
FUJITSU MICROELECTRONICS
CONTROLLER MANUAL

FR Family
µT-Kernel Specifications-Compliant

SOFTUNETM µT-REALOS/FR
API REFERENCE

CM81-00321-1E

FUJITSU MICROELECTRONICS LIMITED

FR Family
µT-Kernel Specifications-Compliant

SOFTUNETM
 µT-REALOS/FR

API REFERENCE

Introduction

■ Objective of This Document
This document describes the µT-REALOS API and is intended for use by engineers who need to write

application programs for SOFTUNE µT-REALOS/FR (abbreviated in this document as µT-REALOS).

Refer to this document as required for information about the µT-REALOS API. Also refer to this manual

as required for details on using the µT-REALOS analyzer. It is also recommended that you read the

SOFTUNE µT-REALOS/FR User's Guide (referred to in this document as the User's Guide) before reading

this document.

µT-REALOS is a real-time OS based on the µT-Kernel specification that runs on the FR family of 32-bit

RISC controllers.

The µT-Kernel specification is an open specification for a real-time OS developed by the T-Engine Forum.

The µT-Kernel Specification Manual is available on the T-Engine Forum's website

(http://www.t-engine.org/). The original copyright to µT-Kernel belongs to Mr. Ken Sakamura, and

copyright to the µT-Kernel specification belongs to the T-Engine Forum. This product uses the source code

of µT-Kernel in accordance with µT-License in T-Engine Forum (www.t-engine.org).

■ Trademarks
REALOS and SOFTUNE are trademarks of Fujitsu Microelectronics Limited, Japan.

TRON is an abbreviation for "The Real-time Operating system Nucleus".

ITRON is an abbreviation for "Industrial TRON".

µITRON is an abbreviation for "Micro Industrial TRON".

T-Kernel and µT-Kernel are the names of computer specifications and do not indicate a specific product or

group of products.

The company names and brand names herein are the trademarks or registered trademarks of their respective

owners.
i

■ Overall Structure of This Document

This manual consists of 3 chapters and an appendix, as listed below.

CHAPTER 1 GENERAL DESCRIPTION

This chapter summarizes the basic information about using the µT-REALOS API.

CHAPTER 2 DATA TYPES

This chapter describes the C data types used by µT-REALOS.

CHAPTER 3 SYSTEM CALL INTERFACE

This chapter explains the µT-Kernel based system call interface supported by µT-REALOS.

APPENDICES

The Appendices describe the error codes, define macros, device driver interface, and points to note

 when porting from a µITRON OS. An alphabetic index of system calls is also included.

■ Other Relevant Manuals
Please refer to the following manuals as required when using this system.

SOFTUNE µT-REALOS/FR User's Guide

FR Family SOFTUNE C/C++ Compiler Manual V6

FR Family SOFTUNE Assembler Manual V6

FR Family SOFTUNE Linkage Kit Manual V6
ii

■ µT-REALOS Manuals
The following three manuals are available for µT-REALOS.

When using µT-REALOS for the first time, please read the SOFTUNE µT-REALOS/FR User's Guide first.

µT-Kernel Specifications
Compliant

SOFTUNE µT-REALOS/FR
User's Guide

Describes the overall capabilities of the µT-REALOS, how the user
programs are to be created and system configuration procedures.

µT-Kernel Specifications
Compliant

SOFTUNE µT-REALOS/FR
API Reference

Describes in details the µT-REALOS API.

µT-Kernel Specifications
Compliant

SOFTUNE REALOS
Analyzer Guide

Describes the detailed operations for the REALOS
Analyzer.
iii

■ How to Use This Manual

● Meaning of Symbols

This manual uses the following notation to describe the system call parameters.

Table Symbol Meanings

Symbol Explanation

[] Indicates that the elements inside the [] may be omitted.

| | Indicates that one of the listed elements is to be selected.

| Indicates that any of the listed elements can be selected.

: = Indicates that the element on the left takes the value of the element on the right.
iv

Copyright© 2008 FUJITSU MICROELECTRONICS LIMITED All rights reserved.
Copyright© 2006 T-Engine Forum All rights reserved.
This manual is made based on the specification of µT-Kernel with the formal agreement by the T-Engine Forum.

• The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.

• The information, such as descriptions of function and application circuit examples, in this document are presented solely for the
purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU
MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When
you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of
such use of the information. FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of
the use of the information.

• Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license
of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU
MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-
party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no
liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of
information contained herein.

• The products described in this document are designed, developed and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured,
could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss
(i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life
support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible
repeater and artificial satellite).
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or
damages arising in connection with above-mentioned uses of the products.

• Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.

• Exportation/release of any products described in this document may require necessary procedures in accordance with the
regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

• The company names and brand names herein are the trademarks or registered trademarks of their respective owners.
v

vi

CONTENTS

CHAPTER 1 GENERAL DESCRIPTION ... 1
1.1 Explanation of Terms .. 2
1.2 Overview of the µT-REALOS API ... 4
1.3 Implementation Definition and Implementation-specific Specifications .. 5
1.4 Extensions .. 8

CHAPTER 2 DATA TYPES ... 9
2.1 Standard Data Types and Define Macros ... 10
2.2 Data Types and Define Macros That Have a Specific Meaning in µT-Kernel 12

CHAPTER 3 SYSTEM CALL INTERFACE ... 15
3.1 List of System Calls .. 16
3.2 System Call Descriptions .. 22
3.3 System Calls for Task Management Function .. 24

3.3.1 tk_cre_tsk (Create Task) ... 25
3.3.2 tk_del_tsk (Delete Task) .. 28
3.3.3 tk_sta_tsk (Start Task) ... 29
3.3.4 tk_ext_tsk (Exit Task) .. 30
3.3.5 tk_exd_tsk (Exit and Delete Task) ... 31
3.3.6 tk_ter_tsk (Terminate Task) ... 32
3.3.7 tk_chg_pri (Change Task Priority) ... 34
3.3.8 tk_get_reg (Get Task Registers) ... 37
3.3.9 tk_set_reg (Set Task Registers) .. 39
3.3.10 tk_ref_tsk (Refer Task Status) ... 41

3.4 System Calls for Task-dependent Synchronization Function ... 45
3.4.1 tk_slp_tsk (Sleep Task) ... 46
3.4.2 tk_wup_tsk (Wakeup Task) ... 48
3.4.3 tk_can_wup (Cancel Wakeup Task) .. 50
3.4.4 tk_rel_wai (Release Wait) .. 52
3.4.5 tk_sus_tsk (Suspend Task) ... 54
3.4.6 tk_rsm_tsk (Resume Task) .. 56
3.4.7 tk_frsm_tsk (Force Resume Task) .. 58
3.4.8 tk_dly_tsk (Delay Task) ... 60

3.5 System Calls for Synchronization/Communication Function .. 61
3.5.1 Semaphore Function System Calls ... 62

3.5.1.1 tk_cre_sem (Create Semaphore) ... 63
3.5.1.2 tk_del_sem (Delete Semaphore) .. 65
3.5.1.3 tk_sig_sem (Signal Semaphore) .. 66
3.5.1.4 tk_wai_sem (Wait on Semaphore) ... 68
3.5.1.5 tk_ref_sem (Refer Semaphore Status) ... 70

3.5.2 Event Flag Function System Calls ... 72
3.5.2.1 tk_cre_flg (Create Event Flag) .. 73
3.5.2.2 tk_del_flg (Delete Event Flag) .. 75
vii

3.5.2.3 tk_set_flg (Set Event Flag) ... 76
3.5.2.4 tk_clr_flg (Clear Event Flag) ... 77
3.5.2.5 tk_wai_flg (Wait Event Flag) ... 78
3.5.2.6 tk_ref_flg (Refer Event Flag Status) ... 81

3.5.3 Mailbox Function System Calls ... 83
3.5.3.1 tk_cre_mbx (Create Mailbox) ... 84
3.5.3.2 tk_del_mbx (Delete Mailbox) .. 86
3.5.3.3 tk_snd_mbx (Send Message to Mailbox) ... 87
3.5.3.4 tk_rcv_mbx (Receive Message from Mailbox) .. 89
3.5.3.5 tk_ref_mbx (Refer Mailbox Status) ... 92

3.6 System Calls for Extended Synchronization/Communication Function .. 94
3.6.1 Mutex Function System Calls .. 95

3.6.1.1 tk_cre_mtx (Create Mutex) ... 96
3.6.1.2 tk_del_mtx (Delete Mutex) .. 98
3.6.1.3 tk_loc_mtx (Lock Mutex) ... 99
3.6.1.4 tk_unl_mtx (Unlock Mutex) ... 101
3.6.1.5 tk_ref_mtx (Refer Mutex Status) ... 103

3.6.2 Message Buffer Function System Calls ... 105
3.6.2.1 tk_cre_mbf (Create MessageBuffer) .. 106
3.6.2.2 tk_del_mbf (Delete MessageBuffer) ... 108
3.6.2.3 tk_snd_mbf (Send Message to MessageBuffer) .. 109
3.6.2.4 tk_rcv_mbf (Receive Message from MessageBuffer) ... 111
3.6.2.5 tk_ref_mbf (Refer MessageBuffer Status) .. 113

3.6.3 Rendezvous Function System Calls .. 115
3.6.3.1 tk_cre_por (Create Port for Rendezvous) ... 116
3.6.3.2 tk_del_por (Delete Port for Rendezvous) ... 118
3.6.3.3 tk_cal_por (Call Port for Rendezvous) .. 120
3.6.3.4 tk_acp_por (Accept Port for Rendezvous) .. 123
3.6.3.5 tk_fwd_por (Forward Rendezvous to Another Port) ... 126
3.6.3.6 tk_rpl_rdv (Reply Rendezvous) .. 129
3.6.3.7 tk_ref_por (Refer Port Status) .. 131

3.7 Memory Pool Management Function System Calls .. 133
3.7.1 Fixed-size Memory Pool Function System Calls ... 134

3.7.1.1 tk_cre_mpf (Create Fixed-size MemoryPool) ... 135
3.7.1.2 tk_del_mpf (Delete Fixed-size MemoryPool) .. 138
3.7.1.3 tk_get_mpf (Get Fixed-size Memory Block) ... 140
3.7.1.4 tk_rel_mpf (Release Fixed-size Memory Block) ... 142
3.7.1.5 tk_ref_mpf (Refer Fixed-size MemoryPool Status) ... 144

3.7.2 Variable-size Memory Pool Function System Calls ... 146
3.7.2.1 tk_cre_mpl (Create Variable-size MemoryPool) ... 147
3.7.2.2 tk_del_mpl (Delete Variable-size MemoryPool) ... 150
3.7.2.3 tk_get_mpl (Get Variable-size Memory Block) ... 152
3.7.2.4 tk_rel_mpl (Release Variable-size Memory Block) ... 154
3.7.2.5 tk_ref_mpl (Refer Variable-size MemoryPool Status) .. 156

3.8 Time Management Function System Calls ... 158
3.8.1 System Time Management Function System Calls ... 159

3.8.1.1 tk_set_tim (Set Time) ... 160
viii

3.8.1.2 tk_get_tim (Get Time) ... 162
3.8.1.3 tk_get_otm (Get Operating Time) ... 163
3.8.1.4 isig_tim (Signal Time) ... 164

3.8.2 Cyclic Handler Function System Calls ... 165
3.8.2.1 tk_cre_cyc (Create Cyclic Handler) .. 166
3.8.2.2 tk_del_cyc (Delete Cyclic Handler) ... 169
3.8.2.3 tk_sta_cyc (Start Cyclic Handler) ... 170
3.8.2.4 tk_stp_cyc (Stop Cyclic Handler) .. 171
3.8.2.5 tk_ref_cyc (Refer Cyclic Handler Status) .. 172

3.8.3 Alarm Handler Function System Calls ... 174
3.8.3.1 tk_cre_alm (Create Alarm Handler) .. 175
3.8.3.2 tk_del_alm (Delete Alarm Handler) .. 177
3.8.3.3 tk_sta_alm (Start Alarm Handler) ... 178
3.8.3.4 tk_stp_alm (Stop Alarm Handler) ... 179
3.8.3.5 tk_ref_alm (Refer Alarm Handler Status) ... 180

3.9 Interrupt Control Function System Calls ... 182
3.9.1 tk_def_int (Define Interrupt Handler) ... 183
3.9.2 tk_ret_int (Return from Interrupt Handler) ... 185
3.9.3 DI ... 186
3.9.4 EI ... 187
3.9.5 isDI .. 188

3.10 System Status Management Function System Calls .. 189
3.10.1 tk_rot_rdq (Rotate Ready Queue) ... 190
3.10.2 tk_get_tid (Get Task Identifier) .. 192
3.10.3 tk_dis_dsp (Disable Dispatch) ... 193
3.10.4 tk_ena_dsp (Enable Dispatch) .. 195
3.10.5 tk_ref_sys (Refer System Status) .. 196
3.10.6 tk_ref_ver (Refer Version Information) .. 198

3.11 Sub System Function System Calls .. 200
3.11.1 tk_def_ssy (Define Subsystem) ... 201
3.11.2 tk_ref_ssy (Refer Subsystem Status) .. 204

3.12 Device Management Function System Calls .. 205
3.12.1 tk_def_dev (Define Device) ... 206
3.12.2 tk_ref_idv (Refer Initial Device Information) .. 209
3.12.3 tk_opn_dev (Open Device) .. 210
3.12.4 tk_cls_dev (Close Device) ... 212
3.12.5 tk_rea_dev (Read Device) ... 213
3.12.6 tk_srea_dev (Synchronous Read Device) ... 215
3.12.7 tk_wri_dev (Write Device) .. 217
3.12.8 tk_swri_dev (Synchronous Write Device) .. 219
3.12.9 tk_wai_dev (Wait Device) .. 221
3.12.10 tk_sus_dev (Suspend Device) ... 223
3.12.11 tk_get_dev (Get Device) .. 225
3.12.12 tk_ref_dev (Refer Device) .. 226
3.12.13 tk_oref_dev (Refer Device) .. 228
3.12.14 tk_lst_dev (List Device) ... 230
3.12.15 tk_evt_dev (Event Device) ... 232
ix

APPENDIX ... 233
APPENDIX A Error Codes .. 234
APPENDIX B Define Macros .. 236
APPENDIX C Device Driver Interface .. 240
APPENDIX D Points to Note When Porting From a µITRON OS ... 254
APPENDIX E System Call Index .. 255

INDEX... 259
x

CHAPTER 1
GENERAL DESCRIPTION

This chapter summarizes the basic information about
using the µT-REALOS API.

1.1 Explanation of Terms

1.2 Overview of the µT-REALOS API

1.3 Implementation Definition and Implementation-specific Specifications

1.4 Extensions
1

CHAPTER 1 GENERAL DESCRIPTION
1.1 Explanation of Terms

This section explains the main terms used with µT-REALOS.

■ µT-REALOS Terminology
Table 1.1-1 lists the main terminology used with µT-REALOS. The terms listed below are also explained

in the User's Guide. Refer to the User's Guide for details.

Table 1.1-1 µT-REALOS Terminology List (1 / 2)

Term Meaning

Kernel The program that executes the OS functions is called the kernel.

User program
An application that uses the µT-REALOS functions. Referred to as a user program in this
manual to emphasize the fact that the program is written by the user.

Task
The basic unit of a user program. The operation of the user program is implemented as a
number of cooperating tasks.

Quasi-task

A handler that has its invoking task context is called a quasi-task. In the µT-Kernel
specifications, a quasi-task is equivalent to an extended SVC handler.
A quasi-task can enter the wait state and dispatch can be executed from within the quasi-task.
The restrictions on issuing system calls are the same as for a task.

Non-task
A unit of execution handled by the OS that is not a task. These consist of quasi-tasks, interrupt
handlers, and time event handlers.

Task-independent
portion

A handler that does not have a task context is called a task-independent portion. These consist
of interrupt handlers, time event handlers, and initialization routines. System calls such as
tk_slp_tsk that can place a task in the wait state cannot be used from a task-independent
portion.

Dispatch
Dispatch is the process of switching CPU execution between different tasks. The kernel
mechanism that implements the dispatch function is called the dispatcher.

Preempt The operation whereby a program's CPU execution rights are overridden.

API
The general name for the function call interface and programming conventions for user
programs provided by µT-REALOS (and µT-Kernel).

System call
The system calls are a set of routines that can be called directly from user programs to perform
OS functions.

Object
A resource managed by the kernel is called an object. Specific examples include tasks and also
the semaphores, mailboxes, and other resources used for synchronization and communication.

Context
The context is the environment in which a program executes (specifically, the copy of the CPU
register contents saved to memory when program execution is interrupted).

C language routines

Routines provided by the compiler that can be used when writing C programs. These routines
perform pre-processing to backup and restore the registers used by the program and to make the
C function arguments accessible from within the routine.
The "high-level language routines" in the µT-Kernel specification are equivalent to the "C
language routines" in µT-REALOS. (Because C is the only high-level language supported by
µT-REALOS.)
2

CHAPTER 1 GENERAL DESCRIPTION
Current priority
The current priority for task execution. The dispatcher switches between tasks based on this
priority. The priority can be changed from within the user program by using tk_chg_pri.
The term "priority" on its own typically means the "current priority".

Initial priority
This is the initial priority when the task is first started. The current priority and base priority for
the task are set to this initial priority value when the task starts. The initial priority can be
specified when the task is created but cannot be subsequently modified.

Base priority

This is the main priority for the task. It can be changed from within the user program by calling
tk_chg_pri.
Whereas the current priority can be modified temporarily by the OS when the mutex function is
used, it is subsequently returned to the base priority.
If the mutex function is not used, the current priority is always the same as the base priority.

Priority order

The priority order determines the order in which tasks are assigned execution rights when more
than one task is in the READY state. Execution rights are given first to the task with the highest
priority.
Tasks with higher priority value have higher priority. When there is more than one task with the
same priority value, the earlier a task entered the READY state, the higher its priority.

System down
A system down occurs if the kernel determines that the user system is unable to continue
execution. When a system down occurs, execution jumps to a specific address in the kernel
where it enters an infinite loop which halts user system execution.

Configurator

A utility used specifically for µT-REALOS to generate the kernel configuration (user-specified
functions such as the maximum task priority, maximum number of objects, and system stack
size).
Refer to "3.13 Kernel Configuration" and "5.3 Configuration Setting" in the User's Guide for
details.

Table 1.1-1 µT-REALOS Terminology List (2 / 2)

Term Meaning
3

CHAPTER 1 GENERAL DESCRIPTION
1.2 Overview of the µT-REALOS API

This section describes the elements that make up the µT-REALOS API.

■ Data Types
The µT-Kernel specification redefines the standard char, int and other basic types with type names specific

to µT-Kernel. The purpose is to be more rigorous about how these types are used so as to prevent

programming errors. See "CHAPTER 2 DATA TYPES" for details of the available data types.

■ System Calls
User programs can treat the system calls provided by µT-REALOS as C function calls and use them to

control program operation and reference the system status. Most system calls use the return value to return

an error code.

● System call format

Error code = system call function name (parameter,,);

Example: ercd = tk_del_tsk (task_id);

See "CHAPTER 3 SYSTEM CALL INTERFACE" for details of the system calls.

■ Error Codes
If an error occurs, the system calls return an error code with a negative value. If the operation is successful,

the system calls return E_OK or a positive value.

See "CHAPTER 3 SYSTEM CALL INTERFACE" for a list of error codes returned by system calls. Also,

"APPENDIX A Error Codes" contains a list of the error codes defined by µT-REALOS and their associated

meanings.
4

CHAPTER 1 GENERAL DESCRIPTION
1.3 Implementation Definition and Implementation-specific
Specifications

This section describes the implementation definition and implementation-specific
specifications.

■ Implementation Definition
The specifications that need to be defined specifically for each OS that implements the µT-Kernel

specification are called the "implementation definition". Note that the specifications covered by the

implementation definition are not compatible across different µT-Kernel compliant OSs.

Table 1.3-1 lists the implementation definition for µT-REALOS.

Table 1.3-1 µT-REALOS Implementation Definitions (1 / 3)

Category Implementation Definition Explanation

Operation

Interface to use when system calls are called from
programs written in assembly language.

Uses the procedure for calling C functions from
assembly language. Refer to "Chapter 4 Using the
fcc911s Command to Create an Object Program" in
the "FR Family SOFTUNE C/C++ Compiler
Manual" (henceforth referred to as the "compiler
manual") for details.

System call implementation Function call (software traps are not used).

Operation when certain system calls* are called
from task-independent portions

See Table 3.1-1 and "CHAPTER 3 SYSTEM
CALL INTERFACE".

Operation when an error occurs in a function that
does not return to the caller (tk_ext_tsk, tk_exd_tsk,
and tk_ret_int)

If a system call error routine is defined, the error
routine is called, except in the case of tk_ret_int.
The operation in the case of tk_ret_int is not
guaranteed.
If no error routine is defined, is not guaranteed.

System call function codes Function codes are not used in µT-REALOS.

Structure of mailbox message header
See the ■Description section in "3.5.3.3
tk_snd_mbx (Send Message to Mailbox)".

Rendezvous number allocation
The lower 16 bits contain the task ID and the upper
16 bits contain a unique value assigned sequentially
in the order the rendezvous are accepted.

Time event handlers with the TA_ASM attribute Not supported by µT-REALOS.
5

CHAPTER 1 GENERAL DESCRIPTION
Operation

Simultaneous activation of multiple interrupt, time
event, or other handlers.

If time event handlers become active at the same
time, a time event handler is executed after
execution of another time event handler is
completed.
If an interrupt with a higher priority occurs while an
interrupt handler is being executed, the process of
the interrupt handler in execution is suspended and
the higher priority interrupt handler is executed.
Then the process of the suspended interrupt handler
is resumed.
If an interrupt with a higher priority than that of a
timer interrupt occurs while the time event handler
is being executed, the process of the interrupt
handler in execution is suspended and the higher
priority interrupt handler is executed.
Then the process of the suspended time event
handler is resumed.
If a time event handler is activated while an
interrupt handler with a lower priority than that of
the timer interrupt is being executed, the process of
the interrupt handler in execution is suspended and
the time event handler is executed. Then the process
of the suspended interrupt handler is resumed.

State when an interrupt handler with the TA_ASM
attribute is started (whether or not system calls are
permitted, etc.)

Treated as a task-independent portion.

Operation when an interrupt occurs after clearing
the interrupt handler definition

A system down occurs.

Status of stack and registers on entering an interrupt
handler with the TA_ASM attribute, whether or not
system calls are permitted, method for calling
system calls, and method for returning from
interrupt handler without going via OS.

See "4.8 Interrupt Handlers" in the User's Guide.

Content of T_REGS, T_EIT, and T_CREGS
See "3.3.8 tk_get_reg (Get Task Registers)" and
"3.3.9 tk_set_reg (Set Task Registers)".

Parameter (iststs) for the CPU interrupt control
functions (DI, EI, and isDI)

See "3.9.3 DI", "3.9.4 EI" and "3.9.5 isDI".

Second parameter of interrupt handler Not used

Message buffer used to notify device information Used

E_CTX error check when tk_ret_int called from a
time event handler.

No error check is performed.

Definition and error generation conditions for
system objects that can trigger the E_OACV error.

Devices are defined as objects that can trigger the
E_OACV error. Also see "3.12 Device
Management Function System Calls" for details of
what conditions generate this error.

Table 1.3-1 µT-REALOS Implementation Definitions (2 / 3)

Category Implementation Definition Explanation
6

CHAPTER 1 GENERAL DESCRIPTION
*: Routines for which calling from task-independent portions is not explicitly permitted

■ Implementation-specific Definitions
The µT-Kernel specifications for which the OS behavior can differ depending on differences in the

hardware are called implementation-specific definitions. Note that the implementation-specific

specifications are not necessarily compatible across different µT-Kernel OS implementations.

Table 1.3-2 lists the µT-REALOS implementation-specific definitions.

Values

Maximum size of the wakeup request queue for
tk_wup_tsk

32767 (0x7fff)

Maximum nesting level for suspend requests using
tk_sus_tsk

32767 (0x7fff)

Maximum semaphore count 2147483647 (0x7fffffff)

Maximum available sub-system ID value
See "3.13 Kernel Configuration" in the User's
Guide.

Maximum available sub-system priority setting
(ssypri)

16

ssypri and resblksz values for tk_ref_ssy Undefined values

Value of tk_def_int dintno parameter Interrupt vector number

Maximum suspend prohibit request count for
devices

2147483647 (0x7fffffff)

Table 1.3-1 µT-REALOS Implementation Definitions (3 / 3)

Category Implementation Definition Explanation

Table 1.3-2 µT-REALOS Implementation-Specific Definitions

Category Implementation-Specific Definition Explanation

Definitions
Task format when the TA_ASM attribute is
specified

Not supported by µT-REALOS.

Operation

E_MACV error detection µT-REALOS does not use this error.

Implementation-specific generation of the E_CTX
error

Details of E_CTX error generation are described in
the system call explanations in "CHAPTER 3
SYSTEM CALL INTERFACE".
7

CHAPTER 1 GENERAL DESCRIPTION
1.4 Extensions

µT-REALOS has some extensions to the µT-Kernel specification. This section describes
these extensions.

■ Extensions
µT-REALOS supports all of the µT-Kernel functions except for the debugger support functions. It also

includes a number of extensions.

Table 1.4-1 lists the extensions to the µT-Kernel specification.

Table 1.4-1 µT-REALOS Extensions

Extension Definition

Initialization
routine

This extension applies to µT-REALOS only Specifies a program to execute before starting a task. See
"2.2.1 Tasks" in the User's Guide for details of this function.

Maximum number of initialization routines able
to be registered

1

Error routine

This extension applies to µT-REALOS only Specifies a program to execute when an error is detected
in the kernel.
See "2.3.1 task-independent portion" in the User's Guide for details of this function.

Maximum number of error routines able to be
registered

1

isig_tim
This extension applies to µT-REALOS only Function for updating the system time from a user
program.
See "3.8.1.4 isig_tim (Signal Time)" for details.

Interrupt
handler static
registration
function

This extension applies to µT-REALOS only. It registers static interrupt handlers.
See "3.12 Kernel Configuration" and "5.2 Kernel Configuration" in the User's Guide for details.
8

CHAPTER 2
DATA TYPES

This chapter describes the C data types used by
µT-REALOS.

2.1 Standard Data Types and Define Macros

2.2 Data Types and Define Macros That Have a Specific Meaning in
µT-Kernel
9

CHAPTER 2 DATA TYPES
2.1 Standard Data Types and Define Macros

This section describes the standard data types and define macros specified in the
µT-Kernel specification.

■ Standard Data Types
The standard data types and define macros consist of the base data types and define macros used to define

the data types described in "2.2 Data Types and Define Macros That Have a Specific Meaning in µT-

Kernel". Table 2.1-1 and Table 2.1-2 list the standard data types.

Table 2.1-1 Data Types (1 / 2)

Type Name C Data Type Meaning

B signed char Signed 8-bit integer

H signed short Signed 16-bit integer

W signed long Signed 32-bit integer

UB unsigned char Unsigned 8-bit integer

UH unsigned short Unsigned 16-bit integer

UW unsigned long Unsigned 32-bit integer

VB signed char 8-bit data of undefined type

VH signed short 16-bit data of undefined type

VW signed long 32-bit data of undefined type

VP void* Pointer to data of undefined type

_B volatile signed char

Adds the volatile declaration

_H volatile signed short

_W volatile signed long

_UB volatile unsigned char

_UH volatile unsigned short

_UW volatile unsigned long

INT signed int
Signed integer, where the number of bits depends on the
CPU bit width

UINT unsigned int
Unsigned integer, where the number of bits depends on the
CPU bit width

ID signed int General-purpose ID

MSEC signed long General-purpose time (ms)

(*FP)() void General-purpose function address
10

CHAPTER 2 DATA TYPES
Note: The difference between VB, VH and VW, and B, H and W is that, whereas the former indicate a

specific number of bits only and do not specify the type of the contained data value, the latter

explicitly indicate an integer.

Even parameters such as the task stack size which clearly cannot be negative use the signed integer

type (INT or W). This is due to the rule in the µT-Kernel specification that integers are treated as

signed values wherever possible. Similarly, timeout (TMO tmout) parameters also use the signed

integer type, and the value TMO_FEVR (=-1) has a specific meaning. Parameters that are used as

bit patterns use an unsigned data type.

(*FUNCP)() signed in General-purpose function address

BOOL signed int Boolean value

TC unsigned short TRON character code

Table 2.1-2 Define Macros

Macro Name Value Meaning

LOCAL static Defines a local symbol

EXPORT (none) Defines a global symbol

IMPORT extern Global symbol reference

TRUE 1 True Boolean value

FALSE 0 False Boolean value

TNULL ((TC)0) TRON code character string terminator

Table 2.1-1 Data Types (2 / 2)

Type Name C Data Type Meaning
11

CHAPTER 2 DATA TYPES
2.2 Data Types and Define Macros That Have a Specific
Meaning in µT-Kernel

This section describes the data types and define macros that have a specific meaning
in µT-Kernel.

■ Data Types That Have a Specific Meaning in µT-Kernel
Data types and define macros that have a specific meaning in µT-Kernel are those data types and define

macros that are used to explicitly indicate the meaning of parameters.

The tables from Table 2.2-1 to Table 2.2-3 list commonly used data types and define macros.

"Appendix B Define Macros" has a full list of define macros.

Table 2.2-1 Data Types That Have a Specific Meaning (Excluding Structures)

Type Name Data Type Meaning

FN INT Function code

RNO INT Rendezvous number

ATR UW Object or handler attribute

ER INT Error code

PRI INT Priority

TMO W Timeout

RELTIM UW Relative time

Table 2.2-2 Data Types That Have a Specific Meaning (Structures)

Type Name Member Data Type Meaning

SYSTIM
hi W Upper 32 bits of the system time

lo UW Lower 32 bits of the system time
12

CHAPTER 2 DATA TYPES
Note: The most representative data type is used for parameters that can contain more than one data type.

For example, although the return value from tk_cre_tsk can be either a task ID or an error code, the

function typically returns a task ID and therefore the ID data type is used.

Table 2.2-3 Define Macros That Have a Specific Meaning

Macro Name Value Meaning

NULL 0 Undefined pointer

TA_NULL 0 Does not specify any specific attribute

TMO_POL 0 Polling

TMO_FEVR (-1) Wait indefinitely

TSK_SELF 0 This task

TPRI_INI 0 Initial priority

TPRI_RUN 0 Priority of task in the RUN state
13

CHAPTER 2 DATA TYPES
14

CHAPTER 3
SYSTEM CALL

 INTERFACE

This chapter explains the µT-Kernel based system call
interface supported by µT-REALOS.

3.1 List of System Calls

3.2 System Call Descriptions

3.3 System Calls for Task Management Function

3.4 System Calls for Task-dependent Synchronization Function

3.5 System Calls for Synchronization/Communication Function

3.6 System Calls for Extended Synchronization/Communication
Function

3.7 Memory Pool Management Function System Calls

3.8 Time Management Function System Calls

3.9 Interrupt Control Function System Calls

3.10 System Status Management Function System Calls

3.11 Sub System Function System Calls

3.12 Device Management Function System Calls
15

CHAPTER 3 SYSTEM CALL INTERFACE
3.1 List of System Calls

This section explains the system calls supported by µT-REALOS.

■ List of System Calls
Table 3.1-1 lists the system calls provided by µT-REALOS.

For details of each system call, see "3.2 System Call Descriptions".

Table 3.1-1 List of System Calls (1 / 6)

Type Name Explanation

Call availability

Task
portion*1

Task-
independent

portion

Dispatch
disabled

Task
management
function

tk_cre_tsk Create task. ❍ ❍ ❍

tk_del_tsk Delete task. ❍ ❍ ❍

tk_sta_tsk Start task. ❍ ❍ ❍

tk_ext_tsk End invoking task. ❍ × ×

tk_exd_tsk End, and delete invoking task. ❍ × ×

tk_ter_tsk Forcibly terminate other task. ❍ ❍ ❍

tk_chg_pri Change the priority of task. ❍ ❍ ❍

tk_get_reg Get task register. ❍ × ❍

tk_set_reg Set task register. ❍ × ❍

tk_ref_tsk Reference task state. ❍ ❍ ❍

Task-dependent
synchronization
function

tk_slp_tsk
Place invoking task into wait
state.

❍ × ×

tk_wup_tsk Wake up other task. ❍ ❍ ❍

tk_can_wup
Cancel request for waking up
task.

❍ ❍ ❍

tk_rel_wai
Forcibly release other task from
wait state.

❍ ❍ ❍

tk_sus_tsk Place task into suspend state. ❍ ❍ ❍*2

tk_rsm_tsk
Resume task that is in suspend
state.

❍ ❍ ❍

tk_frsm_tsk
Forcibly resume task that is in
suspend state.

❍ ❍ ❍
16

CHAPTER 3 SYSTEM CALL INTERFACE
Task-dependent
synchronization
function

tk_dly_tsk
Place invoking task in delay wait
state.

❍ × ×

Synchronization/
communication
function

tk_cre_sem Create semaphore. ❍ ❍ ❍

tk_del_sem Delete semaphore. ❍ ❍ ❍

tk_sig_sem Return semaphore resources. ❍ ❍ ❍

tk_wai_sem Get semaphore resources. ❍ × ×

tk_ref_sem Reference semaphore state. ❍ ❍ ❍

tk_cre_flg Create event flag. ❍ ❍ ❍

tk_del_flg Delete event flag. ❍ ❍ ❍

tk_set_flg Set event flag. ❍ ❍ ❍

tk_clr_flg Clear event flag. ❍ ❍ ❍

tk_wai_flg Wait for event flag. ❍ × ×

tk_ref_flg Reference the state of event flag. ❍ ❍ ❍

tk_cre_mbx Create mail box. ❍ ❍ ❍

tk_del_mbx Delete mail box. ❍ ❍ ❍

tk_snd_mbx Send message to mail box. ❍ ❍ ❍

tk_rcv_mbx Receive message from mail box. ❍ × ×

tk_ref_mbx Reference the state of mail box. ❍ ❍ ❍

Extended
synchronous
communication
function

tk_cre_mtx Create mutex. ❍ ❍ ❍

tk_del_mtx Delete mutex. ❍ ❍ ❍

tk_loc_mtx Lock mutex. ❍ × ×

tk_unl_mtx Unlock mutex. ❍ × ❍

tk_ref_mtx Reference the state of mutex. ❍ ❍ ❍

tk_cre_mbf Create message buffer. ❍ ❍ ❍

Table 3.1-1 List of System Calls (2 / 6)

Type Name Explanation

Call availability

Task
portion*1

Task-
independent

portion

Dispatch
disabled
17

CHAPTER 3 SYSTEM CALL INTERFACE
Extended
synchronous
communication
function

tk_del_mbf Delete message buffer. ❍ ❍ ❍

tk_snd_mbf Send message to message buffer. ❍ ❍ ❍

tk_rcv_mbf
Receive message from message
buffer.

❍ × ×

tk_ref_mbf
Reference the state of message
buffer.

❍ ❍ ❍

tk_cre_por Create rendezvous port. ❍ × ❍

tk_del_por Delete rendezvous port. ❍ × ❍

tk_cal_por
Call rendezvous for rendezvous
port.

❍ × ×

tk_acp_por
Accept rendezvous for
rendezvous port.

❍ × ×

tk_fwd_por
Forward rendezvous for
rendezvous port.

❍ × ❍

tk_rpl_rdv
Reply to rendezvous for
rendezvous port.

❍ × ❍

tk_ref_por
Reference the state of rendezvous
port.

❍ ❍ ❍

Memory pool
management
function

tk_cre_mpf Create fixed-length memory pool. ❍ × ×

tk_del_mpf Delete fixed-length memory pool. ❍ × ×

tk_get_mpf Get fixed-length memory block. ❍ × ×

tk_rel_mpf
Return fixed-length memory
block.

❍ × ×

tk_ref_mpf
Reference the state of fixed-length
memory pool.

❍ × ×

tk_cre_mpl
Create variable-length memory
pool.

❍ × ×

tk_del_mpl
Delete variable-length memory
pool.

❍ × ×

tk_get_mpl
Get variable-length memory
block.

❍ × ×

Table 3.1-1 List of System Calls (3 / 6)

Type Name Explanation

Call availability

Task
portion*1

Task-
independent

portion

Dispatch
disabled
18

CHAPTER 3 SYSTEM CALL INTERFACE
Memory pool
management
function

tk_rel_mpl
Return variable-length memory
block.

❍ × ×

tk_ref_mpl
Reference the state of variable-
length memory pool.

❍ × ×

Time
management
function

tk_set_tim Set system time. ❍ ❍ ❍

tk_get_tim Reference current system time. ❍ ❍ ❍

tk_get_otm Reference system operation time. ❍ ❍ ❍

isig_tim Supply time tick. *3 × ❍ ❍

tk_cre_cyc Create cyclic handler. ❍ ❍ ❍

tk_del_cyc Delete cyclic handler. ❍ ❍ ❍

tk_sta_cyc Start cyclic handler operation. ❍ ❍ ❍

tk_stp_cyc Stop cyclic handler operation. ❍ ❍ ❍

tk_ref_cyc
Reference the state of cyclic
handler.

❍ ❍ ❍

tk_cre_alm Create alarm handler. ❍ ❍ ❍

tk_del_alm Delete alarm handler. ❍ ❍ ❍

tk_sta_alm Start alarm handler operation. ❍ ❍ ❍

tk_stp_alm Stop alarm handler operation. ❍ ❍ ❍

tk_ref_alm
Reference the state of alarm
handler.

❍ ❍ ❍

Table 3.1-1 List of System Calls (4 / 6)

Type Name Explanation

Call availability

Task
portion*1

Task-
independent

portion

Dispatch
disabled
19

CHAPTER 3 SYSTEM CALL INTERFACE
Interrupt
management
function

tk_def_int Define interrupt handler. ❍ ❍ ❍

tk_ret_int Return from interrupt handler. × ❍ ❍

DI Disable all external interrupts. ❍ ❍ ❍

EI Enable all external interrupts. ❍ ❍ ❍

isDI
Check the disabled state of
external interrupt.

❍ ❍ ❍

System status
management
function

tk_rot_rdq Rotate the priority order of tasks. ❍ ❍ ❍

tk_get_tid
Reference the task ID of running
task.

❍ ❍ ❍

tk_dis_dsp Disable dispatch. ❍ × ❍

tk_ena_dsp Enable dispatch. ❍ × ❍

tk_ref_sys Reference system status. ❍ ❍ ❍

tk_ref_ver Reference version. ❍ ❍ ❍

Subsystem
management
function

tk_def_ssy Define subsystem. ❍ ❍ ❍

tk_ref_ssy
Reference subsystem definition
information.

❍ ❍ ❍

Device
management
function

tk_opn_dev Open device. ❍ ❍ ❍

tk_cls_dev Close device. ❍ ❍ ❍

tk_rea_dev Start reading from device. ❍ ❍ ❍

tk_srea_dev
Start synchronous reading from
device.

❍ ❍ ❍

tk_wri_dev Start writing to device. ❍ ❍ ❍

tk_swri_dev
Start synchronous writing to
device.

❍ ❍ ❍

tk_wai_dev
Wait for completion of request
from device.

❍ ❍ ❍

tk_sus_dev Suspend device. ❍ ❍ ❍

tk_get_dev Get the device name of device. ❍ ❍ ❍

Table 3.1-1 List of System Calls (5 / 6)

Type Name Explanation

Call availability

Task
portion*1

Task-
independent

portion

Dispatch
disabled
20

CHAPTER 3 SYSTEM CALL INTERFACE
❍: Call enabled ×: Call disabled (System call returns an error or does not guarantee the operation.)

*1: "Task portion" under "Call availability" also includes "sub-task portion".

*2: E_CTX error occurs, if tk_sus_tsk is invoked by specifying a currently running task in the dispatch-disabled state.

*3: µT-REALOS-specific function (It is not defined in the µT-Kernel specifications; an additional function to µT-

REALOS)

Device
management
function

tk_ref_dev Get device information for device. ❍ ❍ ❍

tk_oref_dev Get device information for device. ❍ ❍ ❍

tk_lst_dev Get list of registered devices. ❍ ❍ ❍

tk_evt_dev
Send driver request event to
device.

❍ ❍ ❍

tk_def_dev Register device. ❍ ❍ ❍

tk_ref_idv Get initial information for device. ❍ ❍ ❍

Table 3.1-1 List of System Calls (6 / 6)

Type Name Explanation

Call availability

Task
portion*1

Task-
independent

portion

Dispatch
disabled
21

CHAPTER 3 SYSTEM CALL INTERFACE
3.2 System Call Descriptions

This section explains how to read the system call descriptions in 3.3 System Calls for
Task Management Function to 3.12 Device Management Function System Calls.

■ System Call Descriptions
<System call name> (<Function in English>)

<Function in Japanese>

Dispatch-disabled

Indicates whether or not the
call can be invoked from the
task portion

Indicates whether or not the
call can be invoked from the
dispatch-disabled state

Indicates whether or not the
call can be invoked from the
task-independent portion

: Enabled
: Disabled×

: Enabled
: Disabled×

: Enabled
: Disabled×

Task-independent portionTask portion

<C language interface>

<C language interface>

ID tskid = tk_cre_tsk(T_CTSK *pk_ctsk);
typedef struct t_ctsk{

VP exinf;
ATR tskatr;
FP task;
PRI itskpri;
INT stksz;
UB dsname[8];
VP bufptr;

}T_CTSK;

<Parameter>

[Input] Information about task creation (Packet to CreateTask)
Head address of packet for information of task creation

Data to be set in packet

exinf Extended information (Extended Information)

tskatr Task attribute (Task Attribute)

task Task start address (Task Start Address)

itskpri Initial task priority (Initial Task Priority)

stksz Stack size (Stack Size) (number of bytes)

dsname[8] DS object name (DS Object Name)

bufptr User buffer pointer (Buffer Pointer)

[Output] tskid Task ID or error code (TaskID or ErrorCode)

Error code as a function value
System call name

ParameterParameter declaratio
Parameter name

Structure of memory packet

Parameter descriptions

pk_ctsk
22

CHAPTER 3 SYSTEM CALL INTERFACE
<Error code>

<Errors to occur>

E_NOMEM -33 Insufficient memory

(Management block and stack area

cannot be secured)

E_LIMIT -34 Number of tasks exceeded the system limit

"Reserved" attribute (tskatr is invalid

or not available)

E_RSATR -11

E_PAR -17 Parameter error (pk_ctsk is invalid;

task and bufptr are invalid; itskpri

is invalid)

Errors that may occur
when this system call
is issued

<Dispatch trigger>

<Dispatch trigger>

This system call does not perform dispatch.
Trigger for this system call to
perform dispatch or the
availability of dispatch

<Explanation>

<Explanation>

It creates a task and assigns a task ID. To be more specific, it assigns TCB (Task
Control Block) to the task to be created, and initializes it based on information
such as itskpri, task and stksz.
Once created, the target task enters the dormant state (DORMANT).
itskpri is used to specify the initial value of the priority for startup of a task. The task
priority can be specified with a value ranging from 1 to 140. The smaller the number
is, the higher the priority is.
exinf can be used freely by the user to keep information about the target task. The
information specified here will be passed onto the task as an initial parameter and
also can be retrieved by tk_ref_tsk. Note that if you want a larger area to retain user
information or want to change its content during the operation, you should secure
sufficient memory for that purpose yourself and place the address of the memory
packet in exinf. The OS ignores the data in exinf.
tskatr describes a system attribute in the lower part and an implementation-specific
attribute in the upper part. The system attribute part of tskatr is specified as shown
below.

Explanation and notes
regarding the process of this
system call
23

CHAPTER 3 SYSTEM CALL INTERFACE
3.3 System Calls for Task Management Function

This section explains the system calls for the task management function.

■ System Calls for the Task Management Function
The task management function consists of the following ten system calls:

• tk_cre_tsk (Create Task)

• tk_del_tsk (Delete Task)

• tk_sta_tsk (Start Task)

• tk_ext_tsk (Exit Task)

• tk_exd_tsk (Exit and Delete Task)

• tk_ter_tsk (Terminate Task)

• tk_chg_pri (Change Task Priority)

• tk_get_reg (Get Task Registers)

• tk_set_reg (Set Task Registers)

• tk_ref_tsk (Refer Task Status)
24

CHAPTER 3 SYSTEM CALL INTERFACE
3.3.1 tk_cre_tsk (Create Task)

Creates a task.

■ C Language Interface
ID tskid = tk_cre_tsk (T_CTSK *pk_ctsk) ;

typedef struct t_ctsk {

VP exinf;

ATR tskatr;

FP task;

PRI itskpri;

INT stksz;

VP bufptr;

} T_CTSK;

■ Parameter

● Input

pk_ctsk Information about task creation (Packet of Create Task)

Head address of the packet for information about task creation

● Data to set in packet

exinf Extended Information

tskatr Task attribute (Task Attribute)

tskatr : = TA_HLNG | [TA_USERBUF]

task Task start address (Task Start Address)

itskpri Initial task priority (Initial Task Priority)

stksz Stack size (number of bytes) (Stack Size)

bufptr Address of user buffer (Buffer Pointer)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Attribute Value Meaning

TA_HLNG 0x00000001 Write the target task in C language

TA_USERBUF 0x00000020 Use the stack area specified by the user
25

CHAPTER 3 SYSTEM CALL INTERFACE
● Output

tskid Task ID (TaskID) or Error Code (ErrorCode)

■ Error Code
E_NOMEM -33 Insufficient memory

(Task stack area cannot be secured)

E_LIMIT -34 The number of tasks exceeds the system limit.

E_RSATR -11 "Reserved" attribute (Undefined value set in tskatr)

E_PAR -17 Parameter error (itskpri is 0 or smaller, or larger than the upper limit of the system;

stksz is smaller than the minimum stack size, or stksz is not in multiples of 4.

(TA_USEKBUF)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
It creates a task and assigns a task ID. To be more specific, it initializes a task to be created according to the

information in itskpri, tsk and stksz. Once created, the task enters dormant state.

Itskpri is used to specify the initial value of the priority for startup of a task.The task priority can be

specified with a value ranging from 1 to the highest value allowed for the system (highest priority set in the

configurator). The smaller the number is, the higher the priority is. It returns error E_PAR if itskpri is 0 or

smaller, or larger than the highest priority allowed for the system.

Exinf can be used freely by the user to keep information about the target task. The information specified

here will be passed onto the task as an initial parameter and also can be retrieved by tk_ref_tsk. Note that If

you need a larger area to retain user information or wish to change its content during the operation, you

should secure sufficient memory for that purpose by using a user program and place the address of the

memory packet in exinf. The OS ignores the data in exinf.

Tskatr is used to specify an attribute for the task. It ignores the following values. Also, it returns error

E_RSATR if an undefined attribute is specified in tskatr.

The µT-Kernel specifications define that TA_HLNG must be set when a task is written in C language.

µT-REALOS, however, only supports C language for writing tasks. Therefore, tasks are treated as being

written in C language, even when TA_ASM is specified (or when TA_HLNG is not specified).

Accordingly, although specifying TA_HLNG is not mandatory, you should always specify TA_HLNG in

any case for compatibility with the µT-Kernel specifications.

Attribute Value Meaning

TA_ASM 0x00000000 Object task is written in assembler.

TA_RNG0 0x00000000 Execute at protection level 0

TA_RNG1 0x00000100 Executed at protection level 1

TA_RNG2 0x00000200 Executed at protection level 2

TA_RNG3 0x00000300 Executed at protection level 3
26

CHAPTER 3 SYSTEM CALL INTERFACE
Each task has one stack. When TA_USERBUF is specified, bufptr becomes valid and stksz-byte memory

space starting from bufptr is used as the stack area. In this case, the stack is not provided by the OS. If

TA_USERBUF is not specified, bufptr is ignored and the OS secures the stack area. When OS secures it,

stksz is obtained by rounding to multiples of 8 bytes.

It returns error E_NOMEM if the memory pool area on the kernel does not have enough free space to

secure the stack area. If stksz is smaller than the minimum stack size (80 bytes) or if TA_VSEKBUF is set

in tskatr but the value is not in multiples of 4, it returns error E_PAR. It returns error E_LIMIT if this

system call is invoked when tasks have already been created up to the upper limit of the system (the

maximum number of tasks set in the configurator). Also, even if pk_ctk, tsk or bufptr is invalid, no error

check is performed and the operation is not guaranteed.

■ Additional Notes
The task stack for µT-REALOS requires at least 80 bytes of space to save registers. For information on

how to calculate the task stack size and how to write tasks, see "4.9 Tasks" in the "User's Guide".

When a task is terminated with a simple return from a function, the succeeding operation is not guaranteed.

Always end a task by invoking tk_ext_tsk or tk_exd_tsk.
27

CHAPTER 3 SYSTEM CALL INTERFACE
3.3.2 tk_del_tsk (Delete Task)

Deletes a task.

■ C Language Interface
ER ercd = tk_del_tsk (ID tskid) ;

■ Parameter

● Input

tskid Task ID

● Output

ercd Error code (ErrorCode)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (tskid is less than or equal to zero, or larger than the maximum

number of tasks)

E_NOEXS -42 Object does not exist

(The task specified by tskid does not exist)

E_OBJ -41 Object state is invalid

(Target task is not in the dormant state)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
It deletes the task specified by tskid. To be more specific, it moves the task specified by tskid from the

dormant state to the unregistered state and returns the stack area and task ID number to the unused state.

Returns error E_ID if the task ID specified by tskid is less than or equal to zero, or greater than the

maximum number of tasks (maximum number of tasks specified in the configurator). Returns with error

E_NOEXS if the task specified by the task ID in tskid does not exist.

This system call cannot specify its invoking task. If its invoking task is specified, it returns error E_OBJ, as

the invoking task is not in the dormant state. To delete the invoking task, invoke tk_exd_tsk.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
28

CHAPTER 3 SYSTEM CALL INTERFACE
3.3.3 tk_sta_tsk (Start Task)

Starts a task.

■ C Language Interface
ER ercd = tk_sta_tsk (ID tskid, INT stacd) ;

■ Parameter

● Input

tskid Task ID

stacd Task start code (Start Code)

● Output

ercd Error code (ErrorCode)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (tskid is less than or equal to zero, or greater than the maximum

number of tasks)

E_NOEXS -42 Object does not exist

(The task specified by tskid does not exist)

E_OBJ -41 Object state is invalid

(Target task is not in the dormant state)

■ Dispatch Trigger
When a task with a priority higher than that of the task that invoked this system call is started, it dispatched

to the started task.

■ Description
It starts the task indicated by tskid. To be more specific, it moves the task from the dormant state to the
executable state.

It returns error E_ID if the task ID specified by tskid is less than or equal to zero, or greater than the
maximum number of tasks (maximum number of tasks specified in the configurator). It returns with error
E_NOEXS if the task specified by the task ID in tskid does not exist.

Stacd allows you to set a parameter to be passed onto the task during its startup. This parameter can be
referenced from the target task and it can be used for simple message communication.

The task priority to be used at the startup of a task is the priority that was specified when the target task was
created.

This sytem call does not perform the queuing of start requests. In other words, if this system call is invoked
to target a task which is not in the dormant state, it returns error E_OBJ.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
29

CHAPTER 3 SYSTEM CALL INTERFACE
3.3.4 tk_ext_tsk (Exit Task)

Exits its invoking task.

■ C Language Interface
void tk_ext_tsk (void) ;

■ Parameter

● Input

None

● Output

None

Note: It does not return to the context that invoked the system call.

■ Error Code
Note: The following error may be detected. Even in that case, it does not return to the context that invoked

the system call. Therefore, no error code can be returned directly as the return value for the system

call.

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

■ Dispatch Trigger
When the task that invoked this system call is completed, it is then dispatched to the task with the next

highest priority.

■ Description
It completes its invoking task normally and places it into the dormant state.

When this system call makes the task dormant, its task priority returns to the priority used at startup.

■ Additional Notes
When a task is completed by this system call, the resources (memory block, semaphore, etc.) obtained by

the terminated task up to that point is not released automatically. For this reason, any resources which will

remain unused upon the completion of the task must be released prior to the completion.

This system call does not return to the context of the invoker. An error is detected in the OS, if this system

call is invoked in a task-independent portion or in the dispatch-disabled state. Even in that case, however, it

does not return to the invoker; therefore, the succeeding operation is not guaranteed.

Task portion ❍ Task-independent portion × Dispatch disabled ×
30

CHAPTER 3 SYSTEM CALL INTERFACE
3.3.5 tk_exd_tsk (Exit and Delete Task)

Exits and deletes its invoking task.

■ C Language Interface
void tk_exd_tsk (void) ;

■ Parameter

● Input

None

● Output

None

Note: It does not return to the context that invoked the system call.

■ Error Code
Note: The following error may be detected. Even in that case, it does not return to the context that invoked

the system call. Therefore, no error code can be returned directly as the return value for the system

call.

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

■ Dispatch Trigger
When the task that invoked this system call is completed, it is dispatched to the task with the next highest

priority.

■ Description
It completes its invoking task normally, and then deletes it. To be more specific, it places its invoking task

into the unregistered state.

■ Additional Notes
When a task is completed by this system call, the resources (memory block, semaphore, etc.) obtained by

the terminated task up to that point is not released automatically. For this reason, any resources which will

remain unused upon the completion of the task must be released prior to the completion.

This system call does not return to the context of the invoker. An error is detected in the OS, if this system

call is invoked in a task-independent portion or in the dispatch-disabled state. Even in that case, however, it

does not return to the invoker; therefore, the succeeding operation is not guaranteed.

Task portion ❍ Task-independent portion × Dispatch disabled ×
31

CHAPTER 3 SYSTEM CALL INTERFACE
3.3.6 tk_ter_tsk (Terminate Task)

Forcibly terminates other tasks.

■ C Language Interface
ER ercd = tk_ter_tsk (ID tskid) ;

■ Parameter

● Input

tskid Task ID

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (tskid is less than or equal to zero, or greater than the maximum

number of tasks)

E_NOEXS -42 Object does not exist

(The task specified by tskid does not exist)

E_OBJ -41 Object state is invalid

(Target task is in the dormant state or its invoking task)

■ Dispatch Trigger
When this system call forcibly terminates the task at the front of a waiting queue for the acquisition of a

semaphore, the transmission of a message buffer or the acquisition of the memory block for a variable-

length memory pool, the wait state of the following task may be released. If the priority of the task which

has just been released from the wait state is higher than that of the task that invoked this system call, it is

dispatched to the task which has just been released from the wait state.

■ Description
It forcibly terminates the task indicated by tskid. To be more specific, it places the target task indicated by

tskid into the dormant state. When the task returns to the dormant state, the priority for startup is restored.

It returns error E_ID if the task ID specified by tskid is less than or equal to zero, or greater than the

maximum number of tasks (maximum number of tasks specified in the configurator). It returns with error

E_NOEXS if the task specified by the task ID in tskid does not exist.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
32

CHAPTER 3 SYSTEM CALL INTERFACE
Even when the target task is in the wait state (including the suspend state), it is terminated as being released

from the wait state. In addition, if the target task is linked to any wait queue (such as for a semaphore), it is

removed from that wait queue upon the execution of this system call. This system call cannot specify its

invoking task. It returns error E_OBJ, if the invoking task is specified.

Table 3.3-1 summarizes the relationship between the state of the task targeted by this system call and its

execution result.

■ Additional Notes
When a task is completed by tk_ter_tsk, the resources (memory block, semaphore, etc.) obtained by the

terminated task up to that point is not released automatically. For this reason, the resources obtained by that

task must be released by the user program when terminating the task by tk_ter_tsk.

tk_ter_tsk forcibly terminates the target task, regardless of its execution state; therefore, it may negatively

impact the whole system. For this reason, care must be taken when forcibly terminating a task.

Table 3.3-1 State of Task Targeted by tk_ter_tsk and Execution Result

State of target task
ercd of

tk_ter_tsk
Process

Executable state (RUNNING, READY), (except invoking task) E_OK Forcible termination

Executing state (RUNNING), (invoking task) E_OBJ No operation

Wait state (WAITING, SUSPENDED, WAITING-SUSPENDED) E_OK Forcible termination

Dormant state (DORMANT) E_OBJ No operation

Unregistered state (NON-EXISTENT) E_NOEXS No operation
33

CHAPTER 3 SYSTEM CALL INTERFACE
3.3.7 tk_chg_pri (Change Task Priority)

Changes the task priority.

■ C Language Interface
ER ercd = tk_chg_pri (ID tskid, PRI tskpri) ;

■ Parameter

● Input

tskid Task ID (Task ID)

The following macro can be specified in addition to the values from 1 to the maximum

priority number.

tskpri Priority (Task Priority)

The following macro can be specified in addition to the values from 1 to the maximum

priority number.

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (tskid is negative or greater than the maximum number of tasks,

or called from a task-independent portion with TSK_SELF (=0) specified in tskid)

E_NOEXS -42 Object does not exist

(The task specified by tskid does not exist)

E_PAR -17 Parameter error

(tskpri is negative or greater than the maximum priority allowed for the system)

E_ILUSE -28 Invalid use (upper priority limit violated)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Name Value Meaning

TSK_SELF 0 invoking task

Name Value Meaning

TPRI_INI 0 Priority for startup
34

CHAPTER 3 SYSTEM CALL INTERFACE
■ Dispatch Trigger
It is dispatched to the target task, when the priority of the target task is set higher than that of its invoking

task. When the priority of its invoking task is set lower than those of other tasks which are ready to be

executed, it is dipatched to the task with the highest priority among the other tasks.

When a change is made to the priority of the tasks that exist in a waiting queue for the acquisition of a

semaphore, the transmission of a message buffer or the acquisition of the memory block for a variable-

length memory pool, the waiting order may be changed and the target task may be released from the wait

state. If the priority of the target task is higher than that of the task which invoked this system call, it is

dispatched to the target task.

■ Description
It changes the base priority of the task specified by tskid to the value specified by tskpri. When the base

priority matches the current priority (this condition is always met when the mutex function is not used), it

also changes the current priority of the task to the specified value so that it matches the base priority. For

the task priority, tskpri can specify any value ranging from 1 to the maximum priority allowed for the

system (the maximum priority set in the configurator). The smaller the value is, the higher the priority is.

It returns error E_PAR, if tskpri is negative or greater than the maximum priority allowed for the system.

Returns error E_ID if the task ID specified by tskid is negative or greater than the maximum number of

tasks (maximum number of tasks specified in the configurator). Returns with error E_NOEXS if the task

specified by the task ID in tskid does not exist.

When TSK_SELF(=0) is specified, it handles its invoking task as the target task. Note however that if

TSK_SELF is specified in tskid by the system call invoked from a task-independent portion, it returns error

E_ID. In addition, when TPRI_INI(=0) is specified in tskpri, it changes the base priority of the target task

to the priority for the startup of the task.

The priority changed by this system call remains valid until the completion of the task. When the task

returns to the dormant state, the priority for startup of the task is restored to the value specified when the

task is generated. Note however that the priority that was changed while the task was already in the

dormant state becomes valid and the updated priority is used when the task is started next time.

The following process is executed, when the current priority of the target task matches the base priority

upon the execution of this system call.

• If the target task is executable, the task priority order is changed according to the updated priority. The

priority order for the target task is regarded as the lowest among tasks with the same priority as the

updated priority.

• When the target task is linked to a waiting queue which is in a particular task priority order, it also

modifies the order within the waiting queue, according to the updated priority. If there are tasks with the

same priority as the updated priority, the target task is linked to the end of the queue.

It returns error E_ILUSE, if the base priority specified by tskpri is higher than the maximum priority of any

of the mutexes for the TA_CEILING attribute which the target task has locked or is waiting to lock. For

mutexes, see "3.5.1 Mutex Function" in the "User's Guide" and "3.6.1.1 tk_cre_mtx (Create Mutex)" to

"3.6.1.5 tk_ref_mtx (Refer Mutex Status)" in this document.
35

CHAPTER 3 SYSTEM CALL INTERFACE
■ Additional Notes
If invoking this system call results in a change in the order within a waiting queue that follows the task

priority order of the target task, the target task or another task waiting in that queue may be released from

the wait state (a waiting queue for the acquisition of a semaphore, the transmission of a message buffer, or

the acquisition of a variable-length memory pool).

If the target task is waiting for the mutexes of the TA_INHERIT attribute to be locked, changing the base

priority by this system call may require a progressive succession process of the priority.

When the mutex function is not used, the execution order of the invoking task becomes the lowest among

the tasks with the same priority, if this system call is invoked by specifying the base priority of the

invoking task as the updated priority. Therefore, the execution right can be abandoned by using this system

call.
36

CHAPTER 3 SYSTEM CALL INTERFACE
3.3.8 tk_get_reg (Get Task Registers)

Gets a task register.

■ C Language Interface
ER ercd = tk_get_reg (ID tskid, T_REGS *pk_regs, T_EIT *pk_eit , T_CREGS *pk_cregs) ;

typedef struct t_regs {

VP pc;

UW ps;

VP rp;

VW mdl;

VW mdh;

VW r[15];

} T_REGS;

typedef struct t_eit {

VP pc;

UW ps;

} T_EIT;

typedef struct t_cregs {

VP usp;

} T_CREGS;

■ Parameter

● Input

tskid Task ID

pk_regs Packet address that stores the value set in the general-purpose register (Packet of

Registers)

● Data to set in packet

pc PC register

ps PS register

rp RP register

mdl MDL register

mdh MDH register

r[15] General-purpose registers R0-R14

pk_eit Packet address that stores the register value to be temporarily saved in case of CPU

exception (Packet of EIT)

Task portion ❍ Task-independent portion × Dispatch disabled ❍
37

CHAPTER 3 SYSTEM CALL INTERFACE
● Data to set in packet

pc PC register

ps PS register

pk_cregs Packet address that stores the value set in the control register (Packet of Control

Registers)

● Data to set in packet

usp User stack pointer

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (tskid is negative or greater than the maximum number of tasks)

E_NOEXS -42 Object does not exist

(The task specified by tskid does not exist)

E_OBJ -41 Object state is invalid (target task = invoking task)

E_CTX -25 Context error (invoked from a task-independent portion)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
It references the content of the current register of the task by tskid.

It returns error E_ID if the task ID specified by tskid is negative or greater than the maximum number of

tasks (maximum number of tasks specified in the configurator). It returns with error E_NOEXS if the task

specified by tskid does not exist. Also, it returns error E_OBJ, if this system call is invoked for its invoking

task.

It does not reference the corresponding register, when NULL is specified in pk_regs, pk_eit and pk_cregs.

The content of pc and ps for pk_eit to be returned is the same value as pc and ps for pk_regs.

The referenced register value is the current register value of the target task; therefore, it is not always

necessarily the one which is being executed in a task portion.

When this system call is invoked from a task-independent portion, it returns error E_CTX.

pk_regs, pk_eit, Even if pk_cregs is invalid, no error check is performed and the operation is not

guaranteed.
38

CHAPTER 3 SYSTEM CALL INTERFACE
3.3.9 tk_set_reg (Set Task Registers)

Sets a task register.

■ C Language Interface
ER ercd = tk_set_reg (ID tskid, T_REGS *pk_regs, T_EIT *pk_eit , T_CREGS *pk_cregs) ;

typedef struct t_regs {

VP pc;

UW ps;

VP rp;

VW mdl;

VW mdh;

VW r[15];

} T_REGS;

typedef struct t_eit {

VP pc;

UW ps;

} T_EIT;

typedef struct t_cregs {

VP usp;

} T_CREGS;

■ Parameter

● Input

tskid Task ID

pk_regs Packet address that stores the value to be set in the general-purpose register (Packet

of Registers)

● Data to set in packet

pc PC register

ps PS register

rp RP register

mdl MDL register

mdh MDH register

r[15] General-purpose registers R0-R14

pk_eit Packet address that stores the value to be set in the register which is saved in case

of CPU exception (Packet of EIT)

Task portion ❍ Task-independent portion × Dispatch disabled ❍
39

CHAPTER 3 SYSTEM CALL INTERFACE
● Data to set in packet

pc PC register

ps PS register

pk_cregs Packet address that stores the value to be set in the control register (Packet of

Control Registers)

● Data to set in packet

usp User stack pointer

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (tskid is negative or greater than the maximum number of tasks)

E_NOEXS -42 Object does not exist

(The task specified by tskid does not exist)

E_OBJ -41 Object state is invalid (target task = invoking task)

E_CTX -25 Context error (invoked from a task-independent portion)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
It sets the tskid task register to specified content.

It returns error E_ID if the task ID specified by tskid is negative or greater than the maximum number of

tasks (maximum number of tasks specified in the configurator). It returns with error E_NOEXS if the task

specified by tskid does not exist. When this system call is invoked for its invoking task, it returns error

E_OBJ.

If NULL is specified in pk_regs, pk_eit and pk_cregs, the corresponding register is not set. If different

values are specified in pc and ps between pk_regs and pk_eit, the pc and ps values of pk_eit become valid.

The register values are not verified. Therefore, if an invalid register value is set, the system may

malfunction or hang up.

When this system call is invoked from a task-independent portion, it returns error E_CTX.

Even if pk_regs, pk_eit or pk_cregs is invalid, no error check is performed and the operation is not

guaranteed.
40

CHAPTER 3 SYSTEM CALL INTERFACE
3.3.10 tk_ref_tsk (Refer Task Status)

References the task state.

■ C Language Interface
ER ercd = tk_ref_tsk (ID tskid, T_RTSK *pk_rtsk) ;

typedef struct t_rtsk {

VP exinf;

PRI tskpri;

PRI tskbpri;

UINT tskstat;

UW tskwait;

ID wid;

INT wupcnt;

 INT suscnt;

} T_RTSK;

■ Parameter

● Input

tskid Task ID

The following macro can be specified in addition to the values from 1 to the

maximum task number.

*pk_rtsk Packet address that returns the task state

(Packet of Refer Task)

● Data to set in packet

exinf Extended Information

tskpri Current priority (Task Priority)

tskbpri Base priority (Task Base Priority)

tskstat Task state (Task State)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Name Value Meaning

TSK_SELF 0 Invoking task
41

CHAPTER 3 SYSTEM CALL INTERFACE
tskwait Wait factor (Task Wait Factor)

wid Waiting object ID (Waiting Object ID)

wupcnt Number of queued wakeup requests (Wakeup Count)

suscnt Number of suspend request nests (Suspend Count)

● Output

ercd Error code (Error Code)

State Value Meaning

TTS_RUN 0x00000001 Execution state (RUNNING)

TTS_RDY 0x00000002 Executable state (READY)

TTS_WAI 0x00000004 Wait state (WAITING)

TTS_SUS 0x00000008 Suspend state (SUSPENDED)

TTS_WAS 0x0000000c
Wait-suspend states
(WAITING-SUSPENDED)

TTS_DMT 0x00000010 Dormant state (DORMANT)

Wait factor Value Meaning

TTW_SLP 0x00000001 Wait by tk_slp_tsk

TTW_DLY 0x00000002 Wait by tk_dly_tsk

TTW_SEM 0x00000004 Wait by tk_wai_sem

TTW_FLG 0x00000008 Wait by tk_wai_flg

TTW_MBX 0x00000040 Wait by tk_rcv_mbx

TTW_MTX 0x00000080 Wait by tk_loc_mtx

TTW_SMBF 0x00000100 Wait by tk_snd_mbf

TTW_RMBF 0x00000200 Wait by tk_rcv_mbf

TTW_CAL 0x00000400 Wait for rendezvous call

TTW_ACP 0x00000800 Wait for acceptance of rendezvous

TTW_RDV 0x00001000 Wait for completion of rendezvous

(TTW_CAL|TT
W_RDV)

0x00001400 Wait for rendezvous call or completion

TTW_MPF 0x00002000 Wait by tk_get_mpf

TTW_MPL 0x00004000 Wait by tk_get_mpl
42

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (tskid is negative or greater than the maximum number of tasks,

or called from a task-independent portion with TSK_SELF (=0) specified in tskid)

E_NOEXS -42 Object does not exist

(The task specified by tskid does not exist)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
References the state of the target task indicated by tskid.

Its invoking task can be specified by setting TSK_SELF(=0) in tskid. If TSK_SELF is specified in tskid by

the system call invoked from a task-independent portion, it returns error E_ID. It returns with error

E_NOEXS if the task specified by tskid does not exist. It returns error E_ID if the task ID specified by

tskid is negative or greater than the maximum number of tasks (maximum number of tasks specified in the

configurator).

The state of the task is set to tskstat. If this system call is invoked for the interrupted task from the interrupt

handler, the execution state (TTS_RUN) is returned as tskstat.

When tskstat is set to TTS_WAI (including TTS_WAS), tskwait and wid take values shown in Table 3.3-2.

Table 3.3-2 Value for tskwait and wid

tskwait wid

TTW_SLP 0

TTW_DLY 0

TTW_SEM semid for waiting

TTW_FLG flgid for waiting

TTW_MBX mbxid for waiting

TTW_MTX mtxid for waiting

TTW_SMBF mbfid for waiting

TTW_RMBF mbfid for waiting

TTW_CAL porid for waiting

TTW_ACP porid for waiting

TTW_RDV 0

(TTW_CAL|TTW_RDV) 0

TTW_MPF mpfid for waiting

TTW_MPL mplid for waiting
43

CHAPTER 3 SYSTEM CALL INTERFACE
Unless tskstat is set to TTS_WAI (including TTS_WAS), tskwait and wid are both 0. Also, for tasks in the

dormant state, wupcnt and suscnt are both 0.

Even if pk_rtsk is invalid, no error check is performed and the operation is not guaranteed.

■ Additional Notes
This system call cannot be used to identify its invoking task ID. tk_get_tid should be used to identify its

invoking task ID.

In addition, if this system call is invoked from a task-independent portion after a system call, which

changes the task state such as tk_svs_tsk and tk_ter_tsk, is invoked to a task that has been in execution

before the task-independent portion is called, tskstat remains in the execution state.
44

CHAPTER 3 SYSTEM CALL INTERFACE
3.4 System Calls for Task-dependent Synchronization
Function

This section explains the system calls for the task-dependent synchronization function.

■ System Calls for Task-dependent Synchronization Function
The task-dependent synchronization function consists of the following eight system calls.

• tk_slp_tsk (Sleep Task)

• tk_wup_tsk (Wakeup Task)

• tk_can_wup (Cancel Wakeup Task)

• tk_rel_wai (Release Wait)

• tk_sus_tsk (Suspend Task)

• tk_rsm_tsk (Resume Task)

• tk_frsm_tsk (Force Resume Task)

• tk_dly_tsk (Delay Task)
45

CHAPTER 3 SYSTEM CALL INTERFACE
3.4.1 tk_slp_tsk (Sleep Task)

Moves its invoking task to the wakeup wait state.

■ C Language Interface
ER ercd = tk_slp_tsk (TMO tmout) ;

■ Parameter

● Input

tmout Specifies the timeout

The following macros can be specified in addition to the values from

0 to 0x7fffffff.

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_PAR -17 Parameter error (tmout ≤ (-2))

E_RLWAI -49 Forcibly restored from the wait state (tk_rel_wai called for task while in the wait

state)

E_TMOUT -50 Time-out

(Wait state released due to the passage of time)

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

■ Dispatch Trigger
When the task that invoked this system call enters the wait state, it is dispatched to the task with the next

highest priority.

Task portion ❍ Task-independent portion × Dispatch disabled ×

Name Value Meaning

TMO_FEVR -1 Wait indefinitely

TMO_POL 0 Polling
46

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
When the number of queued wakeup requests is 0, this system call moves its invoking task from the

running state to the wakeup wait state (the state waiting for tk_wup_tsk).

If tk_wup_tsk that targets this task is invoked before the time specified by tmout elapses, this system call is

completed normally. On the other hand, if tk_wup_tsk or tk_rel_wai that targets this task is not invoked

before the time specified by tmout elapses, it returns error E_TMOUT.

TMO_FEVR means an infinite timeout. In this case, it remains in the wait state, until tk_wup_tsk or

tk_rel_wai is invoked. If TMO_POL is specified, the task does not enter the wait state and it returns error

E_TMOUT.

The time unit for tmout is the same as for the system timer (= 1ms). If tmout is -2 or less, the function

returns with an E_PAR error.

When tk_rel_wai is invoked for a task in the wait state using this system call, it returns error E_RLWAI

and releases the wait state. When this system call is invoked in a task-independent portion or in the

dispatch-disabled state, it returns error E_CTX.

When the number of queued wakeup requests is larger than 0, this system call reduces that number by 1 but

does not enter the wait time, and continues processing the task that invoked the system call.

■ Additional Notes
If another task invokes tk_sus_tsk to the task that has been placed in the wait state by this system call, the

latter task enters the wait-suspend states.
47

CHAPTER 3 SYSTEM CALL INTERFACE
3.4.2 tk_wup_tsk (Wakeup Task)

Wakes up another task.

■ C Language Interface
ER ercd = tk_wup_tsk (ID tskid) ;

■ Parameter

● Input

tskid Task ID

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (tskid is negative or greater than the maximum number of tasks)

E_NOEXS -42 Object does not exist

(The task specified by tskid does not exist)

E_OBJ -41 Object state is invalid

(Target task is its invoking task or in the dormant state)

E_QOVR -43 Queue or nesting overflow

(Number of queued wakeup requests is larger than 32767)

■ Dispatch Trigger
When the task with a priority higher than that of the task that invoked this system call is woken up, it is

dispatched to the task that has woken up.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
48

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
If the task specified by tskid is in the wait state due to a tk_slp_tsk call, that wait state is released.

This system call cannot be used to specify its invoking task in tskid. If its invoking task is specified, it

returns error E_OBJ. It returns error E_ID if the task ID specified by tskid is negative or greater than the

maximum number of tasks (maximum number of tasks specified in the configurator). It returns with error

E_NOEXS if the task specified by tskid does not exist.

If the target task is neither executing tk_slp_tsk nor in the wait state, a wakeup request from this system call

is placed in the queue. Kernel manages the number of queued wakeup requests in units of tasks and its

initial value (value upon the execution of tk_sta_tsk) is 0. When this system call is invoked for a task which

is not in the wakeup wait state, the number of queued wakeup requests for the target task is increased by 1.

When tk_slp_tsk is invoked, on the other hand, the number of queued wakeup requests for the target task is

reduced by 1. If a task that has no queued wakeup requests invokes tk_slp_tsk, the task enters the wait

state.

The maximum number of queued wakeup requests is 32767. If the maximum number is exceeded while

invoking this system call, it returns error E_QOVR.
49

CHAPTER 3 SYSTEM CALL INTERFACE
3.4.3 tk_can_wup (Cancel Wakeup Task)

Disables a wakeup request from a task.

■ C Language Interface
INT wupcnt = tk_can_wup (ID tskid) ;

■ Parameter

● Input

tskid Task ID

The following macro can be specified in addition to the values from 1 to the

maximum task number.

● Output

wupcnt Number of queued wakeup requests (Wakeup Count)

Or, error code (Error Code)

■ Error Code
E_ID -18 Invalid ID number (tskid is negative or greater than the maximum number of tasks,

or called from a task-independent portion with TSK_SELF (=0) specified in tskid)

E_NOEXS -42 Object does not exist

(The task specified by tskid does not exist)

E_OBJ -41 Object state is invalid

(Target task is in the dormant state)

■ Dispatch Trigger
This system call does not perform dispatch.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Name Value Meaning

TSK_SELF 0 Invoking task
50

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
It returns the number of queued wakeup requests for the task indicated by tskid as the return value

(wupcnt), and simultaneously cancels all of the wakeup requests. In other words, it sets the number of

queued wakeup requests for the target task to 0.

If the invoking task is specified by the system call invoked from a task-independent portion, it returns error

E_ID. It returns error E_ID if the task ID specified by tskid is negative or greater than the maximum

number of tasks (maximum number of tasks specified in the configurator), or if TSK_SELF is specified by

an invocation from a task-independent portion. It returns with error E_NOEXS if the task specified by tskid

does not exist.

■ Additional Notes
This system call can be used to determine whether the process is completed within the time when waking

up a task periodically. In other words, it can be confirmed that the process for the previous request was not

completed in time, when the monitoring task invokes tk_can_wup and the return value (wupcnt) is 1 or

greater, before tk_slp_tsk is invoked upon the completion of the process for the previous wakeup request.

Therefore, some kind of action can be taken for the processing delay.
51

CHAPTER 3 SYSTEM CALL INTERFACE
3.4.4 tk_rel_wai (Release Wait)

Releases the wait state of other tasks.

■ C Language Interface
ER ercd = tk_rel_wai (ID tskid) ;

■ Parameter

● Input

tskid Task ID (Task ID)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (tskid is negative or greater than the maximum number of tasks)

E_NOEXS -42 Object does not exist

(The task specified by tskid does not exist)

E_OBJ -41 Object state is invalid

(Task is in the running, ready, suspended, or dormant state)

■ Dispatch Trigger
If the wait state of the task with a priority higher than that of the task that invoked this system call is

released, it is dispatched to the task which is released from the wait state.

When the wait state of the task to wait for the transmission of a message buffer or the acquisition of a

variable-length memory pool is released and the priority of that task is higher than that of the task that

invoked this system call, it is dispatched to the task which is released from the wait state.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
52

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
If the task specified by tskid is in the wait state, it is forcibly released.

If the task specified by tskid is not in the wait state, it returns error E_OBJ to the invoker. It returns error

E_ID if the task ID specified by tskid is negative or greater than the maximum number of tasks (maximum

number of tasks specified in the configurator). It returns with error E_NOEXS if the task specified by tskid

does not exist.

The task which is released from the wait state by this system call returns error E_RLWAI. This system call

does not perform the queuing of wait state release requests. In other words, if the target task is already in

the wait state, that wait state is released. Otherwise, it returns error E_OBJ. When this system call specifies

its invoking task, it also returns error E_OBJ.

This system call does not release the suspend state. If this system call is invoked for a task in the wait-

suspend states, the target task is released from the wait state and enters the suspend state. If it also needs to

be released from the suspend state, tk_rsm_tsk or tk_frsm_tsk should be invoked separately. Table 3.4-1

summarizes the relationship between the state of the task targeted by this system call and its execution

result.

■ Additional Notes
A function similar to a timeout can be realized, if a device such as an alarm handler is used to invoke this

system call after a specified period of time passes once a certain task enters the wait time.

The following differences are found between this system call and tk_wup_tsk.

- tk_wup_tsk only releases the wait state caused by tk_slp_tsk. This system call, on the other hand, also

releases the wait state caused by other factors (system calls such as tk_wai_flg, tk_wai_sem, and

tk_rcv_mbf).

- As for the return value of the system call that has entered the wait state, releasing the wait state caused

by tk_wup_tsk is regarded as normal completion (E_OK), while releasing the wait state caused by this

system call is treated as an error (E_RLWAI).

- In case of tk_wup_tsk, requests are queued even before the target task executes tk_slp_tsk. This system

call, on the other hand, returns error E_OBJ, unless the target task has already entered the wait state.

Table 3.4-1 State of Task Targeted by tk_rel_wai and Execution Result

State of target task ercd Process

Executable state (RUNNING, READY), (except invoking
task)

E_OBJ No operation

Executing state (RUNNING), (invoking task) E_OBJ No operation

Wait state (WAITING) E_OK Release wait state (Note 1)

Suspend state (SUSPENDED) E_OBJ No operation

Wait-suspend states (WAITING-SUSPENDED) E_OK Move to suspend state (Note 2)

Dormant state (DORMANT) E_OBJ No operation

Unregistered state (NON-EXISTENT) E_NOEXS No operation
53

CHAPTER 3 SYSTEM CALL INTERFACE
3.4.5 tk_sus_tsk (Suspend Task)

Places other tasks into the suspend state.

■ C Language Interface
ER ercd = tk_sus_tsk (ID tskid) ;

■ Parameter

● Input

tskid Task ID (Task ID)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (tskid is negative or greater than the maximum number of tasks)

E_NOEXS -42 Object does not exist

(The task specified by tskid does not exist)

E_OBJ -41 Object state is invalid

(Target task is its invoking task or in the dormant state)

E_CTX -25 Task in executing state has been specified in the dispatch-disabled state

E_QOVR -43 Queue or nesting overflow

(Number of nests for suspend requests is greater than 32767)

■ Dispatch Trigger
In the dispatch-enabled state, when this system call is invoked from a task-independent portion to a task in

the executing state, it is dispatched to the task with the next highest priority.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
54

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
It moves the task specified by tskid to the suspend state and temporarily suspends the execution of the task.

If the invoking task is specified in tskid, it returns error E_OBJ. It returns error E_ID if the task ID

specified by tskid is negative or greater than the maximum number of tasks (maximum number of tasks

specified in the configurator). It returns with error E_NOEXS if the task specified by tskid does not exist. If

a task in the executing state is specified in tskid in the dispatch-disabled state when this system call is

invoked from a task-independent portion or its invoking task, it returns error E_CTX.

The suspend state is released by invoking tk_rsm_tsk and tk_frsm_tsk. If the target task for this system call

is already in the wait state, the execution of the system call puts the target task into the wait-suspend states:

the regular wait state and the suspend state. Once the conditions for releasing the task from the wait state is

satisfied, the target task enters the suspend state. On the other hand, if tk_rsm_tsk or tk_frsm_tsk is invoked

for a task which is in the wait-suspend states, the target task returns to the same state as the previous wait

state.

If this system call is invoked more than once for a certain task, the task enters multiple suspend states. This

is called a nest of suspend requests. In this case, the target task returns to its original state, when the

tk_rsm_tsk system call is invoked for the same number of times as this system call is invoked (suscnt), or

when tk_frsm_tsk is invoked once. Therefore, this system call and the tk_rsm_tsk system call can be nested

in pairs. The maximum number for nesting suspend requests is 32767.

■ Additional Notes
Even when a certain task is in the wait state to get resources (waiting for a semaphore, for example) as well

as in the suspend state, resources are allocated (e.g. semaphore allocation) under the same conditions as for

when it is not in the suspend state. Even in the suspend state, the allocation of resources is not delayed, and

there is no difference in the conditions and priority for the allocation of resources and releasing of the wait

state.

tk_sus_tsk puts a task into the suspend state regardless of the execution conditions of the target task.

Therefore, it may negatively impact the whole system, if the process is suspended because the target task

enters the suspend state. For this reason, care must be taken when placing a task in the suspend state.
55

CHAPTER 3 SYSTEM CALL INTERFACE
3.4.6 tk_rsm_tsk (Resume Task)

Resumes a task which is in the suspend state.

■ C Language Interface
ER ercd = tk_rsm_tsk (ID tskid) ;

■ Parameter

● Input

tskid Task ID (Task ID)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (tskid is negative or greater than the maximum number of tasks)

E_NOEXS -42 Object does not exist

(The task specified by tskid does not exist)

E_OBJ -41 Object state is invalid

(Task is in the running, ready, suspended, or dormant state)

■ Dispatch Trigger
If the suspend state of the task with a priority higher than that of the task that invoked this system call is

released, it is dispatched to the task which is released from the suspend state.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
56

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
It releases the task specified by tskid from the suspend state. In other words, when the target task enters the

suspend state due to the earlier invoked tk_sus_tsk and its execution is suspended, it releases the task from

that state and resumes the execution.

If the invoking task is specified in tskid, it returns error E_OBJ. It also returns error E_OBJ, if the task

specified by tskid is not in the suspend state. Returns error E_ID if the task ID specified by tskid is negative

or greater than the maximum number of tasks (maximum number of tasks specified in the configurator). If

the task specified by tskid does not exist, it returns error E_NOEXS.

If the target task is in the wait-suspend states (a combination of the regular wait state and the suspend

state), the target task is released only from the suspend state upon the execution of this system call, and it

remains in the regular wait state.

The number of times for nesting suspend requests is reduced by 1 in this system call. Therefore, if

tk_sus_tsk has been invoked for the target task more than once, the target task remains in the suspend state

even after the completion of this system call.

■ Additional Notes
When a task in the executing or executable state enters the suspend state because of tk_sus_tsk, and then

the execution is resumed by this system call or tk_frsm_tsk, that task gets the lowest priority of all tasks

with the same priority. For example, the following operation is performed, when the following system call

is executed to task_A and task_B which both have the same priority.

tk_sta_tsk (tskid=task_A, stacd_A);

tk_sta_tsk (tskid=task_B, stacd_B);

/* In this case, the priority order is based on the startup order: task_A → task_B */

tk_sus_tsk (tskid=task_A);

tk_rsm_tsk (tskid=task_A);

/* In this case, the priority order is: task_B → ttask_A */
57

CHAPTER 3 SYSTEM CALL INTERFACE
3.4.7 tk_frsm_tsk (Force Resume Task)

Forcibly resumes a task that is in the suspend state.

■ C Language Interface
ER ercd = tk_frsm_tsk (ID tskid) ;

■ Parameter

● Input

tskid Task ID (Task ID)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (tskid is negative or greater than the maximum number of tasks)

E_NOEXS -42 Object does not exist

(The task specified by tskid does not exist)

E_OBJ -41 Object state is invalid

(Task is in the running, ready, suspended, or dormant state)

■ Dispatch Trigger
If the suspend state of the task with a priority higher than that of the task that invoked this system call is

released, it is dispatched to the task which is released from the suspend state.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
58

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
It releases the task indicated by tskid from the suspend state. In other words, when the target task enters the

suspend state due to the earlier invoked tk_sus_tsk and its execution is suspended, it releases the task from

that state and resumes the execution.

If the invoking task is specified in tskid, it returns error E_OBJ. It also returns error E_OBJ, if the target

task specified by tskid is not in the suspend state. It returns error E_ID if the task ID specified by tskid is

negative or greater than the maximum number of tasks (maximum number of tasks specified in the

configurator). If the task specified by tskid does not exist, it returns error E_NOEXS.

If the target task is in the wait-suspend states (a combination of the wait state and the suspend state), the

target task is released only from the suspend state upon the execution of this system call, and it remains in

the regular wait state.

Even if tk_sus_tsk has been invoked for the target task more than once,, all of the requests are released. In

other words, the suspend state is always released, and the execution can be resumed, as long as the target

task is not in the wait-suspend states.

■ Additional Notes
When a task in the executing or executable state enters the suspend state because of tk_sus_tsk, and then

the execution is resumed by tk_rsm_tsk or this system call, that task gets the lowest priority of all tasks

with the same priority. For example, the following operation is performed, when the following system call

is executed to task_A and task_B which both have the same priority.

tk_sta_tsk (tskid=task_A, stacd_A);

tk_sta_tsk (tskid=task_B, stacd_B);

/* In this case, the priority order is based on the startup order: task_A → ttask_B */

tk_sus_tsk (tskid=task_A);

tk_frsm_tsk (tskid=task_A);

/* In this case, the priority order is: task_B → ttask_A */
59

CHAPTER 3 SYSTEM CALL INTERFACE
3.4.8 tk_dly_tsk (Delay Task)

Places its invoking task into the delay wait state.

■ C Language Interface
ER ercd = tk_dly_tsk (RELTIM dlytim) ;

■ Parameter

● Input

dlytim Delay time (Delay Time)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

E_RLWAI -49 Forcibly restored from the wait state (tk_rel_wai called for task while in the wait

state)

■ Dispatch Trigger
When the task that invoked this system call enters the delay wait state, it is dispatched to the task with the

next highest priority.

■ Description
It temporarily suspends the execution of its invoking task and places it in the delay wait state {WAITING}.

dlytim is used to specify the time when the execution of the task should be suspended. The base time for

dlytim (time unit) is the same as for the system timer (= 1ms). When dlytim is set to 0, it performs no

operation and returns E_OK.

It counts the time elapsed even while the task that invoked this system call is in the dual wait state.

If tk_rel_wai is invoked for the task that has been put in the wait state by this system call, the system call

returns error E_RLWAI and releases the task from the wait state. If this system call is invoked in a task-

independent portion or the dispatch-disabled state, it returns error E_CTX.

Task portion ❍ Task-independent portion × Dispatch disabled ×
60

CHAPTER 3 SYSTEM CALL INTERFACE
3.5 System Calls for Synchronization/Communication
Function

This section explains the system calls for the synchronization/communication function.

■ System Calls for Synchronization/Communication Function
The synchronization/communication function consists of the following three types of function system calls.

• Semaphore function system calls

• Event flag function system calls

• Mailbox function system calls
61

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.1 Semaphore Function System Calls

This section explains the semaphore function system calls.

■ Semaphore Function System Calls
The semaphore function consists of the following five system calls.

• tk_cre_sem (Create Semaphore)

• tk_del_sem (Delete Semaphore)

• tk_sig_sem (Signal Semaphore)

• tk_wai_sem (Wait on Semaphore)

• tk_ref_sem (Refer Semaphore Status)
62

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.1.1 tk_cre_sem (Create Semaphore)

Creates a semaphore.

■ C Language Interface
ID semid = tk_cre_sem (T_CSEM *pk_csem) ;

typedef struct t_csem {

VP exinf;

ATR sematr;

INT isemcnt;

INT maxsem;

} T_CSEM;

■ Parameter

● Input

pk_csem Head address of the packet that passes information about semaphore creation

(Packet of Create Semaphore)

● Data to set in packet

exinf Extended Information

sematr Semaphore attribute (Semaphore Attribute)

sematr:= (TA_TFIFO || TA_TPRI) | (TA_FIRST || TA_CNT)

isemcnt Initial value of the semaphore count

(Initial Semaphore Count)

maxsem Maximum value of the semaphore count

(Maximum Semaphore Count)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Attribute Value Meaning

TA_TFIFO 0x00000000 Manages waiting tasks using a FIFO

TA_TPRI 0x00000001 Manages tasks based on priority

TA_FIRST 0x00000000
Gives higher priority to the task at the front
of the waiting queue

TA_CNT 0x00000002
Gives higher priority to the task with the
least requests
63

CHAPTER 3 SYSTEM CALL INTERFACE
● Output

semid Semaphore ID

Or, error code (Error Code)

■ Error Code
E_LIMIT -34 The number of semaphores is greater than the upper limit of the system.

E_RSATR -11 "Reserved" attribute (undefined value specified in sematr)

E_PAR -17 Parameter error (isemcnt is negative or greater than maxsem; maxsem is 0)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
It creates a semaphore and assigns a semaphore ID number. To be more specific, it creates a semaphore

with isemcnt as its initial value and maxsem as its maximum value (upper limit). When maxsem is set to a

value equivalent of or smaller than 0, or isemcnt is set to a negative value or a value greater than imaxsem,

it returns error E_PAR.

The user can use exinf freely to place information regarding the target semaphore. The information

specified here can be retrieved by tk_ref_sem. If you require a larger area to hold user data, or if you want

to be able to update data during use, reserve memory for this purpose yourself and insert the address of

your memory packet in exinf. The OS ignores the data in exinf.

You specify a semaphore attribute in sematr. If an undefined attribute is specified in sematr, it returns error

E_RSATR.

TA_TFIFO, TA_TPRI allows you to specify how tasks should be arranged in the waiting queue for the

semaphore. When the attribute is TA_TFIFO, the task waiting queue is FIF0. When the attribute is

TA_TPRI, the task waiting queue is arranged according to the priority order of tasks.

TA_FIRST and TA_CNT are used to specify the priority order for the acquisition of resources. The order

of the waiting queue cannot be changed by specifying TA_FIRST and TA_CNT. The order of the waiting

queue can only be determined by TA_TFIFO and TA_TPRI.

TA_FIRST is used to allocate resources to tasks, starting from the task at the front of the waiting queue,

regardless of the request count. Until the task at the front of the waiting queue gets a requested number of

resources, the following tasks in the queue cannot get resources.

TA_CNT is used to allocate resources to tasks, starting from the task which can get a requested number of

resources. To be more specific, it checks the request count of each task, one by one, starting from the task

at the front of the waiting queue, and then, allocates a requested number of resources to tasks to which it

can allocate the requested number of resources. Therefore, it does not allocate resources to tasks, starting

from the one with the smallest request count.

If this system call is invoked when semaphores have been created to the upper limit of the system

(maximum number of semaphores set in the configurator), it returns error E_LIMIT. Even if pk_csem is

invalid, no error check is performed and the operation is not guaranteed.
64

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.1.2 tk_del_sem (Delete Semaphore)

Deletes a semaphore.

■ C Language Interface
ER ercd = tk_del_sem (ID semid) ;

■ Parameter

● Input

semid Semaphore ID (Semaphore ID)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (semid is less than or equal to zero, or greater than the

maximum number of semaphores)

E_NOEXS -42 Object does not exist

(The semaphore specified by semid does not exist)

■ Dispatch Trigger
When a task with a priority higher than that of the task that invoked this system call is waiting in the

semaphore to be deleted, it is dispatched to the task with the higher priority.

■ Description
It deletes the semaphore specified by semid. To be more specific, it moves the target semaphore to the

uncreated state and releases the ID number.

It returns error E_ID if the semaphore ID specified by semid is less than or equal to zero, or greater than the

maximum number of semaphores (maximum number of semaphores specified in the configurator). If the

semaphore specified by semid does not exist, it returns error E_NOEXS.

This system call is also completed normally, when there is a task waiting in the target semaphore. The

waiting task returns error E_DLT in tk_wai_sem and the wait state is released.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
65

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.1.3 tk_sig_sem (Signal Semaphore)

Returns semaphore resources.

■ C Language Interface
ER ercd = tk_sig_sem (ID semid, INT cnt) ;

■ Parameter

● Input

semid Semaphore ID (Semaphore ID)

cnt Number of resources returned (Signal Count)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (semid is less than or equal to zero, or greater than the

maximum number of semaphores)

E_NOEXS -42 Object does not exist

(The semaphore specified by semid does not exist)

E_QOVR -43 Queue or nesting overflow

(Actual semaphore count is greater than the maximum semaphore count)

E_PAR -17 Parameter error (cnt is 0 or smaller)

■ Dispatch Trigger
When the semaphore wait state of the task with a priority higher than that of the task that invoked this

system call is released, it is dispatched to the task which is released from the wait state.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
66

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
It performs the operation to return the number of resources indicated in cnt to the semaphore specified by

semid.

It returns error E_ID if the semaphore ID specified by semid is less than or equal to zero, or greater than the

maximum number of semaphores (maximum number of semaphores specified in the configurator). If the

target semaphore does not exist, it returns error E_NOEXS. If cnt is 0 or smaller, it returns error E_PAR.

If any task is already waiting in the target semaphore, it checks the request count and allocates resources, if

available. It places the task to which resources have been allocated into the executable state. If resources

more than the total resources requested by multiple tasks are returned, the resources are allocated to

multiple tasks and the tasks become executable.

If the sum of a semaphore count value (semcnt) before this system call is invoked and cnt value is greater

than the maximum value for semaphore count (maxcnt), it returns error E_QOVR. In that case, no

resources are returned at all and also the count value (semcnt) does not change.

■ Additional Notes
It is also completed normally, when the semaphore count (semcnt) is larger than its initial value. To use a

semaphore for synchronization purposes (same as tk_wup_tsk to tk_slp_tsk), rather than for exclusive

control, the semaphore count (semcnt) must be larger than its initial value (isemcnt). To use a semaphore

for exclusive control purposes, on the other hand, you can check for an error that may be caused by an

increase in the count value, as long as the initial value of the semaphore count (isemcnt) is equivalent to the

maximum semaphore count (maxsem).
67

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.1.4 tk_wai_sem (Wait on Semaphore)

Gets semaphore resources.

■ C Language Interface
ER ercd = tk_wai_sem (ID semid, INT cnt, TMO tmout) ;

■ Parameter

● Input

semid Semaphore ID (Semaphore ID)

cnt Number of resource requests (Require Count)

tmout Specifies the timeout (Timeout)

The following macros can be specified in addition to the values from 0

to 0x7fffffff.

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (semid is less than or equal to zero, or greater than the

 maximum number of semaphores)

E_NOEXS -42 Object does not exist

(The semaphore specified by semid does not exist)

E_PAR -17 Parameter error (tmout ≤ (-2), cnt ≤ 0)

E_DLT -51 Wait object has been deleted.

(Target semaphore deleted while in the wait state)

E_RLWAI -49 Forcibly restored from the wait state (tk_rel_wai called for task while in the wait

state)

E_TMOUT -50 Polling failed or timed out

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

Task portion ❍ Task-independent portion × Dispatch disabled ×

Name Value Meaning

TMO_FEVR -1 Wait indefinitely

TMO_POL 0 Polling
68

CHAPTER 3 SYSTEM CALL INTERFACE
■ Dispatch Trigger
When the task that invoked this system call enters the semaphore wait state, it is dispatched to the task with

the next highest priority.

■ Description
It gets the number of resources indicated in cnt from the semaphore specified by semid.

It returns error E_ID, if semid is 0 or smaller, or larger than the maximum number of semaphores

(maximum number of semaphores set in the configurator). It returns error E_NOEXS, if the target

semaphore does not exist. It returns error E_PAR, if cnt is 0 or smaller.

The maximum wait time (timeout) can be specified in tmout. It returns error E_TMOUT if the tmout time

elapses before the wait release conditions are satisfied (or before tk_sig_sem is executed).

TMO_FEVR means an infinite timeout. In this case, it remains in the wait state until resources are obtained

or tk_rel_wai is invoked. If TMO_POL is specified, the task does not enter the wait state and it returns

error E_TMOUT.

The time unit for tmout is the same as for the system timer (= 1ms). If tmout is -2 or less, the function

returns with an E_PAR error.

Once resources are obtained, the task that invoked this system call continues to run, rather than entering the

wait state. In this case, the count value of that semaphore is duducted by cnt.

If resources cannot be obtained, the task that invoked this system call enters the wait state. In other words,

it is linked to the wait queue for that semaphore. In this case, the count value of the semaphore remains

unchanged.

If the target semaphore is deleted by tk_del_sem while still linked to the wait queue for the semaphore, the

wait state is released and this system call returns error E_DLT. If tk_rel_wai is invoked for the task linked

to the wait queue for the semaphore, the wait state is released and this system call returns error E_RLWAI.

If this system call is invoked in a task-independent portion or the dispatch-disabled state, it returns error

E_CTX.
69

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.1.5 tk_ref_sem (Refer Semaphore Status)

References the semaphore status.

■ C Language Interface
ER ercd = tk_ref_sem (ID semid, T_RSEM *pk_rsem) ;

typedef struct t_rsem {

VP exinf;

ID wtsk;

INT semcnt;

} T_RSEM;

■ Parameter

● Input

semid Semaphore ID (Semaphore ID)

pk_rsem Packet address to which to return the semaphore status

(Packet of Refer Semaphore)

● Data to set in packet

exinf Extended Information (Extended Information)

wtsk Waiting task present or not (Wait Task)

semcnt Current semaphore count value (Semaphore Count)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (semid is less than or equal to zero, or greater than the

maximum number of semaphores)

E_NOEXS -42 Object does not exist

(The semaphore specified by semid does not exist)

■ Dispatch Trigger
This system call does not perform dispatch.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
70

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
This system call references various types of status of the target semaphore specified by semid and returns

the current semaphore count value (semcnt), waiting task presence/absence (wtsk), and extended

information (exinf) as the return values.

The system call returns error E_ID if the semaphore ID specified by semid is less than or equal to zero, or

greater than the maximum number of semaphores (maximum number of semaphores specified in the

configurator). The system call returns error E_NOEXS if the target semaphore does not exist.

wtsk indicates the ID of the task waiting in the semaphore. When two or more tasks are waiting, the system

call returns the ID of the first task in the queue. If there is no task waiting, wtsk is 0.

Even when pk_rsem is invalid, no error checking is performed, where operation is not guaranteed.
71

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.2 Event Flag Function System Calls

This section describes the event flag function system calls.

■ Event Flag Function System Calls
The event flag function consists of the following six system calls:

• tk_cre_flg (Create Event Flag)

• tk_del_flg (Delete Event Flag)

• tk_set_flg (Set Event Flag)

• tk_clr_flg (Clear Event Flag)

• tk_wai_flg (Wait Event Flag)

• tk_ref_flg (Refer Event Flag Status)
72

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.2.1 tk_cre_flg (Create Event Flag)

Creates an event flag.

■ C Language Interface
ID flgid = tk_cre_flg (T_CFLG *pk_cflg) ;

typedef struct t_cflg {

VP exinf;

ATR flgatr;

UINT iflgptn;

} T_CFLG;

■ Parameter

● Input

pk_cflg Information about event flag creation

(Packet of Create Event Flag)

● Data to set in packet

exinf Extended Information (Extended Information)

flgatr Event flag attribute (Event Flag Attribute)

flgatr := (TA_TFIFO || TA_TPRI) | (TA_WMUL || TA_WSGL)

iflgptn Initial value of event flag

(Initial Event Flag Pattern)

● Output

flgid Event flag ID (Event Flag ID)

Or, error code (Error Code)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Attribute Value Meaning

TA_TFIFO 0x00000000 Manages waiting tasks using a FIFO

TA_TPRI 0x00000001 Manages tasks based on priority

TA_WSGL 0x00000000 Disallows two or more tasks to wait.

TA_WMUL 0x00000008 Allows two or more tasks to wait.
73

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_LIMIT -34 The number of event flags is greater than the system's upper limit.

E_RSATR -11 "Reserved" attribute (flgatr has been set to an undefined value.)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call creates an event flag with its event flag ID number assigned. Precisely, the system call

creates an event flag with an initial value of iflgptn.

The user can freely use exinf to hold information on the target event flag. The information specified here

can be taken out via tk_ref_flg. If you require a larger area to hold user data, or if you want to be able to

update data during use, reserve memory for this purpose yourself and insert the address of your memory

packet in exinf. The OS ignores the data in exinf.

flgatr specifies the attribute of the event flag. If flgatr specifies an undefined attribute, the system call

returns with an E_RSATR error.

Setting flgatr to TA_WSGL inhibits two or more tasks from entering the wait state at the same time. Setting

the parameter to TA_WMUL allows two or more tasks to enter the wait state at the same time.

TA_TFIFO or TA_TPRI allows you to specify how tasks are placed in the queue of event flags. If the

attribute is TA_TFIFO, the task wait queue operates as a FIFO. If the attribute is TA_TPRI, the task wait

queue is ordered by task priority. If you specify TA_WSGL, however, no queue is created and thus

TA_TFIFO and TA_TPRI make no difference in operation, whichever is specified.

When two or more tasks are waiting, the system checks whether their wait conditions have been satisfied,

sequentially from the beginning of the queue, and dequeues the tasks whose wait conditions have been

satisfied. Therefore, the first task in the queue is not always dequeued first. Tow or more tasks are

dequeued if their wait conditions have been satisfied.

This system call returns with an E_LIMIT error if issued while as many event flags as the system's upper

limit (the maximum number of event flags specified in the configurator) have been created.

Even when pk_cflg is invalid, no error checking is performed, where operation is not guaranteed.
74

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.2.2 tk_del_flg (Delete Event Flag)

Deletes an event flag.

■ C Language Interface
ER ercd = tk_del_flg (ID flgid) ;

■ Parameter

● Input

flgid Event flag ID (Event Flag ID)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (flgid is less than or equal to zero, or greater than the maximum

number of flags)

E_NOEXS -42 Object does not exist

(The event flag specified in flgid does not exist)

■ Dispatch Trigger
If a task higher in priority than the task having issued this system call is waiting in an event flag, the system

call dispatches control to the higher-priority task.

■ Description
This system call deletes the event flag specified by flgid. Precisely, the system call puts that event flag into

the ungenerated state and unassigns the ID number.

The system call returns error E_ID if the event flag ID specified in flgid is less than or equal to zero, or

greater than the maximum number of flags (maximum number of event flags specified in the configurator).

The system call returns error E_NOEXS if the specified event flag does not exist.

When the specified event flag has a task waiting for its condition to be satisfied, this system call also

terminates normally. For the waiting task, however, tk_wai_flg returns with an E_DLT error.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
75

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.2.3 tk_set_flg (Set Event Flag)

Sets an event flag.

■ C Language Interface
ER ercd = tk_set_flg (ID flgid, UINT setptn) ;

■ Parameter

● Input

flgid Event flag ID (Event Flag ID)

setptn Bit pattern to be set (Set Bit Pattern)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (flgid is less than or equal to zero, or greater than the maximum

number of flags)

E_NOEXS -42 Object does not exist

(The event flag specified in flgid does not exist)

■ Dispatch Trigger
If a task higher in priority than the task having issued this system call is released from the event flag wait

state, the system call dispatches control to the task released from the wait state.

■ Description
This system call sets the event flag specified by flgid to the bit pattern specified by setptn. That is, the

system call ORs the value of the event flag specified by flgid with the value of setptn.

The system call returns error E_ID if the event flag ID specified in flgid is less than or equal to zero, or

greater than the maximum number of flags (maximum number of event flags specified in the configurator).

The system call returns error E_NOEXS if the specified event flag does not exist.

This system call changes the value of the event flag and, if the task wait cancel condition for the task

waiting with tk_wai_flg is satisfied, releases that task from the wait state. Accordingly, the waiting task

enters the running state or ready state. If the waiting task is in the double-wait state, however, it enters the

suspend state.

If the system call is invoked with all the setptn bits set to 0, it terminates normally without manipulating the

relevant event flag at all.

A single event flag with an attribute of TA_WMUL allows more than one task to wait at a time. Even for

the event flag, therefore, tasks are queued. In that case, a single execution of this system call may dequeue

two or more tasks.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
76

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.2.4 tk_clr_flg (Clear Event Flag)

Clears an event flag.

■ C Language Interface
ER ercd = tk_clr_flg (ID flgid, UINT clrptn) ;

■ Parameter

● Input

flgid Event flag ID (Event Flag ID)

clrptn Bit pattern to be cleared (Clear Bit Pattern)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (flgid is less than or equal to zero, or greater than the maximum

number of flags)

E_NOEXS -42 Object does not exist

(The event flag specified in flgid does not exist)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call clears the bits set to 0 in clrptn to the value of the event flag specified by flgid. That is, the

system call ANDs the value of the event flag specified by flgid with the value of clrptn.

The system call returns error E_ID if the event flag ID specified in flgid is less than or equal to zero, or

greater than the maximum number of flags (maximum number of event flags specified in the configurator).

The system call returns error E_NOEXS if the specified event flag does not exist.

This system call does not release the task having the specified event flag from the wait state.

If the system call is invoked with all the clrptn bits set to 1, it does not manipulate the relevant event flag at

all. Even in that case, the system call terminates normally.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
77

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.2.5 tk_wai_flg (Wait Event Flag)

Waits for an event flag.

■ C Language Interface
ER ercd = tk_wai_flg (ID flgid, UINT waiptn, UINT wfmode, UINT *p_flgptn, TMO tmout) ;

■ Parameter

● Input

flgid Event flag ID (Event Flag ID)

waiptn Wait bit pattern (Wait Bit Pattern)

wfmode Wait mode (Wait Event Flag Mode)

wfmode := (TWF_ANDW || TWF_ORW) | [TWF_CLR || TWF_BITCLR]

tmout Specifies the timeout

The following macros can be specified in addition to the values from 0

to 0x7fffffff.

● Output

ercd Error code (Error Code)

p_flgptn Wait cancel bit pattern (Event Flag Bit Pattern)

Task portion ❍ Task-independent portion × Dispatch disabled ×

Mode Value Meaning

TWF_ANDW 0x00 AND wait

TWF_ORW 0x01 OR wait

TWF_CLR 0x10 Clear all bits

TWF_BITCLR 0x20 Clear only legitimate bits

Name Value Meaning

TMO_FEVR -1 Wait indefinitely

TMO_POL 0 Polling
78

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (flgid is less than or equal to zero, or greater than the maximum

number of flags)

E_NOEXS -42 Object does not exist

(The event flag specified in flgid does not exist)

E_PAR -17 Parameter error

(waiptn = 0, wfmode set to a value other than TWF_ANDW, TWF_ORW,

TWF_CLR, and TWF_BITCLR, tmout ≤ (-2))

E_OBJ -41 Object status invalid (Tow or more tasks waiting for an event flag with TA_WSGL

attribute)

E_DLT -51 Wait object has been deleted.

(Specified event flag deleted during wait time)

E_RLWAI -49 Forcibly restored from the wait state (tk_rel_wai called for task while in the wait

state)

E_TMOUT -50 Polling failed or timed out

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

■ Dispatch Trigger
If the task having issued this system call enters the event flag wait state, the system call dispatches control

to the task coming next in the order of priority.

■ Description
This system call waits until the event flag specified by flgid is set according to the wait cancel condition

specified by wfmode.

The system call returns error E_ID if the event flag ID specified in flgid is less than or equal to zero, or

greater than the maximum number of flags (maximum number of event flags specified in the configurator).

The system call returns error E_NOEXS if the specified event flag does not exist.

When the event flag specified by flgid already satisfies the wait cancel condition specified by wfmode, the

issuing task continues execution without entering the wait state. wfmode can specify the following four

types of mode:

• TWF_ORW: Wait until any of the bits specified by waiptn is set in the event flag specified by flgid.
(OR wait)

• TWF_ANDW: Wait until all of the bits specified by waiptn is set in the event flag specified by flgid.
(AND wait)

• TWF_CLR: When the condition is satisfied and the task is released from the wait state, event flag
values (all bits) are cleared to "0" (if TWF_CLR is specified). When the condition is
satisfied and the task is released from the wait state, event flag values remain
unchanged (if TWF_CLR is not specified).

• TWF_BITCLR: When the task is released from the wait state with the condition satisfied, only the bit
that matches the event flag wait cancel condition is cleared to 0. (Event flag value &=
wait cancel condition)
79

CHAPTER 3 SYSTEM CALL INTERFACE
If wfmode specifies a value other than TWF_ANDW, TWF_ORW, TWF_CLR, and TWF_BITCLR, the

system call returns with an E_PAR error.

p_flgptn specifies the address of the area that contains the event flag value (flgptn) for canceling the wait

state. When TWF_CLR or TWF_BITCLR is specified, the flgptn value is the value valid before the event

flag is cleared. flgptn satisfies the wait cancel condition. Note that, if the wait state is canceled either upon

timeout or by tk_rel_wai or tk_del_flg, flgptn becomes indeterminate.

The maximum wait time (timeout) can be specified in tmout. If the tmout time passes with the wait cancel

condition unsatisfied, the system call returns with an E_TMOUT error.

TMO_FEVR means an infinite timeout. In this case, the system call remains in the wait state until the

condition is satisfied or tk_rel_wai is issued. If TMO_POL is specified, the task does not enter the wait

state and it returns error E_TMOUT.

If a timeout occurs, the system call does not clear the event flag even with TWF_CLR or TWF_BITCLR

specified.

The time unit for tmout is the same as for the system timer (= 1ms). If tmout is -2 or less, the function

returns with an E_PAR error.

When an event flag with TA_WSGL attribute contains a waiting task, any other task cannot execute this

system call for that event flag. In that case, the task executing the system call later returns with an E_OBJ

error, whether or not the task enters the wait state (whether or not the wait cancel condition is satisfied).

In contrast, a single event flag with TA_WMUL attribute allows more than one task to wait at a time. Even

for the event flag, therefore, tasks are queued. In this case, a single execution of tk_set_flg may release two

or more tasks from their wait state.

If two or more tasks are queued in an event flag with TA_WMUL attribute, the following operations are

performed:

• The queue is based on FIFO or task priority. (Note, however, that the first task in the queue is not
always dequeued first, depending on the relationships with waiptn and wfmode.)

• If the queue contains a clear-specifying task, the flag is cleared when that task is dequeued.
• The task placed behind the clear-specifying task in the queue references the event flag that has already

been cleared.

If two or more tasks with the same priority are dequeued by tk_set_flg at the same time, they save their

priorities in the original event flag queue.

If waiptn specifies 0, the system call returns with an E_PAR error. When a task waiting for an event flag

exists and the event flag is deleted by tk_del_flg, the wait state is canceled and this system call returns with

an E_DLT error. If the tk_rel_wai system call is issued by the task in the event flag wait state, the wait state

is canceled and the system call returns with an E_RLWAI error. The system call returns error E_CTX if

called from a task-independent portion or when dispatch is disabled.

Even when p_flgptn is invalid, no error checking is performed, where operation is not guaranteed.

■ Additional Notes
When this system call specifies the AND of all bits (waiptn = 0xffffffff, wfmode = TWF_ORW) as its wait

cancel condition, it can transfer a message using a bit pattern of the CPU's bit width in combination with

tk_set_flg. In this case, however, the message with all the bits set to 0 cannot be sent. If the next message is

sent by tk_set_flg before the previous message is read by this system call, the previous message is erased.

This means that message queuing is not available. As specifying "waiptn = 0" results in an E_PAR error,

waiptn of the task waiting in the event flag is assured to be other than 0. If tk_set_flg sets all bits, therefore,

the task placed first in the queue is necessarily dequeued irrespective of the condition in which the task

waits for the event flag.
80

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.2.6 tk_ref_flg (Refer Event Flag Status)

References the event flag status.

■ C Language Interface
ER ercd = tk_ref_flg (ID flgid, T_RFLG *pk_rflg) ;

typedef struct t_rflg {

VP exinf;

ID wtsk;

UINT flgptn;

} T_RFLG;

■ Parameter

● Input

flgid Event flag ID (Event Flag ID)

pk_rflg Start address of the packet to which to return the event flag status

(Packet of Refer Event Flag)

● Output

ercd Error code (Error Code)

● Data returned in packet

exinf Extended Information (Extended Information)

wtsk Waiting task present or not (Wait Task)

flgptn Event flag bit pattern

(Event Flag Bit Pattern)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (flgid is less than or equal to zero, or greater than the maximum

number of flags)

E_NOEXS -42 Object does not exist

(The event flag specified in flgid does not exist)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
81

CHAPTER 3 SYSTEM CALL INTERFACE
■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call references various types of status of the event flag specified by flgid and returns the

current flag value (flgptn), waiting task presence/absence (wtsk), and extended information (exinf) as the

return values.

The system call returns error E_ID if the event flag ID specified in flgid is less than or equal to zero, or

greater than the maximum number of flags (maximum number of event flags specified in the configurator).

If the specified event flag does not exist, the system call returns with an E_NOEXS error.

Wtsk set to the ID of the task waiting in the specified event flag. If two or more tasks are waiting in the

event flag (only with the TA_WMUL attribute), the system call returns the ID of the first task in the queue.

When there is no task waiting, the wtsk value is 0.

Even when pk_rflg is invalid, no error checking is performed, where operation is not guaranteed.
82

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.3 Mailbox Function System Calls

This section describes the system calls for the mailbox function.

■ Mailbox Function System Calls
The mailbox function consists of the following five system calls:

• tk_cre_mbx (Create Mailbox)

• tk_del_mbx (Delete Mailbox)

• tk_snd_mbx (Send Message to Mailbox)

• tk_rcv_mbx (Receive Message from Mailbox)

• tk_ref_mbx (Refer Mailbox Status)
83

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.3.1 tk_cre_mbx (Create Mailbox)

Creates a mailbox.

■ C Language Interface
ID mbxid = tk_cre_mbx (T_CMBX* pk_cmbx) ;

typedef struct t_cmbx {

VP exinf;

ATR mbxatr;

} T_CMBX;

■ Parameter

● Input

pk_cmbx Mailbox generation information (Packet of Create Mailbox)

● Data to set in packet

exinf Extended Information (Extended Information)

mbxatr Mailbox attribute (Mailbox Attribute)

mbxatr:= (TA_TFIFO || TA_TPRI) | (TA_MFIFO || TA_MPRI)

● Output

mbxid Mailbox ID (Mailbox ID)

Or, error code (Error Code)

■ Error Code
E_LIMIT -34 The number of mailboxes is greater than the system's upper limit.

E_RSATR -11 "Reserved" attribute (mbxatr has been set to an undefined value.)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Attribute Value Meaning

TA_TFIFO 0x00000000 Manages waiting tasks using a FIFO

TA_TPRI 0x00000001 Manages tasks based on priority

TA_MFIFO 0x00000000 Manages messages based on FIFO.

TA_MPRI 0x00000002 Manages messages in order of priority.
84

CHAPTER 3 SYSTEM CALL INTERFACE
■ Dispatch Trigger
This system call does not perform dispatching.

■ Description
This system call creates a mailbox with its mailbox ID number assigned.

The user can freely use exinf to hold information on the target mailbox. The information specified here can

be taken out via tk_ref_mbx. If you require a larger area to hold user data, or if you want to be able to

update data during use, reserve memory for this purpose yourself and insert the address of your memory

packet in exinf. The OS ignores the data in exinf.

mbxatr specifies the attribute of the mailbox. The system call returns error E_RSATR if an undefined

attribute is specified.

TA_TFIFO or TA_TPRI allows you to specify how the tasks to receive messages are placed in the mailbox

queue. If the attribute is TA_TFIFO, the task wait queue operates as a FIFO. If the attribute is TA_TPRI,

the task wait queue is ordered by task priority.

TA_MFIFO or TA_MPRI allows you to specify how messages are placed in the message queue (the queue

of messages waiting to be received). If the attribute is TA_MFIFO, the message queue is based on FIFO. If

the attribute is TA_MPRI, the message queue is handled in order of message priority. The priority of each

message is specified by msgpri in the message packet (see Section 3.5.3.3 tk_snd_mbx (Send Message to

Mailbox)). Message priorities are positive values. 1 represents the highest priority; greater values represent

lower priorities. The maximum positive value expressed as the PRI type represents the lowest priority.

Messages with the same priority are handled based on FIFO.

This system call returns with an E_LIMIT error if invoked while as many mailboxes as the system's upper

limit (the maximum number of mailboxes specified in the configurator) have been created. Even when

pk_cmbx is invalid, no error checking is performed, where operation is not guaranteed.
85

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.3.2 tk_del_mbx (Delete Mailbox)

Deletes a mailbox.

■ C Language Interface
ER ercd = tk_del_mbx (ID mbxid) ;

■ Parameter

● Input

mbxid Mailbox ID (Mailbox ID)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(mbxid is less than or equal to zero, or greater than the maximum number of

mailboxes)

E_NOEXS -42 Object does not exist

(The mailbox specified in mbxid does not exist)

■ Dispatch Trigger
If a task higher in priority than the task having issued this system call is waiting in a mailbox deleted, the

system call dispatches control to the task released from the wait state.

■ Description
This system call deletes the mailbox specified by mbxid. Precisely, the system call puts that mailbox into

the ungenerated state and unassigns its ID number.

The system call returns error E_ID if the mailbox ID specified in mbxid is less than or equal to zero, or

greater than the maximum number of mailboxes (maximum number of mailboxes specified in the

configurator). The system call returns error E_NOEXS if the mailbox does not exist.

When the specified mailbox has a task waiting for a message, this system call also terminates normally. For

the waiting task, however, tk_rcv_mbx returns with an E_DLT error. Even when a message is still left in

the mailbox, the system call deletes the mailbox without causing an error.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
86

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.3.3 tk_snd_mbx (Send Message to Mailbox)

Sends a message to a mailbox.

■ C Language Interface
ER ercd = tk_snd_mbx (ID mbxid, T_MSG *pk_msg) ;

typedef struct t_msg {

VP msgque[1];

} T_MSG;

typedef struct t_msg_pri {

T_MSG msgque;

PRI msgpri;

} T_MSG_PRI;

■ Parameter

● Input

mbxid Mailbox ID (Mailbox ID)

pk_msg Message packet start address

(Packet of Message)

● Data to set in packet

msgque OS reserved area for message queue

msgpri Message priority (Message priority)

● Output

ercd Error code (Error Code)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
87

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(mbxid is less than or equal to zero, or greater than the maximum number of

mailboxes)

E_NOEXS -42 Object does not exist

(The mailbox specified in mbxid does not exist)

E_PAR -17 Parameter error

(msgpri is less than or equal to 0 while the specified mailbox is in order of message

priority.)

■ Dispatch Trigger
If a task higher in priority than the task having issued this system call is released from the mailbox wait

state, the system call dispatches control to the task released from the wait state.

■ Description
This system call sends the message packet starting at the address specified by pk_msg to the mailbox

specified by mbxid.

The system call returns error E_ID if the mailbox ID specified in mbxid is less than or equal to zero, or

greater than the maximum number of mailboxes (maximum number of mailboxes specified in the

configurator). The system call returns error E_NOEXS if the mailbox does not exist.

The system call passes only the start address (pk_msg value) upon reception without copying the contents

of the message packet. If the specified mailbox already contains a message waiting task, the first task in the

queue is dequeued, and pk_msg specified by this system call is sent to that task as the return value of

tk_rcv_mbx.

If the specified mailbox contains no task waiting for a message, in contrast, the sent message is placed in

the message queue in the mailbox. In either case, the task having issued this system call does not enter the

wait state. pk_msg specifies the start address of the message packet including the message header.

As the message header, use T_MSG for the mailbox with TA_MFIFO attribute or T_MSG_PRI for the

mailbox with TA_MPRI attribute. If you use a T_MSG message header for a mailbox with TA_MPRI

attribute, the resulting operation is not guaranteed due to the absence of the msgpri field.

The message header size is fixed-length and assigned by sizeof(T_MSG) or sizeof(T_MSG_PRI). An

actual message can be stored in the area that follows the message header. The size of the message itself is

not limited.

Even when pk_msg is invalid, no error checking is performed, where operation is not guaranteed.

■ Additional Notes
Message transmission by this system call is performed irrespective of the state of the receiving task. That

is, the system call performs asynchronous message transmission. Messages called by tasks are queued but

the tasks themselves are not queued. In other words, there is a message queue or receiving task queue but

there is no sending task queue.
88

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.3.4 tk_rcv_mbx (Receive Message from Mailbox)

Receives a message from a mailbox.

■ C Language Interface
ER ercd = tk_rcv_mbx (ID mbxid, T_MSG **ppk_msg, TMO tmout) ;

typedef struct t_msg {

VP msgque[1];

} T_MSG;

typedef struct t_msg_pri {

T_MSG msgque;

PRI msgpri;

} T_MSG_PRI;

■ Parameter

● Input

mbxid Mailbox ID (Mailbox ID)

ppk_msg Address of the variable to return the message packet

start address (Packet of Message)

tmout Specifies the timeout (Timeout)

The following macros can be specified in addition to the values from 0

to 0x7fffffff.

● Output

ercd Error code (Error Code)

● Data returned in packet

msgque OS reserved area for message queue

msgpri Message priority (Message priority)

Task portion ❍ Task-independent portion × Dispatch disabled ×

Name Value Meaning

TMO_FEVR -1 Wait indefinitely

TMO_POL 0 Polling
89

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(mbxid is less than or equal to zero, or greater than the maximum number

of mailboxes)

E_NOEXS -42 Object does not exist

(The mailbox specified in mbxid does not exist)

E_PAR -17 Parameter error (tmout ≤ (-2))

E_DLT -51 Wait object has been deleted.

(Specified mailbox deleted during wait time)

E_RLWAI -49 Forcibly restored from the wait state (tk_rel_wai called for task while in the wait

state)

E_TMOUT -50 Polling failed or timed out

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

■ Dispatch Trigger
If the task having issued this system call enters the mailbox wait state, the system call dispatches control to

the task coming next in the order of priority.

■ Description
This system call receives a message from the mailbox specified by mbxid.

The system call returns error E_ID if the mailbox ID specified in mbxid is less than or equal to zero, or

greater than the maximum number of mailboxes (maximum number of mailboxes specified in the

configurator). The system call returns error E_NOEXS if the mailbox does not exist.

The maximum wait time (timeout) can be specified in tmout. If the specified tmout time has passed with

the wait cancel condition unsatisfied (no message having arrived), the system call returns with an

E_TMOUT error. The time unit for tmout is the same as for the system timer (= 1ms). TMO_FEVR means

an infinite timeout. In that case, the system call remains in the wait state until a message arrives or

tk_rel_wai is issued. If TMO_POL is specified, the task does not enter the wait state and it returns error

E_TMOUT.

If tmout is less than or equal to -2, the system call returns with an E_PAR error.

If no message has been sent to the specified mailbox (the message queue is empty), the task having issued

this system call enters the wait state and is placed in the queue of tasks awaiting message arrival. When the

specified mailbox already contains a message, in contrast, the system call takes the first message out of the

message queue as a return value of ppk_msg.

If the specified mailbox is deleted by tk_del_mbx when the issuing task is in the message wait state, the

task is released from the wait state and the system call returns with an E_DLT error. If the message waiting

task issues the tk_rel_wai system call, the task is released from the wait state and the system call returns

with an E_RLWAI error. The system call returns error E_CTX if called from a task-independent portion or

when dispatch is disabled.

Even when ppk_msg is invalid, no error checking is performed, where operation is not guaranteed.
90

CHAPTER 3 SYSTEM CALL INTERFACE
■ Additional Notes
ppk_msg specifies the start address of the message packet including the message header. The message

header is T_MSG for the mailbox with TA_MFIFO attribute or T_MSG_PRI for the mailbox with

TA_MPRI attribute.
91

CHAPTER 3 SYSTEM CALL INTERFACE
3.5.3.5 tk_ref_mbx (Refer Mailbox Status)

References the mailbox status.

■ C Language Interface
ER ercd = tk_ref_mbx (ID mbxid, T_RMBX *pk_rmbx) ;

typedef struct t_rmbx {

VP exinf;

ID wtsk;

T_MSG *pk_msg;

} T_RMBX;

■ Parameter

● Input

mbxid Mailbox ID (Mailbox ID)

pk_rmbx Packet address to which to return the mailbox status

(Packet of Refer Mailbox)

● Output

ercd Error code (Error Code)

● Data returned in packet

extinf Extended information (Extended Information)

wtsk Waiting task present or not (Wait Task)

pk_msg Start address of the next message packet to be received

(Packet of Message)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(mbxid is less than or equal to zero, or greater than the maximum number of

mailboxes)

E_NOEXS -42 Object does not exist

(The mailbox specified in mbxid does not exist)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
92

CHAPTER 3 SYSTEM CALL INTERFACE
■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call references various types of status of the mailbox specified by mbxid and returns the next

message to be received (the first message in the message queue), waiting task presence/absence (wtsk), and

extended information (exinf) as the return values.

The system call returns error E_ID if the mailbox ID specified in mbxid is less than or equal to zero, or

greater than the maximum number of mailboxes (maximum number of mailboxes specified in the

configurator). If the specified mailbox does not exist, the system call returns with an E_NOEXS error.

Wtsk set to the ID of the task waiting in the specified mailbox. If two or more tasks are waiting in the

mailbox, the system call returns the ID of the first task in the queue. When there is no task waiting, wtsk

becomes 0.

pk_msg specifies the message to be received the next time tk_rcv_mbx is executed. When the message

queue contains no message, pk_msg becomes NULL. In any case, at least either "pk_msg = NULL" or

"wtsk = 0" is true.

Even when pk_rmbx is invalid, no error checking is performed, where operation is not guaranteed.
93

CHAPTER 3 SYSTEM CALL INTERFACE
3.6 System Calls for Extended Synchronization/
Communication Function

This section describes the system calls for the extended synchronization/
communication function.

■ System Calls for Extended Synchronization/Communication Function
The extended synchronization/communication function consists of the following three function system

calls:

• Mutex function system calls

• Message buffer function system calls

• Rendezvous function system calls
94

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.1 Mutex Function System Calls

This section describes the mutex function system call.

■ Mutex Function System Calls
The mutex function consists of the following five system calls:

• tk_cre_mtx (Create Mutex)

• tk_del_mtx (Delete Mutex)

• tk_loc_mtx (Lock Mutex)

• tk_unl_mtx (Unlock Mutex)

• tk_ref_mtx (Refer Mutex Status)
95

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.1.1 tk_cre_mtx (Create Mutex)

Creates a mutex.

■ C Language Interface
ID mtxid = tk_cre_mtx (T_CMTX *pk_cmtx) ;

typedef struct t_cmtx {

VP exinf;

ATR mtxatr;

PRI ceilpri;

} T_CMTX;

■ Parameter

● Input

pk_cmtx Information about mutex creation.

Packet address (Packet of Create Mutex)

● Data to set in packet

exinf Extended information (Extended Information)

mtxatr Mutex attribute (Mutex Attribute)

mtxatr:= (TA_TFIFO || TA_TPRI || TA_INHERIT || TA_CEILING)

ceilpri Mutex ceiling priority (Ceiling Priority)

● Output

mtxid Mutex ID (Mutex ID)

Or, error code (Error Code)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Attribute Value Meaning

TA_TFIFO 0x00000000 Manages waiting tasks using a FIFO

TA_TPRI 0x00000001 Manages tasks based on priority

TA_INHERIT 0x00000002 Priority inheritance protocol

TA_CEILING 0x00000003 Priority ceiling protocol
96

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_LIMIT -34 The number of mutexes is greater than the system's upper limit.

E_RSATR -11 "Reserved" attribute (mtxatr has been set to an undefined value.)

E_PAR -17 Parameter error (ceilpri is less than or equal to 0, or is greater than the system's

ceiling priority (with mtxatr specifying TA_CEILING).)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call creates a mutex with its mutex ID number assigned.

The user can freely use exinf to hold information on the target mutex. The information specified here can

be taken out via tk_ref_mtx. If you require a larger area to hold user data, or if you want to be able to

update data during use, reserve memory for this purpose yourself and insert the address of your memory

packet in exinf. The OS ignores the data in exinf.

Mtxatr specifies the attribute of the mutex. The system call returns error E_RSATR if an undefined

attribute is specified.

If mtxatr specifies TA_TFIFO, the mutex task queue is based on FIFO. If the attribute is TA_TPRI,

TA_INHERIT, or TA_CEILING, the mutex task queue is handled in order of task priority. When the

attribute is TA_INHERIT or TA_CEILING, the priority inheritance protocol or priority ceiling protocol is

used, respectively.

Ceilpri is valid only when mtxatr specifies TA_CEILING, specifying the ceiling priority of the mutex.

When ceilpri is less than or equal to 0, or is greater than the system's maximum priority (maximum priority

set in the configurator), the system call returns with an E_PAR error.

This system call returns with an E_LIMIT error if invoked while as many mutexes as the system's upper

limit (the maximum number of mutexes specified in the configurator) have been created. Even when

pk_cmtx is invalid, no error checking is performed, where operation is not guaranteed.
97

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.1.2 tk_del_mtx (Delete Mutex)

Deletes a mutex.

■ C Language Interface
ER ercd = tk_del_mtx (ID mtxid) ;

■ Parameter

● Input

mtxid Mutex ID (Mutex ID)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(mtxid is less than or equal to zero, or greater than the maximum number of

mutexes)

E_NOEXS -42 Object does not exist

(The mutex specified in mtxid does not exist)

■ Dispatch Trigger
If a task higher in priority than the task having issued this system call is waiting in a mutex deleted, the

system call dispatches control to the task released from the wait state.

■ Description
This system call deletes the mutex specified by mtxid. Precisely, the system call puts that mutex into the

ungenerated state and unassigns its ID number.

The system call returns error E_ID if the mutex ID specified by mtxid is less than or equal to zero or

greater than the maximum number of mutexes (maximum number of mutexes specified in the

configurator). The system call returns error E_NOEXS if the mutex does not exist.

Even when the specified mutex has a task waiting for locking, this system call terminates normally. For the

waiting task, however, the system call returns with an E_DLT error. When a mutex being locked by a task

is deleted, the number of mutexes currently being locked by the task decreases accordingly. If the mutex to

be deleted has the TA_INHERIT or TA_CEILING attribute, therefore, the current priority of the locking

task must be changed.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
98

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.1.3 tk_loc_mtx (Lock Mutex)

Locks a mutex.

■ C Language Interface
ER ercd = tk_loc_mtx (ID mtxid, TMO tmout) ;

■ Parameter

● Input

mtxid Mutex ID (Mutex ID)

tmout Specifies the timeout (Timeout)

The following macros can be specified in addition to the values from 0

to 0x7fffffff.

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(mtxid is less than or equal to zero, or greater than the maximum number of

mutexes)

E_NOEXS -42 Object does not exist

(The mutex specified in mtxid does not exist)

E_PAR -17 Parameter error (tmout ≤ (-2))

E_DLT -51 Wait object has been deleted.

(Specified mutex deleted during wait time)

E_RLWAI -49 Forcibly restored from the wait state (tk_rel_wai called for task while in the wait

state)

E_TMOUT -50 Polling failed or timed out

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

E_ILUSE -28 Illegal use (multi-lock, ceiling priority violation)

Task portion ❍ Task-independent portion × Dispatch disabled ×

Name Value Meaning

TMO_FEVR -1 Wait indefinitely

TMO_POL 0 Polling
99

CHAPTER 3 SYSTEM CALL INTERFACE
■ Dispatch Trigger
When the task having issued this system call enters the lock wait state, the system call dispatches control to

the task coming next in the order of priority.

■ Description
This system call locks the mutex specified by mtxid.

The system call returns error E_ID if the mutex ID specified by mtxid is less than or equal to zero or

greater than the maximum number of mutexes (maximum number of mutexes specified in the

configurator). The system call returns error E_NOEXS if the mutex does not exist.

The maximum wait time (timeout) can be specified in tmout. If the tmout time has passed with the wait

cancel condition unsatisfied (without unlocking the mutex), the system call returns with an E_TMOUT

error.

TMO_FEVR means an infinite timeout. In that case, the system call remains in the wait state until it

reserves the lock or tk_rel_wai is issued. If TMO_POL is specified, the task does not enter the wait state

and it returns error E_TMOUT.

The time unit for tmout is the same as for the system timer (= 1ms). If tmout is -2 or less, the function

returns with an E_PAR error.

When the specified mutex can be locked, the task having issued the system call terminates normally

without entering the wait state. In this case, the mutex enters the locked state. If it cannot be locked, the

issuing task enters the wait state. That is, the issuing task is placed in the queue for that mutex.

If the issuing task has already locked the specified mutex, the system call returns with an E_ILUSE (multi-

lock) error. When the attribute of the specified mutex is TA_CEILING, the system call returns with an

E_ILSUE (ceiling priority violation) if the base priority of the issuing task is higher than the ceiling priority

of the specified mutex.

If the specified mutex is deleted by tk_del_mtx when the issuing task is in the mutex wait state, the task is

released from the wait state and the system call returns with an E_DLT error. If the mutex waiting task

issues tk_rel_wai, the task is released from the wait state and the system call returns with an E_RLWAI

error. The system call returns error E_CTX if called from a task-independent portion or when dispatch is

disabled.

■ Additional Notes
• For the mutex with TA_INHERIT attribute

When the issuing task waits to lock a mutex and if the current priority of the task having locked the
mutex is lower than that of the issuing task, raise the current priority of the locking task to the same as
the current priority of the issuing task. If the task in the lock wait state leaves it without reserving the
lock (for example, due to timeout), lower the current priority of the task having locked the mutex to the
highest current priority below:

(a) Highest of the current priorities of the tasks waiting for locking the mutex

(b) Base priority of the locking task

• For the mutex with TA_CEILING attribute

When the issuing task reserves the lock and if the current priority of the issuing task is lower than the
ceiling priority of the mutex, lower the current priority of the issuing task to the ceiling priority of the
mutex.
100

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.1.4 tk_unl_mtx (Unlock Mutex)

Unlocks a mutex.

■ C Language Interface
ER ercd = tk_unl_mtx (ID mtxid) ;

■ Parameter

● Input

mtxid Mutex ID (Mutex ID)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(mtxid is less than or equal to zero, or greater than the maximum number of

mutexes)

E_NOEXS -42 Object does not exist

(The mutex specified in mtxid does not exist)

E_ILUSE -28 Illegal use (Mutex not locked by the issuing task)

E_CTX -25 Context error(Executed from a task-independent portion)

■ Dispatch Trigger
If a task higher in priority than the task having issued this system call is released from the lock wait state,

the system call dispatches control to the task released from the wait state.

If the priority of the issuing task is lowered as the specified mutex is unlocked, the system call may

dispatch control to a higher-priority task.

Task portion ❍ Task-independent portion × Dispatch disabled ❍
101

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
This system call unlocks the mutex specified by mtxid. If any task has been waiting for locking the mutex,

the system call releases the first task in the queue from the wait state and puts that task in the lock reserved

state.

The system call returns error E_ID if the mutex ID specified by mtxid is less than or equal to zero or

greater than the maximum number of mutexes (maximum number of mutexes specified in the

configurator). The system call returns error E_NOEXS if the mutex does not exist. If a mutex not locked by

the issuing task is specified, the system call returns with an E_ILUSE error.

■ Additional Notes
If the attribute of the unlocked mutex is TA_INHERIT or TA_CEILING, the current priority of the issuing

task must be lowered as follows. When there are no mutexes currently being locked by the issuing task as

the last one is unlocked, lower the current priority of the issuing task to its base priority. If there is still a

mutex currently being locked by the issuing task, lower the current priority of the issuing task to the highest

of the following priorities:

(a) Highest of the priorities of all the mutexes being locked

(b) Base priority

If the task terminates (goes dormant or unregistered) while locking mutexes, all the mutexes being locked

are unlocked automatically.
102

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.1.5 tk_ref_mtx (Refer Mutex Status)

References the mutex status.

■ C Language Interface
ER ercd = tk_ref_mtx (ID mtxid, T_RMTX *pk_rmtx) ;

typedef struct t_rmtx {

VP exinf;

ID htsk;

ID wtsk;

} T_RMTX;

■ Parameter

● Input

mtxid Mutex ID (Mutex ID)

pk_rmtx Packet address to which to return the mutex status

(Packet of Refer Mutex Status)

● Output

ercd Error code (Error Code)

● Data returned in packet

exinf Extended Information (Extended Information)

htsk ID of the currently locking task (Hold Task ID)

wtsk ID of the lock waiting task (Wait Task ID)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(mtxid is less than or equal to zero, or greater than the maximum number of

mutexes)

E_NOEXS -42 Object does not exist

(The mutex specified in mtxid does not exist)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
103

CHAPTER 3 SYSTEM CALL INTERFACE
■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call references various types of status of the mutex specified by mtxid and returns the locking

task ID (htsk), lock waiting task ID (wtsk), and extended information (exinf) as the return values.

The system call returns error E_ID if the mutex ID specified by mtxid is less than or equal to zero or

greater than the maximum number of mutexes (maximum number of mutexes specified in the

configurator). The system call returns error E_NOEXS if the mutex does not exist.

Htsk set to the ID of the task currently locking the specified mutex. When there is no locking task, htsk

becomes 0.

Wtsk set to the ID of the task waiting for the specified mutex. If two or more tasks are waiting, the system

call returns the ID of the first task in the queue. If there is no waiting task, wtsk = 0.

Even when pk_rmtx is invalid, no error checking is performed, where operation is not guaranteed.
104

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.2 Message Buffer Function System Calls

This section describes the system calls for the message buffer function.

■ Message Buffer Function System Calls
The message buffer function consists of the following five system calls:

• tk_cre_mbf (Create MessageBuffer)

• tk_del_mbf (Delete MessageBuffer)

• tk_snd_mbf (Send Message to MessageBuffer)

• tk_rcv_mbf (Receive Message from MessageBuffer)

• tk_ref_mbf (Refer MessageBuffer Status)
105

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.2.1 tk_cre_mbf (Create MessageBuffer)

Creates a message buffer.

■ C Language Interface
ID mbfid = tk_cre_mbf (T_CMBF *pk_cmbf) ;

typedef struct t_cmbf {

VP exinf;

ATR mbfatr;

INT bufsz;

INT maxmsz;

VP bufptr;

} T_CMBF;

■ Parameter

● Input

pk_cmbf Start address of the packet of message buffer generation information

(Packet of Create MessageBuffer)

● Data to set in packet

exinf Extended Information (Extended Information)

mbfatr Message buffer attribute (MessageBuffer Attribute)

mbfatr := (TA_TFIFO || TA_TPRI) | [TA_USERBUF]

bufsz Message buffer size (in bytes) (Buffer Size)

maxmsz Maximum message length (in bytes)

(Maximum Message Size)

bufptr Address of user buffer (Buffer Pointer)

● Output

mbfid Message buffer ID (MessageBuffer ID)

Or, error code (Error Code)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Attribute Value Meaning

TA_TFIFO 0x00000000 Manages waiting tasks using a FIFO

TA_TPRI 0x00000001 Manages tasks based on priority

TA_USERBUF 0x00000020 Uses the area specified by the user as the
message buffer area.
106

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_NOMEM -33 Insufficient memory

(Unable to allocate the message buffer area)

E_LIMIT -34 The number of message buffers is greater than the system's upper limit.

E_RSATR -11 "Reserved" attribute (mtxatr has been set to an undefined value.)

E_PAR -17 Parameter error (bufsz negative; maxmsz smaller than or equal to 0, bufsz is not in

multiples of 4 (if TA_USERBUF is specified))

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call creates a message buffer with its message buffer ID number assigned.

The user can freely use exinf to hold information on the target message buffer. The information specified

here can be taken out via tk_ref_mbf. If you require a larger area to hold user data, or if you want to be able

to update data during use, reserve memory for this purpose yourself and insert the address of your memory

packet in exinf. The OS ignores the data in exinf.

Mbfatr specifies the attribute of the message buffer. The system call returns error E_RSATR if an

undefined attribute is specified.

TA_TFIFO or TA_TPRI allows you to specify how the tasks to send messages when the buffer is full are

placed in the message buffer queue. If the attribute is TA_TFIFO, the task queue is based on FIFO. If the

attribute is TA_TPRI, the task queue is handled in order of task priority. Note, however, that the order for

the message queue is only FIFO. The order for the queue of message reception wait tasks is only FIF as

well.

If TA_USERBUF is specified, bufptr is enabled, where bufsz bytes of memory beginning at bufptr is used

as the message buffer area. In this case, the message buffer area is not provided by the OS. When

TA_USERBUF is not specified, bufptr is ignored and the message buffer area is allocated by the OS. You

can set bufsz to 0, thereby enabling completely synchronous communication without using any message

buffer. The first 4 bytes in the message buffer area is used by the kernel. In addition, if bufsz is not in

multiples of 8 bytes but TA_USERBUF is specified in mbfatr, bufsz is rounded up to multiples of 8 bytes.

If bufsz is negative, the system call returns with an E_PAR error. If the OS fails to allocate the message

buffer area, the system call returns with an E_NOMEM error.

Maxmsz specifies the maximum length of messages in bytes, which can be communicated via the message

buffer. If maxmsz is less than or equal to 0, the system call returns with an E_PAR error.

This system call returns with an E_LIMIT error if invoked while as many message buffers as the system's

upper limit (the maximum number of message buffers specified in the configurator) have been created.

Even when pk_cmbf or bufptr is invalid, no error checking is performed, where operation is not guaranteed.

Message buffers are objects which manage transmission and reception of variable-length messages. Their

difference from mailboxes (mbx) is that the message buffer copies the contents of the variable-length

message when sending and receiving it. There is also a feature that places the message sender in the wait

state when the buffer is full.
107

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.2.2 tk_del_mbf (Delete MessageBuffer)

Deletes a message buffer.

■ C Language Interface
ER ercd = tk_del_mbf (ID mbfid) ;

■ Parameter

● Input

mbfid Message buffer ID

(MessageBuffer ID)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(mbfid is less than or equal to zero, or greater than the maximum number of

message buffers)

E_NOEXS -42 Object does not exist

(The message buffer specified by mbfid does not exist)

■ Dispatch Trigger
If a task higher in priority than the task having issued this system call is waiting in a message buffer

deleted, the system call dispatches control to the task released from the wait state.

■ Description
This system call deletes the message buffer specified by mbfid. Precisely, the system call puts that message

buffer into the ungenerated state and unallocates its ID number and the buffer area for messages.

The system call returns error E_ID if the message ID specified by mbfid is less than or equal to zero or

greater than the maximum number of message buffers (maximum number of message buffers specified in

the configurator). The system call returns error E_NOEXS if the message buffer does not exist.

Even when the specified message buffer has a task waiting for message reception or transmission, this

system call terminates normally. For the waiting task, however, the system call returns with an E_DLT

error. Even when a message is still left in the specified message buffer, the system call deletes the message

buffer without causing an error, when the message contained therein is accordingly lost.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
108

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.2.3 tk_snd_mbf (Send Message to MessageBuffer)

Sends a message to a message buffer.

■ C Language Interface
ER ercd = tk_snd_mbf (ID mbfid, VP msg, INT msgsz, TMO tmout) ;

■ Parameter

● Input

mbfid Message buffer ID

(MessageBuffer ID)

msgsz Outgoing message size (in bytes) (Message Size)

msg Outgoing message start address (Message)

tmout Specifies the timeout (Timeout)

The following macros can be specified in addition to the values from 0

to 0x7fffffff.

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(mbfid is less than or equal to zero, or greater than the maximum number of

message buffers)

E_NOEXS -42 Object does not exist

(The message buffer specified by mbfid does not exist)

E_PAR -17 Parameter error (msgsz ≤ 0, msgsz > maxmsz, tmout ≤ (-2))

E_DLT -51 Wait object has been deleted.

(Specified message buffer deleted during wait time)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Name Value Meaning

TMO_FEVR -1 Wait indefinitely

TMO_POL 0 Polling
109

CHAPTER 3 SYSTEM CALL INTERFACE
E_RLWAI -49 Forcibly restored from the wait state (tk_rel_wai called for task while in the wait

state)

E_TMOUT -50 Polling failed or timed out

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state

(tmout is not TMO_POL))

■ Dispatch Trigger
If a task higher in priority than the task having issued this system call is released from the message buffer

reception wait state, the system call dispatches control to the task released from the wait state. If the task

having issued this system call enters the message buffer transmission wait state, the system call dispatches

control to the task coming next in the order of priority.

■ Description
This system call sends the message starting at the address specified by msg to the message buffer specified

by mbfid.

The system call returns error E_ID if the message ID specified by mbfid is less than or equal to zero or

greater than the maximum number of message buffers (maximum number of message buffers specified in

the configurator). The system call returns error E_NOEXS if the message buffer does not exist.

The message size is specified by msgsz. That is, msgsz bytes starting at msg are copied to the message

queue in the message buffer specified by mbfid. The message queue is implemented by a ring buffer.

If msgsz is less than or equal to 0, or is greater than maxmsz specified in k_cre_mbf, the system call returns

with an E_PAR error.

The maximum wait time (timeout) can be specified in tmout. If the specified tmout time has passed with

the wait cancel condition unsatisfied (sufficient free space cannot be allocated for the buffer), the system

call returns with an E_TMOUT error.

TMO_FEVR means an infinite timeout. In this case, the system call remains in the wait state until free

space can be allocated for the buffer or tk_rel_wai is issued. If TMO_POL is specified, the task does not

enter the wait state, even when the buffer does not have enough free space, and it returns error E_TMOUT.

The time unit for tmout is the same as for the system timer (= 1ms). If tmout is -2 or less, the function

returns with an E_PAR error.

If the buffer is short of free space so that the message starting at msg cannot be placed in the message

queue, the task having issued this system call enters the message transmission wait state and is placed in the

transmission queue to wait for free space in the buffer. The queue is handled based on FIFO or in order of

task priority, depending on the setting made when tk_cre_mbf is issued.

If executed from a task-independent portion or in the dispatch disabled state, the system call returns with an

E_CTX error. If the specified message buffer is deleted by tk_del_mbf when the issuing task is in the

message transmission wait state, the task is released from the wait state and the system call returns with an

E_DLT error. If the message transmission waiting task issues tk_rel_wai, the task is released from the wait

state and the system call returns with an E_RLWAI error.

No error check is performed even if msg is invalid. The operation in this case is not guaranteed.
110

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.2.4 tk_rcv_mbf (Receive Message from MessageBuffer)

Receives a message from a message buffer.

■ C Language Interface
INT msgsz = tk_rcv_mbf (ID mbfid, VP msg, TMO tmout) ;

■ Parameter

● Input

mbfid Message buffer ID

(MessageBuffer ID)

msg Address to hold an incoming message (Message)

tmout Specifies the timeout (Timeout)

The following macros can be specified in addition to the values from 0

to 0x7fffffff.

● Output

msgsz Received message size (in bytes)

(Message size)

Or, error code (Error Code)

■ Error Code
E_ID -18 Invalid ID number

(mbfid is less than or equal to zero, or greater than the maximum number of

message buffers)

E_NOEXS -42 Object does not exist

(The message buffer specified by mbfid does not exist)

E_PAR -17 Parameter error (tmout ≤ (-2))

E_DLT -51 Wait object has been deleted.

(Specified message buffer deleted during wait time)

Task portion ❍ Task-independent portion × Dispatch disabled ×

Name Value Meaning

TMO_FEVR -1 Wait indefinitely

TMO_POL 0 Polling
111

CHAPTER 3 SYSTEM CALL INTERFACE
E_RLWAI -49 Forcibly restored from the wait state (tk_rel_wai called for task while in the wait

state)

E_TMOUT -50 Polling failed or timed out

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

■ Dispatch Trigger
If the task having issued this system call enters the message buffer reception wait state, the system call

dispatches control to the task coming next in the order of priority. If a task higher in priority than the task

having issued this system call is released from the message buffer transmission wait state, the system call

dispatches control to the task released from the wait state.

■ Description
This system call receives a message from the message buffer specified by mbfid and stores the message in

the area starting at msg. That is, the system call copies the content of the first message in the message

queue in the message buffer specified by mbfid to msgsz bytes starting at msg.

The system call returns error E_ID if the message ID specified by mbfid is less than or equal to zero or

greater than the maximum number of message buffers (maximum number of message buffers specified in

the configurator). The system call returns error E_NOEXS if the message buffer does not exist.

The maximum wait time (timeout) can be specified in tmout. If the specified tmout time has passed with

the wait cancel condition unsatisfied (no message having arrived), the system call returns with an

E_TMOUT error.

TMO_FEVR means an infinite timeout. In that case, the system call remains in the wait state until a

message arrives or tk_rel_wai is issued. If TMO_POL is specified, the task does not enter the wait state,

even when no message exists, and it returns error E_TMOUT.

The time unit for tmout is the same as for the system timer (= 1ms). If tmout is -2 or less, the function

returns with an E_PAR error.

If no message has been sent to the message buffer specified by mbfid (the message queue is empty), the

task having issued this system call enters the wait state and is placed in the queue of tasks awaiting message

arrival (reception queue). Note that the order for the reception queue is only FIFO.

If the specified message buffer is deleted by tk_del_mbf when the issuing task is in the message reception

wait state, the task is released from the wait state and the system call returns with an E_DLT error. If the

message reception waiting task issues tk_rel_wai, the task is released from the wait state and the system

call returns with an E_RLWAI error. The system call returns error E_CTX if called from a task-

independent portion or when dispatch is disabled.

No error check is performed even if msg is invalid. The operation in this case is not guaranteed.
112

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.2.5 tk_ref_mbf (Refer MessageBuffer Status)

References the message buffer status.

■ C Language Interface
ER ercd = tk_ref_mbf (ID mbfid, T_RMBF *pk_rmbf) ;

typedef struct t_rmbf {

VP exinf;

ID wtsk;

ID stsk;

INT msgsz;

INT frbufsz;

INT maxmsz;

} T_RMBF;

■ Parameter

● Input

mbfid Message buffer ID

(MessageBuffer ID)

pk_rmbf Packet address to which to return the message buffer status

(Packet of Refer MessageBuffer)

● Output

ercd Error code (Error Code)

● Data returned in packet

exinf Extended Information (Extended Information)

wtsk Presence or absence of reception wait task (Wait Task)

stsk Presence or absence of transmission wait task (Send Task)

msgsz Message size (Message Size)

frbufsz Free buffer size (in bytes) (Free Buffer Size)

maxmsz Maximum message length (in bytes)

(Maximum Message Size)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
113

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(mbfid is less than or equal to zero, or greater than the maximum number of

message buffers)

E_NOEXS -42 Object does not exist

(The message buffer specified by mbfid does not exist)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call references various types of status of the message buffer specified by mbfid and returns

extended information (exinf), presence or absence of reception wait task (wtsk), presence or absence of

transmission wait task (stsk), incoming message size (msgsz), free buffer size (frbufsz), and maximum

message length (maxmsz) as the return values.

The system call returns error E_ID if the message ID specified by mbfid is less than or equal to zero or

greater than the maximum number of message buffers (maximum number of message buffers specified in

the configurator). If the specified message buffer does not exist, the system call returns with an E_NOEXS

error.

Wtsk set to the ID of the task awaiting reception with the specified message buffer; Stsk set to the ID of the

task awaiting transmission. If two or more tasks are waiting for the message buffer, the system call returns

the ID of the first task in the queue. Either value is 0 when there is no task waiting.

Msgsz returns the size of the first message in the message queue (the next message to be received). When

the message queue contains no message, msgsz becomes 0. Note that any message whose size is 0 cannot

be sent. In any case, at least either "msgsz = 0" or "wtsk = 0" is true.

Frbufsz represents the size of the ring buffer free area making up the message queue. This value tells the

maximum size of the message that can be sent. maxmsz returns the maximum length of the message

specified by tk_cre_mbf.

Even when pk_rmbf is invalid, no error checking is performed, where operation is not guaranteed.
114

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.3 Rendezvous Function System Calls

This section describes the system calls for the rendezvous port function.

■ Rendezvous Function System Calls
The rendezvous port function consists of the following seven system calls:

• tk_cre_por (Create Port for Rendezvous)

• tk_del_por (Delete Port for Rendezvous)

• tk_cal_por (Call Port for Rendezvous)

• tk_acp_por (Accept Port for Rendezvous)

• tk_fwd_por (Forward Rendezvous to Another Port)

• tk_rpl_rdv (Reply Rendezvous)

• tk_ref_por (Refer Port Status)
115

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.3.1 tk_cre_por (Create Port for Rendezvous)

Creates a rendezvous port.

■ C Language Interface
ID porid = tk_cre_por (T_CPOR *pk_cpor) ;

typedef struct t_cpor {

VP exinf;

ATR poratr;

INT maxcmsz;

INT maxrmsz;

} T_CPOR;

■ Parameter

● Input

pk_cpor Start address of the packet of rendezvous port generation information (Packet of

Create Port)

● Data to set in packet

exinf Extended Information (Extended Information)

poratr Rendezvous port attribute (Port Attribute)

poratr := (TA_TFIFO || TA_TPRI)

maxcmsz Maximum length (in bytes) of the call message

(Maximum Call Message Size)

maxrmsz Maximum length (in bytes) of the reply message

(Maximum Reply Message Size)

● Output

porid Rendezvous port ID (Port ID)

Or, error code (Error Code)

Task portion ❍ Task-independent portion × Dispatch disabled ❍

Attribute Value Meaning

TA_TFIFO 0x00000000 Manages waiting tasks using a FIFO

TA_TPRI 0x00000001 Manages tasks based on priority
116

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_LIMIT -34 The number of rendezvous ports is greater than the system's upper limit.

E_RSATR -11 "Reserved" attribute (poratr has been set to an undefined value.)

E_PAR -17 Parameter error (maxcmsz negative; maxmsz negative)

E_CTX -25 Context error (in execution from task independent portion)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call creates a rendezvous port with its rendezvous port ID number assigned. The rendezvous

port is an base object for implementing rendezvous.

The user can freely use exinf to hold information on the target rendezvous port. The information specified

here can be taken out via tk_ref_por. If you require a larger area to hold user data, or if you want to be able

to update data during use, reserve memory for this purpose yourself and insert the address of your memory

packet in exinf. The OS ignores the data in exinf.

Poratr specifies the attribute of the rendezvous port. The system call returns error E_RSATR if an

undefined attribute is specified.

TA_TFIFO or TA_TPRI allows you to specify how the tasks awaiting rendezvous calling are placed in the

queue. The order for the queue of tasks awaiting rendezvous reception is only FIFO.

Maxcmsz specifies the maximum length of the message for calling, in bytes. If the maxcmsz value is

negative, the system call returns with an E_PAR error.

Maxrmsz specifies the maximum length of the message for replying, in bytes. If the maxrmsz value is

negative, the system call returns with an E_PAR error.

This system call returns with an E_LIMIT error if invoked while as many rendezvous ports as the system's

upper limit (the maximum number of rendezvous ports specified in the configurator) have been created.

The system call returns with an E_CTX error if issued from a task-independent portion. Even when

pk_cpor is invalid, no error checking is performed, where operation is not guaranteed.
117

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.3.2 tk_del_por (Delete Port for Rendezvous)

Deletes a rendezvous port.

■ C Language Interface
ER ercd = tk_del_por (ID porid) ;

■ Parameter

● Input

porid Rendezvous port ID (Port ID)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(porid is less than or equal to zero, or greater than the maximum number of

rendezvous ports)

E_NOEXS -42 Object does not exist

(The rendezvous ports specified by porid does not exist)

E_CTX -25 Context error (in execution from task independent portion)

■ Dispatch Trigger
If a task higher in priority than the task having issued this system call is waiting in a rendezvous port
deleted, the system call dispatches control to the task released from the wait state.

Task portion ❍ Task-independent portion × Dispatch disabled ❍
118

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
This system call deletes the rendezvous port specified by porid. Precisely, the system call puts that
rendezvous port into the ungenerated state and unallocates its ID number.

The system call returns with an E_ID error if the rendezvous port ID specified by porid is less than or equal
to 0 or greater than the maximum number of rendezvous ports (set in the configurator). The system call
returns error E_NOEXS if the rendezvous port does not exist.

Even when the specified rendezvous port has a task waiting for rendezvous acceptance (tk_acp_por) or
rendezvous call (tk_cal_por), this system call terminates normally. For the waiting task, however, the
system call returns with an E_DLT error. Even though the rendezvous port is deleted by tk_del_por, the
task is not affected once it has established the rendezvous. The rendezvous accepting task (not in the wait
state) receives no notification and the rendezvous calling task (in the rendezvous termination wait state)
remains unchanged in status. tk_rpl_rdv is executed normally even if the rendezvous port used for
establishing rendezvous by the rendezvous accepting task when issuing tk_rpl_rdv has already been
deleted.

The system call returns with an E_CTX error if issued from a task-independent portion.
119

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.3.3 tk_cal_por (Call Port for Rendezvous)

Call port for Rendezvous

■ C Language Interface
INT rmsgsz = tk_cal_por (ID porid, UINT calptn, VP msg, INT cmsgsz, TMO tmout) ;

■ Parameter

● Input

porid Rendezvous port ID (Port ID)

calptn Bit pattern that represents the selection conditions on call side

(Call Bit Pattern)

msg Address to enter messages (Message)

cmsgsz Size of the call message (Byte count)

(Call Message Size)

tmout Timeout specification (Timeout)

The following macros can be specified in addition to the values from 0

to 0x7fffffff.

● Output

rmsgsz Size of replied message (Byte count) (Reply Message Size)

or error code (Error Code)

Task portion ❍ Task-independent portion × Dispatch disabled ×

Name Value Meaning

TMO_FEVR -1 Wait indefinitely

TMO_POL 0 Polling
120

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_ID -18 Invalid ID number

(porid is less than or equal to zero, or greater than the maximum number of

rendezvous ports)

E_NOEXS -42 Object does not exist

(The rendezvous ports specified by porid does not exist)

E_PAR -17 Parameter error

(cmsgsz < 0, cmsgsz > maxcmsz, calptn = 0, tmout ≤ (-2))

E_DLT -51 Wait object has been deleted

(The target rendezvous ports were deleted while in the wait state)

E_RLWAI -49 Forcibly restored from the wait state (accept tk_rel_wai while in the wait state)

E_TMOUT -50 Polling failed or timed out

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

■ Dispatch Trigger
When the task that issued this system call enters the rendezvous call wait state, the task that is next in the

priority ranking is dispatched. Or when the rendezvous accept wait state was released for a task that has a

higher priority ranking than the task that issued this system call, the task for which the wait state was

released was dispatched.

■ Description
This system call issues the rendezvous for the rendezvous port specified by porid.

When the rendezvous port ID that is specified by porid is less than or equal to zero, or greater than the

maximum number of rendezvous ports (the maximum number of rendezvous ports set in the configurator,

returns E_ID error.If the target rendezvous port does not exist, returns E_NOEXS error.

The size of call message is specified by cmsgsz. Data of cmsgsz byte in the msg area that is specified by

this system call (msg area of the call side task) is copied to the msg area that is specified by tk_acp_por

(msg area of the accept side task).

When cmsgsz is greater than maxcmsz that is specified by tk_cre_por, returns E_PAR error. This error is

checked before the task enters the rendezvous call wait state, and if the error is found, the task that executes

this system call does not enter that state. If cmsgsz is negative or greater than maxcmsz, returns E_PAR

error.

The maximum wait time (timeout) can be specified in tmout. If a timeout is specified and the tmout time

has elapsed without fulfilling the release wait condition (a rendezvous does not get effected), returns

E_TMOUT error.

TMO_FEVR means an infinite timeout. In this case, the task remains in the wait state until the rendezvous

gets effected or tk_rel_wai is issued. If TMO_POL is specified, the task does not enter the wait state, even

when there is no rendezvous accept wait task in the target rendezvous port or the conditions to get

rendezvous effected are not fulfilled, and it returns error E_TMOUT.

The time unit for tmout is the same as for the system timer (= 1ms). Returns E_PAR error if tmout is -2 or

less.
121

CHAPTER 3 SYSTEM CALL INTERFACE
The detailed operation of this system call is described below:

If there is a task in the rendezvous accept wait state in the rendezvous port specified by porid, and the

conditions to get rendezvous effected are fulfilled between that task and the task that issued this system

call, the rendezvous is effected. In this case, the task that was in the rendezvous accept wait state becomes

executable, and the task that issued this system call enters the rendezvous end wait state. The task in the

rendezvous end wait state is released its wait state when the other task (the rendezvous accept task)

executes tk_rpl_rdv system call. Then, this system call ends at this point.

When there is no rendezvous accept wait task in the rendezvous port specified by porid or there are some

rendezvous accept wait tasks but the conditions to get rendezvous effected are not fulfilled, the task that

issued this system call enters the rendezvous call wait state, queuing in the rendezvous port call side. The

order in the rendezvous call wait queue follows the FIFO or task priority ranking order according the

specification by tk_cre_por.

The conditions to get rendezvous effected are judged by whether the logical product of acpptn (accept side

task) and calptn (call side task) is 0 or not. The rendezvous is effected when the logical product is not 0. If

calptn is 0, the rendezvous will never get effected and E_PAR error is returned.

When the rendezvous is effected, the call side task can send a message (call message) to the accept side

task.

On the contrary, when the rendezvous is terminated, the accept side task can send a message (replay

message) to the call side task. The content of the reply message that is specified by tk_rpl_rdv (replay

message of the call side task) is copied to the message area that is specified by this system call (msg area of

the call side task). The size of the reply message, rmsgsz, becomes the return value of this system call.

Eventually, the message area specified by msg parameter of this system call is destroyed by the message

that is sent when executing tk_rpl_rdv.

If a rendezvous is forwarded, the same amount of area as maxrmsz is used as buffer at the maximum from

the msg address that is specified by this system call, therefore, the contents of that area may be destroyed.

For this reason, if there is a possibility that the rendezvous required by this system call is forwarded, keep

an area with the size of at least maxrmsz under msg despite of the size of the reply message (See, 3.6.3.5

tk_fwd_por (Forward Rendezvous to Another Port) for more details).

If the target rendezvous port is deleted by tk_del_por while in the rendezvous call or rendezvous end wait

state, those wait states are released and this system call returns E_DLT error. If tk_rel_wai system call is

issued for the task that is in the rendezvous call or rendezvous end wait state, those wait states are released

and E_RLWAI error is returned. Returns E_CTX error if this system call is called from a task-independent

portion or when dispatch is disabled.

No error check is performed even if msg is invalid. The operation in this case is not guaranteed.
122

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.3.4 tk_acp_por (Accept Port for Rendezvous)

Accept port for Rendezvous

■ C Language Interface
INT cmsgsz = tk_acp_por (ID porid, UINT acpptn, RNO *p_rdvno, VP msg, TMO tmout) ;

■ Parameter

● Input

porid Rendezvous port ID (Port ID)

acpptn Bit pattern that represents the accept side selection condition

(Accept Bit Pattern)

p_rdvno Address to enter the rendezvous number

(Rendezvous Number)

msg Address to enter messages (Message)

tmout Timeout specification (Timeout)

The following macros can be specified in addition to the values from 0

to 0x7fffffff.

● Output

cmsgsz Size of the call message (Byte count) or error code

(Call Message Size or Error Code)

Task portion ❍ Task-independent portion × Dispatch disabled ×

Name Value Meaning

TMO_FEVR -1 Wait indefinitely

TMO_POL 0 Polling
123

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_ID -18 Invalid ID number

(porid is less than or equal to zero, or greater than the maximum number of

rendezvous ports)

E_NOEXS -42 Object does not exist (The rendezvous ports specified by porid does not exist)

E_PAR -17 Parameter error (acpptn = 0, tmout ≤ (-2))

E_DLT -51 Wait object has been deleted

(The target rendezvous ports were deleted while in the wait state)

E_RLWAI -49 Forcibly restored from the wait state (accept tk_rel_wai while in the wait state)

E_TMOUT -50 Polling failed or timed out

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

■ Dispatch Trigger
When the task that issued this system call enters the rendezvous accept wait state, the task that is next in the

priority ranking is dispatched. Or when the rendezvous call wait state was released for a task that has a

higher priority ranking than the task that issued this system call, the task for which the wait state was

released was dispatched.

■ Description
This system call accepts the rendezvous for the rendezvous port.

Returns E_ID error if the rendezvous port ID specified by porid is less than or equal to zero or greater than

the maximum number of rendezvous ports (maximum number of rendezvous ports specified in the

configurator). Returns E_NOEXS error if the target rendezvous port does not exist.

The maximum wait time (timeout) can be specified in tmout. If a timeout is specified and the tmout time

has elapsed without fulfilling the release wait condition (a rendezvous does not get effected), returns

E_TMOUT error.

TMO_FEVR means an infinite timeout. In this case, the task remains in the wait state until the rendezvous

gets effected or tk_rel_wai is issued. If TMO_POL is specified, the task does not enter the wait state, even

when there is no rendezvous call wait task in the target rendezvous port or the conditions to get rendezvous

effected are not fulfilled, and it returns error E_TMOUT.

The time unit for tmout is the same as for the system timer (= 1ms). If tmout is -2 or less, the function

returns with E_PAR error.

The detailed operation of this system call is described below:

If the conditions to get rendezvous effected are fulfilled between the task that is in the wait queue on the

call side of the rendezvous port specified by porid and this task, the rendezvous is effected. In this case, the

task that has been in the wait queue on the call side is popped out of the queue, and changed its state from

the rendezvous call wait (waiting the rendezvous gets effected) to the rendezvous end wait. The call task of

this system call continues executing.

When there is no task in the wait queue on the call side of the rendezvous port specified by porid or there

are some tasks but the conditions to get rendezvous effected are not fulfilled, the task of this system call

enters the rendezvous accept wait state for that rendezvous port.
124

CHAPTER 3 SYSTEM CALL INTERFACE
In this case, the error will not occur even if another task has been in the rendezvous accept wait state, and

the task that issued this system call is put in the rendezvous accept wait queue. It is also possible that

multiple tasks execute their rendezvous at a time using one rendezvous port. Therefore, a rendezvous that is

executed before another task has finished its rendezvous (i.e., before the tk_rpl_rdv for the previously

effected rendezvous is executed) at the same rendezvous port specified by porid will be normally

terminated.

The conditions to get rendezvous effected are judged by whether the logical product of acpptn (receive side

task) and calptn (call side task) is 0 or not. The rendezvous is effected when the logical product is not 0.

When the first task does not fulfill the conditions, the next task in the wait queue will be checked. If a same

value other than 0 is specified in calptn and acpptn, it means that there is no condition (unconditional). If

acpptn is 0, the rendezvous will never get effected and E_PAR error is returned. The processes required to

get a rendezvous effected are completely symmetrical between the rendezvous call side and accept side.

When the rendezvous is effected, the call side task can send a call message to the accept side task. The

contents of the call message specified by the call side task is copied to the area under msg that is specified

by the accept side task with this system call. The size of the call message, cmsgsz, becomes the return value

of this system call.

It is also possible that the task on the rendezvous accept side executes multiple rendezvous at a time. To be

more precise, this system call can be executed again before the task that accepted a rendezvous from this

system call executes tk_rpl_rdv. In addition, this system call in this case can be meant for the other

rendezvous port than the previous port or for the same rendezvous port as the previous one. This is a rare

case, however, if the task during rendezvous executes another system call to the same rendezvous port and

the rendezvous gets effected, the state where the same task is executing multiple (multiplex) rendezvous to

the same rendezvous port is established. Of course, the tasks to rendezvous with (the call side task) are

different in this case.

The rendezvous number (p_rdvno) that is returned as the return value of this system call is the information

to tell the multiple rendezvous being established at the same time, and also used as the parameter of

tk_rpl_rdv when the rendezvous are terminated. This value is also used as the parameter of tk_fwd_por

when the rendezvous are forwarded. A rendezvous number is allocated so that the lower 16 bits contain the

ID of the task that accepts the rendezvous and the upper 16 bits contain a unique value assigned

sequentially in the order of rendezvous accepted.

If the target rendezvous port is deleted by tk_del_por while in the rendezvous accept or rendezvous end

wait state, those wait states are released and this system call returns E_DLT error. If tk_rel_wai system call

is issued for the task that is in the rendezvous accept or rendezvous end wait state, those wait states are

released and E_RLWAI error is returned. Returns E_CTX error if this system call is called from a task-

independent portion or when dispatch is disabled.

No error check is performed even if p_rdvno and msg are invalid. The operation in this case is not

guaranteed.
125

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.3.5 tk_fwd_por (Forward Rendezvous to Another Port)

Forward Rendezvous to another port

■ C Language Interface
ER ercd = tk_fwd_por (ID porid, UINT calptn, RNO rdvno, VP msg, INT cmsgsz) ;

■ Parameter

● Input

porid ID of the rendezvous port to be forwarded (Port ID)

calptn Bit pattern that represents the selection conditions on call side

(Call Bit Pattern)

rdvno Rendezvous number before forwarding (Rendezvous Number)

msg Address to enter the call messages (Message)

cmsgsz Size of the call message (Byte count)

(Call Message Size)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(porid is less than or equal to zero, or greater than the maximum number of

rendezvous ports)

E_NOEXS -42 Object does not exist

(The rendezvous ports specified by porid does not exist)

E_PAR -17 Parameter error

(cmsgsz < 0, cmsgsz > maxcmsz after forwarding, cmsgsz > maxrmsz before

forwarding, calptn = 0)

E_OBJ -41 Object state is invalid

(The task ID included in rdvno is negative or greater than the maximum number of

tasks, the state on the call side task is other than the rendezvous end wait

(TTW_RDV), rdvno does not match with the return value of tk_acp_por, maxrmsz

after forwarding > maxrmsz before forwarding)

E_CTX -25 Context error (in execution from task independent portion)

Task portion ❍ Task-independent portion × Dispatch disabled ❍
126

CHAPTER 3 SYSTEM CALL INTERFACE
■ Dispatch Trigger
When the rendezvous accept wait state was released for a task that has a higher priority ranking than the

task that issued this system call, the task for which the wait state was released was dispatched.

■ Description
This system call forwards the rendezvous that has been accepted to another rendezvous port.

Returns E_ID error if the rendezvous port ID specified by porid is less than or equal to zero or greater than

the maximum number of rendezvous ports (maximum number of rendezvous ports specified in the

configurator). Returns E_NOEXS error if the target rendezvous port does not exist.

This system call should be issued from the task (Task X) that is currently in the rendezvous state (the state

after tk_acp_por is executed). For example, consider the call side task to rendezvous with to be "Task Y,"

and the rendezvous number that is returned as the return value of tk_acp_por to be "rdvno". If this system

call is executed in this case, the situation is equal to the one in which the rendezvous state between Task X

and Task Y is released, and then Task Y calls the rendezvous for the other rendezvous port (rendezvous

port B) that is specified by porid.

The detailed operation of this system call is described below:

1. The rendezvous that is specified by rdvno is released.

2. Task Y enters the rendezvous call wait state for the rendezvous port specified by porid. In this case, as
for the bit pattern "calptn" that represents the conditions to get the rendezvous effected on the call side,
the one specified by Task X with this system call is used, instead of the one specified by Task Y with
tk_cal_por. From the point of view of Task Y, its state is changed from the rendezvous end wait back to
the rendezvous call wait.

3. Then, if the rendezvous for the rendezvous port specified by porid is accepted, the rendezvous is
effected between the task that accepted it and Task Y. If a task in the rendezvous accept wait state
already exists in the rendezvous port specified by porid and the conditions to get the rendezvous
effected are also fulfilled, executing this system call may get the rendezvous effected immediately. In
this case, as for the message sent to the accept side when the rendezvous gets effected, the one specified
by Task X with this system call is used, instead of the one specified by Task Y tk_cal_por (same as
"calptn").

4. The message returned with tk_rpl_rdv when a new rendezvous ends is copied to the area msg that is
specified by Task Y with tk_cal_por, instead of the area msg that is specified by Task X with this
system call.

Basically, the situation in which "tk_cal_por (porid=portA, alptn=ptnA, msg=mesA) is executed before

tk_fwd_por (porid=portB, calptn=ptnB, msg=mesB)" and the one in which "tk_cal_por (porid=portB,

calptn=ptnB, msg=mesB) is executed" are same. You don't need to remember the history of rendezvous

forwarding.

When tk_ref_tsk is executed to the task that is back to the rendezvous call wait state by this system call,

tskwait becomes TTW_CAL. In addition, wid also becomes the ID of the rendezvous port to be forwarded

to.

The execution of this system call will end immediately. Tasks never enter the wait state by this system call.

In addition, after executing this system call, the task that issued this system call is no longer related to any

of the rendezvous port where the rendezvous got effected before forwarded, the rendezvous port after

forwarded (porid), and the tasks that rendezvoused on those ports.

When cmsgsz is greater than maxcmsz of the rendezvous port to which the rendezvous is forwarded,

returns E_PAR error. This error is checked before the rendezvous is forwarded. When the error occurs, the

rendezvous won't be forwarded and the rendezvous specified by rdvno won't be released either.
127

CHAPTER 3 SYSTEM CALL INTERFACE
When cmsgsz is less than or equal to 0, cmsgsz is greater than maxcmsz after forwarding, or cmsgsz is

greater than maxrmsz before forwarding, E_PAR error is returned.

The transmission message specified by this system call is copied to the other area (e.g. the message area

specified by tk_cal_por) when executing this system call. Therefore, if the contents of the message area

specified by msg of this system call is changed before the forwarded rendezvous gets effected, the

rendezvous won't be affected by the change.

When forwarding a rendezvous by this system call, set the maxrmsz of the forwarding rendezvous port (the

port specified by porid) to the value less than or equal to the maxrmsz of the rendezvous port in which the

rendezvous got effected before forwarding. Otherwise, E_OBJ error is returned because the forwarding

rendezvous port is considered to be inappropriate. On the rendezvous call side, the reply message accept

area is prepared for the maxrmsz of the forwarded rendezvous port, therefore, if the maximum size of the

reply message gets larger by the forwarding, an unexpected size of reply message may be returned to the

call side and this might be a problem. This is the reason why a rendezvous cannot be forwarded to the

rendezvous port that has large maxrmsz.

As for the cmsgsz, the size of the message sent by this system call, it should also be set to the value less

than or equal to the maxrmsz of the forwarded rendezvous port where the rendezvous got effected. The

reason of doing this is that the message area specified by tk_cal_por is assumed to use as the buffer of the

transmission message according to the implementation method of this system call. When cmsgsz is greater

than the maxcmsz of the forwarded rendezvous port, returns E_PAR error.

Even when this system call and tk_rpl_rdv are issued by the task for which a dispatch or interruption is

disabled, these system calls operate normally. This can be used in a process where this system call or

tk_rpl_rdv will be used inseparably.

If Task Y that has been in the rendezvous end wait state is back to the rendezvous call wait state by this

system call, the timeout by the next rendezvous gets effected is always handled as the "Wait indefinitely"

(TMO_FEVR).

The forwarding rendezvous port can be the same rendezvous port as the one used for the previous

rendezvous (the port where the rendezvous specified by rdvno got effected). In this case, the process for the

rendezvous that is once accepted is stopped by this system call. However, in this case too, the call message

or calptn is changed to the one that is specified by the accept side task with this system call, rather than the

one specified by the call side task with tk_cal_por. In addition, the rendezvous that has been forwarded can

be forwarded again.

If the calptn is 0, E_PAR error is returned. When the task ID included in rdvno is negative or greater than

the maximum number of tasks, the state on the call side task isn't the wait state, the state on the call side

task is other than the rendezvous end wait (TTW_RDV), rdvno does not match with the return value of

tk_acp_por, or maxrmsz after forwarding is greater than the maxrmsz before forwarding, E_OBJ error is

returned.

No error check is performed even if msg is invalid. The operation in this case is not guaranteed.
128

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.3.6 tk_rpl_rdv (Reply Rendezvous)

Reply rendezvous

■ C Language Interface
ER ercd = tk_rpl_rdv (RNO rdvno, VP msg, INT rmsgsz) ;

■ Parameter

● Input

rdvno Rendezvous number (Rendezvous Number)

msg Address to enter messages (Message)

rmsgsz Size of the reply message (Byte count)

(Reply Message Size)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_PAR -17 Parameter error

(rmsgsz < 0, rmsgsz > maxrmsz)

E_OBJ -18 Object state is invalid

(The task ID included in rdvno is less than or equal to 0, or greater than

the maximum number of tasks, the state on the call side task isn't the wait state,

the state on the call side task is other than the rendezvous end wait (TTW_RDV),

and rdvno does not match with the return value of tk_acp_por)

E_CTX -25 Context error (in execution from task independent portion)

■ Dispatch Trigger
When the rendezvous end wait state was released for a task that has a higher priority ranking than the task

that issued this system call, the task for which the wait state was released was dispatched.

Task portion ❍ Task-independent portion × Dispatch disabled ❍
129

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
This system call replies to the task to rendezvous with (the call side task) and terminates the rendezvous.

This system call should be issued from the task (task X) that is in the rendezvous state (the state after

tk_acp_por is executed). For example, consider the call side task to rendezvous with to be "Task Y," and

the rendezvous number that is returned as the return value of tk_acp_por to be "rdvno". If this system call is

executed in this case, the rendezvous state between Task X and Task Y is released, and then Task Y on the

call side that has been in the rendezvous end wait state is back to the executable state.

When the rendezvous is terminated using this system call, the accept side Task X can send a replay

message to the call side Task Y. The contents of the reply message specified by the accept side task is

copied to the area under msg that is specified by the call side task with tk_cal_por. The size of the reply

message, rmsgsz, becomes the return value of tk_cal_por.

When rmsgsz is negative or greater than the maxcmsz that is specified by tk_cre_por, returns E_PAR error.

When this error is detected, the rendezvous won't be terminated and the rendezvous end wait state of the

task that executed tk_cal_por won't be released, either.

When the task ID included in rdvno (lower 16-bit of rdvno) is less than or equal to 0, or greater than the

maximum number of tasks (the maximum number of rendezvous ports set in the configurator), the state on

the call side task isn't the wait state, the state on the call side task is other than the rendezvous end wait

(TTW_RDV), and rdvno does not match with the return value of tk_acp_por, E_OBJ error is returned.

No error check is performed even if msg is invalid. The operation in this case is not guaranteed.
130

CHAPTER 3 SYSTEM CALL INTERFACE
3.6.3.7 tk_ref_por (Refer Port Status)

Refers the state of the rendezvous.

■ C Language Interface
ER ercd = tk_ref_por (ID porid, T_RPOR *pk_rpor) ;

typedef struct t_rpor {

VP exinf;

ID wtsk;

ID atsk;

INT maxcmsz;

INT maxrmsz;

} T_RPOR;

■ Parameter

● Input

porid Rendezvous port ID (Port ID)

pk_rpor The first address of the packet that returns the rendezvous port state.

(Packet of Refer Port)

● Output

ercd Error code (Error Code)

● Data returned to the packet

exinf Extended information (Extended Information)

wtsk Whether to exist the call wait task (Wait Task)

atsk Whether to exist the accept wait task (Accept Task)

maxcmsz Maximum length of the message when calling (Byte count)

(Maximum Call Message Size)

maxrmsz Maximum length of the message when replying (Byte count)

(Maximum Receive Message Size)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
131

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(porid is less than or equal to zero, or greater than the maximum number of

rendezvous ports)

E_NOEXS -42 Object does not exist

(The rendezvous ports specified by porid does not exist)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call refers the state of the target rendezvous ports specified by porid and returns whether to

exist the accept wait (atsk), whether to exist the call wait task (wtsk), the maximum length of the message

(maxcmsz, maxrmsz), or the extended information (exinf) as its return value.

Returns E_ID error if the rendezvous port ID specified by porid is less than or equal to zero, or greater than

the maximum number of rendezvous ports (maximum number of rendezvous ports specified in the

configurator). Returns E_NOEXS error if the rendezvous port does not exist.

Wtsk set to the ID of the task that is in the rendezvous call wait state in this rendezvous port. If there is no

rendezvous call wait task, wtsk is 0. On the other hand, atsk set to the ID of the task that is in the

rendezvous accept wait state in this rendezvous port. If there is no rendezvous accept wait task, atsk is 0.

When there are multiple tasks that are in the rendezvous call or accept wait state in this rendezvous port,

each ID of the first task in the call wait queue or accept wait queue is returned.

No error check is performed even if pk_rpor is invalid. The operation in this case is not guaranteed.

■ Additional Notes
It is impossible to know the information about the task that is currently rendezvousing with this system call.
132

CHAPTER 3 SYSTEM CALL INTERFACE
3.7 Memory Pool Management Function System Calls

This section explains the memory pool management function system calls.

■ Memory Pool Management Function System Calls
Memory pool function consists of the system calls that have the following 2 types of function:

• Fixed-size memory pool function system calls

• Variable-length memory pool function system calls
133

CHAPTER 3 SYSTEM CALL INTERFACE
3.7.1 Fixed-size Memory Pool Function System Calls

This section explains the fixed-size memory pool function system calls.

■ Fixed-size Memory Pool Function System Calls
Fixed-size memory pool function consists of the following 5 system calls:

• tk_cre_mpf (Create Fixed-size MemoryPool)

• tk_del_mpf (Delete Fixed-size MemoryPool)

• tk_get_mpf (Get Fixed-size Memory Block)

• tk_rel_mpf (Release Fixed-size Memory Block)

• tk_ref_mpf (Refer Fixed-size MemoryPool Status)
134

CHAPTER 3 SYSTEM CALL INTERFACE
3.7.1.1 tk_cre_mpf (Create Fixed-size MemoryPool)

Create the fixed-size memory pool.

■ C Language Interface
ID mpfid = tk_cre_mpf (T_CMPF *pk_cmpf) ;

typedef struct t_cmpf {

VP exinf;

ATR mpfatr;

INT mpfcnt;

INT blfsz;

VP bufptr;

} T_CMPF;

■ Parameter

● Input

pk_cmpf Information about fixed-size memory pool creation

(Packet of Create MemoryPool)

● Data to set in packet

exinf Extended information (Extended Information)

mpfatr Fixed-size memory pool attribute

(Fixed-size MemoryPool Attribute)

mpfatr:= (TA_TFIFO || TA_TPRI) | [TA_USERBUF]

mpfcnt Block count of entire fixed-size memory pool

(Fixed-size MemoryPool Block Count)

blfsz Memory block size (Byte count)

(Fixed-size MemoryPool Block Size)

bufptr Address of user buffer (Buffer Pointer)

Task portion ❍ Task-independent portion × Dispatch disabled ×

Attribute Value Meaning

TA_TFIFO 0x00000000 Manages waiting tasks using a FIFO

TA_TPRI 0x00000001 Manages tasks based on priority

TA_USERBUF 0x00000020 Use the stack area specified by the user
135

CHAPTER 3 SYSTEM CALL INTERFACE
● Output

mpfid Fixed-size memory pool ID (Fixed-size MemoryPool ID)

Or, error code (Error Code)

■ Error Code
E_NOMEM -33 Insufficient memory

(Cannot secure the area for memory pool)

E_LIMIT -34 Fixed-size memory pool count is greater than the upper limit of the system

E_RSATR -11 Reserve attribute (undefined value is specified to mpfatr)

E_PAR -17 Parameter error (mpfcnt and blfsz are less than or equal to 0, bufsz is not in

multiples of 4 (if TA_USERBUF is specified))

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call creates the fixed-size memory pool and assigns the fixed-size memory pool ID to it. To be

more precise, this system call secures the memory area used as the memory pool based on the information

from mpfcnt and blfsz. Issuing tk_get_mpf to the memory block created above gets the memory block of

the size specified by blfsz (byte count).

User can utilize exinf to store the information on the target memory pool. The information specified here

can be taken out with tk_ref_mpf. If you require a larger area to hold user data, or if you want to be able to

update data during use, reserve memory for this purpose yourself and insert the address of your memory

packet in exinf. The OS has no concern with the data in exinf.

If the following attributes are specified to mpfatr, they are ignored. Returns E_RSATR error if an

undefined attribute is specified.

Attribute Value Meaning

TA_RNG0 0x00000000 Execute at protection level 0

TA_RNG1 0x00000100 Execute at protection level 1

TA_RNG2 0x00000200 Execute at protection level 2

TA_RNG3 0x00000300 Execute at protection level 3
136

CHAPTER 3 SYSTEM CALL INTERFACE
TA_TFIFO and TA_TPRI can specify the order of the tasks in the wait queue of the memory pool in order

to get their memories. If the attribute is TA_TFIFO, the task wait queue operates as a FIFO. If the attribute

is TA_TPRI, the task wait queue is ordered by task priority.

When TA_USERBUF is specified to activate bufptr, the memory area of mpfcnt*blfsz bytes starting with

bufptr is used as the memory pool area. In this case, OS doesn't provide the memory pool area. When

TA_USERBUF isn't specified, bufptr is ignored and OS secures the memory pool area. When OS couldn't

secure the fixed-size memory pool area, E_NOMEM error is returned. If mpfcnt and blfsz are 0 or less,

E_PAR error is returned.

If this system call is issued when the fixed-size memory pool is created up to the upper limit of the system

(the maximum number of fixed-size memory pools set in the configurator), E_LIMIT error is returned. No

error check is performed even if pk_cmpf and bufptr are invalid. The operation in this case is not

guaranteed.

■ Additional Notes
For the fixed-size memory pool, another memory pool should be prepared to change the block size. In other

words, if you need several types of memory block size, you also need several memory pools for each size.
137

CHAPTER 3 SYSTEM CALL INTERFACE
3.7.1.2 tk_del_mpf (Delete Fixed-size MemoryPool)

Delete fixed-size memory pool.

■ C Language Interface
ER ercd = tk_del_mpf (ID mpfid) ;

■ Parameter

● Input

mpfid Fixed-size memory pool ID

(Fixed-size MemoryPool ID)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(mpfid is less than or equal to zero, or greater than the maximum number of

fixed-size memory pools)

E_NOEXS -42 Object does not exist

(The fixed-size memory pool specified by mpfid does not exist)

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

■ Dispatch Trigger
When a task that has a higher priority ranking than the task that issued this system call is waiting in the

deleted fixed-size memory pool, the task for which the wait state was released was dispatched.

Task portion ❍ Task-independent portion × Dispatch disabled ×
138

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
This system call deletes the fixed-size memory pool specified by mpfid. To be more precise, the target

memory pool is made into the ungenerated state to release its ID number and entire area of the memory

pool itself.

Returns E_ID error if the fixed-size memory pool ID specified by mpfid is less than or equal to zero, or

greater than the maximum number of fixed-size memory pools (maximum number of fixed-size memory

pools specified in the configurator). Returns E_NOEXS error if the fixed-size memory pool does not exist.

If this system call is invoked from a task-independent portion or while in the dispatch disabled state, it

returns error E_CTX.

Even if there is a task that gets some memories from this memory pool, any check or notification won't be

executed. This system call will be normally terminated even when all memory blocks haven't been

returned.

This system call will also be normally terminated even when there is a task that is waiting to get some

memories in the target memory pool, however, E_DLT error is returned to the task that has been in the wait

state.
139

CHAPTER 3 SYSTEM CALL INTERFACE
3.7.1.3 tk_get_mpf (Get Fixed-size Memory Block)

Gets the fixed-size memory block.

■ C Language Interface
ER ercd = tk_get_mpf (ID mpfid, VP *p_blf, TMO tmout) ;

■ Parameter

● Input

mpfid Fixed-size memory pool ID

(Fixed-size MemoryPool ID)

tmout Timeout specification (Timeout)

The following macros can be specified in addition to the values from 0

to 0x7fffffff.

● Output

ercd Error code (Error Code)

p_blf Start address of the memory block

(Fixed-size Block Start Address)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(mpfid is less than or equal to zero, or greater than the maximum number of

fixed-size memory pools)

E_NOEXS -42 Object does not exist

(The fixed-size memory pool specified by mpfid does not exist)

E_PAR -17 Parameter error (tmout ≤ (-2))

E_DLT -51 Wait object has been deleted

(The target memory pool were deleted while in the wait state)

E_RLWAI -49 Forcibly restored from the wait state (accept tk_rel_wai while in the wait state)

Task portion ❍ Task-independent portion × Dispatch disabled ×

Name Value Meaning

TMO_FEVR -1 Wait indefinitely

TMO_POL 0 Polling
140

CHAPTER 3 SYSTEM CALL INTERFACE
E_TMOUT -50 Polling failed or timed out

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

■ Dispatch Trigger
When the task that issued this system call enters the memory pool wait state, the task that is next in the

priority ranking is dispatched.

■ Description
This system call gets some memory blocks from the fixed-size memory pool specified by mpfid. The

starting address of the acquired memory block is returned to p_blf. The same memory block size as the one

that is specified by blfsz when creating the fixed-size memory pool is acquired. The zero clearance isn't

executed for the acquired memory and the contents remain undefined.

Returns E_ID error if the fixed-size memory pool ID specified by mpfid is less than or equal to zero or

greater than the maximum number of fixed-size memory pools (maximum number of fixed-size memory

pools specified in the configurator). Returns E_NOEXS error if the fixed-size memory pool does not exist.

The maximum wait time (timeout) can be specified in tmout. If a timeout is specified and the tmout time

has elapsed without fulfilling the release wait condition (an empty memory cannot be created), returns

E_TMOUT error.

TMO_FEVR means an infinite timeout. In this case, the task remains in the wait state until the memory can

be acquired or tk_rel_wai is issued. If TMO_POL is specified, the task does not enter the wait state, even

when the memory cannot be acquired, and it returns error E_TMOUT.

The time unit for tmout is the same as for the system timer (= 1ms). If tmout is -2 or less, the function

returns with E_PAR error.

When any memory block cannot be acquired from the specified memory pool, the call task ‘tk_get_mpf is

put into the memory get wait queue for that memory pool and waits till the task is able to get some

memories.

The order of the wait queue to get the memory block is either FIFO or the task priority ranking depending

on the attribute of the memory pool.

If the target fixed-size memory pool is deleted by tk_del_mpf while in the fixed-size memory pool wait

state, the wait state is released and this system call returns E_DLT error. If tk_rel_wai system call is issued

for the task that is in the fixed-size memory pool wait state, the wait state is released and E_RLWAI error is

returned. Returns E_CTX error if this system call is called from a task-independent portion or when

dispatch is disabled.

No error check is performed even if p_blf is invalid. The operation in this case is not guaranteed.
141

CHAPTER 3 SYSTEM CALL INTERFACE
3.7.1.4 tk_rel_mpf (Release Fixed-size Memory Block)

Release fixed-size memory block.

■ C Language Interface
ER ercd = tk_rel_mpf (ID mpfid, VP blf) ;

■ Parameter

● Input

mpfid Fixed-size memory pool ID

(Fixed-size MemoryPool ID)

blf Start address of the memory block

(Fixed-size Block Start Address)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(mpfid is less than or equal to zero, or greater than the maximum number of

fixed-size memory pools)

E_NOEXS -42 Object does not exist

(The fixed-size memory pool specified by mpfid does not exist)

E_PAR -17 Parameter error

(blf is outside of the range of the memory pool area, (blf - start address of

the memory block) isn't the multiple number of the memory block)

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

■ Dispatch Trigger
When the memory pool wait state was released for a task that has a higher priority ranking than the task

that issued this system call, the task for which the wait state was released was dispatched.

Task portion ❍ Task-independent portion × Dispatch disabled ×
142

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
This system call releases the memory block specified by blf to the fixed-size memory pool specified by

mpfid.

Returns E_ID error if the fixed-size memory pool ID specified by mpfid is less than or equal to zero or

greater than the maximum number of fixed-size memory pools (maximum number of fixed-size memory

pools specified in the configurator). Returns E_NOEXS error if the fixed-size memory pool does not exist.

Executing this system call may have another task, which is waiting the memory in the memory pool

specified by mpfid, get the memory, and release the wait state of that task.

The memory block must be returned to the fixed-size memory pool in which the memory block was

acquired.

If the memory pool to which the memory block is released is different from the memory pool in which the

memory block was acquired (blf is outside of the range of the memory pool area, (blf - start address of the

memory block) isn't the multiple number of the memory block), E_PAR error is returned.
143

CHAPTER 3 SYSTEM CALL INTERFACE
3.7.1.5 tk_ref_mpf (Refer Fixed-size MemoryPool Status)

Refers the state of the fixed-size memory pool.

■ C Language Interface
ER ercd = tk_ref_mpf (ID mpfid, T_RMPF *pk_rmpf) ;

typedef struct t_rmpf {

VP exinf;

ID wtsk;

INT frbcnt;

} T_RMPF;

■ Parameter

● Input

mpfid Fixed-size memory pool ID

(Fixed-size MemoryPool ID)

pk_rmpf Packet address to which the state of the memory pool is returned

(Packet of Refer Fixed-size MemoryPool)

● Data to set in packet

exinf Extended information (Extended Information)

wtsk Whether to exist the wait task (Wait Task)

frbcnt Block count of free area (Free Block Count)

● Output

ercd Error code (Error Code)

Task portion ❍ Task-independent portion × Dispatch disabled ×
144

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(mpfid is less than or equal to zero, or greater than the maximum number of

fixed-size memory pools)

E_NOEXS -42 Object does not exist

(The fixed-size memory pool specified by mpfid does not exist)

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call refers the state of the target fixed-size memory pools specified by mpfid and returns the

current free block count (frbcnt), whether to exist the wait task (wtsk), or the extended information (exinf)

as its return value.

Returns E_ID error if the fixed-size memory pool ID specified by mpfid is less than or equal to zero or

greater than the maximum number of fixed-size memory pools (maximum number of fixed-size memory

pools specified in the configurator). Returns E_NOEXS error if the fixed-size memory pool does not exist.

If this system call is invoked from a task-independent portion or while in the dispatch disabled state, it

returns error E_CTX.

Wtsk set to the ID of the task that is waiting in the fixed-size memory pool. If multiple tasks are waiting in

this fixed-size memory pool, the ID of the first task in the wait queue is returned. If there is no waiting task,

wtsk = 0. Under all circumstances, either frbcnt = 0 or wtsk = 0 can be realized.

No error check is performed even if pk_rmpf is invalid. The operation in this case is not guaranteed.

■ Additional Notes
For the frsz of tk_ref_mpl, total size of the free memory area is returned in byte, however, for the frbcnt of

this system call, the free block count is returned.
145

CHAPTER 3 SYSTEM CALL INTERFACE
3.7.2 Variable-size Memory Pool Function System Calls

This section explains the variable-size memory pool function system calls.

■ Variable-size Memory Pool Function System Calls
Variable-size memory pool function consists of the following 5 system calls:

• tk_cre_mpl (Create Variable-size MemoryPool)

• tk_del_mpl (Delete Variable-size MemoryPool)

• tk_get_mpl (Get Variable-size Memory Block)

• tk_rel_mpl (Release Variable-size Memory Block)

• tk_ref_mpl (Refer Variable-size MemoryPool Status)
146

CHAPTER 3 SYSTEM CALL INTERFACE
3.7.2.1 tk_cre_mpl (Create Variable-size MemoryPool)

Creates the variable-size memory pool.

■ C Language Interface
ID mplid = tk_cre_mpl (T_CMPL *pk_cmpl) ;

typedef struct t_cmpl {

VP exinf;

ATR mplatr;

INT mplsz;

VP bufptr;

} T_CMPL;

■ Parameter

● Input

pk_cmpl Information about variable-size memory pool creation

(Packet of Create MemoryPool)

● Data to set in packet

exinf Extended information (Extended Information)

mplatr Memory pool attribute (MemoryPool Attribute)

mplatr:= (TA_TFIFO || TA_TPRI) | [TA_USERBUF]

mplsz Size of whole memory pool (Byte count)

(MemoryPool Size)

bufptr Address of user buffer (Buffer Pointer)

Task portion ❍ Task-independent portion × Dispatch disabled ×

Attribute Value Meaning

TA_TFIFO 0x0000000 Manages waiting tasks using a FIFO

TA_TPRI 0x0000000 Manages tasks based on priority

TA_USERBUF 0x0000020 Use the stack area specified by the user
147

CHAPTER 3 SYSTEM CALL INTERFACE
● Output

mplid Variable-size memory pool ID (MemoryPool ID)

Or, error code (Error Code)

■ Error Code
E_NOMEM -33 Insufficient memory

(Cannot secure the area for memory pool)

E_LIMIT -34 Variable-size memory pool count is greater than the upper limit of the system

E_RSATR -11 Reserve attribute (undefined value is specified to mplatr)

E_PAR -17 Parameter error (mplsz is less than or equal to 0, or not in multiples of 4 (if

TA_USERBUF is specified))

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call creates the variable-size memory pool and assigns the variable-size memory pool ID to it.

To be more precise, this system call secures the memory area used as the memory pool based on the

information from mplsz.

User can utilize exinf to store the information on the target memory pool. The information specified here

can be taken out with tk_ref_mpl. If you require a larger area to hold user data, or if you want to be able to

update data during use, reserve memory for this purpose yourself and insert the address of your memory

packet in exinf. The OS has no concern with the data in exinf.

mplatr specifies the attribute of the variable-size memory pool. If the following attributes are specified to

mplatr, they are ignored. Returns E_RSATR error if an undefined attribute is specified to mplatr.

TA_TFIFO and TA_TPRI can specify the order of the tasks in the wait queue of the memory pool in order

to get their memories. If the attribute is TA_TFIFO, the task wait queue operates as a FIFO. If the attribute

is TA_TPRI, the task wait queue is ordered by task priority.

When TA_USERBUF is specified to activate bufptr, the memory area of mplsz bytes starting with bufptr is

used as the memory pool area. In this case, OS doesn't provide the memory pool area. When

TA_USERBUF isn't specified, bufptr is ignored and OS secures the memory pool area. When OS couldn't

secure the variable-size memory pool area, E_NOMEM error is returned. If the mplsz is less than or equal

to 0, E_PAR error is returned.

Attribute Value Meaning

TA_RNG0 0x00000000 Execute at protection level 0

TA_RNG1 0x00000100 Execute at protection level 1

TA_RNG2 0x00000200 Execute at protection level 2

TA_RNG3 0x00000300 Execute at protection level 3
148

CHAPTER 3 SYSTEM CALL INTERFACE
If this system call is issued when the variable-size memory pool is created up to the upper limit of the

system (the maximum number of variable-size memory pools set in the configurator), E_LIMIT error is

returned. If this system call is invoked from a task-independent portion or while in the dispatch disabled

state, it returns error E_CTX. No error check is performed even if pk_cmpl and bufptr are invalid. The

operation in this case is not guaranteed.

When the wait queue to get memory is formed by tasks, the memory is assigned to the starting task of the

queue by priority. Even when there is a task that requires smaller memory size in the following queue, there

is no opportunity for the task to get memory. For example, there are Task A (requiring memory size = 400)

and Task B (requiring memory size = 100) in a variable-size memory pool, and they are waiting in this

order. Then, a continuous free memory area (memory size = 200) is created by tk_rel_mpl of another task.

In this case again, Task B requiring smaller memory size cannot get the memory first.

■ Additional Notes
When the order of the wait queue is changed as follows, the system tries to assign the memory to the task

that is newly come to the first. As a consequence, the task to which the memory was assigned is released

from the wait state. Therefore, it can be said that the task may get the memory and released from the wait

state even if the memory wasn't released by tk_rel_mpl.

• The wait state of the first task in the memory get wait queue is forcibly released.

• The first task in the memory get wait queue is forcibly terminated.

• For the memory get wait queue ordered by the priority ranking, the priority of the tasks other than the
first one is changed, and another task assumes the higher priority than the first one.
149

CHAPTER 3 SYSTEM CALL INTERFACE
3.7.2.2 tk_del_mpl (Delete Variable-size MemoryPool)

Deletes the variable-size memory pool.

■ C Language Interface
ER ercd = tk_del_mpl (ID mplid) ;

■ Parameter

● Input

mplid Variable-size memory pool ID

(MemoryPool ID)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(mplid is less than or equal to zero, or greater than the maximum number of

variable-length memory pools)

E_NOEXS -42 Object does not exist

(The variable-size memory pool ID specified by mplid does not exist)

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

■ Dispatch Trigger
When a task that has a higher priority ranking than the task that issued this system call is waiting in the

deleted variable-size memory pool, the task for which the wait state was released was dispatched.

Task portion ❍ Task-independent portion × Dispatch disabled ×
150

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
This system call deletes the variable-size memory pool specified by mplid. To be more precise, the target

memory pool is made into the ungenerated state to release its ID number and entire area of the memory

pool itself.

Returns E_ID error if the variable-size memory pool ID specified by mplid is less than or equal to zero or

greater than the maximum number of variable-length memory pools (maximum number of variable-size

memory pools specified in the configurator). Returns E_NOEXS error if the variable-size memory pool

does not exist. If this system call is invoked from a task-independent portion or while in the dispatch

disabled state, it returns error E_CTX.

Even if there is a task that gets some memories from this memory pool, any check or notification won't be

executed. This system call will be normally terminated even when all memory blocks haven't been

returned.

This system call will also be normally terminated even when there is a task that is waiting to get some

memories in the target memory pool, however, E_DLT error is returned to the task that has been in the wait

state.
151

CHAPTER 3 SYSTEM CALL INTERFACE
3.7.2.3 tk_get_mpl (Get Variable-size Memory Block)

Gets the variable-size memory block.

■ C Language Interface
ER ercd = tk_get_mpl (ID mplid, W blksz, VP *p_blk, TMO tmout) ;

■ Parameter

● Input

mplid Variable-size memory pool ID

(MemoryPool ID)

blksz Memory block size (Byte count)

tmout Timeout specification (Timeout)

The following macros can be specified in addition to the values from 0

to 0x7fffffff.

● Output

ercd Error code (Error Code)

p_blk Start address of the memory block

(Block Start Address)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (mplid is less than or equal to zero, or greater than the maximum

number of variable-size memory pools)

E_NOEXS -42 Object does not exist

(The fixed-size memory pool specified by mplid does not exist)

E_PAR -17 Parameter error (tmout ≤ (-2), blksz is less than or equal to 0, or greater than

the size of the memory pool area)

E_DLT -51 Wait object has been deleted

(The target memory pool were deleted while in the wait state)

Task portion ❍ Task-independent portion × Dispatch disabled ×

Name Value Meaning

TMO_FEVR -1 Wait indefinitely

TMO_POL 0 Polling
152

CHAPTER 3 SYSTEM CALL INTERFACE
E_RLWAI -49 Forcibly restored from the wait state (accept tk_rel_wai while in the wait state)

E_TMOUT -50 Polling failed or timed out

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

■ Dispatch Trigger
When the task that issued this system call enters the memory pool wait state, the task that is next in the

priority ranking is dispatched.

■ Description
This system call gets the memory blocks specified by blksz (byte count) from the variable-size memory

pool specified by mplid.

The starting address of the acquired memory block is returned to p_blk. The zero clearance isn't executed

for the acquired memory and the contents remain undefined. When the memory cannot be acquired, the

task that issued this system call will enter the wait state.

Returns E_ID error if the variable-size memory pool ID specified by mplid is less than or equal to zero or

greater than the maximum number of variable-length memory pools (maximum number of variable-size

memory pools specified in the configurator). Returns E_NOEXS error if the variable-size memory pool

does not exist. If the blksz is less than or equal to 0, E_PAR error is returned.

The maximum wait time (timeout) can be specified in tmout. If a timeout is specified and the tmout time

has elapsed without fulfilling the release wait condition (an empty memory cannot be created), returns

E_TMOUT error.

TMO_FEVR means an infinite timeout. In this case, the task remains in the wait state until the memory can

be acquired or tk_rel_wai is issued. If TMO_POL is specified, the task does not enter the wait state, even

when the memory cannot be acquired, and it returns error E_TMOUT.

The time unit for tmout is the same as for the system timer (= 1ms). If tmout is -2 or less, the function

returns with E_PAR error.

The order of the wait queue to get the memory block is either FIFO or the task priority ranking depending

on the attribute of the memory pool.

If the target message buffer is deleted by tk_del_mpl while in the variable-size memory pool wait state, the

wait state is released and this system call returns E_DLT error. If tk_rel_wai system call is issued for the

task that is in the variable-size memory pool wait state, the wait state is released and E_RLWAI error is

returned. Returns E_CTX error if this system call is called from a task-independent portion or when

dispatch is disabled.

No error check is performed even if p_blk is invalid. The operation in this case is not guaranteed.
153

CHAPTER 3 SYSTEM CALL INTERFACE
3.7.2.4 tk_rel_mpl (Release Variable-size Memory Block)

Releases the variable-size memory block.

■ C Language Interface
ER ercd = tk_rel_mpl (ID mplid, VP blk) ;

■ Parameter

● Input

mplid Variable-size memory pool ID

(MemoryPool ID)

blk Start address of the memory block

(Block Start Address)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(mplid is less than or equal to zero, or greater than the maximum number of

variable-size memory pools)

E_NOEXS -42 Object does not exist

(The variable-size memory pool ID specified by mplid does not exist)

E_PAR -17 Parameter error (blk is outside if the range of the memory pool area)

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

■ Dispatch Trigger
When the memory pool wait state was released for a task that has a higher priority ranking than the task

that issued this system call, the task for which the wait state was released was dispatched.

Task portion ❍ Task-independent portion × Dispatch disabled ×
154

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
This system call releases the memory block specified by blk to the variable-size memory pool specified by

mplid.

Returns E_ID error if the variable-size memory pool ID specified by mplid is less than or equal to zero or

greater than the maximum number of variable-length memory pools (maximum number of variable-size

memory pools specified in the configurator). Returns E_NOEXS error if the variable-size memory pool

does not exist.

Executing tk_rel_mpl may have another task, which is waiting the memory in the memory pool specified

by mplid, get the memory, and release the wait state of that task.

The memory block must be released to the variable-size memory pool in which the memory block was

acquired. If the memory pool to which the memory block is released is different from the memory pool in

which the memory block was acquired, E_PAR error is returned.

■ Additional Notes
When the memory is returned to the variable-size memory pool where multiple tasks are waiting, if a

memory amount more than the total memory amount requested by the multiple tasks is returned, the

multiple tasks are released from their wait state at a time.

The priority order of the tasks after their wait state were released is same as the one when they were in the

wait queue.
155

CHAPTER 3 SYSTEM CALL INTERFACE
3.7.2.5 tk_ref_mpl (Refer Variable-size MemoryPool Status)

Refers the state of the variable-size memory pool.

■ C Language Interface
ER ercd = tk_ref_mpl (ID mplid, T_RMPL *pk_rmpl) ;

typedef struct t_rmpl {

VP exinf;

ID wtsk;

INT frsz;

INT maxsz;

} T_RMPL;

■ Parameter

● Input

mplid Variable-size memory pool ID

(MemoryPool ID)

pk_rmpl Packet address to which the state of the memory pool is returned

(Packet of Refer MemoryPool)

● Output

ercd Error code (Error Code)

● Data returned to the packet

exinf Extended information (Extended Information)

wtsk Whether to exist the wait task

(Wait Task)

frsz Total size of the free area (Byte count) (Free Memory Size)

maxsz Size of maximum free area (Byte count)

(Max Memory Size)

Task portion ❍ Task-independent portion × Dispatch disabled ×
156

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(mplid is less than or equal to zero, or greater than the maximum number of

variable-size memory pools)

E_NOEXS -42 Object does not exist

(The variable-size memory pool ID specified by mplid does not exist)

E_CTX -25 Context error

(Executed from a task-independent portion or in the dispatch disabled state)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call refers the state of the target variable-size memory pools specified by mplid and returns the

current total size of free area (frsz), acquirable maximum free area size (maxsz), whether to exist the wait

task (wtsk), or the extended information (exinf) as its return value.

Returns E_ID error if the variable-size memory pool ID specified by mplid is less than or equal to zero or

greater than the maximum number of variable-length memory pools (maximum number of variable-size

memory pools specified in the configurator). Returns E_NOEXS error if the variable-size memory pool

does not exist.

Wtsk set to the ID of the task that is waiting in the variable-size memory pool. If multiple tasks are waiting

in this variable-size memory pool, the ID of the first task in the wait queue is returned. If there is no waiting

task, wtsk = 0.

No error check is performed even if pk_rmpl is invalid. The operation in this case is not guaranteed.
157

CHAPTER 3 SYSTEM CALL INTERFACE
3.8 Time Management Function System Calls

Time Management Function System Calls

■ Time Management Function System Calls
Time management function consists of the system calls that have the following 3 types of function:

• System time management function system calls

• Cyclic handler function system calls

• Alarm handler function system calls
158

CHAPTER 3 SYSTEM CALL INTERFACE
3.8.1 System Time Management Function System Calls

This section explains the system time management function system calls.

■ System Time Management Function System Calls
System time management function consists of the following 4 system calls:

• tk_set_tim (Set Time)

• tk_get_tim (Get Time)

• tk_get_otm (Get Operating Time)

• isig_tim (Signal Time)
159

CHAPTER 3 SYSTEM CALL INTERFACE
3.8.1.1 tk_set_tim (Set Time)

Sets the system time.

■ C Language Interface
ER ercd = tk_set_tim (SYSTIM *pk_tim) ;

typedef struct systim {

W hi;

UW lo;

} SYSTIM;

■ Parameter

● Input

pk_tim Packet address that represents the current time

(Packet of Current Time)

● Data to set in packet

hi Current time for the system settings (upper 32-bit)

lo Current time for the system settings (lower 32-bit)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_PAR -17 Parameter error (pk_tim.hi is a negative value)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call sets the system time to the value specified by systim. The system time is the number of ms
added up from 1985, 1, 1, 0 o'clock (GMT).

If hi is a negative value, E_PAR error is returned.

No error check is performed even if pk_tim is invalid. The operation in this case is not guaranteed.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
160

CHAPTER 3 SYSTEM CALL INTERFACE
■ Additional Notes
The relative time specified by RELTIM or TMO will remain unchanged even if the system time is changed
using this system call while the system is operating. For example, if a task is set to timeout after 60s and the
system time is changed 60s ahead with this system call while the task is waiting the timeout, the task will
wait for exactly 60s instead of timeout immediately. Therefore, the system time when the task will timeout
is changed by this system call.
161

CHAPTER 3 SYSTEM CALL INTERFACE
3.8.1.2 tk_get_tim (Get Time)

Refers the current system time.

■ C Language Interface
ER ercd = tk_get_tim (SYSTIM *pk_tim) ;

typedef struct systim {

W hi;

UW lo;

} SYSTIM;

■ Parameter

● Input

pk_tim Packet address that returns the current time

(Packet of Current Time)

● Output

ercd Error code (Error Code)

● Data returned to the packet

hi Current system time (upper 32-bit)

lo Current system time (lower 32-bit)

■ Error Code
E_OK 0 Normal completion

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call reads the current system time and returns to the return value "pk_tim". The system time is

the number of ms added up from 1985, 1, 1, 0:0:0 (GMT).

No error check is performed even if pk_tim is invalid. The operation in this case is not guaranteed.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
162

CHAPTER 3 SYSTEM CALL INTERFACE
3.8.1.3 tk_get_otm (Get Operating Time)

Refers the system operating time.

■ C Language Interface
ER ercd = tk_get_otm (SYSTIM *pk_tim) ;

typedef struct systim {

W hi;

UW lo;

} SYSTIM;

■ Parameter

● Input

pk_tim Packet address that returns the operating time

(Packet of Operating Time)

● Output

ercd Error code (Error Code)

● Data returned to the packet

hi Current system time (upper 32-bit)

lo Current system time (lower 32-bit)

■ Error Code
E_OK 0 Normal completion

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call gets the system operating time. The system operating time is different from the system

time (time) and represents the total operating time (in ms) that is added up from when the system is started.

This system operating time is unaffected by the time setting by tk_set_tim.

No error check is performed even if pk_tim is invalid. The operation in this case is not guaranteed.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
163

CHAPTER 3 SYSTEM CALL INTERFACE
3.8.1.4 isig_tim (Signal Time)

Provides the timetick.

■ C Language Interface
ER ercd = isig_tim (void) ;

■ Parameter

● Input

None

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call updates the system time. This is an original function of µT-REALOS.

The system time is updated by issuing this system call on every system timer (=1ms) from the user

program. To do this, create a timer interrupt of which cycle is 1 ms, then issue this system call from that

interrupt handler.

This system call cannot be issued from the task portion. If it is issued from the task portion, the operation

won't be guaranteed.

Task portion × Task-independent portion ❍ Dispatch disabled ❍
164

CHAPTER 3 SYSTEM CALL INTERFACE
3.8.2 Cyclic Handler Function System Calls

This section explains the cyclic handler function system calls.

■ Cyclic Handler Function System Calls
Cyclic handler pool function consists of the following 5 system calls:

• tk_cre_cyc (Create Cyclic Handler)

• tk_del_cyc (Delete Cyclic Handler)

• tk_sta_cyc (Start Cyclic Handler)

• tk_stp_cyc (Stop Cyclic Handler)

• tk_ref_cyc (Refer Cyclic Handler Status)
165

CHAPTER 3 SYSTEM CALL INTERFACE
3.8.2.1 tk_cre_cyc (Create Cyclic Handler)

Create a cyclic handler.

■ C Language Interface
ID cycid = tk_cre_cyc (T_CCYC *pk_ccyc) ;

typedef struct t_ccyc {

VP exinf;

ATR cycatr;

FP cychdr;

RELTIM cyctim;

RELTIM cycphs;

} T_CCYC;

■ Parameter

● Input

pk_ccyc Cyclic handler definition information

(Packet of Create Cyclic Handler)

● Data to set in packet

exinf Extended information (Extended Information)

cycatr Cyclic handler attribute (Cyclic Handler Attribute)

cycatr := (TA_HLNG) | [TA_STA] | [TA_PHS]

cychdr Cyclic handler address (Cyclic Handler Address)

cyctim Cycle time (Cycle Time)

cycphs Cyclic handler phase (Cyclic Handler Phase)

● Output

cycid Cyclic handler ID (Cyclic Handler ID) Or, error code (Error Code)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Attribute Value Meaning

TA_HLNG 0x00000001 Target cyclic handler is written in C language

TA_STA 0x00000002 Cyclic handler is started

TA_PHS 0x00000004 Cyclic handler phase is saved
166

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_LIMIT -34 Cyclic handler count is greater than the limit of the system

E_RSATR -11 Reserve attribute (undefined value is specified to cycatr)

E_PAR -17 Parameter error (cychdr is NULL and cyctim is 0)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call creates the cyclic handler and assigns the cyclic handler ID to it. The cyclic handler is the

handler of the task-independent portion that operates at the specified time interval.

User can utilize exinf to store the information on the target cyclic handler. The information specified here

can be taken out with tk_ref_cyc or passed to the cyclic handler as a parameter. If you require a larger area

to hold user data, or if you want to be able to update data during use, reserve memory for this purpose

yourself and insert the address of your memory packet in exinf. The OS has no concern with the data in

exinf.

cycatr specifies the attribute of the cyclic handler. The following values are ignored. Returns E_RSATR

error if an undefined attribute is specified.

It is stipulated in the µT-Kernel specification that TA_HLNG should be specified when the cyclic handler

is written in C language. However, µT-REALOS only supports C language for writing the cyclic handler,

therefore, even if TA_ASM is specified (TA_HLNG isn't specified) the cyclic handler is processed as it is

written in C language. Accordingly, although specifying TA_HLNG is not mandatory, you should always

specify TA_HLNG in any case for compatibility with the µT-Kernel specifications.

When TA_STA is specified, the cyclic handler enters the operating state upon its generation, and the

handler is activated at the time interval described above. Otherwise, the activation cycles are measured but

the cyclic handler isn't activated.

If TA_PHS is specified, the cyclic handler is activated by tk_sta_cyc, but the activation cycle isn't reset and

the cycle that has been measured from the generation of the handler is maintained. When TA_PHS isn't

specified, the activation cycle is reset with tk_sta_cyc, and the cyclic handler is activated at the interval of

cyctim when tk_sta_cyc is issued. In the reset with tk_sta_cyc, cycphs isn't applied. In this case, the n-th

activation of the cyclic handler from tk_sta_cyc will occur when more than cyctim * n time is elapsed from

the issue of tk_sta_cyc.

cychdr specifies the first address of the cyclic handler to be activated. If the cychdr is NULL, E_PAR error

is returned. No error check is performed even if cychdr is invalid. The operation in this case is not

guaranteed. Refer to Section 4.6 Cyclic Handler in User's Guide for more details about the description

format of the cyclic handler.

Attribute Value Meaning

TA_ASM 0x00000000 Target cyclic handler is written in assemble language
167

CHAPTER 3 SYSTEM CALL INTERFACE
cycphs represents the time from when the cyclic handler is created by this system call to when the first

cyclic handler is activated. Subsequently, the cycle activation is repeated at the interval of cyctim. In this

case, the n-th activation of the cyclic handler will occur when more than cycphs + cyctim * (n - 1) time is

elapsed from the generation of the handler. When 0 is specified to cycphs, the cyclic handler is activated

immediately after the generation of the cyclic handler. If the cyctim is less than or equal to 0, E_PAR error

is returned.

If this system call is issued when the cyclic handler is created up to the upper limit of the system (the

maximum number of cyclic handlers set in the configurator), E_LIMIT error is returned. No error check is

performed even if pk_ccyc is invalid. The operation in this case is not guaranteed.
168

CHAPTER 3 SYSTEM CALL INTERFACE
3.8.2.2 tk_del_cyc (Delete Cyclic Handler)

Deletes the cyclic handler.

■ C Language Interface
ER ercd = tk_del_cyc (ID cycid) ;

■ Parameter

● Input

cycid Cyclic handler ID

(Cyclic Handler ID)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(cycid is less than or equal to zero, or greater than the maximum number of cyclic

handlers)

E_NOEXS -42 Object does not exist

(The cyclic handler specified in cycid does not exist)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call deletes the cyclic handler. To be more precise, the target cyclic handler is made into the

ungenerated state to release its ID number.

Returns E_ID error if the cyclic handler ID specified by cycid is less than or equal to zero or greater than

the maximum number of cyclic handlers (maximum number of cyclic handlers specified in the

configurator). Returns E_NOEXS error if the cyclic handler does not exist.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
169

CHAPTER 3 SYSTEM CALL INTERFACE
3.8.2.3 tk_sta_cyc (Start Cyclic Handler)

Starts the operation of the cyclic handler.

■ C Language Interface
ER ercd = tk_sta_cyc (ID cycid) ;

■ Parameter

● Input

cycid Cyclic handler ID

(Cyclic Handler ID)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(cycid is less than or equal to zero, or greater than the maximum number of cyclic

handlers)

E_NOEXS -42 Object does not exist

(The cyclic handler specified in cycid does not exist)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call makes the cyclic handler specified by cycid into the operating state.

Returns E_ID error if the cyclic handler ID specified by cycid is less than or equal to zero or greater than

the maximum number of cyclic handlers (maximum number of cyclic handlers specified in the

configurator). Returns E_NOEXS error if the cyclic handler does not exist.

When TA_PHS attribute is specified, the activation cycle of the cyclic handler isn't reset, and the cyclic

handler is made into the operating state. If it is already in the operating state, this state is maintained and

then this system call is normally terminated.

When TA_PHS attribute isn't specified, the activation cycle is reset, and the cyclic handler is made into the

operating state. If it is already in the operating state, the activation cycle is reset and then the operating state

is maintained. Therefore, next activation of the cyclic handler occurs after cyctim.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
170

CHAPTER 3 SYSTEM CALL INTERFACE
3.8.2.4 tk_stp_cyc (Stop Cyclic Handler)

Stops the operation of cyclic handler.

■ C Language Interface
ER ercd = tk_stp_cyc (ID cycid) ;

■ Parameter

● Input

cycid Cyclic handler ID

(Cyclic Handler ID)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(cycid is less than or equal to zero, or greater than the maximum number of cyclic

handlers)

E_NOEXS -42 Object does not exist (The cyclic handler specified in cycid does not exist)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call stops the cyclic handler specified by cycid. If it has already been in the stopped state, the

normal termination is performed with the state retained.

It returns with the error E_ID if the cyclic handler ID specified by cycid is less than or equal to 0 or greater

than the maximum number of cyclic handlers (maximum number of cyclic handlers specified by the

configurator). It returns with the error E_NOEXS if the cyclic handler does not exist.

■ Additional Notes
Since the number of times is not specified in tk_cre_cyc, the cyclic handler defined once repeats the cyclic

activation until it is stopped by tk_stp_cyc or the cyclic activation handler is deleted.

If multiple time event handlers are to be operated simultaneously, those handlers are activated serially

(after the execution of one handler is finished, the execution of another handler is started). Also, since the

time event handler is a task-independent portion, the principle of delay dispatch is applied.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
171

CHAPTER 3 SYSTEM CALL INTERFACE
3.8.2.5 tk_ref_cyc (Refer Cyclic Handler Status)

Refers to the cyclic handler state.

■ C Language Interface
ER ercd = tk_ref_cyc (ID cycid, T_RCYC *pk_rcyc) ;

typedef struct t_rcyc {

VP exinf;

RELTIM lfttim;

UINT cycstat;

} T_RCYC;

■ Parameter

● Input

cycid Cyclic handler ID (Cyclic Handler ID)

pk_rcyc Initial address of the packet to return the cyclic handler state

(Packet of Refer Cyclic Handler)

● Output

ercd Error code (Error Code)

● Data returned in packet

exinf Extended Information

lfttim Left time before next handler activation (Left Time)

cycstat Cyclic handler status (Cyclic Handler Status)

cycstat:= (TCYC_STP | TCYC_STA)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

State Value Meaning

TCYC_STP 0x00 Cyclic handler is not operated.

TCYC_STA 0x01 Cyclic handler is operated.
172

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(cycid is less than or equal to zero, or greater than the maximum number of cyclic

handlers)

E_NOEXS -42 Object does not exist

(The cyclic handler specified in cycid does not exist)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call refers to the cyclic handler status indicated by cycid, and then returns the cyclic handler

status, cycstat, left time before next handler activation, lfttim, and extended information, exinf, as return

values.

It returns with the error E_ID if the cyclic handler ID specified by cycid is less than or equal to 0 or greater

than the maximum number of cyclic handlers (maximum number of cyclic handlers specified by the

configurator). It returns with the error E_NOEXS if the cyclic handler does not exist.

No error check is performed even if pk_rcyc is invalid. The operation in this case is not guaranteed.
173

CHAPTER 3 SYSTEM CALL INTERFACE
3.8.3 Alarm Handler Function System Calls

The system calls of alarm handler function are explained.

■ Alarm Handler Function System Calls
The alarm handler function is comprised of five system calls as follows:

• tk_cre_alm (Create Alarm Handler)

• tk_del_alm (Delete Alarm Handler)

• tk_sta_alm (Start Alarm Handler)

• tk_stp_alm (Stop Alarm Handler)

• tk_ref_alm (Refer Alarm Handler Status)
174

CHAPTER 3 SYSTEM CALL INTERFACE
3.8.3.1 tk_cre_alm (Create Alarm Handler)

Creates an alarm handler.

■ C Language Interface
ID almid = tk_cre_alm (T_CALM *pk_calm) ;

typedef struct t_calm {

VP exinf;

ATR almatr;

FP almhdr;

} T_CALM;

■ Parameter

● Input

pk_calm Alarm handler definition information

(Packet of Create Alarm Handler)

● Data to set in packet

exinf Extended Information (Extended Information)

almatr Alarm handler attribute (Alarm Handler Attribute)

almatr := TA_HLNG

almhdr Alarm handler address (Alarm Handler Address)

● Output

almid Alarm handler ID (Alarm Handler ID)

Or, error code (Error Code)

■ Error Code
E_LIMIT -34 Number of alarm handlers is greater than the system limitation.

E_RSATR -11 Reservation attribute (undefined value is specified to almatr.)

E_PAR -17 Parameter error (almhdr is NULL)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Attribute Value Meaning

TA_HLNG 0x00000001 Object alarm handler is described in C
language.
175

CHAPTER 3 SYSTEM CALL INTERFACE
■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call creates an alarm handler and allocates an alarm handler ID. Alarm handler (specified time

activation handler) is the handler of task-independent portion which is activated at specified time.

User can use exinf freely to put the information about the target alarm handler. The information specified

here can be retrieved by tk_ref_alm, besides it can be passed to the alarm handler as a parameter. If you

require a larger area to hold user data, or if you want to be able to update data during use, reserve memory

for this purpose yourself and insert the address of your memory packet in exinf. The OS ignores the data in

exinf.

almatr specifies the alarm handler attribute. The following values are ignored. The system call returns with

the error E_RSATR if an undefined attribute is specified.

With µT-Kernel specifications, if the alarm handler is described in C language, the specification of

TA_HLNG is required. However, with µT-REALOS, since C language only is supported for the alarm

handler description, regardless of availability of TA_HLNG, the alarm handler is processed as it is

described in C language. Accordingly, although specifying TA_HLNG is not mandatory, you should

always specify TA_HLNG in any case for compatibility with the µT-Kernel specifications.

almhdr specifies the initial address of the alarm handler to be activated. If almhdr is NULL, the system call

returns with the error E_PAR. Also, no error check is performed even if almhdr is invalid. The operation in

this case is not guaranteed. For the description format for the alarm handler, see "4.7 Alarm Handler" in

"User's Guide".

If this system call is invoked in the state where the alarm handlers are created up to the limit of the system

(maximum number of alarm handlers specified by the configurator), it returns with E_LIMIT error. Also,

no error check is performed even if pk_calm is invalid. The operation in this case is not guaranteed.

Attribute Value Meaning

TA_ASM 0x00000000 Object alarm handler is described in assembler.
176

CHAPTER 3 SYSTEM CALL INTERFACE
3.8.3.2 tk_del_alm (Delete Alarm Handler)

Deletes the alarm handler.

■ C Language Interface
ER ercd = tk_del_alm (ID almid) ;

■ Parameter

● Input

almid Alarm handler ID

(Alarm Handler ID)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(almid is less than or equal to zero, or greater than the maximum number of alarm

handlers)

E_NOEXS -42 Object does not exist.

(The alarm handler specified in almid does not exist.)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call deletes the alarm handler. Specifically, the object alarm handler is made to the uncreated

status, and the ID number is released.

The system call returns with the error E_ID if the alarm handler ID specified by almid is less than or equal

to zero or greater than the maximum number of alarm handlers (maximum number of alarm handlers

specified by the configurator). It returns with the error E_NOEXS if the alarm handler does not exist.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
177

CHAPTER 3 SYSTEM CALL INTERFACE
3.8.3.3 tk_sta_alm (Start Alarm Handler)

Starts the operation of alarm handler.

■ C Language Interface
ER ercd = tk_sta_alm (ID almid, RELTIM almtim) ;

■ Parameter

● Input

almid Alarm handler ID

(Alarm Handler ID)

almtim Alarm handler activation time (Alarm Handler Time)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(almid is less than or equal to zero, or greater than the maximum number of alarm

handlers)

E_NOEXS -42 Object does not exist. (The alarm handler specified in almid does not exist.)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call specifies the activation time of alarm handler specified by almid to make it operated.

It returns with the error E_ID if the alarm handler ID specified by almid is less than or equal to zero or

greater than the maximum number of alarm handlers (maximum number of alarm handlers specified by the

configurator). It returns with the error E_NOEXS if the alarm handler does not exist.

Since almtim is relative time, after the time period specified by almtim is passed starting from the time

when this system call is called, the alarm handler is activated. If the activation time of alarm handler has

already been set and the alarm handler was in the operation status, after the setting is released, a new

activation time is specified to make the alarm handler operated. When almtim=0, immediately after the

activation time setting, the alarm handler is activated. After the processing of the activated alarm handler is

completed, the system call becomes the stopped status.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
178

CHAPTER 3 SYSTEM CALL INTERFACE
3.8.3.4 tk_stp_alm (Stop Alarm Handler)

Stops the operation of alarm handler.

■ C Language Interface
ER ercd = tk_stp_alm (ID almid) ;

■ Parameter

● Input

almid Alarm handler ID

(Alarm Handler ID)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(almid is less than or equal to zero, or greater than the maximum number of alarm

handlers)

E_NOEXS -42 Object does not exist.

(The alarm handler specified in almid does not exist.)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call makes the alarm handler stopped. If the handler has been already in the stopped status, the

status is kept, and a normal completion is performed.

The system call returns with the error E_ID if the alarm handler ID specified by almid is less than or equal

to zero or greater than the maximum number of alarm handlers (maximum number of alarm handlers

specified by the configurator). It returns with the error E_NOEXS if the alarm handler does not exist.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
179

CHAPTER 3 SYSTEM CALL INTERFACE
3.8.3.5 tk_ref_alm (Refer Alarm Handler Status)

Refers to the status of alarm handler.

■ C Language Interface
ER ercd = tk_ref_alm (ID almid, T_RALM *pk_ralm) ;

typedef struct t_ralm {

VP exinf;

RELTIM lfttim;

UINT almstat;

} T_RALM;

■ Parameter

● Input

almid Alarm handler ID (Alarm Handler ID)

pk_ralm Initial address of the packet to return the alarm handler status (Packet of Refer

Alarm Handler)

● Output

ercd Error code (Error Code)

● Data returned in packet

exinf Extended Information (Extended Information)

lfttim Left time before next handler activation (Left Time)

almstat Alarm handler status (Alarm Handler Status)

almstat := (TALM_STP | TALM_STA)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

State Value Meaning

TALM_STP 0x00 Alarm handler is not operated.

TALM_STA 0x01 Alarm handler is operated.
180

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number

(almid is less than or equal to zero, or greater than the maximum number of alarm

handlers)

E_NOEXS -42 Object does not exist.

(The alarm handler specified in almid does not exist.)

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call refers to the status of alarm handler specified by almid, and returns the left time before the

handler activation lfttim and extended information exinf as return values.

The system call returns with the error E_ID if the alarm handler ID specified by almid is less than or equal

to zero or greater than the maximum number of alarm handlers (maximum number of alarm handlers

specified by the configurator). It returns with the error E_NOEXS if the alarm handler does not exist.

If the alarm handler is operated (TALM_STA), the relative time before the next alarm handler activation is

returned to lfttim. The value is specified by tk_sta_alm, almtim is equal to or more than lfttim, and lfttim is

equal to or more than zero. Since lfttim is subtracted for each timer interrupt, if an alarm handler is

activated at the next timer interrupt, lfttim becomes 0.

If an alarm handler is not operated (TALM_STP), lfttim is undefined.

No error check is performed even if pk_ralm is invalid. The operation in this case is not guaranteed.
181

CHAPTER 3 SYSTEM CALL INTERFACE
3.9 Interrupt Control Function System Calls

The system calls of interrupt management function are explained.

■ Interrupt Management Function System Calls
The system calls of interrupt management function is comprised of two system calls as follows:

• tk_def_int (Define Interrupt Handler)

• tk_ret_int (Return from Interrupt Handler)

Also, the interrupt management function has three macros as follows:

• DI

• EI

• isDI
182

CHAPTER 3 SYSTEM CALL INTERFACE
3.9.1 tk_def_int (Define Interrupt Handler)

Defines or releases the interrupt handler.

■ C Language Interface
ER ercd = tk_def_int (UINT dintno, T_DINT *pk_dint) ;

typedef struct t_dint {

ATR intatr;

FP inthdr;

} T_DINT;

■ Parameter

● Input

dintno Interrupt vector number

pk_dint Initial address of interrupt handler definition information

(Packet of Define Interrupt Handler)

● Data to set in packet

intatr Interrupt handler attribute (Interrupt Handler Attribute)

intatr := (TA_ASM || TA_HLNG)

inthdr Interrupt handler address

(Interrupt Handler Address)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_RSATR -11 Reservation attribute (intatr is invalid or unavailable)

E_PAR -17 Parameter error (dintno is 256 or more)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Attribute Value Meaning

TA_ASM 0x00000000 Object handler is described in assembler.

TA_HLNG 0x00000001 Object handler is described in C language.
183

CHAPTER 3 SYSTEM CALL INTERFACE
■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call defines the interrupt handler and makes it available. Or it releases the interrupt handler

definition. The interrupts include all of external interrupts from devices, interrupts by CPU exception, and

software interrupts.

dintno specifies the interrupt vector number which defines an interrupt handler. Values from 0 to 255 can

be specified. The system call returns with the error E_PAR, if the value 256 or more is specified to dintno.

The interrupt handler can be redefined to the interrupt number already defined. Even in the case of

redefinition, the definition release for the handler of the number dose not have to be executed.

pk_dint is the address for the T_DINT structure which holds the interrupt handler definition information.

The relation between pk_dint value and pk_def_int operation is shown below.

intatr specifies the description language for interrupt handler. The following shows the description

languages and maximum registration numbers of handlers for TA_HLNG attribute and TA_ASM attribute.

If an undefined attribute is specified to intatr, the system call returns with the error E_RSATR.

inthdr specifies the initial address of interrupt handler. Since if the address of inthdr is illegal, the

occurrence of corresponding interrupt makes the jump to the illegal address, the subsequent operation of

the system is not guaranteed.

For the execution priority order of interrupt handlers and tasks, see "2.6 Execution Priority Order of Tasks/

Handlers" in "User's Guide". For the description format for the interrupt handler, see "4.8 Interrupt

Handler" in "User's Guide".

Note: With µT-REALOS which uses the SOFTUNE language tool, even if the interrupt handler is

described in C language, the specification of "__interrupt" requires the definition as TA_ASM

attribute. The registration in TA_HLNG attribute prevents the normal operation.

Value of pk_dint Operation of tk_def_int

Normal address (other than NULL) Definition of interrupt handler

NULL Definition release of interrupt handler

Invalid address The operation is not guaranteed.

Attribute Description Language Maximum Registration Number

TA_ASM Assembler 256

TA_HLNG C language 8
184

CHAPTER 3 SYSTEM CALL INTERFACE
3.9.2 tk_ret_int (Return from Interrupt Handler)

Returns from the interrupt handler.

■ C Language Interface
void tk_ret_int (void) ;

■ Parameter

● Input

None

● Output

None

■ Error Code
None

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
The invocation of this system call does not execute any processing and the system call returns to the source

of call.

With µT-Kernel specifications, "the invocation of this system call on the completion of the interrupt

handler described in assemble language creates the delay dispatch" is specified. However, with µT-

REALOS, due to the dispatcher implementation reason, regardless of the invocation of this system call, the

delay dispatch is created. Therefore, with the interrupt handler described in assemble language, this system

call does not have to be invoked.

Also, to keep the compatibility with the µT-Kernel specifications OS, this system call remains.

Consequently with the interrupt handler described in C language, this system call should not be invoked.

Task portion × Task-independent portion ❍ Dispatch disabled ❍
185

CHAPTER 3 SYSTEM CALL INTERFACE
3.9.3 DI

Prohibits all external interrupts.

■ Interface
void DI (UINT intsts)

■ Parameter

● Input

None

● Output

intsts CPU interrupt status (PS register value)

■ Error Code
None

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call specifies CCR.I flag of PS register to 0 (interrupt disabled) to prohibit all external

interrupts. The value of PS register before the interrupts prohibition is stored in intsts.

Example Usage

void foo()

{

UINT intsts;

DI(intsts);

if (isDI(intsts)) {

/* Interrupts have been already disabled when this function was called. */

} else {

/* Interrupts have been enabled when this function was called. */

}

EI(intsts);

}

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
186

CHAPTER 3 SYSTEM CALL INTERFACE
3.9.4 EI

Enables all external interrupts.

■ Interface
void EI (UINT intsts)

■ Parameter

● Input

intsts CPU interrupt status (PS register value)

● Output

None

■ Error Code
None

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call enables all external interrupts. Precisely if the value of CCR.I flag of PS register specified

by intsts is 1 (interrupt enabled), the CCR.I flag of PS register is specified to 1 to return to the interrupt

enabled status.

When the value of CCR.I flag of PS register specified by intsts is 0 (interrupt disabled), even if EI() is

executed, the interrupt is not enabled. However, if 0 is specified as intsts, the interrupt is always enabled.

inststs is either the value stored by DI() or 0. If other than that is specified, the operation is not guaranteed.

Example Usage

void foo()
{

UINT intsts;

DI(intsts);

if (isDI(intsts)) {
/* Interrupts have been already disabled when this function was called. */

} else {
/* Interrupts have been enabled when this function was called. */

}

EI(intsts);
}

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
187

CHAPTER 3 SYSTEM CALL INTERFACE
3.9.5 isDI

Checks the external interrupt disabled status.

■ Interface
BOOL stat = isDI (UINT intsts)

■ Parameter

● Input

intsts CPU interrupt status (PS register value)

● Output

stat TRUE (value other than "0"): Interrupt disabled status

FALSE: Interrupt enabled status

■ Error Code
None

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call checks the interrupt enabled/disabled status from the PS register value stored in intsts. If

the CCR.I flag as the PS register value stored in intsts, the interrupt disabled status is determined and if 1,

the interrupt enabled status is determined. However, this system call can check only the interrupt disabled

status before the issuance of DI() where intsts is stored. Use tk_ref_sys when the current interrupt disabled

status is checked.

intsts is the value stored by DI(). If other than that is specified, the operation is not guaranteed.

Example Usage

void foo()

{

UINT intsts;

DI(intsts);

if (isDI(intsts)) {

/* Interrupts have been already disabled when this function was called. */

} else {

/* Interrupts have been enabled when this function was called. */

}

EI(intsts);

}

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
188

CHAPTER 3 SYSTEM CALL INTERFACE
3.10 System Status Management Function System Calls

The system calls of system status management function are explained.

■ System Status Management Function System Calls
The system status management function is comprised of six system calls as follows:

• tk_rot_rdq (Rotate Ready Queue)

• tk_get_tid (Get Task Identifier)

• tk_dis_dsp (Disable Dispatch)

• tk_ena_dsp (Enable Dispatch)

• tk_ref_sys (Refer System Status)

• tk_ref_ver (Refer Version Information)
189

CHAPTER 3 SYSTEM CALL INTERFACE
3.10.1 tk_rot_rdq (Rotate Ready Queue)

Rotates the task priority order.

■ C Language Interface
ER ercd = tk_rot_rdq (PRI tskpri) ;

■ Parameter

● Input

tskpri Priority (Task Priority)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_PAR -17 Parameter error

(tskpri is negative or greater than the maximum priority of the system)

■ Dispatch Trigger
If the same priority with the task which called this system call is specified and other task has the priority,

the task with the next priority is dispatched.

■ Description
This system call rotates the priority order of the task with the priority specified by tskpri. In other words,

among the tasks which has the object priority and can be executed, the task which has the highest priority

order is made to be the task with the lowest priority order among the tasks which has the same priority.

It returns with the error E_PAR if tskpri is negative or greater than the maximum priority of the system

(maximum priority specified by the configurator).

If TPRI_RUN (=0) is specified to tskpri, the same operation with the case where the priority of the task in

the running status is specified to tskpri. This system call can be invoked by the specification of TPRI_RUN

to tskpri from the task-independent portion such as a cyclic handler.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Name Value Meaning

TPRI_RUN 0 Priority of the task running currently
190

CHAPTER 3 SYSTEM CALL INTERFACE
■ Additional Notes
If there is no or only one task which has the object priority and can be executed, this system call finishes

normally performing nothing.

Since the task with the highest priority order is not always running among the tasks with the same priority

in the dispatch disabled status, the execution order of the task is not always to be the lowest among the

tasks with the same priority by this way.

The execution example for tk_rot_rdq is shown in Figure 3.10-1 and Figure 3.10-2. With the status of Figure

3.10-1, if this system call is invoked with tskpri = 2 as a parameter, a new priority will be Figure 3.10-2, and

Task C will be executed next.

Figure 3.10-1 Priority Order before Execution of tk_rot_rdq

Figure 3.10-2 Priority Order after Execution of tk_rot_rdq (tskpri=2)

 1

 2 [Task B]→[Task C]→[Task D]

 3 [Task E]

Priority
High

↑
|

↓
Low

Note: Task C will be executed next.

 1

 2 [Task C]→[Task D]→[Task B]

 3 [Task E]

Priority
High

↑
|

↓
Low
191

CHAPTER 3 SYSTEM CALL INTERFACE
3.10.2 tk_get_tid (Get Task Identifier)

Refers to the task ID of task running.

■ C Language Interface
ID tskid = tk_get_tid (void) ;

■ Parameter

● Input

None

● Output

tskid Running task ID (Task ID)

■ Error Code
None

■ Dispatch Trigger
This system call does not perform dispatch.

■ Description
This system call sets the ID number of the currently running task to tskid and returns.

If it is invoked from a task portion, ID of invoking task is returned. When there is no task running currently,

0 is returned.

■ Additional Notes
The task ID returned by this system call is same as runtskid returned by tk_ref_sys.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
192

CHAPTER 3 SYSTEM CALL INTERFACE
3.10.3 tk_dis_dsp (Disable Dispatch)

Disables the dispatch.

■ C Language Interface
ER ercd = tk_dis_dsp (void) ;

■ Parameter

● Input

None

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_CTX -25 Context error (Invocation from a task-independent portion)

■ Dispatch Trigger
This system call does not perform dispatch.

Task portion ❍ Task-independent portion × Dispatch disabled ❍
193

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
This system call disables the dispatch of task. The dispatch is disabled after invocation of the system call

until execution of tk_ena_dsp. Invoking task is not switched from running status to executable status. Also,

it cannot be switched to the wait state. However, since external interrupts are not disabled, even in the

dispatch disabled state, an interrupt handler starts.

In the dispatch disabled state, the running task could be preempted by an interrupt handler (takeover of

CPU execution right), however, it cannot be preempted by other tasks.

Specifically the following operations are performed during the dispatch disabled state.

• Even if the task with the higher priority than the task with tk_dis_dsp executed becomes executable by
the system call invoked from an interrupt handler or the task with tk_dis_dsp executed, the task is not
dispatched. The dispatch to the task with high priority is delayed until the dispatch disabled state is
terminated.

• If the task with tk_dis_dsp executed invokes the system call (such as tk_slp_tsk and tk_wai_sem) which
could switch invoking task to the wait state, the system call returns with the error E_CTX.

• If the system state is referred by tk_ref_sys, TSS_DDSP is returned as sysstat.

If the task which has been already in the dispatch disabled state invokes tk_dis_dsp, only the dispatch

disabled state is continued as it is, and the system call is terminated normally. However, note that even if

tk_dis_dsp has been invoked several times, then only one invocation of tk_ena_dsp releases the dispatch

disabled state.

■ Additional Notes
In the dispatch disabled state, the running task cannot be switched to the resting state or unregistered state.

In the interrupt or dispatch disabled state, if the running task invokes tk_ext_tsk or tk_exd_tsk, the error

E_CTX is detected. However, since tk_ext_tsk and tk_exd_tsk are the system calls which do not return to

the source context, an error cannot be notified as the return value of those system calls.
194

CHAPTER 3 SYSTEM CALL INTERFACE
3.10.4 tk_ena_dsp (Enable Dispatch)

Enables the dispatch.

■ C Language Interface
ER ercd = tk_ena_dsp (void) ;

■ Parameter

● Input

None

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_CTX -25 Context error (Invocation from a task-independent portion)

■ Dispatch Trigger
If there is the dispatch which is delayed, the dispatch is performed.

■ Description
This system call enables the dispatch of task. In other words, the dispatch disabled state set by tk_dis_dsp is

released.

If the task which is not in the dispatch disabled state invokes this system call, only the dispatch enabled

state is continued as it is, and the system call is terminated normally. When the system call is invoked from

a task-independent portion, it returns with the error E_CTX.

Task portion ❍ Task-independent portion × Dispatch disabled ❍
195

CHAPTER 3 SYSTEM CALL INTERFACE
3.10.5 tk_ref_sys (Refer System Status)

Refers to the system status

■ C Language Interface
ER ercd = tk_ref_sys (T_RSYS *pk_rsys) ;

typedef struct t_rsys {

INT sysstat;

ID runtskid;

ID schedtskid;

} T_RSYS;

■ Parameter

● Input

pk_rsys Packet address to return the system status

(Packet of Refer System)

● Output

ercd Error code (Error Code)

● Data returned in packet

sysstat System status (System State)

sysstat:= (TSS_TSK | [TSS_DDSP] | [TSS_DINT])

|| (TSS_QTSK | [TSS_DDSP] | [TSS_DINT])

|| (TSS_INDP)

runtskid Currently running task ID (Running Task ID)

schedtskid Scheduled to be running task ID (Scheduled Task ID)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

State Value Meaning

TSS_TSK 0 Task portion running.

TSS_DDSP 1 Dispatch disabled

TSS_DINT 2 Interrupt disabled

TSS_INDP 4 Task-independent portion running

TSS_QTSK 8 Quasi-task portion running
196

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_OK 0 Normal completion

■ Dispatch Trigger
This system call does not perform the dispatch.

■ Description
This system call refers to the running state and returns the information such as the dispatch disabled and

task-independent portion running as the return value.

The currently running task ID and scheduled to be running task ID are returned to runtskid and schedtskid

respectively. Normally runtskid ≠ schedtskid, however, if there is the task with the higher priority in the

dispatche disabled or task-independent portion running state, runtskid is not equal to schedtskid. In

addition, if there is no applicable task, 0 is returned.

No error check is performed even if pk_rsys is invalid. The operation in this case is not guaranteed.
197

CHAPTER 3 SYSTEM CALL INTERFACE
3.10.6 tk_ref_ver (Refer Version Information)

Refers to the version information of the kernel

■ C Language Interface
ER ercd = tk_ref_ver (T_RVER *pk_rver) ;

typedef struct t_rver {

UH maker;

UH prid;

UH spver;

UH prver;

UH prno[4];

} T_RVER;

■ Parameter

● Input

pk_rver Initial address of the packet to return the version information

(Packet of Version Information)

● Output

ercd Error code (Error Code)

● Data returned in packet

maker Maker code of the kernel (Maker)

=0x0009 (Maker code = FUJITSU)

prid Identification number of the kernel (Product ID)

=0x6911 (µT-REALOS/FR)

spver Specification version number (Specification Version)

=0x6100 (µT-Kernel ver.1.00)

prver Version number of the kernel (Product Version)

=0x0100 (V01L00)

prno[4] Management information of the kernel product (Product Number)

prno[0] = 0x0000 (R00)

prno[1] to [3]= 0x0000 (unused)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
198

CHAPTER 3 SYSTEM CALL INTERFACE
■ Error Code
E_OK 0 Normal completion

■ Dispatch Trigger
This system call does not perform the dispatch.

■ Description
This system call refers to the version information of the kernel used and returns it to the packet specified by

pk_rver.

No error check is performed even if pk_rver is invalid. The operation in this case is not guaranteed.
199

CHAPTER 3 SYSTEM CALL INTERFACE
3.11 Sub System Function System Calls

The system calls of the sub system function are explained.

■ Sub System Function System Calls
The sub system function is comprised of two system calls as follows:

• tk_def_ssy (Define Subsystem)

• tk_ref_ssy (Refer Subsystem Status)
200

CHAPTER 3 SYSTEM CALL INTERFACE
3.11.1 tk_def_ssy (Define Subsystem)

Defines the sub system or deletes the definition.

■ C Language Interface
ER ercd = tk_def_ssy (ID ssid, T_DSSY *pk_dssy) ;

typedef struct t_dssy {

ATR ssyatr;

PRI ssypri;

FP svchdr;

FP breakfn;

FP startupfn;

FP cleanupfn;

FP eventfn;

INT resblksz;

} T_DSSY;

■ Parameter

● Input

ssid Sub system ID (Subsystem ID)

pk_dssy Packet initial address of the sub system definition information (Packet of Define

Subsystem)

● Data to set in packet

ssyatr Sub system attribute (Subsystem Attribute)

ssypri Sub system priority (Subsystem Priority)

svchdr Extended SVC handler address (SVC Handler)

breakfn Break function address (Break Function)

startupfn Start-up function address (Start-up Function)

cleanupfn Clean-up function address (Clean-up Function)

eventfn Event processing function address (Event Function)

resblksz Resource management block size (number of bytes)

(Resource Block Size)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
201

CHAPTER 3 SYSTEM CALL INTERFACE
● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (ssid is less than 10 or greater than the maximum sub systems

number)

E_OBJ -41 ssid already defined (when pk_dssy ≠ NULL)

E_NOEXS -42 ssid undefined (when pk_dssy = NULL)

E_PAR -17 ssypri is illegal

■ Dispatch Trigger
This system call does not perform the dispatch.

■ Description
This system call defines the sub system of ssid or deletes the definition.

Allocate one sub system ID to one sub system to avoid overlaps with other sub systems OS does not have

an automatic allocation function.

1 to 9 of the sub system IDs are reserved for µT-Kernel. 10 to the maximum sub systems number

(maximum sub systems number specified by the configurator) can be used.

In µT-Kernel, only extended SVC handler call function is supported as sub system function. For this

reason, the data, except svchdr, to be set in t_dssy packet is provided for compatibility with T-Kernel and

the value will be ignored.

svchdr specifies the start address of a function to be called as an extended SVC handler. An extended SVC

handler is an API of the sub system and can be invoked by the same way as the system calls.

The extended SVC handler can be described in C language only by the following format:

INT shdr(VP pk_para, FN fncd)

{

/*

Processing after branch by fncd

*/

return retcode; /* Extended SVC Handler Termination*/

}

fncd is a function code. The sub system ID is stored in the lower 8 bits of function code. The sub system

side can use the remaining upper bits freely. Usually they are used as the function code in sub system.

However, since the function code must be a positive value, the highest bit is always 0.

pk_para is the parameter passed from the invocation side and is made in a form of packets. The form of

packets can be determined freely by the sub system side. Generally it is same as the form of stack when an

argument is passed to a function in C language. In most cases it is same as the form of structure of C

language.
202

CHAPTER 3 SYSTEM CALL INTERFACE
The return value from the extended SVC handler is returned to the invocation source as the return value of

a function as it is. In principle a negative value is the error value and 0 or positive value is the return value

in a normal operation. In addition, since if the invocation of extended SVC fails with some reason, the

extended SVC handler is not invoked and an error code (negative value) of OS is returned to the invocation

source, do not to be confused with that.

An extended SVC handler is executed as a quasi-task portion if it is invoked from a task portion. It can be

invoked from a task-independent portion, however, if so, the extended SVC handler is also executed as a

task-independent portion.
203

CHAPTER 3 SYSTEM CALL INTERFACE
3.11.2 tk_ref_ssy (Refer Subsystem Status)

Refers to the sub system definition information.

■ C Language Interface
ER ercd = tk_ref_ssy (ID ssid, T_RSSY *pk_rssy) ;

typedef struct t_rssy {

PRI ssypri;

INT resblksz;

} T_RSSY;

■ Parameter

● Input

ssid Sub system ID (Subsystem ID)

pk_rssy Sub system definition information (Packet of Refer Subsystem)

● Output

ercd Error code (Error Code)

● Data returned in packet

ssypri Sub system priority (Subsystem Priority)

resblksz Resource management block size (number of bytes) (Resource Block Size)

■ Error Code
E_OK 0 Normal completion

E_ID -18 Invalid ID number (ssid is less than 10 or greater than 255)

E_NOEXS -42 ssid undefined (The sub system of ssid is undefined.)

■ Dispatch Trigger
This system call does not perform the dispatch.

■ Description
This system call refers to the various information of the object sub system indicated by ssid.

ssypri and resblksz are members which exist for the compatibility with T-Kernel, and they are not used

with µT-REALOS. Therefore these values are undefined values.

It returns with the error E_NOEXS, if the sub system of ssid is undefined.

No error check is performed even if pk_rssy is invalid. The operation in this case is not guaranteed.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
204

CHAPTER 3 SYSTEM CALL INTERFACE
3.12 Device Management Function System Calls

The system calls of the device management function is explained.

■ Device Management Function System Calls
The device management function is comprised of 15 system calls as follows:

• tk_def_dev (Define Device)

• tk_ref_idv (Refer Initial Device Information)

• tk_opn_dev (Open Device)

• tk_cls_dev (Close Device)

• tk_rea_dev (Read Device)

• tk_srea_dev (Synchronous Read Device)

• tk_wri_dev (Write Device)

• tk_swri_dev (Synchronous Write Device)

• tk_wai_dev (Wait Device)

• tk_sus_dev (Suspend Device)

• tk_get_dev (Get Device)

• tk_ref_dev (Refer Device)

• tk_oref_dev (Refer Device)

• tk_lst_dev (List Device)

• tk_evt_dev (Event Device)

For more details about this section, also see "APPENDIX C Device Driver Interface".
205

CHAPTER 3 SYSTEM CALL INTERFACE
3.12.1 tk_def_dev (Define Device)

Registers a device or deletes the registration.

■ C Language Interface
ID devid = tk_def_dev (UB *devnm, T_DDEV *ddev, T_IDEV *idev) ;

typedef struct t_ddev {

VP exinf;

ATR drvatr;

ATR devatr;

INT nsub;

INT blksz;

FP openfn;

FP closefn;

FP execfn;

FP waitfn;

FP abortfn;

FP eventfn;

} T_DDEV;

typedef struct t_idev {

ID evtmbfid;

} T_IDEV;

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
206

CHAPTER 3 SYSTEM CALL INTERFACE
■ Parameter

● Input

devnm Physical device name (Device Name)

ddev Device registration information (Packet of Define Device)

● Data to set in packet

exinf Extended information

drvatr Driver attribute (Driver Attribute)

drvatr := [TDA_OPENREQ]

devatr Device attribute (Device Attribute)

nsub Number of sub units (Sub Unit No.)

blksz Blocks number of device (Block Size)

openfn Open function entry address (Open Function)

closefn Close function entry address (Close Function)

execfn Processing start function entry address (Execute Function)

waitfn Completion waiting function entry address (Wait Function)

abortfn Abortion processing function entry address (Abort Function)

eventfn Event function entry address (Event Function)

● Output

devid Device ID (Device ID)

Or, error code (Error Code)

idev Device initial information (Initial Device Information)

● Data to set in packet

evtmbfid Message buffer for event notification ID

■ Error Code
E_LIMIT -34 The number of devices registered exceeds the upper limit of the system

E_PAR -17 Length of devnm is 0 or greater than 8 and nsub is negative or 256 or more

E_NOEXS -42 Device of devnm does not exist. (when ddev = NULL)

■ Dispatch Trigger
If another task has called the device management function API and is in the wait state, this task also goes to

the wait state until the other task's operation completes. Dispatch may be executed during this time.

Attribute Value Meaning

TDA_OPENREQ 0x0001 Every time open/close
207

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
This system call registers a device with a device name of devnm. If the device of devnm has been already

registered, it is updated with a new registration information. In the case of update, the device ID is not

changed. When ddev=NULL, the device registration of devnm is deleted. When the number of devices that

have been registered already reaches to the upper limit of the system (maximum number of devices for

registration specified in the configurator), E_LIMIT error is returned.

The following values are specified to T_DDEV:

• exinf

When the device processing functions (openfn to eventfn) are invoked from the device management
function API, this value is passed to the device driver as an argument of the device processing function.
It can be used freely at the device driver side.

• drvatr

The driver attribute is specified.

• devatr

The device attribute is specified. For the detail of device attribute, see "Appendix C Device Driver
Interface".

• nsub

The number of sub units are specified. 0 is specified for the device with no sub unit.

• blksz

The device block size is specified in bytes number. Usually this size is the minimum access size of the
device.

• openfn to eventfn

The entry address of the device processing function is specified. For the detail of device processing
function, see "Appendix C Device Driver Interface".

The device initial information is returned to idev, and the system default message buffer ID for event

notification is returned to evtmbfid. When idev=NULL, the device initial information is not stored. If there

is no system default event notification message buffer, 0 is specified to evtmbfid.

The message buffer for event notification is the message buffer ID number to be used for notification of

various events occurred in the device (such as inserting of media and abnormal battery) to the upper

program. For the event notification of device, see "Appendix C Device Driver Interface".

No error check is performed even if ddev and idev are invalid. The operation in this case is not guaranteed.
208

CHAPTER 3 SYSTEM CALL INTERFACE
3.12.2 tk_ref_idv (Refer Initial Device Information)

Obtains the device initial information.

■ C Language Interface
ER ercd = tk_ref_idv (T_IDEV *idev) ;

typedef struct t_idev {

ID evtmbfid;

} T_IDEV;

■ Parameter

● Input

idev Address for the area to store the device initial information

(Initial Device Information)

● Output

ercd Error code (Error Code)

● Data returned in packet

evtmbfid ID of message buffer for event notification

(Event Messagebuffer ID)

■ Error Code
E_OK 0 Normal completion

■ Dispatch Trigger
If another task has called the device management function API and is in the wait state, this task also goes to

the wait state until the other task's operation completes. Dispatch may be executed during this time.

■ Description
This system call obtains the device initial information. The information has the same contents as the one

obtained by tk_def_dev system call.

No error check is performed even if idev is invalid. The operation in this case is not guaranteed.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
209

CHAPTER 3 SYSTEM CALL INTERFACE
3.12.3 tk_opn_dev (Open Device)

Opens the device.

■ C Language Interface
ID dd = tk_opn_dev (UB *devnm, UINT omode) ;

■ Parameter

● Input

devnm Device name (Device Name)

omode Open mode (Open Mode)

omode := (TD_READ || TD_WRITE || TD_UPDATE) | [TD_EXCL ||

TD_WEXCL || TD_REXCL]

● Output

dd Device descriptor (Device Descriptor)

Or, error code (Error Code)

■ Error Code
E_PAR -17 TD_READ, TD_WRITE, and TD_UPDATE are all not set or in undefined mode.

E_BUSY -65 Device is being used (being open exclusively)

E_NOEXS -42 Device does not exist.

E_LIMIT -34 Greater than the maximum number of devices which can be opened

Other value Error returned by device driver

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Mode Value Meaning

TD_READ 0x0001 Read only

TD_WRITE 0x0002 Write only

TD_UPDATE 0x0003 Read and write

TD_EXCL 0x0100 Exclusion

TD_WEXCL 0x0200 Exclusive write

TD_REXCL 0x0400 Exclusive read
210

CHAPTER 3 SYSTEM CALL INTERFACE
■ Dispatch Trigger
If another task has called the device management function API and is in the wait state, this task also goes to

the wait state until the other task's operation completes. Dispatch may be executed during this time. Also

the dispatch depends on the device diver.

■ Description
This system call opens the device specified by devnm in the mode specified by omode. Also it prepares the

access to the device. The device descriptor is returned as the return value.

The following values are specified to omode.

• TD_READ, TD_WRITE, TD_UPDATE

The access mode is specified. For TD_READ, tk_wri_dev can not be used. Also for TD_WRITE,

tk_rea_dev can not be used.

• TD_EXCL, TD_WEXCL, TD_REXCL

The exclusion mode is specified. TD_EXCL prohibits all simultaneous opens. TD_WEXCL prohibits the

simultaneous open by the write mode (TD_WRITE or TD_UPDATE). TD_REXCL prohibits the

simultaneous open by the read mode (TD_READ or TD_UPDATE).

In addition, if the physical device is opened, it is handled in the same way as that all of the logical devices,

which belong to the physical device, are opened in the same mode, and processing of exclusive open is

performed.

No error check is performed even if devnm is invalid. The operation in this case is not guaranteed.
211

CHAPTER 3 SYSTEM CALL INTERFACE
3.12.4 tk_cls_dev (Close Device)

Closes the device.

■ C Language Interface
ER ercd = tk_cls_dev (ID dd, UINT option) ;

■ Parameter

● Input

dd Device descriptor (Device Descriptor)

option Close option (Option)

● Output

ercd Error code (Error Code)

■ Error Code
E_OK 0 Normal completion

E_ID -18 dd is invalid (dd is 0 or less, or greater than the maximum devices open number) or

the device is not open.

E_OACV -27 Request from a task that is not the task that opened the device

Other value Error returned by device driver

■ Dispatch Trigger
If another task has called the device management function API and is in the wait state, this task also goes to

the wait state until the other task's operation completes. Dispatch may be executed during this time. Also

the dispatch depends on the device diver.

■ Description
This system call closes the device descriptor of dd. If it is requested during processing, the processing is

stopped, and the device is closed.

When TD_EJECT is specified to option, if the same device is not opened by others task, media is ejected.

However, the specification is ignored for the device which cannot eject media.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Option Value Meaning

TD_EJECT 0x0001 Media ejection on closing
212

CHAPTER 3 SYSTEM CALL INTERFACE
3.12.5 tk_rea_dev (Read Device)

Starts the device reading.

■ C Language Interface
ID reqid = tk_rea_dev (ID dd, W start, VP buf, W size, TMO tmout) ;

■ Parameter

● Input

dd Device descriptor (Device Descriptor)

start Read start position (0 or more : Specific data, less than 0 : Attribute data) (Start)

buf Buffer to store the read data (Buffer)

size Size to be read (Size)

tmout Request acceptance waiting timeout time (ms) (Timeout)

The following macros can be specified in addition to the values from 0

to 0x7fffffff.

● Output

reqid Request ID (Request ID)

Or, error code (Error Code)

■ Error Code
E_ID -18 dd is invalid (dd is 0 or less, or greater than the maximum devices open number) or

the device is not open.

E_OACV -27 Open mode is invalid (open by TD_WRITE)

E_LIMIT -34 Maximum number of requests exceeded

Other value Error returned by device driver

■ Dispatch Trigger
If another task has called the device management function API and is in the wait state, this task also goes to

the wait state until the other task's operation completes. The dispatch may be executed during this time.

Also the dispatch depends on the device diver.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Name Value Meaning

TMO_FEVR -1 Wait indefinitely

TMO_POL 0 Polling
213

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
This system call starts reading of the specific data or attribute data from the device. It only starts reading,

and returns to the invocation source without waiting the reading completion. Retain buf until reading is

completed. Reading completion is waited by tk_wai_dev. The time for the processing to start reading

differs according to the device drivers. The system call does not always return immediately.

For the specific data, the units for start and size are determined for each device. For the attribute data, start

is the attribute data number and size is the number of bytes. The attribute data of the data number of start is

read. Usually size is more than the size of the attribute data which is read. Multiple attributes data cannot be

read at once. asize is a return value of tk_wai_dev and is set to a readable size by calling tk_wai_dev after

this system call is invoked with size=0.

If reading or writing is being performed, whether a new request is accepted or not depends on the device

driver. When in the state where a new request cannot be accepted, the request acceptance is for waiting.

The timeout time for request acceptance waiting is specified to tmout. The timeout occurs by the request is

accepted. The timeout does not occur after the request was accepted.
214

CHAPTER 3 SYSTEM CALL INTERFACE
3.12.6 tk_srea_dev (Synchronous Read Device)

Reads the device synchronously.

■ C Language Interface
ER ercd = tk_srea_dev (ID dd, W start, VP buf, W size, W *asize) ;

■ Parameter

● Input

dd Device descriptor (Device Descriptor)

start Read start position (0 or more : Specific data, less than 0 : Attribute data) (Start)

buf Buffer to store the read data (Buffer)

size Size to be read (Size)

● Output

ercd Error code (Error Code)

asize Size which was read (Size)

■ Error Code
E_OK 0 Normal completion

E_ID -18 The dd parameter is invalid (less than or equal to zero or greater than the maximum

number of devices to open) or the device is not open.

E_OACV -27 Open mode is invalid (open by TD_WRITE).

E_LIMIT -34 Maximum number of requests exceeded

Other value Error returned by device driver

■ Dispatch Trigger
If another task has called the device management function API and is in the wait state, this task also goes to

the wait state until the other task's operation completes. The dispatch may be executed during this time. The

dispatch depends on the device diver.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
215

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
This system call reads the device data synchronously. If this system call returns normally, the device data is

stored for asize with the address specified by buf at the head. This system call has the same processing as

the following.

ER tk_srea_dev(ID dd, W start, VP buf, W size, W *asize)

{

ER er, err, ioer;

err = tk_rea_dev (dd, start, buf, size, TMO_FEVR);

if (err > 0) {

err = tk_wai_dev(dd, er, asize, &ioer, TMO_FEVR);

if (err > 0) err = ioer;

}

return err;

}

No error check is performed even if asize is invalid. The operation in this case is not guaranteed.
216

CHAPTER 3 SYSTEM CALL INTERFACE
3.12.7 tk_wri_dev (Write Device)

Starts the device writing.

■ C Language Interface
ID reqid = tk_wri_dev (ID dd, W start, VP buf, W size, TMO tmout) ;

■ Parameter

● Input

dd Device descriptor (Device Descriptor)

start Write start position (0 or more : Specific data, less than 0 : Attribute data) (Start)

buf Buffer to store the data to be written (Buffer)

size Size to be written (Size)

tmout Request acceptance waiting timeout time (ms) (Timeout)

The following macros can be specified in addition to the values from 0

to 0x7fffffff.

● Output

reqid Request ID (Request ID)

Or, error code (Error Code)

■ Error Code
E_ID -18 The dd parameter is invalid (less than or equal to zero or greater than the maximum

number of devices to open) or the device is not open.

E_OACV -27 Open mode is invalid (open by TD_READ)

E_RONLY -67 Device which cannot be written

E_LIMIT -34 Maximum number of requests exceeded

Other value Error returned by device driver

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Name Value Meaning

TMO_FEVR -1 Wait indefinitely

TMO_POL 0 Polling
217

CHAPTER 3 SYSTEM CALL INTERFACE
■ Dispatch Trigger
If another task has called the device management function API and is in the wait state, this task also goes to

the wait state until the other task's operation completes. The dispatch may be executed during this time.

Also depends on the device diver.

■ Description
This system call starts writing of the specific data or attribute data to the device. It only starts writing, and

returns to the invocation source without waiting the writing completion. Retain buf until writing is

completed. Writing completion is waited by tk_wai_dev. The time for the processing to start writing differs

according to the device drivers. The system call does not always return immediately.

For the specific data, the units for start and size are determined for each device. For the attribute data, start

is the attribute data number and size is the number of bytes. The attribute data of the data number of start is

written. Usually size is same as the size of the attribute data which is written. Multiple attributes data

cannot be written at once. asize is a return value of tk_wai_dev and is set to a writable size by calling

tk_wai_dev after this system call is invoked with size=0.

If reading or writing is being performed, whether a new request is accepted or not depends on the device

driver. When in the state where a new request cannot be accepted, the request acceptance is for waiting.

The timeout time for request acceptance waiting is specified to tmout. Also TMO_POL(=0) or

TMO_FEVR(=-1) can be specified to tmout The timeout occurs by the request is accepted. The timeout

does not occur after the request was accepted.
218

CHAPTER 3 SYSTEM CALL INTERFACE
3.12.8 tk_swri_dev (Synchronous Write Device)

Writes the device synchronously.

■ C Language Interface
ER ercd = tk_swri_dev (ID dd, W start, VP buf, W size, W *asize) ;

■ Parameter

● Input

dd Device descriptor (Device Descriptor)

start Write start position (0 or more : Specific data, less than 0 : Attribute data) (Start)

buf Buffer stored the data to be written (Buffer)

size Size to be written (Size)

● Output

ercd Error code (Error Code)

asize Written size (Size)

■ Error Code
E_OK 0 Normal completion

E_ID -18 The dd parameter is invalid (less than or equal to zero or greater than the maximum

number of devices to open) or the device is not open.

E_OACV -27 Open mode is invalid (open by TD_READ)

E_RONLY -67 Device which cannot be written

E_LIMIT -34 Maximum number of requests exceeded

Other value Error returned by device driver

■ Dispatch Trigger
If another task has called the device management function API and is in the wait state, this task also goes to

the wait state until the other task's operation completes. The dispatch may be executed during this time.

Also the dispatch depends on the device diver.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
219

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
This system call writes the device synchronously. It has the same processing as the following.

ER tk_swri_dev(ID dd, W start, VP buf, W size, W *asize)

{

ER er, err, ioer;

err = tk_wri_dev(dd, start, buf, size, TMO_FEVR);

if (err > 0) {

err = tk_wai_dev(dd, er, asize, &ioer, TMO_FEVR);

if (err> 0) err = ioer;

}

return err;

}

No error check is performed even if asize is invalid. The operation in this case is not guaranteed.
220

CHAPTER 3 SYSTEM CALL INTERFACE
3.12.9 tk_wai_dev (Wait Device)

Waits the device request completion.

■ C Language Interface
ID creqid = tk_wai_dev (ID dd, ID reqid, W *asize, ER *ioer, TMO tmout) ;

■ Parameter

● Input

dd Device descriptor (Device Descriptor)

reqid Request ID (Request ID)

tmout Request acceptance waiting timeout time (ms) (Timeout)

The following macros can be specified in addition to the values from 0

to 0x7fffffff.

● Output

creqid Completed request ID (Request ID) or error code (Error Code)

asize Read size or written size (Size)

ioer Input/Output error (IO Error)

■ Error Code
E_ID -18 dd is invalid (less than or equal to zero or greater than the maximum number of

devices to open) or the device is not open.

reqid is less than 1 or greater than the system upper limit, or the request is not

for dd.

E_OACV -27 Request from a task that is not the task that opened the device

E_OBJ -41 The request of reqid is waiting for completion by other task.

E_NOEXS -42 No request in process (when reqid=0 only)

Other value Error returned by device driver

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Name Value Meaning

TMO_FEVR -1 Wait indefinitely

TMO_POL 0 Polling
221

CHAPTER 3 SYSTEM CALL INTERFACE
■ Dispatch Trigger
If another task has called the device management function API and is in the wait state, this task also goes to

the wait state until the other task's operation completes. The dispatch may be executed during this time.

Also the dispatch depends on the device diver.

■ Description
This system call waits the completion of request of reqid for dd.

When reqid=0, the completion of any of requests for dd is waited. In this case, only the request in process

on tk_wai_dev invocation is to be waited for the completion. The processing required after the invocation

of this system call is not to be waited for the completion.

When multiple requests are processed simultaneously, the completion order of the requests is not always

the order of requests, but depends on the device driver. However, the processing with the order where the

results do not contradict ones of processing with the requests order is guaranteed. For example, for reading

from a disk, the following processing order change is assumed.

Request order block number 1 4 3 2 5

Processing order block number 1 2 3 4 5

The processing with shuffled order as above decreases seeks or rotational delays making the disk access

more efficient.

The timeout time for completion waiting is specified to tmout. Also TMO_POL(=0) or TMO_FEVR(=-1)

can be specified to tmout. Since when the timeout (E_TMOUT) occurs, the processing required is in

process, the completion have to be waited by this system call again. If reqid>0 and tmout=TMO_FEVR, the

timeout does not occur, and the processing always completes.

The error of result of requested processing (such as input/output error) is stored not to the return value, but

to ioer. The system call returns with the error as the return value if the request completion waiting can not

be performed correctly. When the error is returned to the return value, the description of ioer is undefined

value.

Since when the error is returned to the return value, the processing is in process, the completion have to be

waited by this system call again.

The completion waiting can not be performed from multiple tasks to the same request ID simultaneously. If

any task is waiting by reqid=0, other task cannot wait the completion for the same dd so E_OBJ error is

returned. In the same way, if some task waits by reqid>0, other task cannot wait the completion by reqid=0.

E_OBJ error is returned in this case, too.

No error check is performed even if assize and ioer are invalid. The operation in this case is not guaranteed.

Return Value ioer Meaning

E_OK E_OK The processing for waiting completed normally.

E_OK Error
The processing for waiting completed with a error. The processing
error trigger is stored to ioer as the error code.

Error Undefined
Completion waiting failed. The failure trigger is stored to the return
value as the error code.
222

CHAPTER 3 SYSTEM CALL INTERFACE
3.12.10 tk_sus_dev (Suspend Device)

Suspends the device.

■ C Language Interface
INT cnt = tk_sus_dev (UINT mode) ;

■ Parameter

● Input

mode Mode (Mode)

mode := ((TD_SUSPEND | [TD_FORCE]) || TD_DISSUS || TD_ENASUS ||

TD_CHECK)

● Output

cnt Suspend disabled request count number (Count)

Or, error code (Error Code)

■ Error Code
E_PAR -17 The mode is undefined.

E_BUSY -65 Suspend being disabled.

E_QOVR -43 Suspend disabled request count over

■ Dispatch Trigger
If another task has called the device management function API and is in the wait state, this task also goes to

the wait state until the other task's operation completes. The dispatch may be executed during this time.

Also the dispatch depends on the device diver.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Mode Value Meaning

TD_SUSPEND 0x0001 Suspend

TD_DISSUS 0x0002 Suspend disabled.

TD_ENASUS 0x0003 Suspend enabled.

TD_CHECK 0x0004 Suspend disabled request count obtained.

TD_FORCE 0x8000 Forced suspend specified.
223

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
This system call performs the processing according to mode and returns the suspend disabled request count

number to the return value after the processing is performed.

• TD_SUSPEND Suspend

When in suspend enabled state, it suspends the device. If in suspend disabled state, E_BUSY is
returned.

• TD_SUSPEND|TD_FORCE Forced suspend

Even if in suspend disabled state, it suspends the device.

• TD_DISSUS Suspend disabled

Suspend is disabled.

• TD_ENASUS Suspend enabled

Suspend is enabled. If suspend is enabled for more than suspend disabled count, nothing is performed.
nothing is performed.

• TD_CHECK Suspend disabled count obtained

Obtainment for times of suspend disabled request is performed.

■ Additional Notes
Suspend is performed by the following procedure.

1. Suspend processing for other than each disk device.

2. Suspend processing for each disk device.

3. Shift to suspend state

Resume (return form suspend) is performed by the following procedure.

1. Return from suspend state.

2. Resume processing for each disk device.

3. Resume processing for other than each disk device.

Suspend disabled counts the number of requests. If the suspend permission is not required same times,

suspend is not enabled. On the system activation, suspend is enabled (suspend disabled request count = 0).

Suspend disabled request count is one for the whole system. Suspend disabled request count upper limit is

2147483647 (0x7fffffff). If the count is greater than this limit, the system call returns with the error

E_QOVR.
224

CHAPTER 3 SYSTEM CALL INTERFACE
3.12.11 tk_get_dev (Get Device)

Obtains the device name.

■ C Language Interface
ID phyid = tk_get_dev (ID devid, UB *devnm) ;

■ Parameter

● Input

devid Device ID (Device ID)

● Output

phyid Device ID of a physical device (Physical Device ID) or an error code (Error Code)

devnm Device name (Device Name)

■ Error Code
E_NOEXS -42 The device of devid does not exist.

■ Dispatch Trigger
If another task has called the device management function API and is in the wait state, this task also goes to

the wait state until the other task's operation completes. Dispatch may be executed during this time.

■ Description
This system call obtains the device name indicated by devid and stores to devnm.

devid is a device ID of a physical device or logical device. If devid is a physical device, a physical device

name is stored to devnm, and if it is a logical device, a logical device name is stored there. devnm needs

L_DEVNM (8) + area of 1 byte or more.

The device ID of physical device where the device of devid belongs to is returned to the return value.

No error check is performed even if devnm is invalid. The operation in this case is not guaranteed.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
225

CHAPTER 3 SYSTEM CALL INTERFACE
3.12.12 tk_ref_dev (Refer Device)

Obtains the device information of the device.

■ C Language Interface
ID devid = tk_ref_dev (UB *devnm, T_RDEV *rdev) ;

typedef struct t_rdev {

ATR devatr;

INT blksz;

INT nsub;

INT subno;

} T_RDEV;

■ Parameter

● Input

devnm Device name (Device Name)

rdev Address for the area to store the device information.

(Packet of Refer Device)

● Output

devid Device ID (Device ID)

Or, error code (Error Code)

● Data returned in packet

devatr Device attribute (Device Attribute)

blksz Block size of specific data (-1: unknown) (Block Size)

nsub Number of sub units (Number of Sub-unit)

subno 0: physical device, 1 to nsub: sub unit number+1

(Sub-unit Number)

■ Error Code
E_NOEXS -42 The device of devnm does not exist.

■ Dispatch Trigger
If another task has called the device management function API and is in the wait state, this task also goes to

the wait state until the other task's operation completes. Dispatch may be executed during this time.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
226

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
This system call obtains the device information of the device indicated by devnm and stores to rdev. When

rdev=NULL, the devicel information is not stored.

Nsub is the number of sub units of the physical device where the device indicated by devnm belongs to.

The device ID of device of devnm is returned to the return value.

No error check is performed even if devnm and rdev are invalid. The operation in this case is not

guaranteed.

For the device attribute, see "Appendix C Device Driver Interface".
227

CHAPTER 3 SYSTEM CALL INTERFACE
3.12.13 tk_oref_dev (Refer Device)

Obtains the device information of the device.

■ C Language Interface
ID devid = tk_oref_dev (ID dd, T_RDEV *rdev) ;

typedef struct t_rdev {

ATR devatr;

INT blksz;

INT nsub;

INT subno;

} T_RDEV;

■ Parameter

● Input

dd Device descriptor (Device Descriptor)

rdev Address for the area to store the device information.

(Packet of Refer Device)

● Output

devid Device ID (Device ID)

Or, error code (Error Code)

● Data returned in packet

devatr Device attribute (Device Attribute)

blksz Block size of specific data (-1: unknown) (Block Size)

nsub Number of sub units (Number of Sub-unit)

subno 0:physical device, 1 to nsub:sub unit number+1

(Sub-unit Number)

■ Error Code
E_OACV -27 Request from a task that is not the task that opened the device

■ Dispatch Trigger
If another task has called the device management function API and is in the wait state, this task also goes to

the wait state until the other task's operation completes. Dispatch may be executed during this time.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
228

CHAPTER 3 SYSTEM CALL INTERFACE
■ Description
This system call obtains the device information of the device indicated by dd and stores to rdev. When

rdev=NULL, the devicel information is not stored.

nsub is the number of sub units of the physical device where the device indicated by dd belongs to.

The device ID of the device indicated by dd is returned to the return value.

No error check is performed even if rdev is invalid. The operation in this case is not guaranteed.

For the device attribute, see "Appendix C Device Driver Interface".
229

CHAPTER 3 SYSTEM CALL INTERFACE
3.12.14 tk_lst_dev (List Device)

Obtains the list of the devices already registered.

■ C Language Interface
INT cnt = tk_lst_dev (T_LDEV *ldev, INT start, INT ndev) ;

typedef struct t_ldev {

ATR devatr;

INT blksz;

INT nsub;

UB devnm[L_DEVNM];

} T_LDEV;

■ Parameter

● Input

ldev Storing area for the registered device information (array)

(Packet of List Device)

start Starting number (Start)

ndev Obtained number (Number of Device)

● Output

cnt Remaining count number (Count)

Or, error code (Error Code)

● Data returned in packet

devatr Device attribute (Device Attribute)

blksz Block size of specific data (-1: unknown) (Block Size)

nsub Number of sub units (Number of Sub-unit)

devnm[L_DEVNM] Physical device name (Device Name)

■ Error Code
E_NOEXS -42 No information to be obtained (start is the number of devices already registered

or more)

E_PAR -17 start or ndev is negative.

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍
230

CHAPTER 3 SYSTEM CALL INTERFACE
■ Dispatch Trigger
If another task has called the device management function API and is in the wait state, this task also goes to

the wait state until the other task's operation completes. Dispatch may be executed during this time.

■ Description
This system call obtains the information of the device already registered.

The registered device is managed by each physical device. Therefore the registered device information is

obtained by each physical device.

If the number of registered devices is N, the sequence number of 0 to N-1 is allocated to the registered

device. According to this sequence number, ndev pieces of the registration information from start-th are

obtained and stored to ldev. ldev needs enough space to store ndev pieces of information.

The remaining count number (N - start) is returned to the return value. If the remaining count number is

less than ndev, all of the remaining are stored. The return value which is equal to or less than ndev indicates

that all registration information are obtained.

This sequence number changes when a device is registered/unregistered. Therefore if the information is

obtained by dividing multiple times, correct information may not be obtained

For example, when ten devices are registered, if three pieces of registration information are to be obtained

at a time, the change of start 0 → 3 → 6 → 9 and four times of invocation of this system call allow the

obtainment of all device registration information. If the device is registered/unregistered during the

invocation of this system call from first to fourth time, correct information might not be obtained. In this

case, specify 0 to start again, and then start from th beginning the obtainment of device information.

No error check is performed even if ldev is invalid. The operation in this case is not guaranteed.
231

CHAPTER 3 SYSTEM CALL INTERFACE
3.12.15 tk_evt_dev (Event Device)

Transmits the driver request event to the device.

■ C Language Interface
INT retval = tk_evt_dev (ID devid, INT evttyp, VP evtinf) ;

■ Parameter

● Input

devid Event destination device ID (Device ID)

evttyp Driver request event type (Event Type)

evtinf Each event type of information (Event Information)

● Output

retval Return value from the device driver (Return Value)

Or, error code (Error Code)

■ Error Code
E_NOEXS -42 Device of devid does not exist.

E_PAR -17 Device management internal event (evttyp < 0) cannot be specified.

■ Dispatch Trigger
If another task has called the device management function API and is in the wait state, this task also goes to

the wait state until the other task's operation completes. Dispatch may be executed during this time.

■ Description
This system call transmits the driver request event to the device (device driver) of devid.

For the detail of each event type, see "T-Kernel Standard Device Driver Specification" (The specification

can be downloaded from the website of T-Engine Forum free of charge.)

Task portion ❍ Task-independent portion ❍ Dispatch disabled ❍

Event Value Meaning

TDV_CARDEVT 1 PC card event

TDV_USBEVT 2 USB event
232

APPENDIX

The Appendices describe the error codes, define
macros, device driver interface, and points to note when
porting from a µITRON OS. An alphabetic index of
system calls is also included.

APPENDIX A Error Codes

APPENDIX B Define Macros

APPENDIX C Device Driver Interface

APPENDIX D Points to Note When Porting From a µITRON OS

APPENDIX E System Call Index
233

APPENDIX A Error Codes
APPENDIX A Error Codes

The table below lists the error codes.

■ Error Codes

Table A-1 Error Codes (1 / 2)

Label Error Code*1 Meaning

E_OK 0 H'00 H'00000000 Successful completion

E_SYS*2 - 5 -H'05 H'fffffffb System error

E_NOCOP*2 - 6 -H'06 H'fffffffa Co-processor not available

E_NOSPT*2 - 9 -H'09 H'fffffff7 Unsupported function

E_RSFN*2 -10 -H'0a H'fffffff6 Reserved function code number

E_RSATR -11 -H'0b H'fffffff5 "Reserved" attribute

E_PAR -17 -H'11 H'ffffffef Parameter error

E_ID -18 -H'12 H'ffffffee Invalid ID number

E_CTX -25 -H'19 H'ffffffe7 Context error

E_MACV*2 -26 -H'1a H'ffffffe6 Unable to access memory, or memory access permission violation

E_OACV -27 -H'1b H'ffffffe5 Object access permission violation

E_ILUSE -28 -H'1c H'ffffffe4 Invalid use of system call

E_NOMEM -33 -H'21 H'ffffffdf Insufficient memory

E_LIMIT -34 -H'22 H'ffffffde System limit exceeded

E_OBJ -41 -H'29 H'ffffffd7 Object status is invalid

E_NOEXS -42 -H'2a H'ffffffd6 Object does not exist

E_QOVR -43 -H'2b H'ffffffd5 Queue or nesting level overflow

E_RLWAI -49 -H'31 H'ffffffcf Forcibly released from wait state

E_TMOUT -50 -H'32 H'ffffffce Polling failed or timeout

E_DLT -51 -H'33 H'ffffffcd The object being waited on has been deleted

E_DISWAI*2 -52 -H'34 H'ffffffcc Wait released by wait prohibition

E_IO -57 -H'39 H'ffffffc7 Input/output error

E_NOMDA*2 -58 -H'3a H'ffffffc6 No media

E_BUSY -65 -H'41 H'ffffffbe Busy
234

APPENDIX A Error Codes
*1: The error codes are shown (from left to right) in signed decimal, signed hexadecimal, and absolute hexadecimal format

respectively

*2: Not used in µT-Kernel. Definitions are retained for compatibility with T-Kernel.

E_ABORT*2 -66 -H'42 H'ffffffbd Aborted

E_RONLY -67 -H'43 H'ffffffbc Write-prohibited

Table A-1 Error Codes (2 / 2)

Label Error Code*1 Meaning
235

APPENDIX B Define Macros
APPENDIX B Define Macros

The table below lists the define macros.

■ Define Macros

Table B-1 Define Macros (1 / 4)

Category Macro Name Value Meaning

Task

TSK_SELF 0 This task

TPRI_INI 0 Initial priority

TPRI_RUN 0 Priority of currently executing task

Object creation

TA_ASM 0 Coded in assembly language

TA_HLNG 1 Coded in C

TA_USERBUF 0x20 Specifies a user buffer

TA_DSNAME 0x40 Indicates a DS object name

TA_RNG0 0 Memory protection level 0

TA_RNG1 0x100 Memory protection level 1

TA_RNG2 0x200 Memory protection level 2

TA_RNG3 0x300 Memory protection level 3

Task state

TTS_RUN 0x1 Run state

TTS_RDY 0x2 Ready state

TTS_WAI 0x4 Wait state

TTS_SUS 0x8 Suspended state

TTS_WAS 0xc Wait-suspend state (WAITING + SUSPENDED)

TTS_DMT 0x10 Idle

Task wait states

TTW_SLP 0x1 Sleeping

TTW_DLY 0x2 Delayed

TTW_SEM 0x4 Waiting on a semaphore

TTW_FLG 0x8 Waiting on an event flag

TTW_MBX 0x40 Waiting on mailbox reception

TTW_MTX 0x80 Waiting on a mutex

TTW_SMBF 0x100 Waiting on a message buffer send

TTW_RMBF 0x200 Waiting on message buffer reception

TTW_CAL 0x400 Waiting on a rendezvous call
236

APPENDIX B Define Macros
Task wait states

TTW_ACP 0x800 Waiting on rendezvous reception

TTW_RDV 0x1000 Waiting on a rendezvous termination

TTW_MPF 0x2000 Waiting on acquisition of a fixed-length memory pool

TTW_MPL 0x4000 Waiting on acquisition of a variable-length memory pool

Wait queue

TA_TFIFO 0 Wait queue uses FIFO order

TA_TPRI 0x1 Wait queue uses task priority order

TA_FIRST 0 Wait queue gives priority to first task in queue

TA_CNT 0x2 Give priority to task with the smallest number of requests

Mutex attributes
TA_INHERIT 0x2 Priority inheritance protocol

TA_CEILING 0x3 Priority upper limit protocol

Event flag attributes
TA_WSGL 0 Prohibit waiting by multiple tasks

TA_WMUL 0x8 Permit waiting by multiple tasks

Event flag wait modes

TWF_ANDW 0 Event flag AND wait

TWF_ORW 0x1 Event flag OR wait

TWF_CLR 0x10 Clear all event flags

TWF_BITCLR 0x20 Clear specified event flags

Mailbox attributes
TA_MFIFO 0 Manage messages on a FIFO basis

TA_MPRI 0x2 Manage messages in priority order

Cyclic handler
attributes

TA_STA 0x2 Start cyclic handler

TA_PHS 0x4 Save phase of cyclic handler

Cyclic handler
operation

TCYC_STP 0 Stop cyclic handler

TCYC_STA 0x1 Start cyclic handler

Alarm handler
operation

TALM_STP 0 Stop alarm handler

TALM_STA 0x1 Start alarm handler

System states

TSS_TSK 0 Task executing

TSS_DDSP 0x1 Dispatch disabled

TSS_DINT 0x2 Interrupts disabled

TSS_INDP 0x4 Task-independent portion executing

TSS_QTSK 0x8 quasi-task executing

Common device
attributes

TD_PROTECT 0x8000 Write-protect

TD_REMOVABLE 0x4000 Removable media

Table B-1 Define Macros (2 / 4)

Category Macro Name Value Meaning
237

APPENDIX B Define Macros
Device types

TD_DEVKIND 0xff Device type/media type mask

TD_DEVTYPE 0xf0 Device type mask

TDK_UNDEF 0 Undefined device

Disk devices

TDK_DISK 0x10 Disk device

TDK_DISK_UNDEF 0x10 Undefined disk device

TDK_DISK_RAM 0x11 RAM disk

TDK_DISK_ROM 0x12 ROM disk

TDK_DISK_FLA 0x13 FLASH memory disk

TDK_DISK_FD 0x14 Floppy disk

TDK_DISK_HD 0x15 Hard disk

TDK_DISK_CDROM 0x16 CD-ROM

Device open modes

TD_READ 0x1 Read-only

TD_WRITE 0x2 Write-only

TD_UPDATE 0x3 Read and write

TD_EXCL 0x100 Open for exclusive access

TD_WEXCL 0x200 Open for writing only

TD_REXCL 0x400 Open for reading only

Device close options TD_EJECT 0x1 Eject media when closing

Device suspend
modes

TD_SUSPEND 0x1 Suspend

TD_DISSUS 0x2 Suspend disabled

TD_ENASUS 0x3 Suspend enabled

TD_CHECK 0x4 Check suspend enable/disable state

TD_FORCE 0x8000 Forcibly suspend

Message buffers used
to notify information

TDN_EVENT -1 ID of message buffer used to notify information

TDN_DISKINFO -2 Disk information

TDN_DISPSPEC -3 Display device information

TDN_PCMCIAINFO -4 PC card information

Device registration TDA_OPENREQ 0x1 Open and close for each operation

Device requests
TDC_READ 0x1 Read request

TDC_WRITE 0x2 Write request

Table B-1 Define Macros (3 / 4)

Category Macro Name Value Meaning
238

APPENDIX B Define Macros
Driver events

TDV_SUSPEND -1 Suspend

TDV_RESUME -2 Resume

TDV_CARDEVT 0x1 PC card event

TDV_USBEVT 0x2 USB event

NULL
NULL 0 NULL

TA_NULL 0 Unspecified attribute

Timeouts
TMO_FEVR -1 Wait indefinitely

TMO_POL 0 Polling

Table B-1 Define Macros (4 / 4)

Category Macro Name Value Meaning
239

APPENDIX C Device Driver Interface
APPENDIX C Device Driver Interface

This appendix describes the interface between the kernel and device drivers.

■ Device Driver Interface
This is the interface between device drivers (which are user programs) and the device management

functions of µT-REALOS. The device driver interface consists of the following elements.

• Device naming rules

• Device ID

• Device attributes

• Device descriptor

• Request ID

• Data number

• Data format of device input/output requests

• Device processing functions

• Device attribute data

• Device event notification

• Suspend and resume

■ Device Naming Rules
Device names are a character string of up to eight characters and are made up of the following parts.

Type: A name indicating the device type. Permitted characters are a to z and A to Z.

Unit: A number indicating the physical device. Available letters are a to z. It is specified by one

letter. It is allocated sequentially from a for each unit.

Sub-unit: A number indicating the logical device. Available numbers are 0 to 254 and the

maximum length is three digits. It is allocated sequentially from 0 for each sub-unit.

A device name consists of the type + unit + sub-unit, but the unit and sub-unit parts are not used for all

devices. In this case, these fields are omitted.

In particular, the name format for physical devices is type + unit. A name that consists of type + unit + sub-

unit is called a logical device name to distinguish it from a physical device name. If there is no sub-unit, the

physical device name and logical device name are the same. The term "device name" on its own indicates

the logical device name.

Sub-units typically represent partitions on a hard disk, but can also be used to indicate other types of logical

device.

Examples:

had Hard disk (entire disk)

hda0 Hard disk (first partition)

fda Floppy disk

rsa Serial port

kbpd Keyboard or pointing device
240

APPENDIX C Device Driver Interface
■ Device ID
Registering a device (device driver) in µT-Kernel allocates a device ID (>0) to the device (physical device

name). A separate device ID is allocated to each physical device and the device ID of a logical device is its

sub-unit number + 1 (1 to 255) added to this device ID for the physical device

devid: Device ID allocated when device is registered

devid Physical device

devid+n+1 nth sub-unit (logical device)

Example:

hda devid Entire hard disk

hda0 devid + 1 First hard disk partition

hda1 devid + 2 Second hard disk partition

■ Device Attributes
Device attributes are defined as follows to indicate the device type and represent the characteristics of the

device.

IIII IIII IIII IIII PRxx xxxx KKKK KKKK

The upper 16 bits contain the device-specific attributes which are defined separately for each device. The

lower 16 bits contain the standard attributes.

The standard attributes have the following information.

• Common attribute(bit15 to bit8)

• Device type(bit15 to bit4) and media type(bit3 to bit0)

Name Value Meaning

TD_PROTECT 0x8000 P: Write-protect

TD_REMOVABLE 0x4000 R: Removable media

Name Value Meaning

TD_DEVKIND 0x00ff K: Device or media type

TD_DEVTYPE 0x00f0 Device type

TDK_UNDEF 0x0000 Undefined or unknown

TDK_DISK 0x0010 Disk device

TDK_DISK_UNDEF 0x0010 Other disk

TDK_DISK_RAM 0x0011 RAM disk (using main memory)

TDK_DISK_ROM 0x0012 ROM disk (using main memory)

TDK_DISK_FLA 0x0013 Flash ROM or other silicon disk

TDK_DISK_FD 0x0014 Floppy disk

TDK_DISK_HD 0x0015 Hard disk

TDK_DISK_CDROM 0x0016 CD-ROM
241

APPENDIX C Device Driver Interface
Device types other than those listed above are not defined at this moment but new devices will be defined

additionally in the future. TDK_UNDEF is used for undefined devices. The device type is defined to allow

the user of the device to identify the type of device so that, for example, an application can change its

operation depending on the type of device or media being used. Assigning a device type is not necessary in

the case of devices for which an explicit identification is not required.

■ Device Descriptor
An identifier used for device access. A device descriptor (>0) is allocated by µT-Kernel when the device is

opened.

■ Request ID
A request ID (>0) is an identifier allocated when an I/O request is issued to the device to identify the

request. The request ID is used to wait for the I/O operation to complete.

■ Data Number
Device data is specified by data number. The following two types of data number are used.

• Device-specific data: Data number ≥ 0

The data numbers for device-specific data are defined separately for each device.

Example: Disk Data number = Physical block number

Serial link Only data number 0 is used

• Attribute data: Data number < 0

Used to get or set device or driver status information, for special functions, and other uses.

Although standard definitions are provided for some data numbers, these can also be defined separately
for each device.

■ Attribute Data
The following three types of attribute data are used.

• Common attributes

Attributes defined for use by all devices (device drivers).

• Device-type-specific attributes

Attributes defined for use by all devices (device drivers) of a particular type.

• Device-specific attributes

Attributes defined independently for each device (device driver).

The device-type-specific and device-specific attributes are defined separately for each device. This section

defines the common attributes only.

Common attributes have an attribute data number in the range -1 to -99. Although the data numbers for

common attributes are the same for all devices, this does not mean that every device supports all the

common attributes. An E_PAR error is returned if an unsupported data number is specified.
242

APPENDIX C Device Driver Interface
RW: Allows reading (tk_rea_dev) and writing (tk_wri_dev)

R-: Allows reading (tk_rea_dev) only

● TDN_EVENT : ID of message buffer used to notify events

Data format: ID

This is the ID of the message buffer used to notify device events. As the system default message buffer ID

is passed when the device is registered, set that ID as the initial value when starting the driver.

Device event notification is not performed if this attribute is set to zero.

● TDN_DISKINFO : Disk information

Data format: DiskInfo

typedef enum {

DiskFmt_STD = 0, /* Standard (HD, etc.) */

DiskFmt_2DD = 1, /* 2DD 720KB */

DiskFmt_2HD = 2, /* 2HD 1.44MB */

DiskFmt_CDROM = 4, /* CD-ROM 640MB */

} DiskFormat;

typedef struct {

DiskFormat format; /* Format */

UW protect:1; /* Whether or not protected */

UW removable:1; /* Whether removable or not */

UW rsv:30; /* Reserved (always zero) */

W blocksize; /* No. of bytes per block */

W blockcount; /* Total number of blocks */

} DiskInfo;

● TDN_DISPSPEC : Display device specifications

Data format: DEV_SPEC

typedef struct {

H attr; /* Device attribute */

H planes; /* No. of planes */

H pixbits; /* No. of bits per pixel (border/effective) */

H hpixels; /* No. of horizontal pixels */

Common Attribute Attribute Data No. Meaning

TDN_EVENT (-1) RW: ID of message buffer used to notify events

TDN_DISKINFO (-2) R-: Disk information

TDN_DISPSPEC (-3) R-: Display device specifications
243

APPENDIX C Device Driver Interface
H vpixels; /* No. of vertical pixels */

H hres; /* Horizontal resolution */

H vres; /* Vertical resolution */

H color[4]; /* Color information */

H resv[6]; /* Reserved */

} DEV_SPEC;

■ Data Format of I/O Request
An I/O request to a device driver uses the following request packet, which is linked to a request ID.

typedef struct t_devreq {

struct t_devreq *next; /* I: Request packet link (NULL = terminator) */

VP exinf; /* X: Extended information */

ID devid; /* I: Device ID for request */

INT cmd:4; /* I: Request command */

BOOL abort:1; /* I: TRUE if an abort request occurred */

INT start; /* I: Start data number */

INT size; /* I: Request size */

VP buf; /* I: I/O buffer address */

INT asize; /* O: Result size */

ER error; /* O: Result error */

} T_DEVREQ;

The meaning of the letters in the comments are: I = input parameter, O = output parameter, X = parameter

not used by the device management function. Input parameters cannot be modified by the device driver.

The device management function initially clears all parameters other than input parameters (I) to zero.

Device management does not subsequently make any changes.

The "next" member is used to link request packets. In addition to being used to manage request packets

within the device management function, the member is also used by the wait for completion routine

(waitfn), and abort operation routine (abortfn).

The "exinf" member can be used by the device driver without restriction. The device management function

does not use this member.

The "devid" member specifies the ID of the device to which the request applies.

The "cmd" member specifies the request command.

cmd := (TDC_READ || TDC_WRITE)

cmd Value Meaning

TDC_READ 1 Read request

TDC_WRITE 2 Write request
244

APPENDIX C Device Driver Interface
The "abort" member is set to TRUE if the operation is a aborted immediately prior to calling the abort

routine (abortfn). The meaning of the "abort" flag is that aborting the operation was requested. It does not

necessarily indicate that the operation has actually been aborted. It is also possible to set "abort" to TRUE

without calling the abort routine (abortfn). If a request with abort = TRUE is passed to a device driver, the

driver aborts the operation.

The "start" and "size" members are set to the values of the "start: and "size" arguments passed to

tk_rea_dev or tk_wri_dev.

The "buf" member is set to the buf parameter passed to tk_rea_dev or tk_wri_dev.

The "asize" member is set by the device driver to the asize value returned by tk_wai_dev.

The "error" member is set by the device driver and used as the error code returned by tk_wai_dev. The

driver sets E_OK if the operation completed normally.

■ Device Processing Functions
These operation routines are called by device management function. When writing these routines, ensure

that they have a reentrant structure. Note also that these operation routines do not necessarily have

exclusive control of the CPU during execution. If multiple tasks issue requests to the same device

simultaneously, for example, the routines may be called simultaneously by the different tasks. Accordingly,

the device driver needs to use exclusive control techniques, as required.

● Open function (openfn)

<Call interface>

ER ercd = openfn(ID devid, UINT omode, VP exinf)

<Parameter>

[Input]

devid Device ID of device to open

omode Open mode (same as tk_opn_dev)

exinf Additional information specified when registering device

[Output]

ercd Error code

<Explanation>

Device management calls the openfn routine when tk_opn_dev is called.

The openfn routine performs any initialization to prepare the device for use. The actual operation depends

on the device and the operation can be performed freely to suit the device. No operation needs to be

performed if no operation is required. Also, the device driver does not need to manage whether or not the

device is open, nor does it need to cause other operation routines to return an error if the device is not open

(if openfn has not been called). If another operation routine is called when the device is not open, it is

permitted for the driver to process the request provided it does not cause any internal problem for the

device driver.
245

APPENDIX C Device Driver Interface
Even if openfn needs to perform device initialization or other operations, it must not perform any operation

that involves going to the wait state. The openfn routine should complete its operation as quickly as

possible and return. For devices such as a serial link where the communication mode needs to be set, for

example, the device can be initialized when tk_wri_dev is used to set the communication mode.

Accordingly, device initialization does not need to be performed by openfn.

If the same device is opened more than once, openfn is typically only called for the first open operation.

However, if the TDA_OPENREQ driver attribute is specified when the device is registered, openfn is

called for all open operations. As multiple open operations, management of the open mode, and similar

processing is handled by device management function, these sort of operations are not required in openfn.

Similarly, although omode is passed in case it is required for some reason, management of omode is not

normally required in openfn.

● Close function (closefn)

<Call interface>

ER ercd = closefn(ID devid, UINT option, VP exinf)

<Parameter>

[Input]

devid Device ID of device to close

option Close option (same as tk_cls_dev)

exinf Additional information specified when registering device

[Output]

ercd Error code

<Explanation>

Device management calls the closefn routine when tk_cls_dev is called.

The closefn routine performs any operations associated with ending use of the device. The actual operation

depends on the device and the operation can be performed freely to suit the device. No operation needs to

be performed if no operation is required.

In the case of devices with removable media, eject the media if TD_EJECT is specified in the option

parameter.

Even if closefn needs to perform device shutdown processing, eject the media, or other operations, it must

not perform any operation that involves going to the wait state. The closefn routine should complete its

operation as quickly as possible and return. Even if ejecting the media takes some time, it is OK to return

from closefn immediately without waiting for the eject operation to complete.

If the same device is opened more than once, this routine is typically only called for the final close

operation. However, if the TDA_OPENREQ driver attribute is specified when the device is registered,

openfn is called for all close operations. In this case, however, TDA_EJECT will not be set in the option

parameter for any close operation other than the final close operation. As multiple open operations,

management of the open mode, and similar processing is handled by device management function, these

sort of operations are not required in closefn.
246

APPENDIX C Device Driver Interface
● Operation start function (execfn)

<Call interface>

ER ercd = execfn(T_DEVREQ *devreq, TMO tmout, VP exinf)

<Parameter>

[Input]

devreq Request packet

tmout Timeout for receiving request (ms)

exinf Additional information specified when registering device

[Output]

ercd Error code

<Explanation>

Device management calls the execfn routine when tk_rea_dev, tk_srea_dev, tk_wri_dev , or tk_swri_dev

are called.

The execfn routine initiates processing of the request specified in the devreq parameter. The routine

initiates the operation only and then returns immediately to the caller. How long it takes to start the

operation depends on the device driver and this step may not necessarily finish immediately.

Reception of new requests is delayed if the device is unable to handle any new requests. If the device does

not become able to accept the new request within the time specified by the tmout parameter, perform

timeout processing. The permitted values for the tmout parameter include TMO_POL (= 0) and

TMO_FEVR (= -1). The execfn return value if a timeout occurs is E_TMOUT. Do not modify the error

member in the request packet. The timeout only applies to the time up until the request is accepted. Do not

create a timeout after the request has been accepted.

When execfn returns an error, delete the request packet as the request has not been accepted. If the

operation is aborted due to device driver before the request has been accepted (before starting the

operation), E_ABORT is returned as execfn return value. Delete the request packet in this case. Return

E_OK if the abort occurs after the request has been accepted (after starting the operation). In this case, the

request packet is not deleted until waitfn is called and the termination of the operation confirmed.

● Wait for completion function (waitfn)

<Call interface>

INT pktno = waitfn(T_DEVREQ *devreq, INT nreq, TMO tmout, VP exinf)

<Parameter>

[Input]

devreq Request packet list

nreq Number of request packets

tmout Timeout (ms)

exinf Additional information specified when registering device

[Output]

pktno Number of completed request packet, or an error code
247

APPENDIX C Device Driver Interface
<Explanation>

Device management calls the waitfn routine when tk_srea_dev, tk_swri_dev, or tk_wai_dev are called.

The devreq parameter contains a list of request packets linked by the devreq->next member. This routines

waits until any of the nreq request packets starting from devreq have completed. Always process the list in

accordance with the nreq parameter because you cannot be sure that the final packet in the list will have

next = NULL. Return the number (sequence in list relative to devreq) of the request packet corresponding

to the completed request in the return value. The first request packet is number 0 and the final packet is

number nreq-1. Note that completion of an operation may mean successful completion, abnormal (error)

completion, or abort.

The tmout parameter specifies the timeout for waiting for completion. The permitted values for this

parameter include TMO_POL (= 0) and TMO_FEVR (= -1). If a timeout occurs, this indicates that the

requested operation is still in progress. The waitfn return value if a timeout occurs is E_TMOUT. Do not

modify the error member in the request packet. If waitfn returns while the operation is still in progress,

waitfn must return an error. While an error return value does not necessarily mean that the operation is still

in progress, returning a packet number in the return value always indicates that the corresponding operation

has completed. The request is treated as still being in progress and the request packet not delete for as long

as waitfn returns an error. When waitfn returns the number of the request packet corresponding to the

completed request, delete the request packet as the requested operation is now complete.

Set any device related errors, such as I/O errors, in the error member of the request packet. The waitfn

return value contains the error if the routine was unable to wait for completion. The waitfn return value is

used as the return value for tk_wai_dev and the error member of the request packet is set back to ioer.

When the operation for waiting for completion is aborted due to device driver or an abort request (abort

flag in request packet=TRUE), use a different abort process for a case of waiting for completion of a single

request (nreq=1) and for a case of waiting for completion of multiple requests (nreq>1). When waiting for

completion of a single request, abort the current request. When waiting for completion of a multiple

requests, abort the process of waiting for completion only (cancel the wait) and do not abort the requested

operations themselves. When waiting for completion of a multiple requests is aborted (wait cancelled),

return E_ABORT as the waitfn return value.

In addition, for a case of multiple requests, the abort process can be ignored. However, it is recommended

to perform an abort process for an abort request as much as possible. In this case, if waiting on the

completion of a single request, abort the request. If waiting on multiple requests, although aborting the

requests is preferable, it is also acceptable just to ignore the abort flag.

When aborting, it is important that waitfn returns as quickly as possible, and aborting is not necessary if the

operation will terminate immediately in any case. Although the general rule is that the error member of the

request packet must be returned with the value E_ABORT if the operation is aborted, returning an error

other than E_ABORT is permitted if appropriate for the characteristics of the device. Similarly, returning

E_OK indicating that the operation was valid immediately prior to aborting is also permitted. Return E_OK

if the operation will continue normally until it completes even if an abort request occurs.

● Abort operation function (abortfn)

<Call interface>

ER ercd = abortfn(ID tskid, T_DEVREQ *devreq, INT nreq, VP exinf)
248

APPENDIX C Device Driver Interface
<Parameter>

[Input]

tskid Task ID of the task that is executing execfn or waitfn.

devreq Request packet list

nreq Number of request packets

exinf Additional information specified when registering device

[Output]

ercd Error code

<Explanation>

Device management calls the abortfn routine when tk_cls_dev is called.

The abortfn routine aborts the execution of execfn or waitfn for the specified requests. Normally, the

requested operation is also aborted. However, aborting is not necessary if the operation will terminate

immediately in any case. The important requirement is that execfn or waitfn return as quickly as possible.

The tskid parameter specifies the task that is executing the request indicated by devreq. That is, it indicates

the task that is executing execfn or waitfn. The devreq and nreq parameters must be the same as the input

parameters passed to execfn or waitfn. However, for execfn, the value of nreq is always "1".

The abortfn routine can be called from a task other than the task that called execfn or waitfn. As both tasks

will be executing concurrently, exclusive control and similar measures should be used as required. It is

possible that abortfn is called prior to execfn or waitfn being called, or while execfn or waitfn is returning.

Ensure that your implementation operates correctly in such cases.

Set the abort flag to TRUE in the request packet for the request to be aborted before calling the abortfn

routine. The execfn and waitfn routines can also use the abort flag to determine whether or not an abort

request has occurred.

Note that the following special considerations apply when waitfn has been called to wait on multiple

requests (nreq>1).

• Abort waiting only (cancel the wait), without aborting the requested operation.

• Do not set the abort flag in the request pattern (leave set to abort = FALSE).

To abort a request when neither execfn nor waitfn are executing, just set the abort flag in the request packet

and do not call abortfn. A request is not accepted if the abort flag is set when execfn is called. When waitfn

is called, it performs the same abort processing as when abortfn is called.

If a request for an operation that has already been started by execfn is aborted at a time when waitfn is not

being used to wait for the operation to complete, notify that the aborted operation has completed when

waitfn is subsequently called. Even if the request is aborted, do not delete the request itself until waitfn is

called to check for completion.

The abortfn routine only initiates abort processing and returns immediately without waiting for abort

processing to complete.

The abortfn is called in the following situations.

• When a device is closed by tk_cls_dev or by the clean-up processing for the sub-system, any active
requests for the device descriptor being closed are aborted.
249

APPENDIX C Device Driver Interface
● Event function (eventfn)

<Call interface>

INT rtncd = eventfn(INT evttyp, VP evtinf, VP exinf)

<Parameter>

[Input]

evttyp Driver request event type

evtinf Information associated with the event type

exinf Additional information specified when registering device

[Output]

rtncd One of the return values defined for the event type, or an error

<Explanation>

The following driver request event types are used. Positive values are the result of calling tk_evt_dev and

negative values the result of internal calls from within device management function.

The operation performed by the event routine is defined separately for each event type. When called by

tk_evt_dev, the value returned by eventfn is used as the tk_evt_dev return value.

Requests to the event routine must be able to be handled even while processing other requests and should

be processed as quickly as possible.

Event Value Meaning

TDV_SUSPEND (-1) Suspend

TDV_RESUME (-2) Resume

TDV_CARDEVT 1 PC card event

TDV_USBEVT 2 USB event
250

APPENDIX C Device Driver Interface
■ Device Event Notification
The device driver sends notification of events that occur on the device using the device event message

buffer (TDN_EVENT).

The following event types are used.

typedef enum tdevttyp {

TDE_unknown = 0, /* Undefined */

TDE_MOUNT = 0x01, /* Media inserted */

TDE_EJECT = 0x02, /* Media ejected */

TDE_ILLMOUNT = 0x03, /* Media inserted incorrectly */

TDE_ILLEJECT = 0x04, /* Media ejected incorrectly */

TDE_REMOUNT = 0x05, /* Media re-inserted */

TDE_CARDBATLOW = 0x06, /* Card battery low warning */

TDE_CARDBATFAIL = 0x07, /* Card battery faulty */

TDE_REQEJECT = 0x08, /* Media eject requested */

TDE_PDBUT = 0x11, /* Change in state of PD button */

TDE_PDMOVE = 0x12, /* PD movement */

TDE_PDSTATE = 0x13, /* PD state change */

TDE_PDEXT = 0x14, /* PD extended event */

TDE_KEYDOWN = 0x21, /* Key down */

TDE_KEYUP = 0x22, /* Key up */

TDE_KEYMETA = 0x23, /* Change in state of meta-key */

TDE_POWEROFF = 0x31, /* Power switch off */

TDE_POWERLOW = 0x32, /* Power low warning */

TDE_POWERFAIL = 0x33, /* Power failure */

TDE_POWERSUS = 0x34, /* Automatic suspend */

TDE_POWERUPTM = 0x35, /* Clock updated */

TDE_CKPWON = 0x41 /* Automatic power-on notification */

} TDEvtTyp;

The formats used for device event notification are shown below. The data associated with each type of

event is different and has a different size.

typedef struct t_devevt {

TDEvtTyp evttyp; /* Event type */

/* Append data corresponding to event type */

} T_DEVEVT;
251

APPENDIX C Device Driver Interface
The format for a device event notification that includes the device ID is as follows.

typedef struct t_devevt_id {

TDEvtTyp evttyp; /* Event type */

ID devid; /* Device ID */

/* Append data corresponding to event type */

} T_DEVEVT_ID;

Ensure that the operation of the event receiver is not adversely affected if an event is not sent because the

event notification message buffer is full. Waiting for the event buffer to become available before sending

the event is permitted but this must not block any device driver operations other than event notification.

Take care when implementing event receivers to minimize the possibility that the message buffer will

overflow.

■ Suspend and Resume
Device drivers must suspend or resume device operation when suspend or resume event (TDV_SUSPEND

or TDV_RESUME) is passed to the event function (eventfn). Suspend or resume events are only passed to

physical devices.

● Suspend (TDV_SUSPEND)

evttyp = TDV_SUSPEND

evtinf = NULL (None)

Suspend the device as follows.

1. If any requests are currently in progress, either wait for them to complete or pause or abort them. Which
method to use can be decided in the device driver implementation. However, as the device should be
suspended as quickly as possible, pause or abort operations that may take a long time to complete.
Although suspend events are only sent to physical devices, all logical devices associated with the
physical device should be handled the same way.

Pause: Temporarily halt operation, then restart after the device is resumed.

Abort: Abort operation in the same way as when the abort function (abortfn) is used. Do not restart
after the device is resumed.

2. Do not accept any new requests other than resume events.

3. Suspend the device in an appropriate way such as turning off the power.

As aborting an operation is likely to have a significant impact on the application, try to avoid this option

where possible. Do not use abort except in cases such as waiting for input from a serial link over an

extended period, or operations for which pausing is not practical. Instead, wait for the operation to

complete or, if possible, pause it.

Hold any requests passed to the device driver while the device is suspended and then accept them when the

device is resumed. However, operations such as those that do not involve device access may be performed

while suspended.
252

APPENDIX C Device Driver Interface
● Resume (TDV_RESUME)

evttyp = TDV_RESUME

evtinf = NULL (None)

Resume device operation as follows.

1. Perform any resume processing such as turning on the device power and restoring the device state.

2. Restart any paused operations.

3. Resume accepting requests.
253

APPENDIX D Points to Note When Porting From a µITRON OS
APPENDIX D Points to Note When Porting From a µITRON OS

This appendix describes the differences between a µITRON OS and µT-REALOS.

■ What is Different From the µITRON OS?
Table D-1 lists the functional differences between µT-REALOS and SOFTUNE REALOS/FR Spec.4, a

µITRON 4.0 compliant realtime OS (referred to below as "REALOS/FR Spec.4"). Take note of these

differences when porting user programs written for REALOS/FR Spec.4 to µT-REALOS.

❍: Function is supported ×: Function is not supported

*:For example, different system calls are used to wait on a semaphore, as follows. The tk_wai_sem routine has a timeout

parameter (tmout) and the value of this parameter controls the type of timeout to use.

Table D-1 Differences Between the Functions of µT-REALOS and REALOS/FR Spec.4

Function µT-REALOS
REALOS/FR

Spec.4

Static creation of objects × ❍

ID number setting when objects created × ❍

Subsystem function ❍ ×

Device management function ❍ ×

Reserving of memory areas in the kernel (task stack and memory pool area) ❍ ×

Task exception function × ❍

Acquisition and release of multiple semaphore resources ❍ ×

Data queue function × ❍

Rendezvous port function ❍ ×

System calls that wait on an object *
Same system calls Separate system calls

(Wait indefinitely, polling, timeout)

Interrupt level modification × ❍

Bitwise clearing of event flags
Bitwise and

all bits
All bits

Dynamic registration of interrupt handlers ❍ ×

Table D-2 Differences Between System Calls for Waiting on Semaphore

REALOS/FR Spec.4 µT-REALOS

Wait indefinitely wai_sem()

tk_wai_sem()Polling pol_sem()

Timeout twai_sem()
254

APPENDIX E System Call Index
APPENDIX E System Call Index

This appendix lists the system calls alphabetically and indicates the page number of the
system call explanation.

■ System Call Index

Table E-1 System Call Index (1 / 4)

System Call Name Function Page

DI Disable external interrupts 186

EI Enable external interrupts 187

isDI Get enable/disable state for external interrupts 188

isig_tim (Signal Time) Update system time 164

tk_acp_por (Accept Port for Rendezvous) Accept port for rendezvous 123

tk_cal_por (Call Port for Rendezvous) Call port for rendezvous 120

tk_can_wup (Cancel Wakeup Task) Cancel task wakeup request 50

tk_chg_pri (Change Task Priority) Change task priority 34

tk_clr_flg (Clear Event Flag) Clear event flag 77

tk_cls_dev (Close Device) Close device 212

tk_cre_alm (Create Alarm Handler) Create alarm handler 175

tk_cre_cyc (Create Cyclic Handler) Create cyclic handler 166

tk_cre_flg (Create Event Flag) Create event flag 73

tk_cre_mbf (Create MessageBuffer) Create message buffer 106

tk_cre_mbx (Create Mailbox) Create mailbox 84

tk_cre_mpf (Create Fixed-size MemoryPool) Create fixed-size memory pool 135

tk_cre_mpl (Create Variable-size MemoryPool) Create variable-size memory pool 147

tk_cre_mtx (Create Mutex) Create mutex 96

tk_cre_por (Create Port for Rendezvous) Create port for rendezvous 116

tk_cre_sem (Create Semaphore) Create semaphore 63

tk_cre_tsk (Create Task) Create task 25

tk_def_dev (Define Device) Define device 206

tk_def_int (Define Interrupt Handler) Define interrupt handler 183

tk_def_ssy (Define Subsystem) Define subsystem 201

tk_del_alm (Delete Alarm Handler) Delete alarm handler 177
255

APPENDIX E System Call Index
tk_del_cyc (Delete Cyclic Handler) Delete cyclic handler 169

tk_del_flg (Delete Event Flag) Delete event flag 75

tk_del_mbf (Delete MessageBuffer) Delete message buffer 108

tk_del_mbx (Delete Mailbox) Delete mailbox 86

tk_del_mpf (Delete Fixed-size MemoryPool) Delete fixed-size memory pool 138

tk_del_mpl (Delete Variable-size MemoryPool) Delete variable-size memory pool 150

tk_del_mtx (Delete Mutex) Delete mutex 98

tk_del_por (Delete Port for Rendezvous) Delete port for rendezvous 118

tk_del_sem (Delete Semaphore) Delete semaphore 65

tk_del_tsk (Delete Task) Delete task 28

tk_dis_dsp (Disable Dispatch) Disable dispatch 193

tk_dly_tsk (Delay Task) Delay task 60

tk_ena_dsp (Enable Dispatch) Enable dispatch 195

tk_evt_dev (Event Device) Send a driver request event to a device 232

tk_exd_tsk (Exit and Delete Task) Exit and delete invoking task 31

tk_ext_tsk (Exit Task) Exit invoking task 30

tk_frsm_tsk (Force Resume Task) Forcibly resume a suspended task 58

tk_fwd_por (Forward Rendezvous to Another Port) Rendezvous at a rendezvous port 126

tk_get_dev (Get Device) Get device name 225

tk_get_mpf (Get Fixed-size Memory Block) Get fixed-size memory block 140

tk_get_mpl (Get Variable-size Memory Block) Get variable-size memory block 152

tk_get_otm (Get Operating Time) Get system running time 163

tk_get_reg (Get Task Registers) Get task registers 37

tk_get_tid (Get Task Identifier) Get task ID of a running task 192

tk_get_tim (Get Time) Get system time 162

tk_loc_mtx (Lock Mutex) Lock mutex 99

tk_lst_dev (List Device) Get a list of registered devices 230

tk_opn_dev (Open Device) Open device 210

tk_oref_dev (Refer Device) Get device information 228

tk_rcv_mbf (Receive Message from MessageBuffer) Receive message from message buffer 111

tk_rcv_mbx (Receive Message from Mailbox) Receive message from mailbox 89

Table E-1 System Call Index (2 / 4)

System Call Name Function Page
256

APPENDIX E System Call Index
tk_rea_dev (Read Device) Start reading from device 213

tk_ref_alm (Refer Alarm Handler Status) Get alarm handler status 180

tk_ref_cyc (Refer Cyclic Handler Status) Get cyclic handler status 172

tk_ref_dev (Refer Device) Get device information 226

tk_ref_flg (Refer Event Flag Status) Get event flag status 81

tk_ref_idv (Refer Initial Device Information) Get initial device information 209

tk_ref_mbf (Refer MessageBuffer Status) Get message buffer status 113

tk_ref_mbx (Refer Mailbox Status) Get mailbox status 92

tk_ref_mpf (Refer Fixed-size MemoryPool Status) Get fixed-size memory pool status 144

tk_ref_mpl (Refer Variable-size MemoryPool Status) Get variable-size memory pool status 156

tk_ref_mtx (Refer Mutex Status) Get mutex status 103

tk_ref_por (Refer Port Status) Get rendezvous port status 131

tk_ref_sem (Refer Semaphore Status) Get semaphore status 70

tk_ref_ssy (Refer Subsystem Status) Get subsystem definition 204

tk_ref_sys (Refer System Status) Get system status 196

tk_ref_tsk (Refer Task Status) Get task status 41

tk_ref_ver (Refer Version Information) Get version information 198

tk_rel_mpf (Release Fixed-size Memory Block) Release fixed-size memory block 142

tk_rel_mpl (Release Variable-size Memory Block) Release variable-size memory block 154

tk_rel_wai (Release Wait) Release wait state for another task 52

tk_ret_int (Return from Interrupt Handler) Return from interrupt handler 185

tk_rot_rdq (Rotate Ready Queue) Rotate task priority queue 190

tk_rpl_rdv (Reply Rendezvous) Reply rendezvous 129

tk_rsm_tsk (Resume Task) Resume a suspended task 56

tk_set_flg (Set Event Flag) Set event flag 76

tk_set_reg (Set Task Registers) Set task registers 39

tk_set_tim (Set Time) Set system time 160

tk_sig_sem (Signal Semaphore) Signal a semaphore 66

tk_slp_tsk (Sleep Task) Put invoking task to sleep (wait for wakeup) 46

tk_snd_mbf (Send Message to MessageBuffer) Send message to message buffer 109

tk_snd_mbx (Send Message to Mailbox) Send message to mailbox 87

Table E-1 System Call Index (3 / 4)

System Call Name Function Page
257

APPENDIX E System Call Index
tk_srea_dev (Synchronous Read Device) Perform a synchronous read on a device 215

tk_sta_alm (Start Alarm Handler) Start alarm handler 178

tk_sta_cyc (Start Cyclic Handler) Start cyclic handler 170

tk_sta_tsk (Start Task) Start task 29

tk_stp_alm (Stop Alarm Handler) Stop alarm handler 179

tk_stp_cyc (Stop Cyclic Handler) Stop cyclic handler 171

tk_sus_dev (Suspend Device) Suspend device 223

tk_sus_tsk (Suspend Task) Suspend another task 54

tk_swri_dev (Synchronous Write Device) Perform a synchronous write to a device 219

tk_ter_tsk (Terminate Task) Forcibly terminate another task 32

tk_unl_mtx (Unlock Mutex) Unlock mutex 101

tk_wai_dev (Wait Device) Wait for device request to complete 221

tk_wai_flg (Wait Event Flag) Wait on an event flag 78

tk_wai_sem (Wait on Semaphore) Wait to get semaphore 68

tk_wri_dev (Write Device) Start writing to device 217

tk_wup_tsk (Wakeup Task) Wakeup another task 48

Table E-1 System Call Index (4 / 4)

System Call Name Function Page
258

INDEX
INDEX

The index follows on the next page.
This is listed in alphabetic order.
259

INDEX
Index

A

Accept
tk_acp_por (Accept Port for Rendezvous)...........123

Alarm Handler
Alarm Handler Function System Calls................174
tk_cre_alm (Create Alarm Handler)175
tk_del_alm (Delete Alarm Handler)177
tk_ref_alm (Refer Alarm Handler Status)180
tk_sta_alm (Start Alarm Handler)178
tk_stp_alm (Stop Alarm Handler)179

Attribute
Attribute Data ..242
Device Attributes ...241

C

Call
tk_cal_por (Call Port for Rendezvous)................120

Cancel
tk_can_wup (Cancel Wakeup Task)50

Change
tk_chg_pri (Change Task Priority)34

Clear
tk_clr_flg (Clear Event Flag)77

Close
tk_cls_dev (Close Device).................................212

Communication
System Calls for Extended Synchronization/

Communication Function94
System Calls for Synchronization/Communication

Function ...61
Create

tk_cre_alm (Create Alarm Handler)175
tk_cre_cyc (Create Cyclic Handler)....................166
tk_cre_flg (Create Event Flag).............................73
tk_cre_mbf (Create MessageBuffer)...................106
tk_cre_mbx (Create Mailbox)84
tk_cre_mpf (Create Fixed-size MemoryPool)......135
tk_cre_mpl (Create Variable-size MemoryPool)

..147
tk_cre_mtx (Create Mutex)96
tk_cre_por (Create Port for Rendezvous)116
tk_cre_sem (Create Semaphore)63
tk_cre_tsk (Create Task)25

Cyclic Handler
Cyclic Handler Function System Calls165
tk_cre_cyc (Create Cyclic Handler)....................166
tk_del_cyc (Delete Cyclic Handler)....................169
tk_ref_cyc (Refer Cyclic Handler Status)............172
tk_sta_cyc (Start Cyclic Handler).......................170

tk_stp_cyc (Stop Cyclic Handler) 171

D

Data
Attribute Data.. 242
Data Format of I/O Request 244
Data Number ... 242
Data Types .. 4
Data Types That Have a Specific Meaning in

µT-Kernel .. 12
Standard Data Types .. 10

Define
Define Macros ... 236
tk_def_dev (Define Device) 206
tk_def_int (Define Interrupt Handler)................. 183
tk_def_ssy (Define Subsystem) 201

Definition
Implementation Definition 5
Implementation-specific Definitions 7

Delay
tk_dly_tsk (Delay Task) 60

Delete
tk_del_alm (Delete Alarm Handler) 177
tk_del_cyc (Delete Cyclic Handler) 169
tk_del_flg (Delete Event Flag) 75
tk_del_mbf (Delete MessageBuffer) 108
tk_del_mbx (Delete Mailbox) 86
tk_del_mpf (Delete Fixed-size MemoryPool) 138
tk_del_mpl (Delete Variable-size MemoryPool)

... 150
tk_del_mtx (Delete Mutex) 98
tk_del_por (Delete Port for Rendezvous)............ 118
tk_del_sem (Delete Semaphore) 65
tk_del_tsk (Delete Task) 28
tk_exd_tsk (Exit and Delete Task) 31

Descriptor
Device Descriptor .. 242

Device
Device Attributes ... 241
Device Descriptor .. 242
Device Driver Interface 240
Device Event Notification................................. 251
Device ID.. 241
Device Naming Rules....................................... 240
Device Processing Functions............................. 245
tk_cls_dev (Close Device) 212
tk_def_dev (Define Device) 206
tk_evt_dev (Event Device)................................ 232
tk_get_dev (Get Device) 225
tk_lst_dev (List Device) 230
260

INDEX
tk_opn_dev (Open Device) 210
tk_oref_dev (Refer Device)............................... 228
tk_rea_dev (Read Device)................................. 213
tk_ref_dev (Refer Device)................................. 226
tk_ref_idv (Refer Initial Device Information)...... 209
tk_srea_dev (Synchronous Read Device)............ 215
tk_sus_dev (Suspend Device)............................ 223
tk_swri_dev (Synchronous Write Device) 219
tk_wai_dev (Wait Device) 221
tk_wri_dev (Write Device)................................ 217

Device Management
Device Management Function System Calls 205

DI
DI... 186

Disable
tk_dis_dsp (Disable Dispatch) 193

Dispatch
tk_dis_dsp (Disable Dispatch) 193
tk_ena_dsp (Enable Dispatch) 195

E

EI
EI ... 187

Enable
tk_ena_dsp (Enable Dispatch) 195

Error
Error Codes ... 4, 234

Event
Device Event Notification................................. 251
tk_clr_flg (Clear Event Flag)............................... 77
tk_cre_flg (Create Event Flag) 73
tk_del_flg (Delete Event Flag) 75
tk_evt_dev (Event Device)................................ 232
tk_ref_flg (Refer Event Flag Status)..................... 81
tk_set_flg (Set Event Flag).................................. 76
tk_wai_flg (Wait Event Flag) 78

Event Flag
Event Flag Function System Calls 72

Exit
tk_exd_tsk (Exit and Delete Task) 31
tk_ext_tsk (Exit Task) .. 30

Extended Synchronization
System Calls for Extended Synchronization/

Communication Function....................... 94
Extensions

Extensions... 8

F

Fixed-size
tk_cre_mpf (Create Fixed-size MemoryPool) 135
tk_del_mpf (Delete Fixed-size MemoryPool) 138
tk_get_mpf (Get Fixed-size Memory Block) 140
tk_ref_mpf (Refer Fixed-size MemoryPool Status)

.. 144

tk_rel_mpf (Release Fixed-size Memory Block)
..142

Fixed-size Memory Pool
Fixed-size Memory Pool Function System Calls

..134
Flag

tk_clr_flg (Clear Event Flag)77
tk_cre_flg (Create Event Flag)73
tk_del_flg (Delete Event Flag)75
tk_ref_flg (Refer Event Flag Status)81
tk_set_flg (Set Event Flag)76
tk_wai_flg (Wait Event Flag)...............................78

Force
tk_frsm_tsk (Force Resume Task)58

Format
Data Format of I/O Request244

Forward
tk_fwd_por (Forward Rendezvous to Another Port)

..126
Function

Device Processing Functions245

H

Handler
tk_cre_alm (Create Alarm Handler)....................175
tk_cre_cyc (Create Cyclic Handler)166
tk_def_int (Define Interrupt Handler)183
tk_del_alm (Delete Alarm Handler)....................177
tk_del_cyc (Delete Cyclic Handler)169
tk_ref_alm (Refer Alarm Handler Status)............180
tk_ref_cyc (Refer Cyclic Handler Status)172
tk_ret_int (Return from Interrupt Handler)185
tk_sta_alm (Start Alarm Handler).......................178
tk_sta_cyc (Start Cyclic Handler)170
tk_stp_alm (Stop Alarm Handler).......................179
tk_stp_cyc (Stop Cyclic Handler)171

I

I/O
Data Format of I/O Request244

ID
Device ID ..241
Request ID ...242

Identifier
tk_get_tid (Get Task Identifier)192

Implementation
Implementation Definition.....................................5
Implementation-specific Definitions7

Information
tk_ref_idv (Refer Initial Device Information)209
tk_ref_ver (Refer Version Information)...............198

Initial
tk_ref_idv (Refer Initial Device Information)209
261

INDEX
Interface
Device Driver Interface.....................................240

Interrupt
tk_def_int (Define Interrupt Handler)183
tk_ret_int (Return from Interrupt Handler)185

Interrupt Management
Interrupt Management Function System Calls182

isDI
isDI...188

isig_tim
isig_tim (Signal Time)164

L

List
tk_lst_dev (List Device)230

Lock
tk_loc_mtx (Lock Mutex)99

M

Macros
Define Macros ...236

Mailbox
Mailbox Function System Calls83
tk_cre_mbx (Create Mailbox)84
tk_del_mbx (Delete Mailbox)86
tk_rcv_mbx (Receive Message from Mailbox)89
tk_ref_mbx (Refer Mailbox Status)92
tk_snd_mbx (Send Message to Mailbox)87

Memory
tk_get_mpf (Get Fixed-size Memory Block)140
tk_get_mpl (Get Variable-size Memory Block)

..152
tk_rel_mpf (Release Fixed-size Memory Block)

..142
tk_rel_mpl (Release Variable-size Memory Block)

..154
Memory Pool Management

Memory Pool Management Function System Calls
..133

MemoryPool
tk_cre_mpf (Create Fixed-size MemoryPool)......135
tk_cre_mpl (Create Variable-size MemoryPool)

..147
tk_del_mpf (Delete Fixed-size MemoryPool)138
tk_del_mpl (Delete Variable-size MemoryPool)

..150
tk_ref_mpf (Refer Fixed-size MemoryPool Status)

..144
tk_ref_mpl (Refer Variable-size MemoryPool Status)

..156
Message

tk_rcv_mbf (Receive Message from MessageBuffer)
..111

tk_rcv_mbx (Receive Message from Mailbox)89

tk_snd_mbf (Send Message to MessageBuffer)
... 109

tk_snd_mbx (Send Message to Mailbox) 87
Message Buffer

Message Buffer Function System Calls 105
MessageBuffer

tk_cre_mbf (Create MessageBuffer) 106
tk_del_mbf (Delete MessageBuffer) 108
tk_rcv_mbf (Receive Message from MessageBuffer)

... 111
tk_ref_mbf (Refer MessageBuffer Status) 113
tk_snd_mbf (Send Message to MessageBuffer)

... 109
µITRON

What is Different From the µITRON OS? 254
µT-Kernel

Data Types That Have a Specific Meaning in
µT-Kernel .. 12

µT-REALOS
µT-REALOS Terminology 2

Mutex
Mutex Function System Calls.............................. 95
tk_cre_mtx (Create Mutex) 96
tk_del_mtx (Delete Mutex) 98
tk_loc_mtx (Lock Mutex) 99
tk_ref_mtx (Refer Mutex Status) 103
tk_unl_mtx (Unlock Mutex).............................. 101

N

Notification
Device Event Notification................................. 251

O

Open
tk_opn_dev (Open Device) 210

Operating
tk_get_otm (Get Operating Time)...................... 163

P

Port
tk_acp_por (Accept Port for Rendezvous) 123
tk_cal_por (Call Port for Rendezvous) 120
tk_cre_por (Create Port for Rendezvous)............ 116
tk_del_por (Delete Port for Rendezvous)............ 118
tk_fwd_por (Forward Rendezvous to Another Port)

... 126
tk_ref_por (Refer Port Status) 131

Priority
tk_chg_pri (Change Task Priority) 34

Q

Queue
tk_rot_rdq (Rotate Ready Queue) 190
262

INDEX
R

Read
tk_rea_dev (Read Device)................................. 213
tk_srea_dev (Synchronous Read Device)............ 215

Ready Queue
tk_rot_rdq (Rotate Ready Queue) 190

Receive
tk_rcv_mbf (Receive Message from MessageBuffer)

.. 111
tk_rcv_mbx (Receive Message from Mailbox) 89

Receive Message
tk_rcv_mbf (Receive Message from MessageBuffer)

.. 111
tk_rcv_mbx (Receive Message from Mailbox) 89

Refer
tk_oref_dev (Refer Device)............................... 228
tk_ref_alm (Refer Alarm Handler Status) 180
tk_ref_cyc (Refer Cyclic Handler Status) 172
tk_ref_dev (Refer Device)................................. 226
tk_ref_flg (Refer Event Flag Status)..................... 81
tk_ref_idv (Refer Initial Device Information)...... 209
tk_ref_mbf (Refer MessageBuffer Status) 113
tk_ref_mbx (Refer Mailbox Status)...................... 92
tk_ref_mpf (Refer Fixed-size MemoryPool Status)

.. 144
tk_ref_mpl (Refer Variable-size MemoryPool Status)

.. 156
tk_ref_mtx (Refer Mutex Status) 103
tk_ref_por (Refer Port Status) 131
tk_ref_sem (Refer Semaphore Status) 70
tk_ref_ssy (Refer Subsystem Status) 204
tk_ref_sys (Refer System Status) 196
tk_ref_tsk (Refer Task Status) 41
tk_ref_ver (Refer Version Information) 198

Registers
tk_get_reg (Get Task Registers) 37
tk_set_reg (Set Task Registers) 39

Release
tk_rel_mpf (Release Fixed-size Memory Block)

.. 142
tk_rel_mpl (Release Variable-size Memory Block)

.. 154
tk_rel_wai (Release Wait)................................... 52

Rendezvous
Rendezvous Function System Calls 115
tk_acp_por (Accept Port for Rendezvous) 123
tk_cal_por (Call Port for Rendezvous) 120
tk_cre_por (Create Port for Rendezvous) 116
tk_del_por (Delete Port for Rendezvous)............ 118
tk_fwd_por (Forward Rendezvous to Another Port)

.. 126
tk_rpl_rdv (Reply Rendezvous) 129

Reply
tk_rpl_rdv (Reply Rendezvous) 129

Request
Data Format of I/O Request244
Request ID ...242

Resume
Suspend and Resume ..252
tk_frsm_tsk (Force Resume Task)58
tk_rsm_tsk (Resume Task)56

Return
tk_ret_int (Return from Interrupt Handler)185

Rotate
tk_rot_rdq (Rotate Ready Queue)190

Rules
Device Naming Rules240

S

Semaphore
Semaphore Function System Calls62
tk_cre_sem (Create Semaphore)...........................63
tk_del_sem (Delete Semaphore)65
tk_ref_sem (Refer Semaphore Status)70
tk_sig_sem (Signal Semaphore)66
tk_wai_sem (Wait on Semaphore)68

Send
tk_snd_mbf (Send Message to MessageBuffer)

..109
tk_snd_mbx (Send Message to Mailbox)...............87

Signal
isig_tim (Signal Time)164
tk_sig_sem (Signal Semaphore)66

Sleep
tk_slp_tsk (Sleep Task)46

Standard Data Types
Standard Data Types ...10

Start
tk_sta_alm (Start Alarm Handler).......................178
tk_sta_cyc (Start Cyclic Handler)170
tk_sta_tsk (Start Task)...29

Status
tk_ref_alm (Refer Alarm Handler Status)............180
tk_ref_cyc (Refer Cyclic Handler Status)172
tk_ref_flg (Refer Event Flag Status)81
tk_ref_mbf (Refer MessageBuffer Status)113
tk_ref_mbx (Refer Mailbox Status)92
tk_ref_mpf (Refer Fixed-size MemoryPool Status)

..144
tk_ref_mpl (Refer Variable-size MemoryPool Status)

..156
tk_ref_mtx (Refer Mutex Status)103
tk_ref_por (Refer Port Status)131
tk_ref_sem (Refer Semaphore Status)70
tk_ref_ssy (Refer Subsystem Status)...................204
tk_ref_sys (Refer System Status)........................196
tk_ref_tsk (Refer Task Status)..............................41
263

INDEX
Stop
tk_stp_alm (Stop Alarm Handler)179
tk_stp_cyc (Stop Cyclic Handler).......................171

Sub System
Sub System Function System Calls200

Subsystem
tk_def_ssy (Define Subsystem)..........................201
tk_ref_ssy (Refer Subsystem Status)204

Suspend
Suspend and Resume ..252
tk_sus_dev (Suspend Device)223
tk_sus_tsk (Suspend Task)54

Synchronization
System Calls for Synchronization/Communication

Function ...61
Synchronous

tk_srea_dev (Synchronous Read Device)215
tk_swri_dev (Synchronous Write Device)...........219

System
tk_ref_sys (Refer System Status)196

System Call
Alarm Handler Function System Calls................174
Cyclic Handler Function System Calls165
Device Management Function System Calls205
Event Flag Function System Calls........................72
Fixed-size Memory Pool Function System Calls

..134
Interrupt Management Function System Calls182
Mailbox Function System Calls83
Memory Pool Management Function System Calls

..133
Message Buffer Function System Calls105
Mutex Function System Calls95
Rendezvous Function System Calls....................115
Semaphore Function System Calls62
Sub System Function System Calls200
System Call Index ..255
System Calls ..4
System Calls for Extended Synchronization/

Communication Function94
System Calls for Synchronization/Communication

Function ...61
System Calls for Task-dependent Synchronization

Function ...45
System Calls for the Task Management Function

..24
System Status Management Function System Calls

..189
System Time Management Function System Calls

..159
Time Management Function System Calls158
Variable-size Memory Pool Function System Calls

..146

System Status Management
System Status Management Function System Calls

... 189
System Time Management

System Time Management Function System Calls
... 159

T

Task
tk_can_wup (Cancel Wakeup Task) 50
tk_chg_pri (Change Task Priority) 34
tk_cre_tsk (Create Task) 25
tk_del_tsk (Delete Task) 28
tk_dly_tsk (Delay Task) 60
tk_exd_tsk (Exit and Delete Task) 31
tk_ext_tsk (Exit Task) .. 30
tk_frsm_tsk (Force Resume Task) 58
tk_get_reg (Get Task Registers) 37
tk_get_tid (Get Task Identifier) 192
tk_ref_tsk (Refer Task Status) 41
tk_rsm_tsk (Resume Task).................................. 56
tk_set_reg (Set Task Registers) 39
tk_slp_tsk (Sleep Task) 46
tk_sta_tsk (Start Task) .. 29
tk_sus_tsk (Suspend Task) 54
tk_ter_tsk (Terminate Task) 32
tk_wup_tsk (Wakeup Task) 48

Task Management
System Calls for the Task Management Function

... 24
Task-dependent Synchronization

System Calls for Task-dependent Synchronization
Function... 45

Terminate
tk_ter_tsk (Terminate Task) 32

Time
isig_tim (Signal Time)...................................... 164
tk_get_otm (Get Operating Time)...................... 163
tk_get_tim (Get Time) 162
tk_set_tim (Set Time) 160

Time Management
Time Management Function System Calls.......... 158

tk_acp_por
tk_acp_por (Accept Port for Rendezvous) 123

tk_cal_por
tk_cal_por (Call Port for Rendezvous) 120

tk_can_wup
tk_can_wup (Cancel Wakeup Task) 50

tk_chg_pri
tk_chg_pri (Change Task Priority) 34

tk_clr_flg
tk_clr_flg (Clear Event Flag)............................... 77
264

INDEX
tk_cls_dev
tk_cls_dev (Close Device) 212

tk_cre_alm
tk_cre_alm (Create Alarm Handler) 175

tk_cre_cyc
tk_cre_cyc (Create Cyclic Handler) 166

tk_cre_flg
tk_cre_flg (Create Event Flag) 73

tk_cre_mbf
tk_cre_mbf (Create MessageBuffer) 106

tk_cre_mbx
tk_cre_mbx (Create Mailbox).............................. 84

tk_cre_mpf
tk_cre_mpf (Create Fixed-size MemoryPool) 135

tk_cre_mpl
tk_cre_mpl (Create Variable-size MemoryPool)

.. 147
tk_cre_mtx

tk_cre_mtx (Create Mutex) 96
tk_cre_por

tk_cre_por (Create Port for Rendezvous) 116
tk_cre_sem

tk_cre_sem (Create Semaphore) 63
tk_cre_tsk

tk_cre_tsk (Create Task) 25
tk_def_dev

tk_def_dev (Define Device) 206
tk_def_int

tk_def_int (Define Interrupt Handler)................. 183
tk_def_ssy

tk_def_ssy (Define Subsystem) 201
tk_del_alm

tk_del_alm (Delete Alarm Handler) 177
tk_del_cyc

tk_del_cyc (Delete Cyclic Handler) 169
tk_del_flg

tk_del_flg (Delete Event Flag) 75
tk_del_mbf

tk_del_mbf (Delete MessageBuffer) 108
tk_del_mbx

tk_del_mbx (Delete Mailbox).............................. 86
tk_del_mpf

tk_del_mpf (Delete Fixed-size MemoryPool) 138
tk_del_mpl

tk_del_mpl (Delete Variable-size MemoryPool)
.. 150

tk_del_mtx
tk_del_mtx (Delete Mutex) 98

tk_del_por
tk_del_por (Delete Port for Rendezvous)............ 118

tk_del_sem
tk_del_sem (Delete Semaphore) 65

tk_del_tsk
tk_del_tsk (Delete Task)......................................28

tk_dis_dsp
tk_dis_dsp (Disable Dispatch)............................193

tk_dly_tsk
tk_dly_tsk (Delay Task)60

tk_ena_dsp
tk_ena_dsp (Enable Dispatch)............................195

tk_evt_dev
tk_evt_dev (Event Device)232

tk_exd_tsk
tk_exd_tsk (Exit and Delete Task)31

tk_ext_tsk
tk_ext_tsk (Exit Task) ...30

tk_frsm_tsk
tk_frsm_tsk (Force Resume Task)58

tk_fwd_por
tk_fwd_por (Forward Rendezvous to Another Port)

..126
tk_get_dev

tk_get_dev (Get Device)....................................225
tk_get_mpf

tk_get_mpf (Get Fixed-size Memory Block)140
tk_get_mpl

tk_get_mpl (Get Variable-size Memory Block)
..152

tk_get_otm
tk_get_otm (Get Operating Time)163

tk_get_reg
tk_get_reg (Get Task Registers)37

tk_get_tid
tk_get_tid (Get Task Identifier)192

tk_get_tim
tk_get_tim (Get Time).......................................162

tk_loc_mtx
tk_loc_mtx (Lock Mutex)....................................99

tk_lst_dev
tk_lst_dev (List Device)230

tk_opn_dev
tk_opn_dev (Open Device)210

tk_oref_dev
tk_oref_dev (Refer Device)228

tk_rcv_mbf
tk_rcv_mbf (Receive Message from MessageBuffer)

..111
tk_rcv_mbx

tk_rcv_mbx (Receive Message from Mailbox)89
tk_rea_dev

tk_rea_dev (Read Device)213
tk_ref_alm

tk_ref_alm (Refer Alarm Handler Status)............180
tk_ref_cyc

tk_ref_cyc (Refer Cyclic Handler Status)172
265

INDEX
tk_ref_dev
tk_ref_dev (Refer Device)226

tk_ref_flg
tk_ref_flg (Refer Event Flag Status)81

tk_ref_idv
tk_ref_idv (Refer Initial Device Information)209

tk_ref_mbf
tk_ref_mbf (Refer MessageBuffer Status)113

tk_ref_mbx
tk_ref_mbx (Refer Mailbox Status)92

tk_ref_mpf
tk_ref_mpf (Refer Fixed-size MemoryPool Status)

..144
tk_ref_mpl

tk_ref_mpl (Refer Variable-size MemoryPool Status)
..156

tk_ref_mtx
tk_ref_mtx (Refer Mutex Status)........................103

tk_ref_por
tk_ref_por (Refer Port Status)............................131

tk_ref_sem
tk_ref_sem (Refer Semaphore Status)...................70

tk_ref_ssy
tk_ref_ssy (Refer Subsystem Status)204

tk_ref_sys
tk_ref_sys (Refer System Status)196

tk_ref_tsk
tk_ref_tsk (Refer Task Status)41

tk_ref_ver
tk_ref_ver (Refer Version Information)198

tk_rel_mpf
tk_rel_mpf (Release Fixed-size Memory Block)

..142
tk_rel_mpl

tk_rel_mpl (Release Variable-size Memory Block)
..154

tk_rel_wai
tk_rel_wai (Release Wait)52

tk_ret_int
tk_ret_int (Return from Interrupt Handler)185

tk_rot_rdq
tk_rot_rdq (Rotate Ready Queue).......................190

tk_rpl_rdv
tk_rpl_rdv (Reply Rendezvous)129

tk_rsm_tsk
tk_rsm_tsk (Resume Task)56

tk_set_flg
tk_set_flg (Set Event Flag)76

tk_set_reg
tk_set_reg (Set Task Registers)............................39

tk_set_tim
tk_set_tim (Set Time)160

tk_sig_sem
tk_sig_sem (Signal Semaphore) 66

tk_slp_tsk
tk_slp_tsk (Sleep Task) 46

tk_snd_mbf
tk_snd_mbf (Send Message to MessageBuffer)

... 109
tk_snd_mbx

tk_snd_mbx (Send Message to Mailbox) 87
tk_srea_dev

tk_srea_dev (Synchronous Read Device)............ 215
tk_sta_alm

tk_sta_alm (Start Alarm Handler) 178
tk_sta_cyc

tk_sta_cyc (Start Cyclic Handler) 170
tk_sta_tsk

tk_sta_tsk (Start Task) .. 29
tk_stp_alm

tk_stp_alm (Stop Alarm Handler) 179
tk_stp_cyc

tk_stp_cyc (Stop Cyclic Handler) 171
tk_sus_dev

tk_sus_dev (Suspend Device)............................ 223
tk_sus_tsk

tk_sus_tsk (Suspend Task) 54
tk_swri_dev

tk_swri_dev (Synchronous Write Device) 219
tk_ter_tsk

tk_ter_tsk (Terminate Task) 32
tk_unl_mtx

tk_unl_mtx (Unlock Mutex).............................. 101
tk_wai_dev

tk_wai_dev (Wait Device) 221
tk_wai_flg

tk_wai_flg (Wait Event Flag) 78
tk_wai_sem

tk_wai_sem (Wait on Semaphore) 68
tk_wri_dev

tk_wri_dev (Write Device) 217
tk_wup_tsk

tk_wup_tsk (Wakeup Task) 48
Types

Data Types .. 4
Data Types That Have a Specific Meaning in

µT-Kernel .. 12
Standard Data Types .. 10

U

Unlock
tk_unl_mtx (Unlock Mutex).............................. 101
266

INDEX
V

Variable
tk_cre_mpl (Create Variable-size MemoryPool)

.. 147
tk_del_mpl (Delete Variable-size MemoryPool)

.. 150
tk_get_mpl (Get Variable-size Memory Block)

.. 152
tk_ref_mpl (Refer Variable-size MemoryPool Status)

.. 156
tk_rel_mpl (Release Variable-size Memory Block)

.. 154
Variable-size

tk_cre_mpl (Create Variable-size MemoryPool)
.. 147

tk_del_mpl (Delete Variable-size MemoryPool)
.. 150

tk_get_mpl (Get Variable-size Memory Block)
.. 152

tk_ref_mpl (Refer Variable-size MemoryPool Status)
.. 156

tk_rel_mpl (Release Variable-size Memory Block)
..154

Variable-size Memory Pool
Variable-size Memory Pool Function System Calls

..146
Version

tk_ref_ver (Refer Version Information)...............198

W

Wait
tk_rel_wai (Release Wait)52
tk_wai_dev (Wait Device)221
tk_wai_flg (Wait Event Flag)...............................78
tk_wai_sem (Wait on Semaphore)68

Wakeup
tk_can_wup (Cancel Wakeup Task)......................50
tk_wup_tsk (Wakeup Task)48

Write
tk_swri_dev (Synchronous Write Device)219
tk_wri_dev (Write Device)217
267

INDEX
268

Colophon

CM81-00321-1E

FUJITSU MICROELECTRONICS • CONTROLLER MANUAL

FR Family
µT-Kernel Specifications-Compliant

SOFTUNETM µT-REALOS/FR

API REFERENCE

June 2008 the first edition

Published FUJITSU MICROELECTRONICS LIMITED
Edited Business & Media Promotion Dept.

	CHAPTER 1 GENERAL DESCRIPTION
	1.1 Explanation of Terms
	1.2 Overview of the μT-REALOS API
	1.3 Implementation Definition and Implementation-specific Specifications
	1.4 Extensions

	CHAPTER 2 DATA TYPES
	2.1 Standard Data Types and Define Macros
	2.2 Data Types and Define Macros That Have a Specific Meaning in μT-Kernel

	CHAPTER 3 SYSTEM CALL INTERFACE
	3.1 List of System Calls
	3.2 System Call Descriptions
	3.3 System Calls for Task Management Function
	3.3.1 tk_cre_tsk (Create Task)
	3.3.2 tk_del_tsk (Delete Task)
	3.3.3 tk_sta_tsk (Start Task)
	3.3.4 tk_ext_tsk (Exit Task)
	3.3.5 tk_exd_tsk (Exit and Delete Task)
	3.3.6 tk_ter_tsk (Terminate Task)
	3.3.7 tk_chg_pri (Change Task Priority)
	3.3.8 tk_get_reg (Get Task Registers)
	3.3.9 tk_set_reg (Set Task Registers)
	3.3.10 tk_ref_tsk (Refer Task Status)

	3.4 System Calls for Task-dependent Synchronization Function
	3.4.1 tk_slp_tsk (Sleep Task)
	3.4.2 tk_wup_tsk (Wakeup Task)
	3.4.3 tk_can_wup (Cancel Wakeup Task)
	3.4.4 tk_rel_wai (Release Wait)
	3.4.5 tk_sus_tsk (Suspend Task)
	3.4.6 tk_rsm_tsk (Resume Task)
	3.4.7 tk_frsm_tsk (Force Resume Task)
	3.4.8 tk_dly_tsk (Delay Task)

	3.5 System Calls for Synchronization/Communication Function
	3.5.1 Semaphore Function System Calls
	3.5.1.1 tk_cre_sem (Create Semaphore)
	3.5.1.2 tk_del_sem (Delete Semaphore)
	3.5.1.3 tk_sig_sem (Signal Semaphore)
	3.5.1.4 tk_wai_sem (Wait on Semaphore)
	3.5.1.5 tk_ref_sem (Refer Semaphore Status)

	3.5.2 Event Flag Function System Calls
	3.5.2.1 tk_cre_flg (Create Event Flag)
	3.5.2.2 tk_del_flg (Delete Event Flag)
	3.5.2.3 tk_set_flg (Set Event Flag)
	3.5.2.4 tk_clr_flg (Clear Event Flag)
	3.5.2.5 tk_wai_flg (Wait Event Flag)
	3.5.2.6 tk_ref_flg (Refer Event Flag Status)

	3.5.3 Mailbox Function System Calls
	3.5.3.1 tk_cre_mbx (Create Mailbox)
	3.5.3.2 tk_del_mbx (Delete Mailbox)
	3.5.3.3 tk_snd_mbx (Send Message to Mailbox)
	3.5.3.4 tk_rcv_mbx (Receive Message from Mailbox)
	3.5.3.5 tk_ref_mbx (Refer Mailbox Status)

	3.6 System Calls for Extended Synchronization/ Communication Function
	3.6.1 Mutex Function System Calls
	3.6.1.1 tk_cre_mtx (Create Mutex)
	3.6.1.2 tk_del_mtx (Delete Mutex)
	3.6.1.3 tk_loc_mtx (Lock Mutex)
	3.6.1.4 tk_unl_mtx (Unlock Mutex)
	3.6.1.5 tk_ref_mtx (Refer Mutex Status)

	3.6.2 Message Buffer Function System Calls
	3.6.2.1 tk_cre_mbf (Create MessageBuffer)
	3.6.2.2 tk_del_mbf (Delete MessageBuffer)
	3.6.2.3 tk_snd_mbf (Send Message to MessageBuffer)
	3.6.2.4 tk_rcv_mbf (Receive Message from MessageBuffer)
	3.6.2.5 tk_ref_mbf (Refer MessageBuffer Status)

	3.6.3 Rendezvous Function System Calls
	3.6.3.1 tk_cre_por (Create Port for Rendezvous)
	3.6.3.2 tk_del_por (Delete Port for Rendezvous)
	3.6.3.3 tk_cal_por (Call Port for Rendezvous)
	3.6.3.4 tk_acp_por (Accept Port for Rendezvous)
	3.6.3.5 tk_fwd_por (Forward Rendezvous to Another Port)
	3.6.3.6 tk_rpl_rdv (Reply Rendezvous)
	3.6.3.7 tk_ref_por (Refer Port Status)

	3.7 Memory Pool Management Function System Calls
	3.7.1 Fixed-size Memory Pool Function System Calls
	3.7.1.1 tk_cre_mpf (Create Fixed-size MemoryPool)
	3.7.1.2 tk_del_mpf (Delete Fixed-size MemoryPool)
	3.7.1.3 tk_get_mpf (Get Fixed-size Memory Block)
	3.7.1.4 tk_rel_mpf (Release Fixed-size Memory Block)
	3.7.1.5 tk_ref_mpf (Refer Fixed-size MemoryPool Status)

	3.7.2 Variable-size Memory Pool Function System Calls
	3.7.2.1 tk_cre_mpl (Create Variable-size MemoryPool)
	3.7.2.2 tk_del_mpl (Delete Variable-size MemoryPool)
	3.7.2.3 tk_get_mpl (Get Variable-size Memory Block)
	3.7.2.4 tk_rel_mpl (Release Variable-size Memory Block)
	3.7.2.5 tk_ref_mpl (Refer Variable-size MemoryPool Status)

	3.8 Time Management Function System Calls
	3.8.1 System Time Management Function System Calls
	3.8.1.1 tk_set_tim (Set Time)
	3.8.1.2 tk_get_tim (Get Time)
	3.8.1.3 tk_get_otm (Get Operating Time)
	3.8.1.4 isig_tim (Signal Time)

	3.8.2 Cyclic Handler Function System Calls
	3.8.2.1 tk_cre_cyc (Create Cyclic Handler)
	3.8.2.2 tk_del_cyc (Delete Cyclic Handler)
	3.8.2.3 tk_sta_cyc (Start Cyclic Handler)
	3.8.2.4 tk_stp_cyc (Stop Cyclic Handler)
	3.8.2.5 tk_ref_cyc (Refer Cyclic Handler Status)

	3.8.3 Alarm Handler Function System Calls
	3.8.3.1 tk_cre_alm (Create Alarm Handler)
	3.8.3.2 tk_del_alm (Delete Alarm Handler)
	3.8.3.3 tk_sta_alm (Start Alarm Handler)
	3.8.3.4 tk_stp_alm (Stop Alarm Handler)
	3.8.3.5 tk_ref_alm (Refer Alarm Handler Status)

	3.9 Interrupt Control Function System Calls
	3.9.1 tk_def_int (Define Interrupt Handler)
	3.9.2 tk_ret_int (Return from Interrupt Handler)
	3.9.3 DI
	3.9.4 EI
	3.9.5 isDI

	3.10 System Status Management Function System Calls
	3.10.1 tk_rot_rdq (Rotate Ready Queue)
	3.10.2 tk_get_tid (Get Task Identifier)
	3.10.3 tk_dis_dsp (Disable Dispatch)
	3.10.4 tk_ena_dsp (Enable Dispatch)
	3.10.5 tk_ref_sys (Refer System Status)
	3.10.6 tk_ref_ver (Refer Version Information)

	3.11 Sub System Function System Calls
	3.11.1 tk_def_ssy (Define Subsystem)
	3.11.2 tk_ref_ssy (Refer Subsystem Status)

	3.12 Device Management Function System Calls
	3.12.1 tk_def_dev (Define Device)
	3.12.2 tk_ref_idv (Refer Initial Device Information)
	3.12.3 tk_opn_dev (Open Device)
	3.12.4 tk_cls_dev (Close Device)
	3.12.5 tk_rea_dev (Read Device)
	3.12.6 tk_srea_dev (Synchronous Read Device)
	3.12.7 tk_wri_dev (Write Device)
	3.12.8 tk_swri_dev (Synchronous Write Device)
	3.12.9 tk_wai_dev (Wait Device)
	3.12.10 tk_sus_dev (Suspend Device)
	3.12.11 tk_get_dev (Get Device)
	3.12.12 tk_ref_dev (Refer Device)
	3.12.13 tk_oref_dev (Refer Device)
	3.12.14 tk_lst_dev (List Device)
	3.12.15 tk_evt_dev (Event Device)

	APPENDIX
	APPENDIX A Error Codes
	APPENDIX B Define Macros
	APPENDIX C Device Driver Interface
	APPENDIX D Points to Note When Porting From a μITRON OS
	APPENDIX E System Call Index

