μT-REALOS
	1.1 Supported Functions
	1.2 Directory Structure of Provided Files
	1.3 Tools Required for Development
	1.4 Structure of Product

	CHAPTER 2 BASIC CONCEPTS OF THE μT-REALOS KERNEL
	2.1 System Calls
	2.2 Execution Units of User Program
	2.2.1 Tasks
	2.2.2 Initial Routines
	2.2.3 Interrupt Handlers
	2.2.4 Time Event Handlers
	2.2.5 Error Routines
	2.2.6 Extended SVC Handlers
	2.2.7 Device Processing Functions

	2.3 Objects
	2.4 System States
	2.5 Enabling and Disabling Dispatching and Interrupts
	2.6 Precedence of Execution of Tasks and Handlers

	CHAPTER 3 μT-REALOS FUNCTIONS
	3.1 Overview of mT-REALOS Functions
	3.2 Task Management Functions
	3.3 Task Synchronization Functions
	3.4 Synchronization and Communication Functions
	3.4.1 Semaphore Functions
	3.4.2 Event Flag Functions
	3.4.3 Mailbox Functions

	3.5 Extended Synchronization and Communication Functions
	3.5.1 Mutex Functions
	3.5.2 Message Buffer Functions
	3.5.3 Rendezvous Port Functions

	3.6 Memory Pool Management Functions
	3.6.1 Fixed-size Memory Pool Functions
	3.6.2 Variable-size Memory Pool Functions

	3.7 Time Management Functions
	3.7.1 System Time Management Functions
	3.7.2 Cyclic Handler Functions
	3.7.3 Alarm Handler Functions

	3.8 Interrupt Management Functions
	3.9 System State Management Functions
	3.10 Subsystem Management Functions
	3.11 Device Management Functions
	3.12 Power Saving Functions
	3.13 Configuration Functions
	3.14 Debugging Assistance Functions

	CHAPTER 4 WRITING A USER PROGRAM
	4.1 Configuring a User Program
	4.2 Start Flow
	4.3 Reset Entry Routine
	4.4 Initial Routine
	4.5 Task
	4.6 Period Handler
	4.7 Alarm Handler
	4.8 Interrupt Handler
	4.9 Error Routine
	4.10 Power Saving Routine
	4.11 Extension SVC Handler
	4.12 Device Driver
	4.13 Notes when Writing a User Program

	CHAPTER 5 HOW TO CONSTRUCT A SYSTEM
	5.1 Steps of Constructing a System
	5.2 Create the μT-REALOS Project
	5.3 Setting of Configuration
	5.4 Setting of Linker Option
	5.5 Build a User System

	APPENDIX
	APPENDIX A Error Messages of the Configurator


